
Copyright © 2025 , MPS Lab. All rights reserved.

LUCI: Lightweight UI Command Interface

Guna Lagudu, Vinayak Sharma, Aviral Shrivastava
Arizona State University

2
Copyright © 2025 , MPS Lab. All rights reserved.

Problem Statement
Why do we need LUCI?

Embedded systems are becoming
more powerful and increasingly
integrated with AI capabilities.

Most of user interfaces are
optimized for touch or mouse

input enabled by bigger
screens.

Most embedded
systems are optimized
for speech input via

lightweight ML-models

Natural Language Interface

• Natural language-based
commands parsed via text-to-

speech interfaces.

Automated User Interface (UI)
Orchestration

•Multi-step UI interface navigation
to accomplish tasks such as

ordering food.

On-device Runtime

•Enabled using <2B parameter
LLMs which can run on device
for low latency and no internet

dependence.

OUR SOLUTION

3
Copyright © 2025 , MPS Lab. All rights reserved.

3

Feature of LUCI
What makes LUCI tick.

An application-centric planning
framework for fast and efficient
model grounding for adaptable
multiapplication task planning.

1. Application-Centric planning

A modular OS-agnostic framework
capable of scaling across native and

web interfaces.

2. OS - Agnostic

A rule-based semantic parser for
efficient compression of front-end

code into structured IAF
representations, allowing for larger
effective attention windows and

better task grounding.

3. Efficient Rule-Based
UI Representations

A multi-agent framework for task
orchestration, enabling LUCI to

achieve state-of-the-art
performance on the Mind2Web

benchmark while using lightweight
LLMs

4. Multi-Agent framework

LUCI

4
Copyright © 2025 , MPS Lab. All rights reserved.

Limitations of Previous Approaches
What LUCI improves upon

LLM- Based Automation

Limitations Limitations

GUI-Based Methods
These approaches navigate applications
via front-end code or large multi-modal

LLMs with vision capabilities

Due to API syntax variance, training is
required for new applications

Poor Generalization

Code is very verbose requiring large
context windows

Context Length

API-Based Methods
These approaches navigate applications via
APIs using the LLM’s coding capabilities

1. Application GUI code has a lot of excess information such as CSS styles.
2. When examined visually, websites have a lot of white-space and hence low
information density.

Low Information Density

1. Large amounts of redundant information in code requires a very large context
window with creates a compute bottleneck
2. Multi-modal models require a much larger number of parameters and
compute.

Large Compute Requirement

5
Copyright © 2025 , MPS Lab. All rights reserved.

LUCI Demo
Seeing LUCI in Action

Demo of LUCI creating a
power point presentation on
recycling.

• LUCI is able to orchestrate
tasks across multiple
applications from a single
command.

• LUCI can run locally due to
using lightweight (<2B
param) LLMs

• LUCI is able to dynamically
generate content using the
native generative capabilities
of the LLMs

6
Copyright © 2025 , MPS Lab. All rights reserved.

LUCI Architecture

6

Understanding the inner workings of LUCI.

7

How tasks are accomplished
High level overview of LUCI System

Compress GUI into
information dense
representations

ALGORITHMIC

Execute sub-tasks
on selected
elements and

provide feedback.

ALGORITHMIC

Breakdown
complex tasks into
simpler sub-tasks.

LLM-BASED

Map UI elements to
sub-tasks and

identify GUI action.

LLM-BASED

Generate next task
based on
previously

executed task

LLM-BASED

Simpler Application-Specific Tasks

Compressed Information

Instructions

Execution Feedback

Multi-Application loop

User Input

8
Copyright © 2025 , MPS Lab. All rights reserved.

Architecture of LUCI: Given user instruction and the conversational context, the Tool Selector first selects a tool from the given GUI toolset and opens the
applications. The conversational model then generates a solution outline, which is a text description of the list of sub-tasks needed to solve the task. Next, the
Task Verifier filters redundant tasks in the solution outline based on action feedback from previously executed tasks and future sub-tasks. Then, a rule-based UI
Extractor extracts UI elements from the GUI application. UI Selector selects appropriate UI elements from the list of UI elements generated by the UI extractor
for the given sub-task. Lastly, the Action Executor performs an action on the selected UI element based on the type of UI element and generates the action
feedback.

The components of LUCI and their relationships
LUCI Architecture

9
Copyright © 2025 , MPS Lab. All rights reserved.

9

Tools at our disposal
GUI Toolset

• Contains a collection of different GUI application names that the agent is allowed to work on.
• LUCI has been tested with up to 22-Applications
• Web applications are accessed through browsers such as Safari, Chrome, etc.

