Encoding and Monitoring Responsibility Sensitive Safety (RSS) Rules for Automated Vehicles in Signal Temporal Logic (STL)

Mohammad Hekmatnejad, Shakiba Yaghoubi, Adel Dokhanchi, Heni Ben Amor, Aviral Shrivastava, Lina Karam, and Georgios Fainekos

MEMOCODE 2019

Image: Image

Motivation

- Responsibility Sensitive Safety (RSS) Rules
 - Developed by Intel Mobileye to capture safe driver behavior for Automated Driving Systems (ADS)
 - Alternative viewpoint: when an ADS should not be blamed for an accident

Problem Definition & Solution Overview

Problem: How to represent and use the RSS rules in practice?

Responsible Sensitive Safety Rules¹

ARIZONA STATE UNIVERSITY

aî

Solution: Formalizing the RSS rules in STL/TPTL

use formalized RSS rules in standardizing, designing, training, testing and controlling ADSs.

[1] S. Shalev-Shwartz, S. Shammah, and A. Shashua, "On a formal model of safe and scalable self-driving cars," arXiv:1708.06374v6, 2018. [2] Cumhur Erkan Tuncali, Georgios Fainekos, Hisahiro Ito, James Kapinski, "Sim-ATAV: Simulation-based Adversarial Test generation framework for Autonomous Vehicles (AV)", HSCC 2018

* Figure is taken from Mobileye "Implementing the RSS Model on NHTSA Pre-Crash Scenarios"

Solution Architecture

ARIZONA STATE UNIVERSITY

CPS

 (\mathbf{a})

[1] S. Shalev-Shwartz, S. Shammah, and A. Shashua, "On a formal model of safe and scalable self-driving cars," arXiv:1708.06374v6, 2018.
 [2] Matthias Althoff, Markus Koschi, and Stefanie Manzinger, "CommonRoad: Composable Benchmarks for Motion Planning on Roads", 2017 IEEE Intelligent Vehicles Symposium (IV)

Summary of Our Contribution

- We demonstrate that the RSS model can be encoded in assumeguarantee STL requirements.
- To motivate how the resulting STL requirements could be used in practice, we monitor multiple real driving data scenarios* offline over some of the RSS rules written in STL [1].
- Finally, we have released our case-study and experiments publicly available as part of S-TALIRO available at: <u>https://cpslab.assembla.com/spaces/s-taliro_public/</u>.

[1] S. Shalev-Shwartz, S. Shammah, and A. Shashua, "On a formal model of safe and scalable self-driving cars," arXiv:1708.06374v6, 2018.
 * Matthias Althoff, Markus Koschi, and Stefanie Manzinger, "CommonRoad: Composable Benchmarks for Motion Planning on Roads", 2017 IEEE Intelligent Vehicles Symposium (IV)

Outline

Preliminaries

- Lane-based Coordinate System
- RSS Safe Distances
- Metric/Signal Temporal Logic
- RSS Translation into STL
- Monitoring RSS Rules in DP-TALIRO
- Experimental Results
- Conclusion

Lane-based Coordinate System

8

Safe Longitudinal Distance in One-Way Traffic All cars move at the same direction from left to the right Safe Longitudinal Distance Max movement Max movement Max movement

Longitudinal Minimum Safe Distances

- Based on Lemma 2 of RSS [1]:
- Ego vehicle \boldsymbol{b} is always behind the Front \boldsymbol{f}

 $d_{min,lon} = \max(d_{b,preBrake} + d_{b,brake} - d_{f,brake}, 0),$

- Maximum frontal movement by accelerating as maximally allowed (before taking any action w.r.t reaction time)
- Maximum frontal movement after braking as minimally required

ARIZONA STATE UNIVERSITY

(a)

• Minimum frontal movement by braking as maximally allowed

$$d_{b,preBrake} = v_b^{lon}\rho + \frac{1}{2}a_{max,accel}^{lon}\rho^2$$

$$d_{b,brake} = \frac{\left(v_b^{lon} + \rho a_{max,accel}^{lon}\right)^2}{2a_{min,brake}^{lon}}$$

$$d_{f,brake} = \frac{v_f^{lon^2}}{2a_{max,brake}^{lon}}$$

Longitudinal Minimum Safe Distances (cont')

