Encoding and Monitoring Responsibility Sensitive Safety (RSS) Rules for Automated Vehicles in Signal Temporal Logic (STL)

Mohammad Hekmatnejad, Shakiba Yaghoubi, Adel Dokhanchi, Heni Ben Amor, Aviral Shrivastava, Lina Karam, and Georgios Fainekos

MEMOCODE 2019

Motivation

- Responsibility Sensitive Safety (RSS) Rules
- Developed by Intel Mobileye to capture safe driver behavior for Automated Driving Systems (ADS)
- Alternative viewpoint: when an ADS should not be blamed for an accident

Problem Definition \& Solution Overview

Problem: How to represent and use the RSS rules in practice?

Solution: Formalizing the RSS rules in STL/TPTL

- use formalized RSS rules in standardizing, designing, training, testing and controlling ADSs.

Solution Architecture

Summary of Our Contribution

- We demonstrate that the RSS model can be encoded in assumeguarantee STL requirements.
- To motivate how the resulting STL requirements could be used in practice, we monitor multiple real driving data scenarios* offline over some of the RSS rules written in STL [1].
- Finally, we have released our case-study and experiments publicly available as part of S-TALIRO available at: https://cpslab.assembla.com/spaces/s-taliro public/

Outline

- Preliminaries
- Lane-based Coordinate System
- RSS Safe Distances
- Metric/Signal Temporal Logic
- RSS Translation into STL
- Monitoring RSS Rules in DP-TALIRO
- Experimental Results
- Conclusion

Lane-based Coordinate System

Safe Longitudinal Distance in One-Way Traffic

All cars move at the same direction from left to the right
Safe Longitudinal Distance

Longitudinal Minimum Safe Distances

- Based on Lemma 2 of RSS [1]:

- Ego vehicle \boldsymbol{b} is always behind the Front \boldsymbol{f}
$d_{\text {min,lon }}=\max \left(d_{\text {b,preBrake }}+d_{b, \text { brake }}-d_{f, \text { brake }}, 0\right)$,
- Maximum frontal movement by accelerating as maximally allowed (before taking any action w.r.t reaction time)
- Maximum frontal movement after braking as minimally required
- Minimum frontal movement by braking as maximally allowed

$$
\begin{aligned}
& d_{b, \text { preBrake }}=v_{b}^{\text {lon }} \rho+\frac{1}{2} a_{\text {max }, \text { accel }}^{\text {lon }} \rho^{2} \\
& d_{b, \text { brake }}=\frac{\left(v_{b}^{\text {lon }}+\rho a_{\text {max,accel }}^{\text {lon }}\right)^{2}}{2 a_{\text {min,brake }}^{l o m}} \\
& d_{f, \text { brake }}=\frac{v_{f}^{l^{l o n^{2}}}}{2 a_{\text {max,brake }}^{\text {lon }}}
\end{aligned}
$$

Longitudinal Minimum Safe Distances (cont')

- $D_{f, b}=$ longitudinal disntance $-d_{\text {min,lon }}$
- $D_{f, b}>0$ is safe
- $D_{f, b} \leq 0$ is unsafe
- Longitudinal dangerous threshold time is as follows:
- was $\left(D_{f, b}>0\right)$, and now $\left(D_{f, b}<0\right)$

Safe Lateral Distance in One-Way Traffic

All cars move at the same direction from left to the right

Lateral Minimum Safe Distances

- Based on Lemma 4 of RSS [1]:

- If Ego vehicle l is on the left of any car in the Front r
$d_{\text {min,lat }}=\boldsymbol{\mu}+\max \left(d_{l, \text { preBrake }}+d_{l, \text { brake }}-\left(d_{r, \text { preBrake }}-d_{r, b r a k e}\right), 0\right)$,
Maximum to the right movement by
accelerating as maximally allowed (before $d_{l, \text { preBrake }}=\frac{v_{l}^{\text {lat }}+v_{l, \rho}^{\text {lat }}}{2} \rho$ taking any action w.r.t reaction time)

$$
d_{l, \text { brake }}=\frac{v_{l, \rho}^{l a t^{2}}}{2 a_{\text {min,brake }}^{\text {lat }}}
$$

