LUCI: Lightweight Ul Command Interface

Guna Lagudu, Vinayak Sharma, Aviral Shrivastava
Arizona State University

Copyright © 2025 , MPS Lab. All rights reserved.

ake Programming Simple

mes-\AB

Make Programming Simple

OUR SOLUTION

Natural Language Interface

Problem Statement

Why do we need LUCI?

Embedded systems are becoming
more powerful and increasingly
integrated with Al capabilities.

 Natural language-based
commands parsed via text-to-
speech interfaces.

\rUser Confirmation & Feedbac T T T
S = Ams WME @
. —Alji—; ILUfCI <> | MAETES. [5ER Automated User Interface (Ul)
ntertace — S i
- Interaction with s & g?{,@ﬁ g‘ g.?fv RS
User Text-to-Sp eech wider internet i .
Engine - B R «Multi-step Ul interface navigation
to accomplish tasks such as
- ordering food.
Most of user interfaces are
Most embedded optimized for touch or mouse
systems are optimized input enabled by bigger On-device Runtime

for speech input via
lightweight ML-models

screens.

Copyright © 2025 , MPS Lab. All rights reserved.

*Enabled using <2B parameter
LLMs which can run on device
for low latency and no internet

dependence.

1. Application-Centric planning

Feature of LUCI

What makes LUCI tick.

An application-centric planning
framework for fast and efficient
model grounding for adaptable
multiapplication task planning.

4. Multi-Agent framework

A multi-agent framework for task
orchestration, enabling LUCI to
achieve state-of-the-art
performance on the Mind2Web
benchmark while using lightweight
LLMs

(opy I‘ighl C

ake Programming Simple

2. OS - Agnostic

A modular OS-agnostic framework
capable of scaling across native and
web interfaces.

3. Efficient Rule-Based
Ul Representations

A rule-based semantic parser for
efficient compression of front-end
code into structured TAF
representations, allowing for larger
effective attention windows and
better task grounding.

2025 , MPS Lab. All rights reserved.

Limitations of Previous Approaches 2MELaR

API|-Based Methods

These approaches navigate applications via
APIs using the LLM’s coding capabilities

&

d Poor Generalization E—

Due to API syntax variance, training is
required for new applications

g Context Length —_—

Code is very verbose requiring large

- - L |
CUITICAT WITITOW'S'

LLM- Based Automation

What LUCI improves upon

GUI-Based Methods

These approaches navigate applications
via front-end code or large multi-modal
LLMs with vision capabilities

Low Information Density g

1. Application GUI code has a lot of excess information such as CSS styles.
2. When examined visually, websites have a lot of white-space and hence low

information density.
Large Compute Requirement -

1. Large amounts of redundant information in code requires a very large context
window with creates a compute bottleneck

2. Multi-modal models require a much larger number of parameters and
compute.

Copyright © 2025 , MPS Lab. All rights reserved.

m mes-\AB
L U C I D e 0 Make Programming Simple

Seeing LUCI in Action

thesis_presentation

Pl Demo of LUCI creating a
power point presentation on
recycling.

LUCI is able to orchestrate
tasks across multiple
applications from a single
command.

LUCI can run locally due to
using lightweight (<2B
param) LLMs

LUCI is able to dynamically
generate content using the
native generative capabilities
of the LLMs

P Version Control B Run (S TODO @ Problems M Terminal ® Python Packages & Pyt

141 Python 3.10 (thes

Copyright © 2025 , MPS Lab. All rights reserved.

ake Programming Simple

LUCI Architecture

Understanding the inner workings of LUCI.

Copyright © 2025 , MPS Lab. All rights reserved.

mes-\AB

High level overview of LUCI System

How tasks are accomplished
User Input

LLM-BASED

Breakdown
complex tasks into

Multi-Application loop simpler sub-tasks. Simpler Application-Specific Tasks

LLM-BASED ALGORITHMIC
Genebr:;eegeoﬁ task Compress GUI into
previously information dense
representations
executed task L I P
Execution Feedback Compressed Information
ALGORITHMIC BASED

Execute sub-tasks
on selected
elements and
provide feedback.

Map Ul elements to
sub-tasks and
Instructions identify GUI action.

mes-\AB

Make Programming Simple

LUCI Architecture

The components of LUCI and their relationships

GUI Tool Set

v

Tool Selector

Data/Array LLM Component D Algorithmic Component

A

User

Instruction l
C tional . Action
| a yp| —omnversationa Task Verifier Ul Extractor UI Selector
Model Exectutor

Conversational

Context

Task Complete Action Feedback
Output

Human

RL from Human |
Feedback P

Feedback

-

Architecture of LUCI: Given user instruction and the conversational context, the Tool Selector first selects a tool from the given GUI toolset and opens the
applications. The conversational model then generates a solution outline, which is a text description of the list of sub-tasks needed to solve the task. Next, the
Task Verifier filters redundant tasks in the solution outline based on action feedback from previously executed tasks and future sub-tasks. Then, a rule-based Ul
Extractor extracts UI elements from the GUI application. UI Selector selects appropriate UI elements from the list of UI elements generated by the Ul extractor

for the given sub-task. Lastly, the Action Executor performs an action on the selected Ul element based on the type of Ul element and generates the action
feedback.

