
A  Predictable  and  Command-­‐‑Level  Priority-­‐‑Based  
DRAM  Controller  for  Mixed-­‐‑Criticality  Systems  

  
  
  

Hokeun  Kim,  David  Broman,  Edward  A.  Lee,  
Michael  Zimmer,  Aviral  Shrivastava  and  Junkwang  Oh  

  
	


Presented by Hokeun Kim, Dept. of EECS, UC Berkeley 
RTAS 2015, April 13-16, 2015, Seattle, WA 



/25 

Introduction	

•  Mixed-Criticality Systems 

o  Tasks with different criticality 
o Sharing the same hardware 
o  To save costs (space, weight, energy, etc.) 

•  Competing Requirements in Mixed-Criticality 
o Critical tasks – time predictability (hard real-time) 
o Non-critical tasks – high performance 

RTAS 2015, April 16th, 2015 Hokeun Kim, EECS, UC Berkeley 2 
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Introduction	

•  DRAMs in Mixed-Criticality Systems 

o  Larger and cheaper than SRAMs 
o Good for saving costs 

•  Variable Latency of DRAMs 
o  Translation into different DRAM commands 
o Memory request scheduling 
o DRAM refreshes 

RTAS 2015, April 16th, 2015 Hokeun Kim, EECS, UC Berkeley 3 
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Contributions	

•  In This Paper, We Propose… 

o  A DRAM controller for mixed-criticality 
o  With tight worst-case latency bounds for critical tasks 
o  While providing significantly higher performance for non-

critical tasks 
o  Compared to a recent advanced approach based on time-

division multiplexing (TDM) with command patterns 
•  S. Goossens et al., “A reconfigurable real-time SDRAM 

controller for mixed time-criticality systems”, CODES+ISSS 2013 

•  We also propose… 
o  Algorithms to compute worst-case latencies for the 

proposed DRAM controller 

RTAS 2015, April 16th, 2015 Hokeun Kim, EECS, UC Berkeley 4 
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Contributions	

•  Comparable Worst-case Latency Bounds 

RTAS 2015, April 16th, 2015 Hokeun Kim, EECS, UC Berkeley 5 

Without any special care for critical tasks? 
Could be unpredictable and drastically higher!  
(depending on scheduling and refresh) 
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Contributions	

•  Significantly Higher Performance (= Less 

Memory Access Time) 
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Background  -­‐‑  DRAM  Basics	

•  DRAM Bank 

o A group of DRAM arrays that are accessed independently 

•  DRAM Array 
o Consists of rows, and columns within each row 

•  DRAM Row Buffer 
o Stores a DRAM row after row activation 

•  Row Buffer Management Policies 
o Open-page policy 

•  Keep rows activated after access, better for exploiting locality 

o Close-page policy 
•  Keep rows precharged after access, better for random accesses 

RTAS 2015, April 16th, 2015 Hokeun Kim, EECS, UC Berkeley 7 
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Background  -­‐‑  DRAM  Basics	

•  Important DRAM Commands 

o PRECHARGE, ACTIVATE, READ, WRITE, REFRESH 

•  DRAM Request Scheduling (Reordering) 
o  FRFCFS – Exploit bank parallelism 
o OpenRow – Exploit locality 

•  Timing constraints between commands 
o Minimum time delays between commands 
o Must be satisfied for correct DRAM operations 

•  Types of timing constraints 
o  Intra-bank (for commands to the same bank) 
o  Inter-bank (for commands to different banks) 

RTAS 2015, April 16th, 2015 Hokeun Kim, EECS, UC Berkeley 8 
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Related  Work	

•  Software-based Approaches 

o SW-based bank privatization & priority scheduling 
•  H. Kim et al., “Bounding memory interference delay in COTS-

based multi- core systems”, RTAS 2014 

o SW-based bank privatization (by allocating virtual 
pages to private banks) 

•  H. Yun et al. “PALLOC: DRAM bank-aware memory allocator 
for performance isolation on multicore platforms”, RTAS 2014 
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Related  Work	

•  Hardware-based Approaches 

o  Bank privatization + Fixed TDM (Time Division Multiplexing) slots 
•  J. Reineke et al., “PRET DRAM controller: Bank privatization for 

predictability and temporal isolation”, CODES+ISSS 2011 
o  Command pattern + Fixed TDM slots 

•  B. Akesson and K. Goossens, “Architectures and modeling of 
predictable memory controllers for improved system integration”, DATE 
2011 

o  Command pattern + Static priority scheduling 
•  B. Akesson et al., “Real-time scheduling using credit-controlled static-

priority arbitration”, RTCSA 2008 
o  Request-level scheduling + Close page + Priority 

•  M. Paolieri et al., “Timing effects of DDR memory systems in hard real-
time multicore architectures: Issues and solutions”, ACM TECS 2013 

o  Command pattern + Dynamically assigned TDM slots 
•  S. Goossens et al., “A reconfigurable real-time SDRAM controller for 

mixed time-criticality systems”, CODES+ISSS 2013 
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Technical  Approach  
(1)  Bank-­‐‑Aware  Physical  Address  Space  Allocation	


•  For Proposed DRAM Controller, We Define… 
o  Two types of physical memory space  

•  Critical space - Reserved for critical requests and prioritizing them 
o  At most one critical space per bank, to limit inter-bank interference 

•  Non-critical space 

o Memory Access Groups (MAGs) 
•  Critical MAG – A set of critical tasks, mapped to one critical space 
•  Non-critical MAG – A set of non-critical tasks 

o Categories of criticality for tasks 
•  Critical – Latency upper bound is guaranteed 

o  Safety critical - One task per critical MAG 
o  Mission critical – ≥ one task per critical MAG 

•  Non-critical – Processed by schedulers for high performance 
RTAS 2015, April 16th, 2015 Hokeun Kim, EECS, UC Berkeley 11 
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•  Critical Space Allocation & Task Mapping Example 

RTAS 2015, April 16th, 2015 Hokeun Kim, EECS, UC Berkeley 12 
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Fig. 4. An example critical space allocation and configuration of tasks in
mixed-criticality systems with three categories of criticality
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Fig. 5. (a) A 32-bit representation of critical space (b) An example
representation of critical space

IV. TECHNICAL APPROACH

A. Bank-aware physical address allocation

The proposed DRAM controller distinguishes different
types of memory requests. In this paper, we define a memory
access group (MAG) as a set of tasks accessing the DRAM.
We also define two types of MAGs, one is a critical MAG, the
other is a non-critical MAG. Our memory controller provides
bounded memory access latency for each critical MAG. A crit-
ical MAG can include multiple critical tasks so we can control
an upper bound of memory access latency of each critical task
within a same critical MAG through task scheduling. Thus, we
can change memory access latency bounds of a critical task
depending on the task’s criticality level in mixed-criticality
systems. This software scheduling problem at a high level is
beyond the scope of this paper, but we note that we do not
limit the number of critical tasks in each MAG. Meanwhile,
non-critical tasks belong to a single non-critical MAG.