- Maximum to the right movement after braking as minimally required

$$
d_{r, \text { preBrake }}=\frac{v_{r}^{\text {lat }}+v_{r, \rho}^{\text {lat }}}{2} \rho
$$ accelerating as maximally allowed (before taking any action w.r.t reaction time)

$$
d_{r, \text { brake }}=\frac{v_{r, \rho}^{\text {lat }}{ }^{2}}{2 a_{\text {min,brake }}^{\text {lat }}}
$$

$v_{l, \rho}^{\text {lat }}=v_{l}^{\text {lat }}+\rho a_{m a x, a c c e l}^{\text {lat }}, \quad v_{r, \rho}^{\text {lat }}=v_{r}^{\text {lat }}-\rho a_{m a x, a c c e l}^{l a t}$

Lateral Minimum Safe Distances (cont')

- $D_{l, r}=$ lateral disntance $-d_{\text {min,lat }}$
- $D_{l, r}>0$ is safe
- $D_{l, r} \leq 0$ is unsafe

Safe Lateral Distance

- Lateral dangerous threshold time is as follows:
- was $\left(D_{l, r}>0\right)$, and now $\left(D_{l, r}<0\right)$

Metric Temporal Logic* (MTL)

- Syntax: $\quad \phi::=\top|p| \neg \phi\left|\phi_{1} \vee \phi_{2}\right| \square_{I} \phi\left|\diamond_{I} \phi\right| \bigcirc \phi\left|\phi_{1} U_{I} \phi_{2}\right| \phi_{1} R_{I} \phi_{2}$
- Semantics:

$$
\mathrm{G}_{[0, \infty)} a \equiv \square_{[0, \infty)} a \text { - Always a }
$$

Metric Temporal Logic* (MTL)

- Syntax: $\quad \phi::=\mathrm{T}|p| \neg \phi\left|\phi_{1} \vee \phi_{2}\right| \square_{I} \phi\left|\diamond_{I} \phi\right| \bigcirc \phi\left|\phi_{1} U_{I} \phi_{2}\right| \phi_{1} R_{I} \phi_{2}$
- Semantics:

$$
a \bar{R}_{[0.5,1.5]} b \text { - a release b }
$$

Satisfy b in the interval

[0.5, 1.5] unless a has happened in the past.

The requirement to satisfy b in the interval [$0.5,1.5$] is released when a was true in the past.

Longitudinal Safety Requirements

- Longitudinal Safety Requirement for Ego vehicle:

$$
\begin{gathered}
\varphi_{r e s p}^{\text {lon }} \equiv \square\left(\left(S_{b, f}^{\text {lon }} \wedge \circ \neg S_{b, f}^{\text {lon }}\right) \rightarrow 0 \boldsymbol{P}^{\text {lon }}\right) \\
\boldsymbol{P}^{\text {lon }} \equiv\left(S_{b, f}^{\text {lon }} \overline{\mathcal{R}}_{[0, \rho)}\left(A_{b, \text { maxAcc }}^{\text {lon }} \wedge A_{f, \text { max } r r}^{\text {lon }}\right)\right) \wedge\left(S_{b, f}^{\text {lon }} \overline{\mathcal{R}}_{[\rho,+\infty)}\left(\mathcal{A}_{L_{b, \text { minBr }}^{\text {lon }}} \wedge \mathcal{A}_{f, \text { max } B r}^{\text {lon }}\right)\right) \\
S_{b, f}^{\text {lon }} \equiv \gamma\left(y_{f}, x_{f}\right)_{y}-\gamma\left(y_{b}, x_{b}\right)_{y}-d_{\text {min,lon }}>0
\end{gathered}
$$

alon
$a_{\text {max }, \text { brake }}$
while breaking

μ-lateral-velocity

From time t_{0} to t_{4} predicate $\neg \boldsymbol{V}_{l, n n e g}^{\text {lat }}$ is true (non-positive mu-lateral velocity)

