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MOTIVATION: Critical Infrastructure Is Insecure
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MOTIVATION: Why Cyber Defense |s Hard

Conventional Military/”Kinetic” Solutions: Impractical, high risk of escalation.

Legal Warfare/”Lawfare”: Ineffective, only usable in countries with mutual extradition treaties.

Counterhacking: Difficult due to attribution, only an option for governments.

The nature of cyberwarfare fundamentally operates in a grey area + asymmetrically favoring attacker.
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MOTIVATION: Strategic Cyber Defense

e Currently, the security posture between different systems is often poor, greatly varies + largely independent.
* Question: Is a universal cyberspace equivalent of strategic missile defense possible?

 Addendum: Is an effective cyberspace defense doctrine equivalent of M.A.D possible?
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Our Approach

Cyber Defense + Cyber Deterrence Through Universally Hard Computational Cost

AEGIS addresses this problem through:

1. Extremely High Randomness (ERIS)
2. Rapid Real-Time Detection & Adaptation (ATHENA)
3. Universally Hard Computational Cost as a punitive deterrent (M-PoW)



BACKGROUND: Cyber-Physical Systems (CPS)
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poor security!

* Bandwidth farming via loT botnet great for
launching DDoS attacks.

* Everyendpointis a potential attack vector.
The threat compounds.
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BACKGROUND: Individual Device (CAVs)
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Autonomous Vehicle Attacks

Driving policy calculations are isolated
& done locally, but there are ways to
compromise operation.

Several attack vectors exist, but we will
focus on layers 3, 4, 7 of OSI model
Malicious OTA Firmware Injection:
Inject firmware that may spoof sensor
readings or cause incorrect operation of
key components.

Sybil Attacks: Spoof number & location
of other vehicles.

DDoS Attacks: Overwhelm tertiary
vehicle systems to increase latency,
shut down subsystems.

And many, many more!



APPROACH: AEGIS Network Topology

* A“Forest-Of-Trees” Topology, constituting a network with layers of devices composed of varying capabilities

* Holistic, Defense-In-Depth, Moving-Target. Network is closed, hardened, and microsegmented.
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APPROACH: Threat Model (Local Subnet)
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APPROACH: Threat Model (Whole Network
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APPROACH: ERIS for Moving-Target Defense
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APPROACH: ERIS for Moving-Target Defense

Algorithm 3: Dynamic Subnet Allocation for ERIS

10:

- Initialize network node list N and subnet list S

Define maximum subnet size maxSize
for each node n € N do
Calculate potential subnets based on proximity and current entropy
Assign node n to subnet s € S that maximizes entropy
if size of subnet s exceeds maxSize then
Trigger reconfiguration for subnet s
end if
end for

return Updated subnet list S

where H(S) is the entropy of subnet configuration S, p; represents the proportion of

j\'
H(S) = Z-p,- log p; (4.1)

i=1

nodes in the z-th subnet, and % is the total number of subnets.

'['I'i;:,y;i*r H(‘('Hlllij_'.jlll'il.li{}ll 1 ”'(['3} : ff;]u-.._qm].]



APPROACH: ERIS for Moving-Target Defense

e Py (t): Probability of controlling the MANET within time limit (t).
e Py.(t): Probability of controlling the ith security group within time limit (t).

e P, (t): Probability of retaining control in the MANET despite churn to make

a successful attack within time (t).

“th

e P (t): Probability of retaining control in the *" security group despite churn

to make a successful attack within time (t).

The comprehensive success probability is expressed below in equation 4.3:

[

Pi(t) = Pu(t) - Pc,,(t) - || (Pv.(¢) - Pe,, (1)) (4.3)

1=1



APPROACH: ATHENA For Threat Detection

Sewlce ) Algorithm 4: Handshake Algorithm in AEGIS
PrOVIder I: Input: ego_node, nearby.nodes||, rsu
Requester

2: egohash < hash(targeting-service.code(ego-node))