10
Copyright © 2025 , MPS Lab. All rights reserved.

10

Application Centric Design
Tool Selector

• The tool selector is an LLM based component which
selects the appropriate Tool/Task based on the
subtask.

• Input: <User Instruction, GUI Tool set>,
Output: Desktop Application Name

GUI Tool Set (G) : Calculator, Calendar, Keynote, Maps, Messages, Music, News, Numbers, Pages, Safari, Stocks, TextEdit,
Weather, Script Editor, Terminal, Outlook.
Example Query 2: From the given list of GUI tools G, select a tool to solve the task "Weng earns $12 an hour for babysitting.
Yesterday, she just did 50 minutes of babysitting. How much did she earn? And write the entire proof."
Response: Calculator, Text Edit

Example Prompt

11
Copyright © 2025 , MPS Lab. All rights reserved.

11

Planning … one task at a time.
Conversational Model

• Generates sub-tasks from user instruction and past conversation using Chain-of-
Thought reasoning• Input: <Desktop Application name, User Instruction, Conversation Context>,
Output: Solution Outline

Example Query 5: What are the tasks to perform on Calculator and Text Edit for the given task "Weng earns $12 an hour for babysitting. Yesterday,
she just did 50 minutes of babysitting. How much did she earn? And write the entire proof". Generate the tasks in the format "Tool Required: True / False,
Tool: tool Name, Task description: description of the task".
Response:
1. Tool Required: False, Tool: Calculator, Task description: Open Calculator on your Macbook.
2. Tool Required: True, Tool: Calculator, Task description: Set the calculator to the "Standard" mode".
3. Tool Required: True, Tool: Calculator, Task description: Convert 50 minutes to hour by dividing 50 by 60 in the Calculator.
4. Tool Required: True, Tool: Calculator, Task description: Press the equals (=) key to calculate the result.
5. Tool Required: True, Tool: Calculator, Task description: Multiply number of minutes with money earned per hour ($12)
6. into the Calculator.
7. Tool Required: True, Tool: Calculator, Task description: Press the equals (=) key to calculate the result.
8. Tool Required: True, Tool: Calculator, Task description: Observe the calculated result displayed on the Calculator screen.
9. Tool Required: False, Tool: Text Edit, Task description: Open Text Edit.
10. Tool Required: False, Tool: Text Edit, Task description: Generate a summary of the working.
11. Tool Required: True, Tool: Text Edit, Task description: Write the summary to Text Edit.

Example Prompt

12
Copyright © 2025 , MPS Lab. All rights reserved.

12

Improving Efficiency
Task Verifier

• Prior to sub-task execution, redundant tasks are eliminated to improve efficiency based on if the future tasks and if it was already
executed in a prior step• Input: <Current Sub-task, Future Sub-tasks, Action feedback>
Output: <Reason to execute, Execute yes / no>

Example Query 6 : Check whether the current task s3 is necessary for the objective I based on previously executed tasks
{(sl; AFI), (s2; AF2)} and future tasks s4, s5, s6, s7. The answer format should be " Reason: Reason to execute sub-task ,
Answer: Yes/No".
Response: Reason: This task is required to convert 50 minutes to hours, Answer: Yes

Example Prompt

13
Copyright © 2025 , MPS Lab. All rights reserved.

13

Application Centric Design
UI Extractor

• In most applications, the front-end code is based on a tree-structure. We parse through tree structure using a bottom-top approach
creating an intermediate representation of the UI dubbed the Information-Action-Field (IAF) representation.• The front-end is then recursively parsed into an IAF representation -

‘I [I1, < 𝐴1, 𝐹1 >, 𝐼2, < 𝐴2, 𝐹2 >, 𝐼3, < 𝐴3, 𝐹3 >, …]’,
Where, I1,I2,I3 contain all the information about a node (ex. Heading) and <An, Fn> are the actions with their associated fields (ex.

Form and submit button)

14
Copyright © 2025 , MPS Lab. All rights reserved.

Semantic Divisions in GUI
UI Element Categories

Information Elements (I) : UI elements that contain only Information.
Example: < p >, < h1> … < h6>, , < div >, etc.

Action Elements (A): UI elements which perform post and get methods.
Example: buttons, hyperlinks, etc.

Field Elements (F) : : UI elements that collect user input.
Example: textbox, checkbox, radio buttons, etc.

15
Copyright © 2025 , MPS Lab. All rights reserved.

Semantic Divisions in GUI
UI Parsing Assumptions

Based on the categorization into Information, Action and Field. The following assumptions are made when parsing the
GUI.