Lateral Safety Requirements

- Lateral Safety Requirement for Ego vehicle:

$$
A_{r, m i n B r a k e}^{l a t} \equiv a_{r}^{l a t} \geq a_{\text {min,brake }}^{l a t}
$$

$$
A_{r, \operatorname{maxAccel}}^{l a t} \equiv\left|a_{r}^{l a t}\right| \leq a_{\max , a c c e l}^{l a t}
$$

$$
\begin{aligned}
& P_{\rho,, \infty}^{l a t, 2} \equiv\left(S_{l, r}^{l a t} \overline{\mathcal{R}}_{[\rho,+\infty)}\left(V_{l, \text { stop }}^{l \text { at }} \rightarrow 0 V_{l, \text { lnpos }}^{\text {lat }}\right)\right) \wedge \\
& \left(S_{l, r}^{\text {lat }} \overline{\mathcal{R}}_{[\rho,+\infty)}\left(V_{r, s t o p}^{\text {lat }} \rightarrow 0 \square\left(V_{r, \text { nneg }}^{l a t}\right)\right)\right) \\
& S_{l, r}^{\text {lat }} \equiv \gamma\left(y_{r}, x_{r}\right)_{\alpha}-\gamma\left(y_{l}, x_{l}\right)_{\alpha}-d_{\text {min }, \text { lat }}>0
\end{aligned}
$$

$$
\begin{aligned}
& V_{l, \text { stop }}^{l a t} \equiv v_{l}^{\mu-l a t}=0, V_{r, s t o p}^{l a t} \equiv v_{r}^{\mu-l a t}=0 \\
& V_{l, n p o s}^{l a t} \equiv v_{l}^{\mu-l a t} \leq 0, V_{r, n n e g}^{l a t} \equiv v_{r}^{\mu-l a t} \geq 0
\end{aligned}
$$

(i) Computed at signal level
(ii) Formalized as TPTL formula

Basic Proper Response: From Laterally Unsafe to Unsafe

Basic Proper Response: From Longitudinally Unsafe to Unsafe

Longitudinally Unsafe

$$
\varphi^{l a t} \equiv \square\left(\left(\neg S_{b, f}^{l o n} \wedge S_{l, r}^{l a t} \wedge \circ\left(\neg S_{b, f}^{l o n} \wedge \neg S_{l, r}^{l a t}\right)\right) \rightarrow \circ P^{l a t}\right)
$$

Basic Proper Response: From Safe to Unsafe

Unsafe

$$
\varphi^{\text {lat,lon }} \equiv \square\left(\left(S_{l, r}^{\text {lat }} \wedge S_{b, f}^{\text {lon }} \wedge \circ\left(\neg S_{l, r}^{\text {lat }} \wedge \neg S_{b, f}^{\text {lon }}\right)\right) \rightarrow \circ\left(P^{\text {lon }} \wedge P^{\text {lat }}\right)\right)
$$

Basic Proper Response Specification

- $\boldsymbol{\varphi}_{\text {resp }}^{\text {lat,lon }} \equiv \varphi^{\text {lon }} \wedge \varphi^{\text {lat }} \wedge \varphi^{\text {lat,lon }}$
- $\varphi^{\text {lon }} \equiv \square\left(\left(\neg S_{l, r}^{l a t} \wedge S_{b, f}^{l o n} \wedge \circ\left(\neg S_{l, r}^{l a t} \wedge \neg S_{b, f}^{\text {lon }}\right)\right) \rightarrow \circ P_{\text {lat }}^{\text {lon }}\right)$
- $\varphi^{l a t} \equiv \square\left(\left(\neg S_{b, f}^{\text {lon }} \wedge S_{l, r}^{l a t} \wedge \circ\left(\neg S_{b, f}^{\text {lon }} \wedge \neg S_{l, r}^{\text {lat }}\right)\right) \rightarrow \circ P_{\text {lon }}^{l a t}\right)$
- $\varphi^{l a t, l o n} \equiv \square\left(\left(S_{l, r}^{l a t} \wedge S_{b, f}^{l o n} \wedge \circ\left(\neg S_{l, r}^{l a t} \wedge \neg S_{b, f}^{l o n}\right)\right) \rightarrow \circ\left(P_{l a t}^{l o n} \vee P_{l o n}^{l a t}\right)\right)$
- $P_{l a t}^{l o n}$ and $P_{l o n}^{l a t}$ are modified versions of $P^{l o n}$ and $P^{l a t}$ where the propositions $S_{l, r}^{l a t}$ and $S_{b, f}^{l o n}$ are replaced with the formula $\left(S_{l, r}^{l a t} \vee S_{b, f}^{l o n}\right)$.