- $D_{f,b} = longitudinal disptance d_{min,lon}$
- $D_{f,b} > 0$ is **safe**
- $D_{f,b} \leq 0$ is **unsafe**
- Longitudinal dangerous threshold time is as follows:
- was $(D_{f,b} > 0)$, and now $(D_{f,b} < 0)$

Safe Lateral Distance in One-Way Traffic

All cars move at the same direction from left to the right

Lateral Minimum Safe Distances

- Based on Lemma 4 of RSS [1]:
- If Ego vehicle l is on the left of any car in the Front r

 $d_{min,lat} = \mu + \max(d_{l,preBrake} + d_{l,brake} - (d_{r,preBrake} - d_{r,brake}), 0),$

- Maximum to the right movement by accelerating as maximally allowed (before $d_{l,preBrake} = \frac{v_l^{lat} + v_{l,\rho}^{lat}}{2}\rho$ taking any action w.r.t reaction time)
- Maximum to the right movement after braking as minimally required
- Maximum to the left movement by accelerating as maximally allowed (before $d_{r,p}$ taking any action w.r.t reaction time)
- Maximum to the left movement after braking as minimally required

ARIZONA STATE

ab

$$v_{l,\rho}^{lat} = v_l^{lat} + \rho a_{max,accel}^{lat}, \quad v_{r,\rho}^{lat} = v_r^{lat} - \rho a_{max,accel}^{lat}$$

$$d_{l,brake} = \frac{v_{l,\rho}^{lat^2}}{2a_{min,brake}^{lat}}$$

re
$$d_{r,preBrake} = \frac{v_r^{lat} + v_{r,\rho}^{lat}}{2}\rho$$

 $d_{r,brake} = \frac{v_{r,\rho}^{lat}^2}{2a_{min,brake}^{lat}}$

Lateral Minimum Safe Distances (cont')

- $D_{l,r} = lateral \ disntance \ \ d_{min,lat}$
- $D_{l,r} > 0$ is **safe**

CDSLab @ ASUArizona State

- $D_{l,r} \leq 0$ is **unsafe** Safe Lateral Distance
- Lateral dangerous threshold time is as follows:
- was $(D_{l,r} > 0)$, and now $(D_{l,r} < 0)$

Metric Temporal Logic* (MTL)

- Syntax: $\phi ::= \top |p| \neg \phi |\phi_1 \lor \phi_2 |\Box_I \phi |\diamondsuit_I \phi |\bigcirc \phi |\phi_1 U_I \phi_2 |\phi_1 R_I \phi_2$
- Semantics:

ARIZONA STATI UNIVERSITY

CD

14

* R. Koymans "Specifying real-time properties with metric temporal logic" Real-Time Systems, 2(4):255–299, 1990

Metric Temporal Logic* (MTL)

- Syntax: $\phi ::= \top |p| \neg \phi |\phi_1 \lor \phi_2| \Box_I \phi |\diamondsuit_I \phi| \bigcirc \phi |\phi_1 U_I \phi_2| \phi_1 R_I \phi_2$
- Semantics:

$$a \overline{R}_{[0.5,1.5]} b$$
 - a release b

Satisfy b in the interval [0.5,1.5] unless a has happened in the past.

The requirement to satisfy b in the interval [0.5,1.5] is released when a was true in the past.

a ASI ARIZONA STATE UNIVERSITY

CPS Lab

15

* R. Koymans "Specifying real-time properties with metric temporal logic" Real-Time Systems, 2(4):255–299, 1990