In our approach, separate physical memory address space,
namely critical space, is reserved for each critical MAG to
provide each with bounded memory access latency. We allocate
one critical MAG for each bank. This eliminates intra-bank
timing constraints between different critical MAGs, and thus
leads to bounded worst-case latency, by limiting effects of
memory requests from different critical MAGs. We call this
allocation scheme bank-aware allocation of physical address
space. An example of critical space allocation is shown in
Fig. 4. We use three categories of criticality for tasks in this
paper: safety critical, mission critical, and non-critical. In
this example, we assign one safety critical task per critical
MAG for the highest predictablity, while we assign more
than one mission critical task per critical MAG for the next
level of criticality, assuming appropriate scheduling policies
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Fig. 6. An overview of processing memory requests in the proposed DRAM
controller

for mission critical tasks. The rest of physical address space,
or non-critical space, is used by the non-critical MAG.

The proposed DRAM controller does critical space allo-
cation with a 32-bit hardware register as depicted in Fig.
5 (a). With this register, we can allocate different numbers
of rows of memory as critical for each bank. One bit for
each bank indicates whether part of the bank is reserved as
critical. Remaining bits indicate how many rows within each
bank are reserved. The DRAM used for our experiments,
Micron LPDDR2 SDRAM S4 [16], has eight banks and 16K
(16 ⇥ 1024) rows for each bank. We use the most significant
eight bits of the register to reserve each bank, and divide
remaining 24 bits into 8 octal numbers with 3 bits to represent
the number of rows reserved, where 0 means 2K, 1 means
4K, 2 means 6K rows, etc. Figure 5 (b) depicts an example
usage of this register. We can detect critical requests simply
by comparing this register and physical addresses of requests.

B. Command-level prioritization of critical requests

Once a request is detected as critical (i.e. from a critical
MAG), the proposed DRAM controller prioritizes the request
as illustrated in Fig. 6. The critical request preempts any non-
critical request waiting to be issued. We assume an architecture
where each requester is connected to the memory controller
through an arbiter that can detect critical requests. At the top
of the Fig. 6, we see two CPUs, one RTU (Real-Time Unit),
and an I/O device are connected to this arbiter. This arbiter
sends requests from each requester to the memory controller
as soon as the controller becomes ready to receive the request.
When the DRAM controller has an empty queue slot for a
request, it becomes ready for a requester. When more than
one requester is ready to send memory requests, it forwards
critical requests first. For more than one requester with critical
requests, it forwards them in round-robin fashion.

Technical  Approach  
(1)  Bank-­‐‑Aware  Physical  Address  Space  Allocation	


•  Representing Critical Space 
o  Representation with a 32-bit register for a 8-bank DRAM 
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Fig. 4. An example critical space allocation and configuration of tasks in
mixed-criticality systems with three categories of criticality
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IV. TECHNICAL APPROACH

A. Bank-aware physical address allocation

The proposed DRAM controller distinguishes different
types of memory requests. In this paper, we define a memory
access group (MAG) as a set of tasks accessing the DRAM.
We also define two types of MAGs, one is a critical MAG, the
other is a non-critical MAG. Our memory controller provides
bounded memory access latency for each critical MAG. A crit-
ical MAG can include multiple critical tasks so we can control
an upper bound of memory access latency of each critical task
within a same critical MAG through task scheduling. Thus, we
can change memory access latency bounds of a critical task
depending on the task’s criticality level in mixed-criticality
systems. This software scheduling problem at a high level is
beyond the scope of this paper, but we note that we do not
limit the number of critical tasks in each MAG. Meanwhile,
non-critical tasks belong to a single non-critical MAG.

In our approach, separate physical memory address space,
namely critical space, is reserved for each critical MAG to
provide each with bounded memory access latency. We allocate
one critical MAG for each bank. This eliminates intra-bank
timing constraints between different critical MAGs, and thus
leads to bounded worst-case latency, by limiting effects of
memory requests from different critical MAGs. We call this
allocation scheme bank-aware allocation of physical address
space. An example of critical space allocation is shown in
Fig. 4. We use three categories of criticality for tasks in this
paper: safety critical, mission critical, and non-critical. In
this example, we assign one safety critical task per critical
MAG for the highest predictablity, while we assign more
than one mission critical task per critical MAG for the next
level of criticality, assuming appropriate scheduling policies
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controller

for mission critical tasks. The rest of physical address space,
or non-critical space, is used by the non-critical MAG.

The proposed DRAM controller does critical space allo-
cation with a 32-bit hardware register as depicted in Fig.
5 (a). With this register, we can allocate different numbers
of rows of memory as critical for each bank. One bit for
each bank indicates whether part of the bank is reserved as
critical. Remaining bits indicate how many rows within each
bank are reserved. The DRAM used for our experiments,
Micron LPDDR2 SDRAM S4 [16], has eight banks and 16K
(16 ⇥ 1024) rows for each bank. We use the most significant
eight bits of the register to reserve each bank, and divide
remaining 24 bits into 8 octal numbers with 3 bits to represent
the number of rows reserved, where 0 means 2K, 1 means
4K, 2 means 6K rows, etc. Figure 5 (b) depicts an example
usage of this register. We can detect critical requests simply
by comparing this register and physical addresses of requests.

B. Command-level prioritization of critical requests

Once a request is detected as critical (i.e. from a critical
MAG), the proposed DRAM controller prioritizes the request
as illustrated in Fig. 6. The critical request preempts any non-
critical request waiting to be issued. We assume an architecture
where each requester is connected to the memory controller
through an arbiter that can detect critical requests. At the top
of the Fig. 6, we see two CPUs, one RTU (Real-Time Unit),
and an I/O device are connected to this arbiter. This arbiter
sends requests from each requester to the memory controller
as soon as the controller becomes ready to receive the request.
When the DRAM controller has an empty queue slot for a
request, it becomes ready for a requester. When more than
one requester is ready to send memory requests, it forwards
critical requests first. For more than one requester with critical
requests, it forwards them in round-robin fashion.
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Technical  Approach  
(2)  Command-­‐‑Level  Prioritization  of  Critical  Requests  	


Rank Controller 

Bank 
Buffer 

 
 

Arbiter 

Preemptive 
Cmd Gen 

Cmd Q 

Const Chk 

Const Chk Refresher 

Cmd Sequencer 

Bank Controller Bank Controller 

To DRAM 

1. Additional slot for critical requests 

2. Preempt ongoing non-critical commands 
    & 
Regenerate compensation commands for the preempted 

Prioritization Arbiter 

3. Round-robin 
scheduling for critical 
commands from 
different banks 

•  Modifications In Proposed DRAM Controller 

1. Never wait, never reordered 

2. Never wait for queued commands 

3. Limit the number of 
intervening critical 

commands 

o How worst-case latency is bounded? 
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Technical  Approach  
(3)  Making  DRAM  Refresh  Predictable	


•  Refresh Scheduling for High Throughput 

Refresh window 
Requirement: Send N refreshes to keep bits in capacitors  

busy 
A single refresh 

DRAM becomes IDLE, 
do refreshes 

Must stop serving 
requests to do 

refreshes within the 
refresh window 

The last request 
suffers high latency 

Refresh window 

•  Distributing Refresh uniformly 

o Bound effect of refresh on latency 
o At a cost of slightly higher average latency 
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Worst-­‐‑case  Bound  Analysis	

•  Finding Worst-case Latency 

RTAS 2015, April 16th, 2015 Hokeun Kim, EECS, UC Berkeley 15 
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o Worst-case Combination 
•  Each intervening command can be either PRECHARGE, 

ACTIVATE, READ, or WRITE 
•  We propose mechanical procedures for this! 