A\
-~
-~
—_—— “N
N
~~~~
-

3: rsu_hash « hash(largeting.service.code(rsu))

i: if ego_hash # rsu_hash then

~o 5 Abort handshake. ego_node cannot form or join a MANET under this rsu.
-~ -~
-~ - .
~o 6: else
" -~
-~ - —~
S~ i: candidate_node ,~[ «—0
-~
TNy P
-~ -~ . 1
- e 8:  for all node € nearby_nodes|| do
e -~ - - -~ -
~-o Wiw . o \
i S 9 node_hash < hash(targeting_service_code(node))
Ssa T
-~ -~

~o 10: if node_hash = rsu_hash then

S 1. Respond its intend to Xp ~~~==~._]

11: candidale_nodes||.add(node)

ﬁ 2. Blockchain with a consent is Gl
e . . Pl 13: end for
maintained among Xo and Y .-~

. 14 if size(candidate_nodes||) > predefined_threshold then
-
-
o -4 15 Form MANET with ego.node and candidale_nodes|
o -
-
2% 16 else
-
. -
" 17 Output failure to form MANET
a -
- .
- 18 end if

. i 19: end if
-
-
20: Output: Formed MANET or [ailure indication.




APPROACH: ATHENA For Threat Detection

Algorithm 5: Heartbeat Protocol in ARGILS
| lllpll.l..‘ final_round_data, local _RSU_cache, kademlia,DHT

2: malicious_nodes, onest _nodes, nonresponsivenodes 4

Extract Nodes(final_round_data)

3: for node € malicions_nodes do

I: UpdateCache AndDHT (node, local .RSU_cache, kademlia DHT, "'malicious’)

he behavior_type +— ldentifyMaliciousBehavior(node)

fi: if Not Previouslyecorded(behavior_type) then

T Disseminate Threatlntelligence(behavior_type)

8: UpdateTargetingService WithHeuristic{ behavior_type)
9:  end if

10: end for

11: for node € honest_nodes do
12- UpdateCache AndDHT (node, local RSU_cache, kademlia DHT, "honest™)
13 end for

14: for node € nonresponsive_nodes do

15 UpdateCache AndDHT (node, local .RSU_cache, kademlia DHT, "nonresponsive’)

16: end for

17 l]'l]lp'lll_: lll}[l.'l.ll'lj L.‘n!i'iu]l.‘L_lHl"' andd low ill_“:‘;ll_l.li ||t', Dissemination of new threat

mtelligence (il applicable)




APPROACH: M-PoW Cost Deterrent

Algorithm 6: Dual Consensus Protocol in AEGIS Dynamic Difficulty Adjustment

1: Input: subnet_data, network_state_components

2: violating.nodes « BOSCO(subnet_data, network_state_components) A modified version of the classical dynamic difficulty adjustment formula is designed

3: for node € violating_nodes do to adapt the mining difficulty based on the rate of transactions and the current
4:  if TargetingService(node) == "malicious” then network load to ensure computational feasibility for IoT devices:
5: ExponentialSlidingCost(node) _\( "

; 7/ .
6: MedusaStunlock(node) D(t) = Do - (l e ( Aref )) (4.5)
7:  end if

where:

8: end for
9: validated_trns + ProofOfWork(subnet_data) e D(t): Difficulty at time t.

10: for txn £ validated_txns do

e [y: Base difficulty.

11:  Add txn to subnet transaction pool

12: end for g . ; o ”_
e «: Adjustment factor, which scales the difficulty based on network conditions.

13: Output: Updated node statuses in the subnet, Validated transactions for the subnet,

Nodes flagged as malicious by TargetingService e A(t): Average transaction rate at time £.

e )\ Reference transaction rate for normal operation.



APPROACH: M-PoW Cost Deterrent

Churn Factor for Dynamic Difficulty

A new formula where the churn factor adjusts the difficulty in response to the rate of
node churn in the network, reducing the difficulty to accommodate sudden drops in
network participation. as long as the network size stays within a sufficient range to

be sufficiently resilient against byzantine faults:

ChurnFactor(¢) = exp (.)’ -

o) 16
di .
where:

e [3: Sensitivity parameter that modulates the effect of churn.

e N;(t): Number of active nodes in the network at time ¢.



APPROACH: M-PoW Cost Deterrent

Stair-Stepping Difficulty Levels

A modified version of the classic stair-stepping algorithm provides more gradual

changes in difficulty to prevent large fluctuations and maintain stability:

: A
D(t + At) = D(t) - (l + 7 - Sign (_\/ ) - ('hur11Factor(/)> (4.7)
where:
e At: Time increment for difficulty adjustment.

e ~v: Step size for difficulty adjustment.

e A): Change in the average transaction rate.



APPROACH: M-PoW Cost Deterrent

