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What is OOD and why is OOD Detection Important?
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Machine learning model
in autonomous driving

Trained with in-distribution (ID) dataset

Sign Human Car

Out-of-distribution
(OOD) input data

Classification

Sign 50%

Human 35%

Car 15%

Decision:
Maintain Speed

• OOD data is often referred to as 
“unknown" data. 

• Since a model is not intended
for the unknown inputs, 
it is important to detect OODs.

• The input must not be classified, 
and the control should be 
transferred to human. 



Soft Errors and their Effect on OOD Detection 

• A soft error is a transient fault resulting in a 
temporary bit-flip error of the transistor 
induced by external sources such as alpha 
particles, thermal neutrons, or cosmic rays.

• Soft errors can cause misclassification which 
is dangerous in a safety-critical system.

• Soft errors can lead to incorrect 
identification of in-distribution (ID) samples 
as OOD samples or vice versa. 
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Soft Errors Cause ID/OOD Detection Failure
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Soft errors can lead to incorrect identification of ID samples as OOD samples or vice versa.

Horse 
OOD Sample
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Soft Errors Cause Classification Failure
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Self-driving
car

[Li 2017] Li, G., Hari, S. K. S., Sullivan, M., Tsai, T., Pattabiraman, K., Emer, J., & Keckler, S. W. (2017, November). Understanding error 
propagation in deep learning neural network (DNN) accelerators and applications. In Proceedings of the International Conference for 

High Performance Computing, Networking, Storage and Analysis (pp. 1-12).

Object Identification[Li 2017]

Result: Truck
Action: Brake

Result: Bird
Action: Speed 70MPH

One bit-flipSoft errors can cause 
misclassification.



Problem Statement

• Detect soft errors in 
systems that detect OODs to 
improve holistic reliability of 
the system.

• Differentiate between soft 
error and OOD to better the 
deployment of models. 

• Soft errors are not very 
commonly occurring so the 
method to detect them 
should be light-weight. 

Classify Input into the trained 
categories.

Detects inputs from unknown 
categories and notifies user. 

Protects OOD detector from soft 
errors with minimum runtime. 

Makes model more reliable.   

ML
Model

OOD
Detection

ProGIP
(Ours)
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Gradient Based Input Perturbation OOD Detection: Overview
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Issue: obtaining gradient requires additional backward passes

Gradient

Input

Input
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• Distinguish between ID and OOD using the perturbed input & temperature scaled 
SoftMax output.

• 𝑆𝑆 𝑥𝑥𝑥𝑥;𝑇𝑇 = 𝑒𝑒𝑓𝑓(𝑥𝑥𝑥𝑥/𝑇𝑇)

∑𝑗𝑗=1
𝑁𝑁 𝑒𝑒𝑓𝑓(𝑥𝑥𝑗𝑗/𝑇𝑇)

Where:
• x: test sample,
• xi : max logit from network,
• N : total classes,
• 𝑇𝑇 : Temperature (hyperparameter),
• 𝑓𝑓(𝑥𝑥) : pre-trained features of the SoftMax based neural classifier.

ODIN (Liang et. al.)
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Refine Model Calibration Using Temperature Scaling

• 𝑆𝑆 𝑥𝑥𝑥𝑥;𝑇𝑇 = 𝑒𝑒𝑓𝑓(𝑥𝑥𝑥𝑥/𝑇𝑇)

∑𝑗𝑗=1
𝑁𝑁 𝑒𝑒𝑓𝑓(𝑥𝑥𝑗𝑗/𝑇𝑇)
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SoftMax Values 

ID OOD

86%

5%
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Pure softmax score histogram

SoftMax Values 

ID OOD

SoftMax score histogram with
temperature scaling

0.1 0.12 0.14

8%
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+ Temperature Scaling

FPR at 95% TPR*:
41.5% FPR at 95% TPR:

15.4%

• Temperature Scaling calibrates the SoftMax outputs.
• Model Calibration: The process of adjusting a model's predicted probabilities to ensure they align with the true likelihood 

of outcomes.
• FPR (False Positive Rates) @ 95% TPR (True Positive Rates): The fraction of misclassified out-of-distribution samples, from 

34.7% to 4.3%, when 95% of in-distribution images are correctly classified.



Input Perturbation for GIP based OOD Detection

�𝑥𝑥  = 𝑥𝑥 −  𝜀𝜀 ∗ 𝑠𝑠𝑥𝑥𝑠𝑠𝑠𝑠 −∇𝑥𝑥 log 𝑆𝑆 𝑥𝑥;  𝑇𝑇

10/23/2024 © 2024 MPS-Lab. All rights reserved. 12

• Where:
• x: Input
• �𝑥𝑥: Perturbed Input
• 𝜀𝜀: Perturbation Magnitude
• ∇𝑥𝑥 log 𝑆𝑆 𝑥𝑥;  𝑇𝑇 : Gradient of scoring function w.r.t. sample input.
• S 𝑥𝑥;  𝑇𝑇 : Maximum SoftMax Probability

• The perturbation can have stronger effect on the in-distribution images than that 
on out-of-distribution images, making them more separable.