Longitudinal Safety Requirements

Longitudinal Safety Requirement for Ego vehicle:

$$\varphi_{resp}^{lon} \equiv \Box(\left(S_{b,f}^{lon} \land \circ \neg S_{b,f}^{lon}\right) \to \circ P^{lon})$$

$$\boldsymbol{P^{lon}} \equiv \left(S_{b,f}^{lon} \bar{\mathcal{R}}_{[0,\rho)} \left(A_{b,maxAcc}^{lon} \wedge A_{f,maxBr}^{lon}\right)\right) \wedge \left(S_{b,f}^{lon} \bar{\mathcal{R}}_{[\rho,+\infty)} \left(A_{b,minBr}^{lon} \wedge A_{f,maxBr}^{lon}\right)\right)$$
$$S_{b,f}^{lon} \equiv \gamma \left(y_f, x_f\right)_y - \gamma (y_b, x_b)_y - d_{min,lon} > 0$$

$$A_{b,maxAcc}^{lon} \equiv a_b^{lon} \leq a_{max,accel}^{lon}$$

$$A_{b,minBr}^{lon} \equiv a_b^{lon} \leq -a_{min,brake}^{lon}$$

$$A_{f,maxBr}^{lon} \equiv a_f^{lon} \geq -a_{max,brake}^{lon}$$

$$A_{f,maxBr}^{lon} \equiv a_f^{lon} \geq -a_{max,brake}^{lon}$$

$$a_{max,accel}^{lon} a_{min,brake}^{lon}$$
while breaking
$$a_{max,brake}^{lon}$$
while breaking
$$a_{max,brake}^{lon}$$
while breaking
$$a_{max,brake}^{lon}$$

μ –lateral-velocity

CDS Lab @ ASU ARIZONA STATE

Lateral Safety Requirements

 Lateral Safety Requirement for Ego vehicle:

$$\varphi_{resp}^{lat} \equiv \Box(\left(S_{l,r}^{lat} \land \circ \neg S_{l,r}^{lat}\right) \to \circ \boldsymbol{P}^{lat})$$
$$\boldsymbol{P}^{lat} \equiv \left(P_{o,\rho}^{lat} \land P_{\rho,\infty}^{lat,1} \land P_{\rho,\infty}^{lat,2}\right)$$
$$P_{o,\rho}^{lat} \equiv S_{l,r}^{lat} \bar{\mathcal{R}}_{[0,\rho)}\left(A_{l,maxAccel}^{lat} \land A_{r,maxAccel}^{lat}\right)$$

$$P_{\rho,\infty}^{lat,1} \equiv \left(\left(S_{l,r}^{lat} \vee V_{l,stop}^{lat} \right) \bar{\mathcal{R}}_{[\rho,+\infty)} A_{l,minBrake}^{lat} \right) \wedge \left(\left(S_{l,r}^{lat} \vee V_{r,stop}^{lat} \right) \bar{\mathcal{R}}_{[\rho,+\infty)} A_{r,minBrake}^{lat} \right)$$

$$\begin{split} P_{\rho,\infty}^{lat,2} &\equiv \left(S_{l,r}^{lat} \bar{\mathcal{R}}_{[\rho,+\infty)} \left(V_{l,stop}^{lat} \to \circ V_{l,npos}^{lat} \right) \right) \land \\ &\left(S_{l,r}^{lat} \bar{\mathcal{R}}_{[\rho,+\infty)} \left(V_{r,stop}^{lat} \to \circ \Box (V_{r,nneg}^{lat}) \right) \right) \\ &S_{l,r}^{lat} &\equiv \gamma(y_r, x_r)_{\alpha} - \gamma(y_l, x_l)_{\alpha} - d_{min,lat} > 0 \end{split}$$

 $\begin{aligned} V_{l,stop}^{lat} &\equiv v_l^{\mu-lat} = 0, V_{r,stop}^{lat} \equiv v_r^{\mu-lat} = 0\\ V_{l,npos}^{lat} &\equiv v_l^{\mu-lat} \leq 0, V_{r,nneg}^{lat} \equiv v_r^{\mu-lat} \geq 0 \end{aligned}$