Copyright © 2025 , MPS Lab. All rights reserved.

' mPs-lAB
% G U I T O O I S et TAske Procring Saple

Tools at our disposal

* Contains a collection of different GUI application names that the agent is allowed to work on.
® LUCI has been tested with up to 22-Applications
* Web applications are accessed through browsers such as Safari, Chrome, etc.

GUI Tool Set |1

+ Data/Array LLM Component D Algorithmic Component
Tool Selector

User

Instruction l

PR
C tional - Act
| a y| —omversationa Task Verifier UI Extractor UI Selector —>| chon
Model Exectutor
—
Conversational
Context
Drop
Task Complete Action Feedback

Output
RL from Human | l Human
Feedback W Feedback

Copyright © 2025 , MPS Lab. All rights reserved.

mes-lAB
Fsu Tool Selector

Application Centric Design

G el s * The tool selector is an LLM based component which

* selects the appropriate Tool/Task based on the
[+——>» Tool Selector subtask.

Insgjifion 1 ® Input: <User Instruction, GUI Tool set>,
l Output: Desktop Application Name

Conversational
ﬁ Model

Conversational

Context

Task Complete
Output

Example Prompt

GUI Tool Set (G) : Calculator, Calendar, Keynote, Maps, Messages, Music, News, Numbers, Pages, Safari, Stocks, TextEdit,
Weather, Script Editor, Terminal, Outlook.

Example Query 2: From the given list of GUI tools G, select a tool to solve the task "Weng earns $12 an hour for babysitting.
Yesterday, she just did 50 minutes of babysitting. How much did she earn? And write the entire proof."

Response: Calculator, Text Edit

10

Copyright © 2025 , MPS Lab. All rights reserved.

. mes-lAB
%8 \ Conversational Model

5 Lo Sielloeiing Planning ... one task at a time.
SEr

Instruction

v ® Generates sub-tasks from user instruction and past conversation using Chain-of-

E Conversational Thought reasoning
Model ¢ Input: <Desktop Application name, User Instruction, Conversation Context>,

Conversational Output: Solution Outline
Context

Example Prompt

Example Query 5: What are the tasks to perform on Calculator and Text Edit for the given task "Weng earns $12 an hour for babysitting. Yesterday,
she just did 50 minutes of babysitting. How much did she earn? And write the entire proof". Generate the tasks in the format "Tool Required: True / False,
Tool: tool Name, Task description: description of the task".

Response:

Tool Required: False, Tool: Calculator, Task description: Open Calculator on your Macbook.

Tool Required: True, Tool: Calculator, Task description: Set the calculator to the "Standard" mode".

Tool Required: True, Tool: Calculator, Task description: Convert 50 minutes to hour by dividing 50 by 60 in the Calculator.

Tool Required: True, Tool: Calculator, Task description: Press the equals (=) key to calculate the result.

Tool Required: True, Tool: Calculator, Task description: Multiply number of minutes with money earned per hour ($12)

into the Calculator.

Tool Required: True, Tool: Calculator, Task description: Press the equals (=) key to calculate the result.

Tool Required: True, Tool: Calculator, Task description: Observe the calculated result displayed on the Calculator screen.

9. Tool Required: False, Tool: Text Edit, Task description: Open Text Edit.

10. Tool Required: False, Tool: Text Edit, Task description: Generate a summary of the working.

11. Tool Required: True, Tool: Text Edit, Task description: Write the summary to Text Edit.

PN R LD =

11

Copyright © 2025 , MPS Lab. All rights reserved.

Fsu Task Verifier

Improving Efficiency

mes-\AB

Make Programming Simple

executed in a prior step
® Input: <Current Sub-task, Future Sub-tasks, Action feedback>

® Prior to sub-task execution, redundant tasks are eliminated to improve efficiency based on if the future tasks and if it was already

Output: <Reason to execute, Execute yes / no>

Conversational Y .
@—) sub-tasks >——| Task Verifier UI Extractor UI Selector
Model
Conversational
Context
Drop
Task Complete Action Feedback

Action

Exectutor

Output

Example Prompt

Example Query 6 : Check whether the current task s3 is necessary for the objective I based on previously executed tasks
{(sl; AFI), (s2; AF2)} and future tasks s4, s5, s6, s7. The answer format should be " Reason: Reason to execute sub-task ,
Answer: Yes/No".