Impact after combining Temperature Scaling and Input 
Perturbation
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Mahalanobis (K. Lee, et. al.)
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• Calculates the Mahalanobis distance between the logits generated with perturbed input and the mean 
of logits generated with ID inputs for each class. It utilizes the negative of the maximum distance value 
as a confidence score.

• 𝑀𝑀 𝑥𝑥 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐 − 𝑓𝑓 𝑥𝑥 − �µ𝑐𝑐 𝑇𝑇 �Σ−1 𝑓𝑓 𝑥𝑥 − �µ𝑐𝑐  where, 

• x : test sample,

• c : the index of the closest class,

• �µ𝑐𝑐 :the sampled mean of the class 𝑐𝑐,

• 𝑓𝑓(𝑥𝑥) : pre-trained features of the SoftMax based neural classifier,

• �Σ : the covariance matrix.
K. Lee, et. al. “A simple unified framework for detecting out-of-

distribution samples and adversarial attacks,” Advances in neural 
information processing systems, vol. 31, 2018.

OOD
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Methods that Detect Soft Errors as well as OODs

• There is no direct method that address soft error and OOD detection problem in 
a single solution.

• Some soft error detection solutions can be extended on OOD detection flow.
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Solutions Extended to Protect OOD Detection System 
from Soft Errors
• Ranger

o Checks the abnormal values of all activation 
function layers and following max pool, average 
pool, and reshape layers, via built-in hook methods 
of PyTorch.

o The Ranger to correct faults by changing the 
abnormal values.

• Open-Set Recognition: An Inexpensive Strategy to 
Increase DNN Reliability
o Treats faults as anomaly.
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Z. Chen, et. al. “A low-cost fault corrector for deep neural networks through range restriction,” 2021 51st 
Annual IEEE/IFIP International Conference on Dependable Systems and Net-works (DSN). IEEE, pp. 1–13.

• FACER: A Universal Framework for Detecting Anomalous Operation of Deep Neural 
Networks

o Considers fault and OODs as anomaly.

o Requires additional data for both fault as well as OOD detection.
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Observing the Impact of Soft Errors on
Classification & OOD Detection Outcomes 
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• A soft error in the model 
with GIP solution can 
change the result of 
classification or ID/OOD 
detection

• Faults on different passes 
show different symptoms 
effects.

• Faults on higher bits lead to 
critical faults. 

https://www.exxactcorp.com/blog/hpc/what-is-fp64-fp32-fp16
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Example: Softmax score histogram with ODIN solution
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critical faults

Non-faulty ID



Signatures of Errors in the First Forward Pass After 
Fault Injection
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GradientBackward 
Pass

First
forward 

pass
… LossLoss

functionLogits

A soft error on
a high-order bit
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0 gradient (ODIN) or

high gradient (Mahalanobis)

…

…

Errors in first forward pass 
leads to classification 
failure. 



Signatures of Errors in the Backward Pass After Fault 
Injection
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… Backward 
pass Gradient Input

perturbation…

high gradient
Perturbed_input

= input
− ε ∗ sign(gradient)

Incorrectly
perturbed

input

A soft error on
a high-order bit



Signatures of Errors in the Second Forward Pass After 
Fault Injection
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Second
forward 

pass
Logits

A soft error on
a high-order bit

High confidence (ODIN) or
low confidence (Mahalnobis)

high logits

Confidence
scoring

Classification(from the frist forward pass)

Incorrect
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input
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ID/OOD detection failure. 



• Introduction
• Background
• Related Works
• ProGIP: Observations
• ProGIP: Methodology
• Experimental Setup
• Experimental Results
• Conclusion

ProGIP: Methodology



10/23/2024 © 2024 MPS-Lab. All rights reserved. 24

Backward 
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Second fault 
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𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑥𝑥𝑓𝑓 max(𝐹𝐹𝑎𝑎𝑠𝑠 𝑠𝑠𝑔𝑔𝐹𝐹𝑔𝑔) ≈ 0
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑥𝑥𝑓𝑓 max(𝐹𝐹𝑎𝑎𝑠𝑠 𝑠𝑠𝑔𝑔𝐹𝐹𝑔𝑔 ) > 𝛿𝛿𝐹𝐹1

𝐹𝐹𝑥𝑥𝑠𝑠𝐹𝐹 𝑜𝑜𝐹𝐹𝑜𝐹𝐹𝑔𝑔𝑜𝑜𝑥𝑥𝑠𝑠𝐹𝐹
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First fault detector of ProGIP
for ODIN

First fault detector of ProGIP
for Mahalanobis

Beyond this point the 
signature of the faults in 
first forward and the 
backward pass disappear 
but their effects remain.  

