
• Array of Processing Elements
(PEs); each PE has ALU-like
functional unit that works on
an operation every cycle.

• Power-efficiency of several 10s
of GOps/Sec per Watt!
Ø ADRES [HiPEAC ‘08]
ØHyCUBE [DAC ‘17]

Coarse Grained Reconfigurable Arrays (CGRAs)

Mapping Loops on CGRAs

Performance Impact of Ad-Hoc Routing Strategies

Spilling to
Distributed RFs

• Performance Critically Depends on the Obtained Mapping
• Mapping Problem = Routing Problem
ØRouting is needed when the dependent operations are scheduled at a distant time,

or operations cannot be mapped due to resource constraints.

Compiler Microarchitecture Lab, Arizona State University
Shail Dave, Mahesh Balasubramanian, Aviral Shrivastava

RAMP: Resource-Aware Mapping for CGRAs

A 4x4 CGRA with Local Register File and
2-D Mesh Interconnect

B = 0;
for(i=0; i<1000; i++)
{

A = B - 4;
B = A + L;
C = A * 3
D = C + 7;

}

a:
b:
c:
d:

Sample Loop

a

b c
1

d
Data Dependency

Graph (DDG)

Modulo
Schedule

1

2

1

II = 2

a
i=0

b c

a d
i=1

time

1

2

3

Routing in an
ad-hoc manner

DDG,
Arch Description,

Target II Mapping
Place & RouteScheduling

(IMS)

- EMS [H. Park et al., PACT ’08]
- EPIMap [M. Hamzeh et al., DAC ‘12]

Since ar is not rescheduled,
cannot route a → e

Routing Data Dependency via PEs

e

a

b d

c

DDG

1

3

1

22

time

1

2 d

a

3 e

c

P&R

b ar

?

Schedule
(II=3)

Routing via Registers

e

f

d

gb

c

a

2

h

time

t

t+1

t+3

c

d

a

b

i

t+2

t+4

ei-1

eie

f

ei-1

ei-1

ei-1

t+5

h

g

?
ei-1

ai+1

- Iterative Modulo
Scheduling
[B. Rau, MICRO ‘94]

• Software Pipelined
Execution

Challenges with Code Generation Heuristics
Employing Ad-hoc Routing Strategies

RAMP: Resource-Aware Mapping Technique

Routing
Strategy

1 2 3
Re-Schedule Place &

Route

Failure Analysis

• Partition Mapping Problem in 3 Sub-Problems
• Systematically and Flexibly Explore Resources to Achieve Mapping,

Adapting to the Application Needs
ØE.g. we can choose to first map the DDG with routing via registers. Then, for any

unmapped data dependency, explore different routing options, per failure analysis.

Modulo Schedule DDG (Arch., II)
Generate Compatibility Graph CG
P&R (Find Maximal Clique of CG)

For Each Unmapped
Node v/Edge e

Re-
Compute

Graph Modification

Exhaustive Resource
Exploration

Place & Route

All Operations
Mapped?

Yes

No

A
B

C

G

F

Modified &
rescheduled

DDG

H

b

e

a

f

c

d

g

1

To
ta

l
Lo

op
s

M
ap

pe
d

Sp
ee

du
p

0

5

10

0

20

10

4 8 12
Architecture
Configuration Resources

RAMP

Increase in

REGIMap
MEMMap

Done

Re-schedule
Load

Read-Only
Data

Is pred(v)
live-in?

Ops Scheduled at
Consequent Time?

Route
via PEs
and/or

Reg.

Dependent Ops
Scheduled Far? E

Failure AnalysisD

Spill to
distrib.

RFs

Select the Strategy that Uses Minimum Resources

Spill
to

Mem

Route
via
PE

Change
Schedule

Time

Experimental Setup

Routing via Memory

- REGIMap [M. Hamzeh al.,DAC ’13]
- GraphMinor [L. Chen et al., TRETS ‘14]

Cannot efficiently utilize distributed
RFs to route ei-2→ ai

0.0

0.5

1.0

M
II

/ I
I

Benchmarks
MEMMap REGIMap RAMP

gsm_
short

gsm_
long

susan_
smooth

geo
mean

jpeg
_enc

adpcm
_enc

sha bitcount adpcm
_dec

Higher the Better 0.91

time

t

t+1

t+3

c

d

a

b

i

t+2

t+4

ei-1

eie

f

ei-1

ei-1

ei-1

t+5

h

g

f

err

ei-2

ei-2

ei-1

ei-1

erw

aei

II = 5

ei-1

ei-2

e

f

d

gb

c

a
2

h

• 8 MiBench benchmarks
(top performance-critical loops)

• RAMP modeled using CCF
Compilation & Simulation Framework
Available at: https://github.com/cmlasu/ccf
(LLVM 4.0 and gem5 as foundation)
Ø CGRA modeled as a separate core coupled

with ARM Cortex-like core

• Evaluation over 12 architectural
configurations
Ø PEs connected in a 2D torus, perform

fixed-point computations
Ø CGRA accesses 4 kB data memory and 4

kB instruction memory
Ø Configurations vary in terms of array

size, PE functionality, registers etc.

RAMP Improves CGRA’s
Acceleration Capability by 2.13x

Acknowledgements
This work was partially supported by funding from
NSF grants CNS 1525855 and CCF 172346 - NSF/Intel joint
research center for Computer Assisted Programming
for Heterogeneous Architectures (CAPA).

- MEMMap [S. Yin al., TVLSI ’16]

Statically determine the
dependencies routed via memory

≠ spill data to memory when
required (unavailability of regs)

time
1

2

4

3

5

6

c b

d

a

i

e

f

g

lb

la

?
sa

sb
?