Response: Reason: This task is required to convert 50 minutes to hours, Answer: Yes

Copyright © 2025 , MPS Lab. All rights reserved.

12

Fsl Ul Extractor ML

Application Centric Design

® In most applications, the front-end code is based on a tree-structure. We parse through tree structure using a bottom-top approach
creating an intermediate representation of the UI dubbed the Information-Action-Field (IAF) representation.
® The front-end is then recursively parsed into an IAF representation -

‘1M,<Al, F1>12,<A2, F2>,13,<A3,F3>,...],
Where, 11,12,13 contain all the information about a node (ex. Heading) and <An, Fn> are the actions with their associated fields (ex.

Form and submit button)
&—) Tool Selector

User

Instruction l

El Conversational
Model

. Acti
Task Verifier » Ul Extractor H» UI Selector chion
Exectutor
Conversational
Context
Drop
Task Complete Action Feedback
Output

RL from Human | l Human
Feedback | Feedback

13
Copyright © 2025 , MPS Lab. All rights reserved.

mes-\AB

Ul Element Categories

Semantic Divisions in GUI

Information Elements (I) : UI elements that contain only Information.
Example: <p >, <hl> ... <h6>, , < div >, etc.

Find your table for any occasion

B Apr7.2024 ~ O 10:00PM ~ 8 Zpeaple v

Field Elements (F) : : UI elements that collect user input.
Example: textbox, checkbox, radio buttons, etc.

Action Elements (A): Ul elements which perform post and get methods.
Example: buttons, hyperlinks, etc.

Copyright © 2025 , MPS Lab. All rights reserved.

Ul Parsing Assumptions

Semantic Divisions in GUI

Based on the categorization into Information, Action and Field. The following assumptions are made when parsing the

GUL

Input POST

Assumption

* User input is sent to server
when a post method is
called. It means every F is
associated with a A. For
instance the submit button
comes after the search box

Field-Action Form
Assumption

* [f there are multiple field
nodes when parsing a
branch, they are all
associated to the same
action node.

e Each field must be
associated to an action

Information-Action
Assumption

* If information nodes have
an associated action node,
they are either the child
node or sibling node of the
information node.

Copyright © 2025 , MPS Lab. All rights reserved.

Fsi

Ul Selector

Selection actionable items

mes-\AB

Make Programming Simple

Output: Ul elements

® An LLM selects Ul elements from a list of possible elements based on the sub-task, therefore grounding the model.
¢ Input: <Sub-task description, list of UI elements>

!

Action

Exectutor

El) Conversational | sub-tasks Yes Task Verifier UI Extractor —» UI Selector —
Model
Conversational
Context
Drop
Task Complete Action Feedback
Output

Exampl e Pr ompt UI elements (U): For Calculator available Ul elements are,
window : {
1,2,3,4,5,6,7,8,9,0,= +,, X, <, ., +/, %, all clear, close button, zoom button, minimize button, main display: {0}
}
Menu bar : {

File: {Close, Close All, Save Tape As, Page Setup, Print Tape},

Edit: {Undo, Redo, Cut, Copy, Paste, Clear, Select All, Start Dictation, Emoji Symbols},

View: {Basic, Scientific, Programmer, Show Thousands Separators, RPN Mode, Decimal Places, Enter Full Screen}

Convert: {Recent Conversions, Area, Currency, Energy or Work, Length, Power, Pressure, Speed, Temperature, Time, Volume,
Weights and Masses}

}

Example Query 7 : From the given list of available Ul elements : U, select list of UI elements required for task “Convert 50
minutes to hour by dividing 50 with 60 in the Calculator” . The answer should be format [UI element 1, Ul element 2,]
Response: [5, 0, +, 6, 0, =]

Copyright © 2025 , MPS Lab. All rights reserved.

16

mes-\AB

Action Executor

Words to Action

® A set of valid actions are generated based on the UI elements (ex. ‘click’ for buttons)

A feedback mechanism -- check if an action was executed or not -- to provide feedback for future tasks.

Upon the completion of all sub-tasks, a signal is sent to the conversation model to generate execution feedback and return the
results of the query to the user.

Input: Ul Elements

Output: Action Feedback

v

Conversational . Action
E‘—) Task Verifier Ul Extractor UI Selector ——
Model Exectutor
Conversational
Context
Drop
Task Complete Action Feedback
Output

RL from Human | l Human
Feedback | Feedback

|
Copyright © 2025 , MPS Lab. All rights reserved.

a Conversational
Model
Conversational
Context

Learning from Feedback

Improving as we go

mes-\AB

Make Programming Simple

UI Extractor

sub-tasks

UI Selector @1011
Exectutor

Task Complete Action Feedback

Output

RL from Human |
Feedback [

l Human
Feedback

® RLHF learning mechanism is used to improve the task planning and task prioritization by the controller.
® Human feedback is combined with execution feedback, this combined feedback is denoted by F.