 

o Worst-case DRAM Command Sequence 

o Maximum Number of Intervening Critical Commands 

“# Critical MAG – 1” for each command 
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We can find this by trying all combinations of possible com-
mands. In general, candidates for d

init

CR are d

intra

AtoP and
d

intra

WtoP , depending on the specification of the DRAM.
The worst-case latency is d

init

CR + tRP + tRCD + tCAS

(see Section II-D1 for details).

A worst-case latency example for two critical MAGs is
shown in Fig. 8 (b). In this case, intervening critical commands
should be considered as well. By the benefit of priority-based
round-robin scheduling illustrated in Section IV-B, there will
be at most one intervening critical request for each critical re-
quester. In addition, we only need to consider inter-bank timing
constraints between temporally adjacent critical commands due
to bank-aware memory allocation explained in Section IV-A.
We can find worst-case latency by finding the combination of
intervening critical commands that yields the highest latency.
Intra-bank timing constraints between critical commands to
the same bank should also be considered as shown in Fig. 8
(b). This is because they can be greater than inter-bank timing
constraints between adjacent critical commands.

Figure 8 (c) shows the worst-case latency example for more
than two critical MAGs. When there are more than enough
(depending on DRAM specification but usually three) critical
MAGs, inter-bank timing constraints become dominant. Thus,
we need not consider intra-bank constraints for estimating the
worst-case latency. Adjacent READs or WRITEs have greater
inter-bank timing constraints than other command sequences
because READ and WRITE have to wait for the previous data
burst on the shared bus to be finished. Especially, d

inter

WtoR

has the greatest timing delay because the direction of the
data bus is reversed. Therefore, we can find the worst-case
latency for a critical request by considering combinations of
intervening critical commands consisting of only READs and
WRITEs when there are enough critical MAGs.

Overhead from intervening REFRESHes also needs to be
considered to estimate the worst-case latency. As described in
Section IV-C, the proposed DRAM controller triggers refresh
operations periodically. Because the refresh is so important,
any other commands cannot be issued during a refresh oper-
ation. Figure 8 (d) shows the worst-case refresh intervention,
where a refresh operation to the same bank is enabled right
after ACTIVATE of a critical request, provided that there is one
critical MAG. This leads to the worst-case scenario because
the PRECHARGE which precedes the REFRESH cancels
the effect of the previous ACTIVATE, causing an additional
ACTIVATE to be sent. In this case, the worst-case overhead
caused by the refresh operation is tRAS + tRP + tRFC,
where tRFC means Refresh Cycle time, which is the minimum
interval between the REFRESH and following ACTIVATE to
the same bank. If there is more than one critical MAG, the
additional overhead for the worst-case latency from the refresh
will decrease because the delays of commands associated with
the refresh can be hidden in the worst-case scenario.

B. Procedures to compute worst-case latency

In this section, we present mechanical procedures to find
a combination that leads to the worst case and to compute
the worst-case latency for a given number of critical MAGs.
Algorithm 1 describes a procedure iterating all command
sequences that can potentially lead to the worst-case latency

Algorithm 1 Compute worst-case latency by trying all possible
combinations of command sequences
1: procedure WORSTCASELATENCY(numCriticalMAG)
2: wcLatency  0;
3: while remainingCandidates = true do
4: cmdSeq  NEXTCOMBINATION(numCriticalMAG);
5: latency  GETLATENCY(cmdSeq);
6: if latency > wcLatency then wcLatency  latency;
7: end if
8: end while
9: return wcLatency + tCAS + tBURST ;

10: end procedure

Algorithm 2 Get latency to send all commands in cmdSeq

1: procedure GETLATENCY(cmdSeq)
2: int d[len(cmdSeq)];
3: d 0; . initialize array elements to zero
4: for i = 1 to len(cmdSeq)�1 do
5: for j = i� 1 down to 0 do
6: (cmd

from

, bank
from

) cmdSeq[j];
7: (cmd

to

, bank
to

) cmdSeq[i];
8: if bank

from

= bank
to

then
9: t d[j]+intraDelay(cmd

from

, cmd
to

);
10: else
11: t d[j]+interDelay(cmd

from

, cmd
to

);
12: end if
13: if t > d[i] then d[i] t;
14: end if
15: if (d[i]�d[j]) � maxDelay then break;
16: end if
17: end for
18: end for
19: return d[len(cmdSeq)�1];
20: end procedure

for the given number of critical MAGs, numCriticalMAG.
We define a set C = {PRECHARGE, ACTIVATE, READ,

WRITE}, as a set of four access-related commands. We also
define cmdSeq : Array of (C ⇥ N), an array of tuples, each
with a command in C and a target bank number.

A key idea of this procedure is that the worst-case
command sequence always looks like Fig. 8 (c). The
maximum number of intervening commands is 1 + 3 ⇥
(numCriticalMAG� 1), because there will be at most one
non-critical command and at most numCriticalMAG � 1
commands before each of PRECHARGE, ACTIVATE and
READ. If there are fewer commands, it will not lead to the
worst-case latency. Thanks to the round-robin scheduling on
critical commands, we know that the bank number of each
critical command will also go round-robin in the worst case.
Moreover, we know that the first non-critical command has
to have the same bank number as the first critical command
in the worst case. Given the total number of intervening
commands and their bank numbers for the worst case, we
only have to consider is the combination of commands marked
as N-CR CMD (non-critical command) and CR CMD (critical
command) in Fig. 8 (c). Intuitively, we can view each combi-
nation sequence of commands as a quaternary (4-ary) number
with 1 + 3⇥ (numCriticalMAG� 1) digits. The procedure
NEXTCOMBINATION in Algorithm 1 can return a next combi-
nation in this way, by increasing this quaternary number. We
need not consider PRECHARGE and ACTIVATE when there
are enough critical MAGs as discussed in section V-A, except
for the first two commands with intra-bank constraints.

Worst-­‐‑case  Bound  Analysis	

•  Procedures to to Compute Worst-case 

Latency 
o Procedure 1: Iterate through all combinations to find 

the worst-case 
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Worst-­‐‑case  Bound  Analysis	

o Procedure 2: Compute latency of a given combination 
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We can find this by trying all combinations of possible com-
mands. In general, candidates for d

init

CR are d

intra

AtoP and
d

intra

WtoP , depending on the specification of the DRAM.
The worst-case latency is d

init

CR + tRP + tRCD + tCAS

(see Section II-D1 for details).

A worst-case latency example for two critical MAGs is
shown in Fig. 8 (b). In this case, intervening critical commands
should be considered as well. By the benefit of priority-based
round-robin scheduling illustrated in Section IV-B, there will
be at most one intervening critical request for each critical re-
quester. In addition, we only need to consider inter-bank timing
constraints between temporally adjacent critical commands due
to bank-aware memory allocation explained in Section IV-A.
We can find worst-case latency by finding the combination of
intervening critical commands that yields the highest latency.
Intra-bank timing constraints between critical commands to
the same bank should also be considered as shown in Fig. 8
(b). This is because they can be greater than inter-bank timing
constraints between adjacent critical commands.