Implementing Our Solution for Enhanced Reliability – 
First Fault Detector
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Implementing Our Solution for Enhanced Reliability – 
Second Fault Detector
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Experimental Setup for OOD Detection

Architectures
• DenseNet-BC
• ResNet34

Datasets
• CIFAR10 – ID
• ImageNet resize (32x 32) - OOD
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OOD Detection Methods
• ODIN
• Mahanalobis

Comparing Methods
• Detection-Only Ranger
• ProGIP (Ours)



Detection-Only Ranger Extended To Protect OOD 
Detection System from Soft Errors

• Checks the abnormal values of all 
activation function layers and following 
max pool, average pool, and reshape 
layers, via built-in hook methods of 
PyTorch.

• Our detection-only Ranger is 
implemented to only provide a fault 
detection alarm.
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Z. Chen, et. al. “A low-cost fault corrector for deep neural networks through range restriction,” 2021 51st 
Annual IEEE/IFIP International Conference on Dependable Systems and Net-works (DSN). IEEE, pp. 1–13.



Base Accuracy Overview: Key Metrics
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Network OOD Detection ID Classification 
Accuracy

AUROC for TPR 
vs FPR curve FPR at 95% TPR

DenseNet-BC
ODIN

95.19%
98.40% 8.0%

Mahanalobis 96.40% 15.0%

ResNet-34
ODIN

94.61%
90.30% 39.2%

Mahanalobis 93.00% 35.2%



Implement Fault Injection with Bit-Flips in Neural 
Networks
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• Implemented bit-flips in neural network outputs using PyTorch hooks.
• Randomly select a layer execution pass for fault injection.
• Inject faults by flipping a random bit in the selected layer's output. 
• Total: 2.4 million fault injections

o 100,000 runs × 2 networks × 2 OOD detections × 2 dataset types (ID/OOD) × 3 execution 
passes.
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Summary of Runtime Results
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Network OOD Detection

Normalized Execution Time by Unprotected Run

Unprotected Detection-only 
Ranger ProGIP (Ours)

DenseNet-BC
ODIN

100%

264.79% 100.74%

Mahanalobis 259.01% 100.68%

ResNet-34
ODIN 245.48% 101.24%

Mahanalobis 234.17% 100.56%

Average 250.86% 100.81%



Overall Results
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Fault 
Injection 

Run

Originally 
Correct 

Run

Classification 
Failure

Classification 
Failures 

Detection 
Accuracy

ID/OOD 
Detection 

Failure

ID/OOD 
Failures 

Detection 
Accuracy

Overall
Fault

Detection 
Accuracy

Normalized 
Runtime 

Execution by 
Unprotected

Unprotected 2,400,000 2,004,945 4138 N/A 5989 N/A N/A 100%

Detection-
Only Ranger 2,400,000 2,004,945 12 99.71% 133 97.78% 98.57% 250.86%

ProGIP 
(ours) 2,400,000 2,004,945 17 99.59% 111 98.15% 98.74% 100.81%
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Results of ODIN Across All Passes

Unprotected
(original)

Detection-only
Ranger

ProGIP
(ours)DenseNet-BC

ResNet-34



Results of Mahanalobis Across All Passes
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N: not-a-number-dominant (NaN-dominant), which means more 
than 96% failures produced not-a-number outputs (confidence score 
for forward passes and gradient for backward pass).

DenseNet-BC

ResNet-34

Unprotected
(original)

Detection-only
Ranger

ProGIP
(ours)



Publications

• ProGIP: Protecting Gradient-based Input Perturbation Approaches for Out-of-
distribution Detection From Soft Errors
o Authors: Sumedh Joshi, Hwisoo So, Soyeong Park, Woobin Ko, Jinhyo Jung, Yohan Ko, Uiwon 

Hwang, Kyoungwoo Lee and Aviral Shrivastava
o Design, Automation, and Test in Europe (DATE), 2025 (Submitted and under review)

• Maintaining Sanity: Algorithm-based Comprehensive Fault Tolerance for CNNs
o Authors: Jinhyo Jung, Hwisoo So, Woobin Ko, Sumedh Joshi, Yebon Kim, Yohan Ko, Aviral 

Shrivastava, Kyoungwoo Lee
o Design Automation Conference (DAC), 2024
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Conclusion and Future Scope

• ProGIP detects soft errors alongside existing GIP based OOD detection techniques.
• Negligible runtime overhead of 0.81%.
• Achieves high detection rates of 98.74% with minimal checkpoint insertions.
• Adaptable thresholds for diverse application requirements.
• Integration with other OOD detection techniques.
• Investigation of combined defenses against multiple reliability threats.
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