Remarks on $\boldsymbol{\varphi}_{\boldsymbol{r e s p}}^{\text {lat,lon }} \equiv \varphi^{\text {lon }} \wedge \varphi^{\text {lat }} \wedge \varphi^{\text {lat,lon }}$

-(1) $\varphi^{\text {lat,lon }}$ is implicitly defined in Def. 10.
Def 10 implies conjunction; however this is too conservative.

$$
\begin{aligned}
& \varphi^{\text {lat,lon }} \equiv \square\left(\left(S _ { l , r } ^ { l a t } \wedge S _ { b , f } ^ { l o n } \wedge \circ \left(\neg S_{l, r}^{l a t} \wedge \neg\right.\right.\right. \\
& \text { (2) } \quad \begin{array}{l}
\text { How a situation became dangerous does not } \\
\text { imply it must become safe the same way }
\end{array}
\end{aligned}
$$

- $S_{l, r}^{\text {lat }} \overline{\mathcal{R}}_{I} A^{\text {lat }}$ rewritten as: $\left(S_{l, r}^{\text {lat }} \vee S_{b, f}^{\text {lon }}\right) \overline{\mathcal{R}}_{I} A^{\text {lat }}$
- $S_{b, f}^{\text {lon }} \overline{\mathcal{R}}_{I} A^{\text {lon }}$ rewritten as: $\left(S_{l, r}^{\text {lat }} \vee S_{b, f}^{\text {lon }}\right) \overline{\mathcal{R}}_{I} A^{\text {lon }}$
- (3)

$$
\begin{aligned}
& \text { - What if a situation is unsafe from the beginning } \\
& \boldsymbol{\varphi}_{\text {resp }}^{\text {la }} \equiv \varphi^{\text {lonn }} \wedge \varphi^{\text {lut }} \wedge \varphi^{\text {lut,lon }} \wedge \varphi^{\text {luat, } 10 n} \\
& \text { - } \varphi^{\text {lat, } \neg \text { lon }} \equiv\left(\neg S_{l, r}^{\text {lat }} \wedge \neg S_{b, f}^{\text {lon }}\right) \rightarrow 0\left(P_{\text {lat }}^{\text {lon }} \vee P_{\text {lon }}^{\text {lat }}\right)
\end{aligned}
$$

CommonRoad Real Scenarios

- A composable framework for benchmarking motion planning on roads.
- Highway scenarios without intersection
- Vehicles in the same lane move the same direction
- Longitudinal Distance: Front-Rear Safety Requirement
- Lateral Distance: Left-Right Safety Requirement

Case Study

- $a_{m a x, a c c}^{\text {lon }}=5.5 \mathrm{~m} / \mathrm{s}^{2}$
- $a_{m a x, a c c}^{\text {lat }}=3 \mathrm{~m} / \mathrm{s}^{2}$
- $a_{\text {min,brake }}^{\text {lon }}=4 \mathrm{~m} / \mathrm{s}^{2}$
- $a_{\max , \text { brake }}^{\text {lon }}=10 \mathrm{~m} / \mathrm{s}^{2}$
- $a_{\text {min,brake }}^{\text {lat }}=3 \mathrm{~m} / \mathrm{s}^{2}$

Lane IDs

- $a_{\text {max,brake }}^{\text {lat }}=3 \mathrm{~m} / \mathrm{s}^{2}$
- $\rho=0.5$
- $\mu=0.4 m$

Safety Charts

$$
\varphi^{l o n} \equiv \square\left(\left(\neg S_{l, r}^{l a t} \wedge S_{b, f}^{l o n} \wedge \circ\left(\neg S_{l, r}^{l a t} \wedge \neg S_{b, f}^{l o n}\right)\right) \rightarrow 0 \boldsymbol{P}^{\text {lon }}\right)
$$

$$
\boldsymbol{P}^{\text {lon }} \equiv\left(S_{b, f}^{\operatorname{lon}} \overline{\mathcal{R}}_{[0, \rho)}\left(A_{b, \max A c c}^{\text {lon }} \wedge A_{f, \max B r}^{\text {lon }}\right)\right) \wedge\left(S_{b, f}^{\operatorname{lon}} \overline{\mathcal{R}}_{[\rho,+\infty)}\left(A_{b, \min B r}^{\text {lon }} \wedge A_{f, \max B r}^{\text {lon }}\right)\right)
$$