Figure 8 (c) shows the worst-case latency example for more
than two critical MAGs. When there are more than enough
(depending on DRAM specification but usually three) critical
MAGs, inter-bank timing constraints become dominant. Thus,
we need not consider intra-bank constraints for estimating the
worst-case latency. Adjacent READs or WRITEs have greater
inter-bank timing constraints than other command sequences
because READ and WRITE have to wait for the previous data
burst on the shared bus to be finished. Especially, d

inter

WtoR

has the greatest timing delay because the direction of the
data bus is reversed. Therefore, we can find the worst-case
latency for a critical request by considering combinations of
intervening critical commands consisting of only READs and
WRITEs when there are enough critical MAGs.

Overhead from intervening REFRESHes also needs to be
considered to estimate the worst-case latency. As described in
Section IV-C, the proposed DRAM controller triggers refresh
operations periodically. Because the refresh is so important,
any other commands cannot be issued during a refresh oper-
ation. Figure 8 (d) shows the worst-case refresh intervention,
where a refresh operation to the same bank is enabled right
after ACTIVATE of a critical request, provided that there is one
critical MAG. This leads to the worst-case scenario because
the PRECHARGE which precedes the REFRESH cancels
the effect of the previous ACTIVATE, causing an additional
ACTIVATE to be sent. In this case, the worst-case overhead
caused by the refresh operation is tRAS + tRP + tRFC,
where tRFC means Refresh Cycle time, which is the minimum
interval between the REFRESH and following ACTIVATE to
the same bank. If there is more than one critical MAG, the
additional overhead for the worst-case latency from the refresh
will decrease because the delays of commands associated with
the refresh can be hidden in the worst-case scenario.

B. Procedures to compute worst-case latency

In this section, we present mechanical procedures to find
a combination that leads to the worst case and to compute
the worst-case latency for a given number of critical MAGs.
Algorithm 1 describes a procedure iterating all command
sequences that can potentially lead to the worst-case latency

Algorithm 1 Compute worst-case latency by trying all possible
combinations of command sequences
1: procedure WORSTCASELATENCY(numCriticalMAG)
2: wcLatency  0;
3: while remainingCandidates = true do
4: cmdSeq  NEXTCOMBINATION(numCriticalMAG);
5: latency  GETLATENCY(cmdSeq);
6: if latency > wcLatency then wcLatency  latency;
7: end if
8: end while
9: return wcLatency + tCAS + tBURST ;

10: end procedure

Algorithm 2 Get latency to send all commands in cmdSeq

1: procedure GETLATENCY(cmdSeq)
2: int d[len(cmdSeq)];
3: d 0; . initialize array elements to zero
4: for i = 1 to len(cmdSeq)�1 do
5: for j = i� 1 down to 0 do
6: (cmd

from

, bank
from

) cmdSeq[j];
7: (cmd

to

, bank
to

) cmdSeq[i];
8: if bank

from

= bank
to

then
9: t d[j]+intraDelay(cmd

from

, cmd
to

);
10: else
11: t d[j]+interDelay(cmd

from

, cmd
to

);
12: end if
13: if t > d[i] then d[i] t;
14: end if
15: if (d[i]�d[j]) � maxDelay then break;
16: end if
17: end for
18: end for
19: return d[len(cmdSeq)�1];
20: end procedure

for the given number of critical MAGs, numCriticalMAG.
We define a set C = {PRECHARGE, ACTIVATE, READ,

WRITE}, as a set of four access-related commands. We also
define cmdSeq : Array of (C ⇥ N), an array of tuples, each
with a command in C and a target bank number.

A key idea of this procedure is that the worst-case
command sequence always looks like Fig. 8 (c). The
maximum number of intervening commands is 1 + 3 ⇥
(numCriticalMAG� 1), because there will be at most one
non-critical command and at most numCriticalMAG � 1
commands before each of PRECHARGE, ACTIVATE and
READ. If there are fewer commands, it will not lead to the
worst-case latency. Thanks to the round-robin scheduling on
critical commands, we know that the bank number of each
critical command will also go round-robin in the worst case.
Moreover, we know that the first non-critical command has
to have the same bank number as the first critical command
in the worst case. Given the total number of intervening
commands and their bank numbers for the worst case, we
only have to consider is the combination of commands marked
as N-CR CMD (non-critical command) and CR CMD (critical
command) in Fig. 8 (c). Intuitively, we can view each combi-
nation sequence of commands as a quaternary (4-ary) number
with 1 + 3⇥ (numCriticalMAG� 1) digits. The procedure
NEXTCOMBINATION in Algorithm 1 can return a next combi-
nation in this way, by increasing this quaternary number. We
need not consider PRECHARGE and ACTIVATE when there
are enough critical MAGs as discussed in section V-A, except
for the first two commands with intra-bank constraints.

Matrices for timing constraints 
for each command pair 

•  Timing Constraints Example (LPDDR2-800MHz) 
o  Intra-bank timing constraints (cycles) 

To 
From READ WRITE PRECHARGE ACTIVATE 

READ 8 15 9 N/A 
WRITE 16 8 18 N/A 

PRECHARGE N/A N/A N/A 6 
ACTIVATE 6 6 17 N/A 

o  Inter-bank timing constraints (cycles) 
To 

From READ WRITE PRECHARGE ACTIVATE 

READ 8 8 1 1 
WRITE 16 8 1 1 

PRECHARGE 1 1 1 1 
ACTIVATE 1 1 1 4 
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Worst-­‐‑case  Bound  Analysis	

•  Modeling Competing Approach for Comparison 

o  TDM slot assignment for memory accesses 
•  One TDM slot for each critical MAG 
•  One TDM slot for non-critical MAG (to minimize worst-case 

bounds while supporting non-critical tasks) 
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CR0$CR1$CR2$CR3$ NC$
f$=$5$slots$

Worst2case$arrival$8me$for$a$cri8cal$request$from$CR0$
WCRT:$6$slots$

CR0$CR1$CR2$CR3$ NC$ CR0$CR1$CR2$CR3$ NC$

o Example with 4 critical MAGs (f: frame size) 

o Worst-case latency bound estimation 
•  (f + 1) x slot size (cycles) 
•  Slot sizes are estimated based on papers on the competing 

approach 
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Worst-­‐‑case  Bound  Analysis	

•  Results on Two Different DRAMs 
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Experiments  and  Results	

•  Flow of experiments 

o  (1) Trace generation 
o  (2) HDL simulation 
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Fig. 11. The flow of experiments for the proposed DRAM memory controller

VI. EXPERIMENTS AND RESULTS

In this section, we measure the performance of non-critical
tasks with the proposed DRAM controller. The performance
results are compared against the TDM-based technique [15]
introduced in Section V-C. In the architecture used for our
experiments, each requester consists of one processor and two
caches, each for instructions and data, as depicted in the top left
of Fig. 11. We connect the requesters to the DRAM controller
through an arbiter that detects and prioritizes critical requests.

