
• Array of Processing Elements
(PEs); each PE has ALU-like
functional unit that works on
an operation every cycle.

• Power-efficiency of several 10s
of GOps/Sec per Watt!
Ø ADRES [HiPEAC ‘08]
ØHyCUBE [DAC ‘17]

Coarse Grained Reconfigurable Arrays (CGRAs)

Mapping Loops on CGRAs

Performance Impact of Ad-Hoc Routing Strategies

Spilling to
Distributed RFs

• Performance Critically Depends on the Obtained Mapping
• Mapping Problem = Routing Problem
ØRouting is needed when the dependent operations are scheduled at a distant time, 

or operations cannot be mapped due to resource constraints.
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RAMP: Resource-Aware Mapping for CGRAs

A 4x4 CGRA with Local Register File and 
2-D Mesh Interconnect

B = 0;
for(i=0; i<1000; i++)
{

A = B - 4;
B = A + L;
C = A * 3
D = C + 7;

}
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ad-hoc manner
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Place & RouteScheduling

(IMS)

- EMS [H. Park et al., PACT ’08] 
- EPIMap [M. Hamzeh et al., DAC ‘12]
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- Iterative Modulo   
Scheduling 
[B. Rau, MICRO ‘94] 

• Software Pipelined 
Execution

Challenges with Code Generation Heuristics
Employing Ad-hoc Routing Strategies

RAMP: Resource-Aware Mapping Technique

Routing 
Strategy
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Failure Analysis

• Partition Mapping Problem in 3 Sub-Problems
• Systematically and Flexibly Explore Resources to Achieve Mapping, 

Adapting to the Application Needs
ØE.g. we can choose to first map the DDG with routing via registers. Then, for any 

unmapped data dependency, explore different routing options, per failure analysis.
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Experimental Setup

Routing via Memory

- REGIMap [M. Hamzeh al.,DAC ’13]
- GraphMinor [L. Chen et al., TRETS ‘14]

Cannot efficiently utilize distributed 
RFs to route ei-2→ ai
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• 8 MiBench benchmarks 
(top performance-critical loops)

• RAMP modeled using CCF 
Compilation & Simulation Framework
Available at: https://github.com/cmlasu/ccf
(LLVM 4.0 and gem5 as foundation)
Ø CGRA modeled as a separate core coupled 

with ARM Cortex-like core

• Evaluation over 12 architectural 
configurations
Ø PEs connected in a 2D torus, perform 

fixed-point computations
Ø CGRA accesses 4 kB data memory and 4 

kB instruction memory
Ø Configurations vary in terms of array 

size, PE functionality, registers etc.

RAMP Improves CGRA’s 
Acceleration Capability by 2.13x
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- MEMMap [S. Yin al., TVLSI ’16]

Statically determine the 
dependencies routed via memory

≠ spill data to memory when 
required  (unavailability of regs)
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