Input POST
Assumption

• User input is sent to server
when a post method is
called. It means every F is
associated with a A. For
instance the submit button
comes after the search box

Field-Action Form
Assumption

• If there are multiple field
nodes when parsing a
branch, they are all
associated to the same
action node.

• Each field must be
associated to an action

Information-Action
Assumption

• If information nodes have
an associated action node,
they are either the child
node or sibling node of the
information node.

16
Copyright © 2025 , MPS Lab. All rights reserved.

16

Selection actionable items
UI Selector

• An LLM selects UI elements from a list of possible elements based on the sub-task, therefore grounding the model.• Input: <Sub-task description, list of UI elements>
Output: UI elements

Example Prompt

17
Copyright © 2025 , MPS Lab. All rights reserved.

Words to Action
Action Executor

• A set of valid actions are generated based on the UI elements (ex. ‘click’ for buttons)• A feedback mechanism -- check if an action was executed or not -- to provide feedback for future tasks.• Upon the completion of all sub-tasks, a signal is sent to the conversation model to generate execution feedback and return the
results of the query to the user.• Input: UI Elements
Output: Action Feedback

18
Copyright © 2025 , MPS Lab. All rights reserved.

Improving as we go
Learning from Feedback

• RLHF learning mechanism is used to improve the task planning and task prioritization by the controller.• Human feedback is combined with execution feedback, this combined feedback is denoted by F.

19
Copyright © 2025 , MPS Lab. All rights reserved.

Experiments and Results

19

LUCI in practice

20
Copyright © 2025 , MPS Lab. All rights reserved.

• Evaluated LUCI’s generalizability over web tasks and compared with
baselines.

• The dataset is divided into three test sets: Cross-Task, Cross-Website, and
Cross-Domain, evaluating generalizability over tasks from the same,
similar and completely unseen domains, respectively.

• Evaluation Metrics :
1. Operation F1 (Op. F1) for token-level F1 score for predicted operation

comprised of action and input value
2. Step Success Rate for success rate per task step.
3. Success Rate for successfully executing the entire task.

Benchmark performance
Mind2Web Performance

21
Copyright © 2025 , MPS Lab. All rights reserved.

Baseline Cross - Task Cross - Website Cross - Domain

Op. F1 Step SR SR Op. F1 Step SR SR Op. F1 Step SR SR

MindAct 56.6 17.4 0.8 48.8 16.2 0.6 52.8 18.6 1.0

Synapse - 30.6 2.4 - 29.1 0.6 - 26.4 1.5

WebGUM 75.9 64.9 - 75.3 62.5 - 77.7 66.7 -

GPT-4V 80.9 65.7 50 83.7 70 - 73.6 62.1 -

LUCI
w/GPT-3.5

93.8 86.7 76.4 96.3 89.1 81.9 91.7 84.2 74.2

LUCI
w/PHI-2

82.3 82.8 66.8 84.9 83.3 70.5 79.4 79.1 61.3

Average performance on Mind2WEB Benchmark. LUCI w/ PHI-2 is competitive with if not better than other heavier methods, which using
GPT 3.5, LUCI is significantly better than state of the art.

Benchmark performance
Mind2Web Performance

22
Copyright © 2025 , MPS Lab. All rights reserved.

22

Benchmark performance
Cross-Application Adaptability

Cross application performance of LUCI with GPT-3.5 and PHI-2: LUCI fine-tuned on an application that exhibits comparable
performance on similar unseen applications.

23
Copyright © 2025 , MPS Lab. All rights reserved.

23

LUCI context tests across applications
Scaling to Multiple Applications

Average success rate of LUCI across tasks involving the use of multiple applications. The trend shows LUCI's
ability to use at least four applications without losing efficacy.

24
Copyright © 2025 , MPS Lab. All rights reserved.

24

LUCI context tests across applications
Summary

• Natural language-based Interface desirable in Embedded Systems
• LUCI: Lightweight UI Command Interface

• Application centric planning
• OS-Agnostic
• Multi-agent framework
• Efficient rule-based UI represent

• Given user instruction and the conversational context:
• the Tool Selector first selects a tool from the given GUI toolset and opens the applications.
• The conversational model then generates a solution outline, which is a text description of the list of sub-

tasks needed to solve the task.
• Next, the Task Verifier filters redundant tasks in the solution outline based on action feedback from

previously executed tasks and future sub-tasks.
• Then, a rule-based UI Extractor extracts UI elements from the GUI application.
• UI Selector selects appropriate UI elements from the list of UI elements generated by the UI extractor for the

given sub-task.
• Lastly, the Action Executor performs an action on the selected UI element based on the type of UI element

and generates the action feedback.
• LUCI Results

• LUCI w/ PHI-2 are competitive if not better than other heavier methods.