A. Experimental setup

The flow of experiments shown in Fig. 11 is roughly
composed of two parts. The first is trace generation and the
second is Verilog HDL simulation of the DRAM controller. In
trace generation, we capture memory requests from benchmark
programs using the gem5 architectural simulator [25]. For
separation of computation and memory access time, we use
an architecture with a simple CPU, two caches and a simple
memory which immediately responds for memory accesses.

The simple CPU uses an ARM ISA, and takes one cycle
for each instruction. It has one I-cache and one D-cache, the
size of each cache is 4KB, and the cache block size is 64
bytes. This is the same as the access granularity (AG) of the
LPDDR2 DRAM used for our experiments, as in Fig. 10 of
Section V-C. When a memory read or write request occurs
during simulation, the request and the time when the request
is made are recorded in the trace, without stalling the CPU.
The trace also includes the write requests for initialization of
the memory as shown in the top right of Fig. 11.

We use two different benchmarks for our experiments,
the Mälardalen WCET benchmark [26] for safety critical and
mission critical tasks, and MiBench [27] for non-critical tasks.
We exclude bsort100 from the Mälardalen benchmark because
it expects inputs to be at special addresses that are not legal in
the gem5 simulator. Several MiBench programs are excluded

TABLE I. LIST OF BENCHMARKS USED AS CRITICAL TASKS

Criticality
level

MAG
ID

WCET
benchmark
programs

writes reads
total

instructions
executed

memory
intensity

(%)

Safety
critical

0 bs 86 319 4,828 8.39
1 lcdnum 85 331 5,050 8.24
2 janne complex 84 318 5,113 7.86
3 fibcall 83 317 5,291 7.56

Mission
critical

4 fac 83 316 5,318 7.50
statemate 85 418 7,215 6.97

5 nsichneu 95 1,117 18,676 6.49
qurt 84 346 6,896 6.24

6
duff 93 339 7,013 6.16
cover 92 381 7,909 5.98
insertsort 83 328 7,091 5.80

7

qsort-exam 82 342 8,502 4.99
select 79 330 8,653 4.73
fft1 84 348 9,911 4.36
minver 88 378 10,725 4.34

TABLE II. LIST OF BENCHMARKS USED AS NON-CRITICAL TASKS

Criticality
level

MiBench
programs writes reads

total
instructions

executed

memory
intensity

(%)

Non-criticial

cjpeg large 6,183 74,966 1,000,000 8.11
rijndael large 2,558 68,458 1,000,000 7.10
typeset small 12,843 55,963 1,000,000 6.88
dijkstra large 4,942 59,198 1,000,000 6.41
patricia large 4,255 49,198 1,000,000 5.35

for our experiments because they are not executable in gem5
(qsort) or not compilable with the ARM cross compiler (lame,
ghostscript, tiff, etc.), due to reasons including specific library
requirements. Programs with the top memory intensity are
selected from each benchmark for our experiments, the top 15
from the WCET benchmark and the top 5 from MiBench. We
define the memory intensity as the number of memory accesses
divided by the total number of instructions. To calculate the
memory intensity of each program, we run each program on
the gem5 simulator up to one million instructions. When there
are two options for the data size (small and large) in MiBench,
we choose the one with the higher memory intensity. The
programs used as critical tasks and non-critical tasks are listed
in Table I and Table II, respectively.

In the second part of experiments, we perform HDL simula-
tion on the proposed memory controller. The generated traces
above are used as inputs for a trace replayer in the middle
of Fig. 11. Then, the memory requests are stored in separate
request queues dedicated for each task. In this way we replay
all memory traces in parallel, regardless of tasks’ criticality.
Since execution times of critical tasks are much shorter than
those of non-critical tasks, we repeat critical tasks’ traces
periodically. Safety critical tasks are repeated every 250,000
cycles, and mission critical tasks every 500,000 cycles.

Before replaying requests, the trace replayer initializes
DRAM by replaying write requests for initialization in each
trace. The trace replayer also manages memory mapping for
each task. Memory mapping used in our experiments is similar
to the example in Fig. 4 of Section IV-A. We map one safety
critical task per critical MAG, and more than one mission
critical task per critical MAG, while we map all non-critical
tasks into one non-critical MAG. Table I shows how we map
critical tasks in more detail. Each MAG ID corresponds to a
unique critical MAG and a bank number. Note that multiple

•  DRAM controller 
implementation 
o Proposed 

•  Chisel* è Verilog RTL 

o  TDM-based approach 
•  Verilog behavioral 

*Chisel  –  a  Scala  embedded  HDL  developed  at  
UC  Berkeley,  can  generate  Verilog  RTL	
 *PHY  –  convert  controller  

output  to  raw  DRAM  signals	
*
*From  Micron  Tech.	
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•  Benchmarks Used for Trace Generation 
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VI. EXPERIMENTS AND RESULTS

In this section, we measure the performance of non-critical
tasks with the proposed DRAM controller. The performance
results are compared against the TDM-based technique [15]
introduced in Section V-C. In the architecture used for our
experiments, each requester consists of one processor and two
caches, each for instructions and data, as depicted in the top left
of Fig. 11. We connect the requesters to the DRAM controller
through an arbiter that detects and prioritizes critical requests.

A. Experimental setup

The flow of experiments shown in Fig. 11 is roughly
composed of two parts. The first is trace generation and the
second is Verilog HDL simulation of the DRAM controller. In
trace generation, we capture memory requests from benchmark
programs using the gem5 architectural simulator [25]. For
separation of computation and memory access time, we use
an architecture with a simple CPU, two caches and a simple
memory which immediately responds for memory accesses.

The simple CPU uses an ARM ISA, and takes one cycle
for each instruction. It has one I-cache and one D-cache, the
size of each cache is 4KB, and the cache block size is 64
bytes. This is the same as the access granularity (AG) of the
LPDDR2 DRAM used for our experiments, as in Fig. 10 of
Section V-C. When a memory read or write request occurs
during simulation, the request and the time when the request
is made are recorded in the trace, without stalling the CPU.
The trace also includes the write requests for initialization of
the memory as shown in the top right of Fig. 11.

We use two different benchmarks for our experiments,
the Mälardalen WCET benchmark [26] for safety critical and
mission critical tasks, and MiBench [27] for non-critical tasks.
We exclude bsort100 from the Mälardalen benchmark because
it expects inputs to be at special addresses that are not legal in
the gem5 simulator. Several MiBench programs are excluded

TABLE I. LIST OF BENCHMARKS USED AS CRITICAL TASKS

Criticality
level

MAG
ID

WCET
benchmark
programs

writes reads
total

instructions
executed

memory
intensity

(%)

Safety
critical

0 bs 86 319 4,828 8.39
1 lcdnum 85 331 5,050 8.24
2 janne complex 84 318 5,113 7.86
3 fibcall 83 317 5,291 7.56

Mission
critical

4 fac 83 316 5,318 7.50
statemate 85 418 7,215 6.97

5 nsichneu 95 1,117 18,676 6.49
qurt 84 346 6,896 6.24

6
duff 93 339 7,013 6.16
cover 92 381 7,909 5.98
insertsort 83 328 7,091 5.80

7

qsort-exam 82 342 8,502 4.99
select 79 330 8,653 4.73
fft1 84 348 9,911 4.36
minver 88 378 10,725 4.34