CDS Lab @ ASJ Arizona State

lat

 $A_{r,minB}^{lat}$

 $A_{r,ma}^{lat}$

ego car
$$A_{l,maxAccel}^{lat} \equiv |a_l^{lat}| \leq a_{max,accel}^{lat}$$
 $A_{l,minBrake}^{lat} \equiv a_l^{lat} \leq -a_{min,brake}^{lat}$ $A_{r,minBrake}^{lat} \equiv a_r^{lat} \geq a_{min,brake}^{lat}$ $A_{r,minBrake}^{lat} \equiv |a_r^{lat}| \leq a_{max,accel}^{lat}$ $A_{r,maxAccel}^{lat} \equiv |a_r^{lat}| \leq a_{max,accel}^{lat}$

Basic Proper Response: From Laterally Unsafe to Unsafe

Laterally UnSafe

CDS Lab @ ASJ Arizona State

Basic Proper Response: From Longitudinally Unsafe to Unsafe

Longitudinally UnSafe

CDS Lab @ ASJ Arizona State

$$\varphi^{lat} \equiv \Box \left(\left(\neg S_{b,f}^{lon} \land S_{l,r}^{lat} \land \circ \left(\neg S_{b,f}^{lon} \land \neg S_{l,r}^{lat} \right) \right) \to \circ P^{lat} \right)$$

 $2^{(}$

Basic Proper Response: From Safe to Unsafe

UnSafe

CDSLab @ ASJArizona State

Basic Proper Response Specification

•
$$\varphi_{resp}^{lat,lon} \equiv \varphi^{lon} \wedge \varphi^{lat} \wedge \varphi^{lat,lon}$$

• $\varphi^{lon} \equiv \Box \left(\left(\neg S_{l,r}^{lat} \wedge S_{b,f}^{lon} \wedge \circ \left(\neg S_{l,r}^{lat} \wedge \neg S_{b,f}^{lon} \right) \right) \rightarrow \circ P_{lat}^{lon} \right)$

•
$$\varphi^{lat} \equiv \Box \left(\left(\neg S_{b,f}^{lon} \land S_{l,r}^{lat} \land \circ \left(\neg S_{b,f}^{lon} \land \neg S_{l,r}^{lat} \right) \right) \rightarrow \circ P_{lon}^{lat} \right)$$

CDS Lab @ ASJ ARIZONA STATE

•
$$\varphi^{lat,lon} \equiv \Box \left(\left(S_{l,r}^{lat} \land S_{b,f}^{lon} \land \circ \left(\neg S_{l,r}^{lat} \land \neg S_{b,f}^{lon} \right) \right) \rightarrow \circ \left(P_{lat}^{lon} \lor P_{lon}^{lat} \right) \right)$$

• P_{lat}^{lon} and P_{lon}^{lat} are modified versions of P^{lon} and P^{lat} where the propositions $S_{l,r}^{lat}$ and $S_{b,f}^{lon}$ are replaced with the formula $(S_{l,r}^{lat} \vee S_{b,f}^{lon})$.

Remarks on $\varphi_{resp}^{lat,lon} \equiv \varphi^{lon} \wedge \varphi^{lat} \wedge \varphi^{lat,lon}$

CDSLab @ ASJ Arizona State

Shalev-Shwartz, S., Shammah, S., & Shashua, A. (2018). On a formal model of safe and scalable self-driving cars. arXiv preprint arXiv:1708.06374 v6.

CommonRoad Real Scenarios

- A composable framework for benchmarking motion planning on roads.
- Highway scenarios without intersection
- Vehicles in the same lane move the same direction
- Longitudinal Distance: Front-Rear Safety Requirement
- Lateral Distance: Left-Right Safety Requirement

Case Study

- $a_{max,acc}^{lon} = 5.5 \ m/s^2$
- $a_{max,acc}^{lat} = 3 m/s^2$
- $a_{min,brake}^{lon} = 4 m/s^2$
- $a_{max,brake}^{lon} = 10 \ m/s^2$
- $a_{min,brake}^{lat} = 3 m/s^2$
- $a_{max,brake}^{lat} = 3 m/s^2$
- *ρ*=0.5
- $\mu = 0.4 m$