Copyright © 2025 , MPS Lab. All rights reserved.

ake Programming Simple

Experiments and Results

LUCI in practice

Copyright © 2025 , MPS Lab. All rights reserved.

I mes-lAB
Mind2Web Performance ARe

Benchmark performance

Evaluated LUCI’s generalizability over web tasks and compared with
baselines.
The dataset is divided into three test sets: Cross-Task, Cross-Website, and
Cross-Domain, evaluating generalizability over tasks from the same,
similar and completely unseen domains, respectively.
Evaluation Metrics :

1. Operation F1 (Op. F1) for token-level F1 score for predicted operation

comprised of action and input value
2. Step Success Rate for success rate per task step.
3. Success Rate for successfully executing the entire task.

Copyright © 2025 , MPS Lab. All rights reserved.

. mes-in
Fsl Mind2Web Performance aeinen

Benchmark performance

. Cross - Task Cross - Website Cross - Domain
Baseline
Op. F1 Step SR SR Op. F1 Step SR SR Op. F1 Step SR SR

MindAct 56.6 17.4 0.8 48.8 16.2 0.6 52.8 18.6 1.0
Synapse = 30.6 2.4 = 29.1 0.6 = 26.4 1.5
WebGUM 75.9 64.9 - 75.3 62.5 - 77.7 66.7 -
GPT-4V 80.9 65.7 50 83.7 70 - 73.6 62.1 -
LUCI 93.8 86.7 76.4 96.3 89.1 81.9 91.7 84.2 74.2
w/GPT-3.5
LUCI 82.3 82.8 66.8 84.9 83.3 70.5 79.4 79.1 61.3
w/PHI-2

Average performance on Mind2WEB Benchmark. LUCI w/ PHI-2 is competitive with if not better than other heavier methods, which using
GPT 3.5, LUCI is significantly better than state of the art.

Copyright © 2025 , MPS Lab. All rights reserved.

Cross-Application Adaptability 2MELAR

Benchmark performance

LUCI w/ GPT-3.5 (Fine Tuned) B LUCI w/ PHI-2 (Fine Tuned) B LUCI w/ GPT-3.5 (Zero Shot) PLUCI w/ PHI-2 (Zero Shot)
100.00 i I I i 1 i I
I I I I 1 1 I
1 I I I 1 I I
75.00 1 1 1 1 1 1 1
1 I I I 1 1 I
I I I I 1 1 I
% 50.00 1 1 1 1 1 1 1
& ' 1 1 I 1 ' 1
§ 1 [[1 [1 [
é 25.00 1 1 I 1 1 1 1
2 I I I I 1 1 I
1 I I I 1 I I
0.00 1 1
2 < i R < ¥ & @SS PN e ® & ¢ & & @ e & & &
F ¥ e FF PP FTEE TP RN T FEFEE EEF S
< & & ¢ PO & & & &S T LAl
Q.\\
&
Application Name

Cross application performance of LUCI with GPT-3.5 and PHI-2: LUCI fine-tuned on an application that exhibits comparable
performance on similar unseen applications.

22

Copyright © 2025 , MPS Lab. All rights reserved.

mes-\AB

Make Programming Simple

Scaling to Multiple Applications

LUCI context tests across applications

100

75
a
I:
o

0 50
w
aQ
(5]
o
=
w

25

0

1 2 3 4 5 5]
Number of Applications

Average success rate of LUCI across tasks involving the use of multiple applications. The trend shows LUCI's
ability to use at least four applications without losing efficacy.

23

Copyright © 2025 , MPS Lab. All rights reserved.

E ; l I m m a ry Make Programming Simple

LUCI context tests across applications

Natural language-based Interface desirable in Embedded Systems
LUCI: Lightweight Ul Command Interface

Application centric planning
OS-Agnostic

Multi-agent framework
Efficient rule-based UI represent

Given user instruction and the conversational context:

the Tool Selector first selects a tool from the given GUI toolset and opens the applications.

The conversational model then generates a solution outline, which is a text description of the list of sub-
tasks needed to solve the task.

Next, the Task Verifier filters redundant tasks in the solution outline based on action feedback from
previously executed tasks and future sub-tasks.

Then, a rule-based UI Extractor extracts Ul elements from the GUI application.

UI Selector selects appropriate Ul elements from the list of UI elements generated by the Ul extractor for the
given sub-task.

Lastly, the Action Executor performs an action on the selected Ul element based on the type of UI element
and generates the action feedback.

® LUCI Results

LUCI w/ PHI-2 are competitive if not better than other heavier methods.

24

Copyright © 2025 , MPS Lab. All rights reserved.