TABLE II. LIST OF BENCHMARKS USED AS NON-CRITICAL TASKS

Criticality
level

MiBench
programs writes reads

total
instructions

executed

memory
intensity

(%)

Non-criticial

cjpeg large 6,183 74,966 1,000,000 8.11
rijndael large 2,558 68,458 1,000,000 7.10
typeset small 12,843 55,963 1,000,000 6.88
dijkstra large 4,942 59,198 1,000,000 6.41
patricia large 4,255 49,198 1,000,000 5.35

for our experiments because they are not executable in gem5
(qsort) or not compilable with the ARM cross compiler (lame,
ghostscript, tiff, etc.), due to reasons including specific library
requirements. Programs with the top memory intensity are
selected from each benchmark for our experiments, the top 15
from the WCET benchmark and the top 5 from MiBench. We
define the memory intensity as the number of memory accesses
divided by the total number of instructions. To calculate the
memory intensity of each program, we run each program on
the gem5 simulator up to one million instructions. When there
are two options for the data size (small and large) in MiBench,
we choose the one with the higher memory intensity. The
programs used as critical tasks and non-critical tasks are listed
in Table I and Table II, respectively.

In the second part of experiments, we perform HDL simula-
tion on the proposed memory controller. The generated traces
above are used as inputs for a trace replayer in the middle
of Fig. 11. Then, the memory requests are stored in separate
request queues dedicated for each task. In this way we replay
all memory traces in parallel, regardless of tasks’ criticality.
Since execution times of critical tasks are much shorter than
those of non-critical tasks, we repeat critical tasks’ traces
periodically. Safety critical tasks are repeated every 250,000
cycles, and mission critical tasks every 500,000 cycles.

Before replaying requests, the trace replayer initializes
DRAM by replaying write requests for initialization in each
trace. The trace replayer also manages memory mapping for
each task. Memory mapping used in our experiments is similar
to the example in Fig. 4 of Section IV-A. We map one safety
critical task per critical MAG, and more than one mission
critical task per critical MAG, while we map all non-critical
tasks into one non-critical MAG. Table I shows how we map
critical tasks in more detail. Each MAG ID corresponds to a
unique critical MAG and a bank number. Note that multiple

o  Mälardalen WCET benchmark 
•  For safety critical and mission 
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VI. EXPERIMENTS AND RESULTS

In this section, we measure the performance of non-critical
tasks with the proposed DRAM controller. The performance
results are compared against the TDM-based technique [15]
introduced in Section V-C. In the architecture used for our
experiments, each requester consists of one processor and two
caches, each for instructions and data, as depicted in the top left
of Fig. 11. We connect the requesters to the DRAM controller
through an arbiter that detects and prioritizes critical requests.

A. Experimental setup

The flow of experiments shown in Fig. 11 is roughly
composed of two parts. The first is trace generation and the
second is Verilog HDL simulation of the DRAM controller. In
trace generation, we capture memory requests from benchmark
programs using the gem5 architectural simulator [25]. For
separation of computation and memory access time, we use
an architecture with a simple CPU, two caches and a simple
memory which immediately responds for memory accesses.

The simple CPU uses an ARM ISA, and takes one cycle
for each instruction. It has one I-cache and one D-cache, the
size of each cache is 4KB, and the cache block size is 64
bytes. This is the same as the access granularity (AG) of the
LPDDR2 DRAM used for our experiments, as in Fig. 10 of
Section V-C. When a memory read or write request occurs
during simulation, the request and the time when the request
is made are recorded in the trace, without stalling the CPU.
The trace also includes the write requests for initialization of
the memory as shown in the top right of Fig. 11.

We use two different benchmarks for our experiments,
the Mälardalen WCET benchmark [26] for safety critical and
mission critical tasks, and MiBench [27] for non-critical tasks.
We exclude bsort100 from the Mälardalen benchmark because
it expects inputs to be at special addresses that are not legal in
the gem5 simulator. Several MiBench programs are excluded

TABLE I. LIST OF BENCHMARKS USED AS CRITICAL TASKS

Criticality
level

MAG
ID

WCET
benchmark
programs

writes reads
total

instructions
executed

memory
intensity

(%)

Safety
critical

0 bs 86 319 4,828 8.39
1 lcdnum 85 331 5,050 8.24
2 janne complex 84 318 5,113 7.86
3 fibcall 83 317 5,291 7.56

Mission
critical

4 fac 83 316 5,318 7.50
statemate 85 418 7,215 6.97

5 nsichneu 95 1,117 18,676 6.49
qurt 84 346 6,896 6.24

6
duff 93 339 7,013 6.16
cover 92 381 7,909 5.98
insertsort 83 328 7,091 5.80

7

qsort-exam 82 342 8,502 4.99
select 79 330 8,653 4.73
fft1 84 348 9,911 4.36
minver 88 378 10,725 4.34

TABLE II. LIST OF BENCHMARKS USED AS NON-CRITICAL TASKS

Criticality
level

MiBench
programs writes reads

total
instructions

executed

memory
intensity

(%)

Non-criticial

cjpeg large 6,183 74,966 1,000,000 8.11
rijndael large 2,558 68,458 1,000,000 7.10
typeset small 12,843 55,963 1,000,000 6.88
dijkstra large 4,942 59,198 1,000,000 6.41
patricia large 4,255 49,198 1,000,000 5.35

for our experiments because they are not executable in gem5
(qsort) or not compilable with the ARM cross compiler (lame,
ghostscript, tiff, etc.), due to reasons including specific library
requirements. Programs with the top memory intensity are
selected from each benchmark for our experiments, the top 15
from the WCET benchmark and the top 5 from MiBench. We
define the memory intensity as the number of memory accesses
divided by the total number of instructions. To calculate the
memory intensity of each program, we run each program on
the gem5 simulator up to one million instructions. When there
are two options for the data size (small and large) in MiBench,
we choose the one with the higher memory intensity. The
programs used as critical tasks and non-critical tasks are listed
in Table I and Table II, respectively.

In the second part of experiments, we perform HDL simula-
tion on the proposed memory controller. The generated traces
above are used as inputs for a trace replayer in the middle
of Fig. 11. Then, the memory requests are stored in separate
request queues dedicated for each task. In this way we replay
all memory traces in parallel, regardless of tasks’ criticality.
Since execution times of critical tasks are much shorter than
those of non-critical tasks, we repeat critical tasks’ traces
periodically. Safety critical tasks are repeated every 250,000
cycles, and mission critical tasks every 500,000 cycles.

Before replaying requests, the trace replayer initializes
DRAM by replaying write requests for initialization in each
trace. The trace replayer also manages memory mapping for
each task. Memory mapping used in our experiments is similar
to the example in Fig. 4 of Section IV-A. We map one safety
critical task per critical MAG, and more than one mission
critical task per critical MAG, while we map all non-critical
tasks into one non-critical MAG. Table I shows how we map
critical tasks in more detail. Each MAG ID corresponds to a
unique critical MAG and a bank number. Note that multiple

o  MiBench 
•  For non-critical tasks 

Tasks with highest “memory access / instruction” are selected 
*  Critical  tasks  are  repeated  periodically,  	

safety  critical  every  250k  cycles,  mission  critical  every  500k  cycles.	
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Experiments  and  Results	

•  Competing TDM-Based Approach Modeling 

o Reserved TDM 
•  Each slot is only used by an assigned MAG 

o  Flexible TDM 
•  Extension for our experiments 
•  Idle slots for critical MAGs may be used by non-critical MAG 
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Increasing number of critical tasks (safety critical, mission critical)  
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Fig. 12. Average memory access times of read requests from non-critical tasks and their ratios between different approaches

mission critical tasks are mapped to the same critical MAG.