Monitoring Demo

Experimental results

Longitudinal Predicates	\# of Violati ons $\varphi^{l o n}$	\# of Violati ons $\varphi_{\text {lat }}^{\text {lon }}$
safe_long	2	2
safe_lat	1	0
a_ego_lt_max_acc	18	18
a_ego_gt_min_brake	190	184
a_front_max_brake	9	9
Lateral Predicates	\# of Violati ons $\varphi^{l o n}$	\# of Violati ons $\varphi_{\text {lat }}^{\text {lon }}$
safe_long	0	0
safe_lat	9	8
a_ego_lat_lt_max_acc	188	186
a_ego_lat_lt_min_brake	0	0
a_right_lat_max_acc	256	256
a_right_lat_min_brake	0	0
stopped_ego_lat	39	36
stopped_right_lat	0	0
ego_lat_velocity_neg	0	0
right_lat_velocity_pos	0	0

 Longitudinal Predicates	\# of Violati on $\bar{\varphi}^{\text {lat,lon }}$	\# of Violati on $\varphi^{\text {lat,lon }}$
safe_long	0	0
safe_lat	0	0
a_ego_lat_lt_max_acc	0	0
a_ego_lat_lt_min_brake	0	0
a_right_lat_max_acc	5	3
a_right_lat_min_brake	0	0
stopped_ego_lat	0	0
stopped_right_lat	0	0
ego_lat_velocity_neg	0	0
right_lat_velocity_pos	0	0
a_ego_lt_max_acc	0	0
a_ego_gt_min_brake	4	0
a_front_max_brake	1	1

Total violation	$\mathbf{7 2 2}$	$\mathbf{7 0 3}$
Violation percentage	$\mathbf{5 . 9} \%$	$\mathbf{5 . 7 4 \%}$

Experimental results (cont')

 Longitudinal Predicates	\# of Violati on $\bar{\varphi}^{\text {lat, ᄀlon }}$	\# of Violati on $\varphi^{\neg l a t, ᄀ l o n ~}$
safe_long	0	0
safe_lat	0	0
a_ego_lat_lt_max_acc	$\mathbf{1 7 2}$	$\mathbf{1 6 6}$
a_ego_lat_lt_min_brake	0	0
a_right_lat_max_acc	$\mathbf{1 7 7}$	$\mathbf{1 6 1}$
a_right_lat_min_brake	0	0
stopped_ego_lat	$\mathbf{4 2 0}$	$\mathbf{3 5 0}$
stopped_right_lat	0	1
ego_lat_velocity_neg	0	0
right_lat_velocity_pos	0	0
a_ego_lt_max_acc	6	7
a_ego_gt_min_brake	5	3
a_front_max_brake	0	1

item	
Average runtime per monitor execution $(m s)$	21
Average number of cars in each scenario	48
Average number of surrounding cars to be monitored	8.8
Average length of trajectories per car (s)	6.8

Execution Statics		
Total violation	$\mathbf{7 8 0}$	$\mathbf{6 8 9}$
Violation percentage	$\mathbf{6 . 3 7 \%}$	$\mathbf{5 . 6 3 \%}$

Sensitivity Analysis

parameter	values								
$a_{\max , a c c}^{l o n}$	2.75			5.5			8.25		
$a_{\max , a c c}^{l a t}$	1.5			3			4.5		
$a_{\text {max,brake }}^{\text {lon }}$	5			10			15		
$a_{m i n, b r a k e}^{l o n}$	6			4			2		
$a_{\text {min,brake }}^{\text {lat }}$	4.5			3			1.5		
ρ	0.3	0.5	2	0.3	0.5	2	0.3	0.5	2
Violations \%	0.5\%	0.8\%	11\%	2.3\%	5.2\%	15.5\%	6.7\%	15\%	23.1\%

Conclusions

- Translation of the Responsibility-Sensitive Safety (RSS) rules into Signal Temporal Logic (STL)
- The encoded formulas could be used for
- ADS model verification
- Automated test case generation for discovering control software bugs (our Sim-ATAV framework*)
- Test the control and perception system stack against the RSS model
- We utilized the STL formulas to monitor off-line naturalistic driving data provided with CommonRoad.
- Computation is efficient
- The RSS rules are satisfied in the majority of the actual vehicle trajectories (assuming fast reaction times by the drivers).

- Future works:

- We are completing all the RSS rules in our translation.
- Formalize in STL the RSS rules concerning different road geometries.

Thank You!

Acknowledgement:
This work was partially supported by NSF 1350420 and by a gift from Intel.