Monitoring Demo

27

CDSLab @ ASJArizona State

Experimental results

CDSLab @ ASJI ARIZONA STATE

Longitudinal Predicates	# of Violati ons φ ^{lon}	# of Violati ons φ ^{lon}			
safe_long	2	2			
safe_lat	1 0				
a_ego_lt_max_acc	18 18				
a_ego_gt_min_brake	190	184			
a_front_max_brake	9	9			
Lateral Predicates	# of Violati ons φ ^{lon}	# of Violati ons φ ^{lon}			
safe_long	0	0			
safe_lat	9	8			
a_ego_lat_lt_max_acc	188	186			
a_ego_lat_lt_min_brake	0	0			
a_right_lat_max_acc	256	0 256			
a_right_lat_min_brake	0	0			
stopped_ego_lat	39	36			
stopped_right_lat	0	0			
ego_lat_velocity_neg	0	0			
right_lat_velocity_pos	0	0			

Lateral & Longitudinal Predicates	# of Violati on ^{@lat,lon}	# of Violati on φ ^{lat,lon}		
safe_long	0	0		
safe_lat	0 0			
a_ego_lat_lt_max_acc	0 0			
a_ego_lat_lt_min_brake	0	0		
a_right_lat_max_acc	5	3		
a_right_lat_min_brake	0	0		
stopped_ego_lat	0	0		
stopped_right_lat	0	0		
ego_lat_velocity_neg	0	0		
right_lat_velocity_pos	0	0		
a_ego_lt_max_acc	0	0		
a_ego_gt_min_brake	4	0		
a_front_max_brake	1	1		

Execution Statics					
Total violation	722	703			
Violation percentage	5.9%	5.74%			

Experimental results (cont')

Lateral & Longitudinal Predicates	# of Violati on ⊽ ^{¬lat,¬lon}	# of Violati on φ ^{¬lat,¬lon}	
safe_long	0	0	
safe_lat	0	0	
a_ego_lat_lt_max_acc	172	166	
a_ego_lat_lt_min_brake	0	0	
a_right_lat_max_acc	177	161	
a_right_lat_min_brake	0	0	
stopped_ego_lat	420	350	
stopped_right_lat	0	1	
ego_lat_velocity_neg	0 0		
right_lat_velocity_pos	0 0		
a_ego_lt_max_acc	6	7	
a_ego_gt_min_brake	5 3		
a_front_max_brake	0	1	

Execution Statics				
Total violation	780	689		
Violation percentage	6.37%	5.63%		

CDSLab @ ASUArizona State

item	
Average runtime per monitor execution (<i>ms</i>)	21
Average number of cars in each scenario	48
Average number of surrounding cars to be monitored	8.8
Average length of trajectories per car (s)	6.8

Sensitivity Analysis

parameter	values								
$a_{max,acc}^{lon}$	2.75			5.5		8.25			
$a_{max,acc}^{lat}$	1.5			1.5 3		4.5			
$a_{max,brake}^{lon}$	5			10		15			
$a_{min,brake}^{lon}$	6			4		2			
$a_{min,brake}^{lat}$		4.5			3		1.5		
ρ	0.3	0.5	2	0.3	0.5	2	0.3	0.5	2
Violations %	0.5%	0.8%	11%	2.3%	5.2%	15.5%	6.7%	15%	23.1%

Conclusions

- Translation of the Responsibility-Sensitive Safety (RSS) rules into Signal Temporal Logic (STL)
- The encoded formulas could be used for
 - ADS model verification
 - Automated test case generation for discovering control software bugs (our Sim-ATAV framework*)
 - \cdot Test the control and perception system stack against the RSS model
- We utilized the STL formulas to monitor off-line naturalistic driving data provided with CommonRoad.
- Computation is efficient
- The RSS rules are satisfied in the majority of the actual vehicle trajectories (assuming fast reaction times by the drivers).

Future works:

ab

a ASUARIZONARIZO NARIZO NAHARIZO NARIZO NARIZO NARIZO NARIZO NARIZO NARIZO NARIZO NARIZO NARIZO NAHARIZO NAHAHHAHHAH

- We are completing all the RSS rules in our translation.
- Formalize in STL the RSS rules concerning different road geometries.

Thank You!

Acknowledgement: This work was partially supported by NSF 1350420 and by a gift from Intel.