After finishing the memory initialization, the trace replayer
replays the memory requests from queues. The requests also
go through the arbiter explained in Fig. 6 before going to the
DRAM controller. After sending a read request, the replayer
delays the next request and all the following requests in the
queue, until the response arrives from the memory controller.
By doing this, we can simulate memory stall cycles caused
by memory access time. Meanwhile, the next request does not
wait after sending a write request.

We implement the DRAM controller and the second part of
experiments with following languages. The proposed DRAM
controller is written in the Chisel 2.1 hardware description
language [28]. From this, Verilog HDL code can be generated.
The trace replayer is implemented in Verilog HDL with
a DirectC interface [29]. The PHY and LPDDR2 DRAM
(800MHz, 4Gb) are Verilog HDL behavioral models. The
PHY is provided by ST Microelectronics, and the LPDDR2
DRAM is provided by Micron. Synopsys VCS is used for
HDL simulation of the second part of our experiments.

We emulate the TDM-based approach [15] using Verilog
HDL with a DirectC interface [29], as it is modeled in Section
V-C. All other conditions are considered to be same in the
experiments, including the traces, the trace replayer, and the
DRAM. We assume the refresh of the TDM-based approach
is performed in the same way as described in Section IV-C.
The memory access latency of our proposed memory controller
includes one cycle delay for each of the arbiter, the bank buffer
and the command generator. The latency also includes a round-
trip delay from the controller to the DRAM across the PHY,
which is 8 cycles. Therefore, assuming the same PHY, DRAM,
arbiter, bank buffer and command generator, we add latency
of 11 cycles for each read request (not to the TDM slots).

B. Performance results of non-critical tasks

For measuring performance, we use memory access time
to measure the impact of memory accesses on each program’s
execution time. We define memory access time as the delay
from the time point when the CPU is stalled due to the memory
access until when the CPU receives a memory response and
resumes the execution. The performance of non-critical tasks
is measured in terms of average memory access time of read
requests from all non-critical tasks.

Three different approaches are compared in our exper-
iments: Reserved TDM, Flexible TDM, and Priority-based.
Reserved TDM is based on the previous TDM-based approach

[15] with reserved TDM slots for each critical MAG and one
TDM slot for the non-critical MAG as presented in Fig. 9.
In Reserved TDM, each MAG can only access the memory
during its own reserved slot. This approach certainly causes
non-critical tasks to suffer a very high memory access time
because the slots for critical MAGs are wasted even when they
are not used. Therefore, we extend the TDM-based approach,
where we allow non-critical tasks to use a slot for a critical
MAG when there is no request from the critical MAG. We call
this approach Flexible TDM. Finally, Priority-based refers to
the approach used in our proposed DRAM controller.

We perform experiments for one million cycles on the top
5 memory-intensive MiBench programs in Table II as non-
critical workloads. To measure the impact of critical tasks, we
also run different numbers of safety critical and mission critical
tasks. We add critical tasks one by one, starting from the one
with the highest memory intensity as shown in Table I. We
compute the average memory access time for each case by
dividing the total stall cycles of all non-critical tasks by the
total number of memory read requests from all non-critical
tasks. The results of our experiments are shown in Fig. 12.

The results show non-critical tasks’ average memory access
times in the Priority-based approach range from 10% to 67%
of those in Reserved TDM, as shown in the second from
the bottom row of Fig. 12. This is because the TDM slots
for critical MAGs are wasted even when critical tasks are
not accessing the DRAM, and the requests from non-critical
tasks are concentrated on only one slot. Consequently, the read
requests from non-critical tasks have to wait a much longer
time. In contrast, our memory controller serves non-critical
requests immediately when there is no critical request.

Even when compared to Flexible TDM, the average mem-
ory access times of the Priority-based approach range from
52% to 67% of Flexible TDM for non-critical tasks as we
varied the number of critical tasks, as shown in the bottom
row of Fig. 12. Although we eliminate waste of TDM slots
for critical MAGs in Flexible TDM, the Priority-based ap-
proach still has much less memory access time than Flexible
TDM. Interestingly, even without any critical task, the average
memory access time of the Priority-based approach is 67% of
Flexible TDM. This suggests that the non-critical performance,
affected by the close-page policy of the TDM-based approach
for temporal isolation, can be greatly improved through the
proposed priority-based approach with bank-aware memory
mapping. Moreover, with our proposed approach, we can
also apply state-of-the-art memory scheduling technique to
better serve non-critical requests, without hurting the worst-

10
2$ 20
1$ 29
9$ 40
0$

51
1$ 63
9$

63
9$ 77
5$

77
5$ 91
3$

91
3$

91
3$

92
3$

92
3$

92
3$

92
3$

10
2$

10
7$

11
3$

11
8$

12
5$

12
9$

13
3$

14
8$

15
3$

15
9$

16
5$

17
1$

17
7$

18
3$

19
1$

20
0$

69
$

72
$

74
$

77
$

79
$

81
$

83
$

88
$

89
$

91
$

92
$

95
$

99
$

99
$

10
3$

10
5$

0$
200$
400$
600$
800$

1000$
Memory'access'+me'of'5'MiBench'non2cri+cal'tasks' Reserved$TDM$ Flexible$TDM$ Priority>based$

Average'memory'
access'+me'per'
read'request'

(cycles)'

Average'memory'
access'+me'per'
read'request'

(cycles)'

~~'

0" 1" 2" 3" 4" 5" 5" 6" 6" 7" 7" 7" 8" 8" 8" 8"
0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15"

(0,"0)" (1,"0)" (2,"0)" (3,"0)" (4,"0)" (4,"1)" (4,"2)" (4,"3)" (4,"4)" (4,"5)" (4,"6)" (4,"7)" (4,"8)" (4,"9)" (4,"10)" (4,"11)"
0.67" 0.36" 0.25" 0.19" 0.16" 0.13" 0.13" 0.11" 0.12" 0.10" 0.10" 0.10" 0.11" 0.11" 0.11" 0.11"
0.67" 0.67" 0.66" 0.65" 0.63" 0.63" 0.62" 0.59" 0.58" 0.57" 0.56" 0.56" 0.56" 0.54" 0.54" 0.52"

Number"of"cri:cal"MAGs"
Number"of"cri:cal"tasks"
(safety"cri:cal,"mission"cri:cal)"
PriorityFbased"/"Reserved"TDM"
PriorityFbased"/"Flexible"TDM"