Probabilistic and Bounded Cost Functions

This modified function accounting for churn ensures that the computational cost

remains within a feasible range while still being probabilistic:

1
P(t) = - (4.8)
1+ CXp (_‘5 (/\({) _ ’\t.:u‘p;vt..))
| | ChurnFactor(f
Cost(t) = BaseCost - (1 _ H“ ort )) (4.9)

where:
e P°(t): Probabilistic cost function at time 7.
e &: Factor controlling the sensitivity to deviations from the target rate Ajarget-

e (: Normalization factor to ensure the cost stays within bounds.



EXPERIMENTS: Physical Network Setup
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Figure 7: Cluster of Raspberry Pi 4’s used to model the fog
layer (left) and GPU rig used to model the cloud layer (right).



EXPERIMENTS: Realistic Virtual Network Emulation




RESULTS: Punitive Cost Deterrent For Network Attacks
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RESULTS: Holistic Defense Against A Variety Of Attacks

TizeOf Attack{MITREATTACKID)

Eavesdropping (T1430)

Sybil Attacks (T1098)
Man-in-the-Middle Attacks (T1557)
Replay Attacks (T1003)

Message Tampering (T1565)
Wormhole Attacks (T1430)
Blackhole Attacks (T1499)
Jamming Attacks (T1495)

Spoofing Attacks (T1556)

DoS and DDoS Attacks (T1498)
Routing Attacks (T1592)
Side-Channel Attacks (T1407)

Uses AES-256 encryption at rest and TLS 1.3 in transit with mutual authentication to ensure data confidentiality.
Requires cryptographic staking tied to device identity; high resource costs deter fake identities.

Utilizes TLS 1.3 with mutual authentication; dual-consensus detects anomalies; ERIS reduces predictability.
Implements time-stamped messages and nonces; dual-consensus validates freshness; ATHENA monitors patterns.
Uses digital signatures and integrity checks; consensus mechanisms detect alterations; ATHENA responds.

ERIS's dynamic subnet formation hinders wormholes; ATHENA detects routing anomalies.

Dual-consensus identifies malicious nodes; ATHENA quarantines them; reroutes communications.

Detects communication disruptions; devices switch frequencies or use alternatives when possible.

Employs PKI with RSA 2048-bit encryption and device certificates to prevent impersonation.
Adaptive rate limiting and resource metering; high-attrition defense increases attackers' costs.
ERIS prevents routing manipulation; dual-consensus validates routing; ATHENA detects anomalies.

Implements constant-time cryptography; isolates sensitive operations; hardware security modules used.



RESULTS: AEGIS Quickly Detects & Quarantines Threats

Mean Time To Detection (MTTD) Mean Time To Quarantine (MTTQ)
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As the number of byzantine nodes is scaled in a 50-node network, AEGIS Mean Time To Detection (MTTD) and Mean

Time To Quarantine (MTTQ) of the network increases, however the network remains effective at removing threats
until the 33% byzantine fault tolerance (3f + 1) threshold.



RESULTS: AEGIS Has High Resiliency & Quick Recovery

= Total Failures @ Total Recoveries == Mean Time To Recovery (MTTR)
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Number Of Consensus Rounds

Resiliency and Recovery metrics over various consensus rounds utilizing ERIS. With 366 recoveries/369 failures,
AEGIS demonstrates a 99.2% recovery rate. Mean-Time-To-Recovery averages at 9.73 seconds/subnet.



RESULTS: AEGIS Is Performant & Power-Efficient

Table 2: Comparative Analysis of Time-to-Finality

Consensus Mechanism

Time-to-Finality (Seconds)

AEBGIS

0.3 to 5 seconds

Honey Badger BFT

1 to 3 seconds

IOTA

10 seconds

Hashgraph

3 to 5 seconds

Table 3: Comparative Analysis of AREGIE vs. Hashcash.

Metric AEGIS Hasheash # Tnft Ratio

Attempts 15.45 LAEM  -99999% 104 %10 °
Elapsed Time (s) 1.3% % 107 0.964 -99999% 1383x 10 7
Hashpower Util. 594,38 1.54M  -99.961% 3.86x 10 1
Kilowatt-Hours (kWh)  1.84x 10 "7 134x10 % -99999% 13810 °
Cost (USD, $0.13%/kWh) 240x10 ¥ 1.74%x10 7 -99999% 138x10 °
Cost (BTC) 5.99% 107 435x 10 1% 99999%  138x 107




WARFARE IS ALWAYS CHANGING
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