
Sparsity in NN: Sources and Structures

- **Diverse Sparsity Ranges/Patterns Must be Exploited Well**
 - **Computer Vision Models:** ~60%, 70%~80% in later layers of deep CNNs
 - Weight sparsity: >90% (MobileNetV2) - >95% (EfficientNets)
 - 80%–85% in Point-wise Convolutions
 - Can be structured (dimension/block pruning, fixed density in a block)
 - Activation sparsity is low (~20% and can be ~) unstructured
 - Language Models: ~80%–95% (baseline Transformers, BERTs, etc.)
 - But, existing accelerators do not exploit 80% sparsity well.
 - Very coarse-grain in large language models (e.g., Switch Transformers)
 - Easy to exploit: Pruning unimportant tokens and heads (Up to 75%)
 - **RNNs:** Up to 40% activation sparsity, ~80% weight sparsity
 - Usually unstructured, but can be structured with pruning or with factorized operators (batch norm, quantization, activation function)
 - Drop-out Layers
 - **Atrous (dilated convolutions):** fine-grained structured in Weights
 - **GATs:** ~60% in Activations, in transposed CONV in de-encoders.
 - **3D Point Clouds:** Up to 85% or more in Activations, Unstructured.
 - **Gradient Sparsity in Communication:** >> 90% Unstructured
 - More than 95% for computer vision or language tasks
 - 95% – 99% for recommendation models
 - Challenging to exploit – both storage-wise and compute-wise
 - **Graph Learning:** High (75%–90%) or Hyper (99%) Unstructured
 - Steps to sparse adjacency matrices and sparsity propagates (sparse/dense, block/dense multiplications)
 - Dense/Sparse compute processed with separate accelerator modules
 - **Text Analysis:** ~60%–90% Unstructured: Weights (and Activations)
 - A 100x/K100, only 24% = 50% sparsity allowed.
 - None in TPU.
 - **Accelerating sparsity is important for many other domains**
 - Linear algebra, graph processing, scientific computing, database, genomics, compression (Usually unstructured)

Need Special Hardware or Software Mechanisms

- **Sparsity cannot be leveraged as it is.** Including on DNN accelerators
 - Need special mechanisms (Even for structured sparsity) for
 - Encode: Store only non-zero with their locations (Encode)
 - Decode: Get non-zero values from off-chip memory or storage.
 - Extract: Find matching non-zero from two tensors to multiply/add
 - Load Balance: Ensure each computing unit has similar work
 - Communicate: Both non-zero and its position
 - Do All of Above Without Much Overhead (Power, Performance, Area)

Effectiveness of Special Mechanisms

- Works Great for Limited Range in ~30%–80%

Algorithmic Sparsity Can Be Made System-Aware

- **Apply quantization and sparsity (pruning, operator reformation) based on hardware’s capability**
- Leverage execution models of the system – find what advantage a sparsity or quantization can offer on your target hardware/compiler
 - A model with 80% uniform sparsity across layers may perform better than a model containing layers with 70% and 90% sparsity, with same accuracy.
- Maximize improvements jointly with quantization, pruning, and value similarity (Interplay on compression, acceleration exploited, and accuracy)

AutoML for Model Sparsity and Compression

- For expert-directed or automated search of best compression or codex, specify all common hyperparameters for applicability
 - A variety of pruning options (unstructured, 1D or kn block-sparsity, bit-widths of tensors/layer, tolerable accuracy, goals: storage/energy/performance)
- **Automated optimization for hyperparameters for generalization and efficiency**
 - pruning ratio for each iteration (epoch); pruning mechanism (which value to prune, e.g., below a certain threshold); pruning pattern (fine-grain, block size); bit-widths of tensors (quantization).
- This does not need to be manual or explored from a limited pre-designed set.

Tensor Core Accelerators Exploit Sparsity Better

- Sparsity below 5% usually does not lead to practical speedups on CPUs/CUDA without tensor cores
 - Recent algorithmic & software advances strive to reduce gap
 - Tensor-cores based accelerators can provide much higher performance/efficiency (TPUs, A100)
- **Trends and Roadmap:**
 - Flexible hardware/compiler and Cross-layer Design for Sparsity
 - New mechanisms for block & hyper-sparsity (90%, especially 99%)
 - Configurable workgroup formulation and asynchronous processing

Sparse-Optimized Accelerator Architecture

Optimized Outputs

- Sparse-Optimized Accelerator Architecture

AutoML Framework for HW/SW/Coding Sparsify for Sparse Computations

- Joint Framework for HW/SW/Model Codex for Sparse Computations

- **AutoML Parameters/Tradeoffs**
 - Optimized Outputs
 - Sparse-Optimized Accelerator Architecture
 - AutoML Framework for HW/SW/Coding

References

- Gale, Zaharia, Young, Elsen, SC’20
- Prof. Byadgadhi (MIT CSAIL and NYU), Prof. Tony Nowatzki (UCLA), Dr. Saksirath Ananda (Intel Labs), Prof. Baoxin Li (ASU).