10
2$ 20
1$ 29
9$ 40
0$

51
1$ 63

9$

63
9$ 77

5$

77
5$ 91

3$

91
3$

91
3$

92
3$

92
3$

92
3$

92
3$

10
2$

10
7$

11
3$

11
8$

12
5$

12
9$

13
3$

14
8$

15
3$

15
9$

16
5$

17
1$

17
7$

18
3$

19
1$

20
0$

69
$

72
$

74
$

77
$

79
$

81
$

83
$

88
$

89
$

91
$

92
$

95
$

99
$

99
$

10
3$

10
5$

0$
200$
400$
600$
800$

1000$
Memory'access'+me'of'5'MiBench'non2cri+cal'tasks' Reserved$TDM$ Flexible$TDM$ Priority>based$

Average'memory'
access'+me'per'
read'request'

(cycles)'

Average'memory'
access'+me'per'
read'request'

(cycles)'

~~'

0" 1" 2" 3" 4" 5" 5" 6" 6" 7" 7" 7" 8" 8" 8" 8"
0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15"

(0,"0)" (1,"0)" (2,"0)" (3,"0)" (4,"0)" (4,"1)" (4,"2)" (4,"3)" (4,"4)" (4,"5)" (4,"6)" (4,"7)" (4,"8)" (4,"9)" (4,"10)" (4,"11)"
0.67" 0.36" 0.25" 0.19" 0.16" 0.13" 0.13" 0.11" 0.12" 0.10" 0.10" 0.10" 0.11" 0.11" 0.11" 0.11"
0.67" 0.67" 0.66" 0.65" 0.63" 0.63" 0.62" 0.59" 0.58" 0.57" 0.56" 0.56" 0.56" 0.54" 0.54" 0.52"

Number"of"cri:cal"MAGs"
Number"of"cri:cal"tasks"
(safety"cri:cal,"mission"cri:cal)"
PriorityFbased"/"Reserved"TDM"
PriorityFbased"/"Flexible"TDM"

Fig. 12. Average memory access times of read requests from non-critical tasks and their ratios between different approaches

mission critical tasks are mapped to the same critical MAG.

After finishing the memory initialization, the trace replayer
replays the memory requests from queues. The requests also
go through the arbiter explained in Fig. 6 before going to the
DRAM controller. After sending a read request, the replayer
delays the next request and all the following requests in the
queue, until the response arrives from the memory controller.
By doing this, we can simulate memory stall cycles caused
by memory access time. Meanwhile, the next request does not
wait after sending a write request.

We implement the DRAM controller and the second part of
experiments with following languages. The proposed DRAM
controller is written in the Chisel 2.1 hardware description
language [28]. From this, Verilog HDL code can be generated.
The trace replayer is implemented in Verilog HDL with
a DirectC interface [29]. The PHY and LPDDR2 DRAM
(800MHz, 4Gb) are Verilog HDL behavioral models. The
PHY is provided by ST Microelectronics, and the LPDDR2
DRAM is provided by Micron. Synopsys VCS is used for
HDL simulation of the second part of our experiments.

We emulate the TDM-based approach [15] using Verilog
HDL with a DirectC interface [29], as it is modeled in Section
V-C. All other conditions are considered to be same in the
experiments, including the traces, the trace replayer, and the
DRAM. We assume the refresh of the TDM-based approach
is performed in the same way as described in Section IV-C.
The memory access latency of our proposed memory controller
includes one cycle delay for each of the arbiter, the bank buffer
and the command generator. The latency also includes a round-
trip delay from the controller to the DRAM across the PHY,
which is 8 cycles. Therefore, assuming the same PHY, DRAM,
arbiter, bank buffer and command generator, we add latency
of 11 cycles for each read request (not to the TDM slots).

B. Performance results of non-critical tasks

For measuring performance, we use memory access time
to measure the impact of memory accesses on each program’s
execution time. We define memory access time as the delay
from the time point when the CPU is stalled due to the memory
access until when the CPU receives a memory response and
resumes the execution. The performance of non-critical tasks
is measured in terms of average memory access time of read
requests from all non-critical tasks.

Three different approaches are compared in our exper-
iments: Reserved TDM, Flexible TDM, and Priority-based.
Reserved TDM is based on the previous TDM-based approach

[15] with reserved TDM slots for each critical MAG and one
TDM slot for the non-critical MAG as presented in Fig. 9.
In Reserved TDM, each MAG can only access the memory
during its own reserved slot. This approach certainly causes
non-critical tasks to suffer a very high memory access time
because the slots for critical MAGs are wasted even when they
are not used. Therefore, we extend the TDM-based approach,
where we allow non-critical tasks to use a slot for a critical
MAG when there is no request from the critical MAG. We call
this approach Flexible TDM. Finally, Priority-based refers to
the approach used in our proposed DRAM controller.

We perform experiments for one million cycles on the top
5 memory-intensive MiBench programs in Table II as non-
critical workloads. To measure the impact of critical tasks, we
also run different numbers of safety critical and mission critical
tasks. We add critical tasks one by one, starting from the one
with the highest memory intensity as shown in Table I. We
compute the average memory access time for each case by
dividing the total stall cycles of all non-critical tasks by the
total number of memory read requests from all non-critical
tasks. The results of our experiments are shown in Fig. 12.

The results show non-critical tasks’ average memory access
times in the Priority-based approach range from 10% to 67%
of those in Reserved TDM, as shown in the second from
the bottom row of Fig. 12. This is because the TDM slots
for critical MAGs are wasted even when critical tasks are
not accessing the DRAM, and the requests from non-critical
tasks are concentrated on only one slot. Consequently, the read
requests from non-critical tasks have to wait a much longer
time. In contrast, our memory controller serves non-critical
requests immediately when there is no critical request.

Even when compared to Flexible TDM, the average mem-
ory access times of the Priority-based approach range from
52% to 67% of Flexible TDM for non-critical tasks as we
varied the number of critical tasks, as shown in the bottom
row of Fig. 12. Although we eliminate waste of TDM slots
for critical MAGs in Flexible TDM, the Priority-based ap-
proach still has much less memory access time than Flexible
TDM. Interestingly, even without any critical task, the average
memory access time of the Priority-based approach is 67% of
Flexible TDM. This suggests that the non-critical performance,
affected by the close-page policy of the TDM-based approach
for temporal isolation, can be greatly improved through the
proposed priority-based approach with bank-aware memory
mapping. Moreover, with our proposed approach, we can
also apply state-of-the-art memory scheduling technique to
better serve non-critical requests, without hurting the worst-

(1) Priority-based vs Reserved TDM 
- TDM slots are wasted even when there’s 
no critical request  
(2) Priority-based vs Flexible TDM 
- Due to restrictions (command patterns, 
close-page) 

Even when there’s only one slot 
for non-critical, still due to 
restrictions 

o Average memory access times of non-critical tasks 
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Conclusion	

•  Advantages of Proposed DRAM Controller 

o Guarantee worst-case bounds that are comparable to 
a recent advanced technique, can help WCET analysis 

o Higher performance for non-critical tasks than the 
competing approach 

•  How Can Our Proposed DRAM Controller 
Outperform for Non-Critical Tasks? 
o Almost no overhead (e.g. certain page management 

policies, fixed command patterns) for guaranteeing 
worst-case latency bounds for critical tasks 

o Benefits from scheduling techniques for achieving high 
performance 
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Q  &  A	


•  Thank you for your attention! 
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