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Abstract—Extracting portable performance in an application
requires structuring that program into a data-flow graph of
coarse-grained tasks (CGTs). Structuring applications that in-
terconnect multiple external libraries and custom code (i.e.,
“Code From The Wild” (CFTW)) is challenging. When experts
manually restructure a program, they trivialize the extraction
of structure; however, this expertise is not broadly available.
Automatic structuring approaches focus on the intersection
of hot code and static loops, ignoring the data dependencies
between tasks and significantly reducing the scope of analyzeable
programs. This work addresses the problem of extracting the
data-flow graph of CGTs from CFTW. To that end, we present
Cyclebite. Our approach extracts CGTs from unstructured
compute-programs by detecting CGT candidates in the simplified
Markov Control Graph (MCG), and localizing CGTs in an
epoch profile. Additionally, the epoch profile extracts the data
dependence between CGTs required to build the data-flow graph
of CGTs. Cyclebite demonstrates a robust selectivity for critical
CGTs relative to the state-of-the-art (SoA), leading to a potential
speedup of 12x on average and thread-scaling of 24x on average
compared to modern compiler optimizers. We validate the results
of Cyclebite and compare them to two SoA techniques using an
input corpus of 25 open-source C/C++ libraries with 2,019 unique
execution profiles.

Index Terms—Produce-consume task graph, memory
dependency analysis, task partitioning, dynamic control flow
graph, epoch.

I. INTRODUCTION

STRUCTURED representations of applications support
high-performance execution [1] and system portability [2].

Domain-specific languages (DSLs) limit their expressibility to
directly infer a program’s organization and reduce the cognitive
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load of programmers [3]. A structure that defines tasks and
their data dependency drives schedule optimization, increas-
ing task-to-task data locality and concurrence through pipeline
parallelism [4], [5]. Further, the application’s overall structure
is required for optimization when its tasks have data-flow in-
terdependence [6]. Prior works in scheduling [7], high-level
synthesis [8], and performance prediction [9] often assume an
apriori structured representation.

Unfortunately, modern software engineering methodology
obfuscates the required program structure: tasks interconnected
by data-flows [4]. The virtues of abstraction and modular-
ity, typified by templated application programming interfaces
(APIs), increase productivity and accessibility. However, the
obfuscation and blocking required for these interfaces prevent
holistic or structural optimization [3]. Further, API calls do not
map one-to-one to tasks; therefore, we require more than a static
examination of these calls. Thus to support the optimization and
parallelization of CFTW, we require a method to extract their
task dependency graph.

Existing methodologies miss the code required for complete
program optimization and include code that bloats the space
of optimizable code. Static analysis (SA) techniques rely on
the information included manually by the programmer to point
to optimization opportunities. When applied to CFTW, no ex-
plicit structure is defined. Thus, SA cannot extract structure
(Fig. 1a). HotCode (HC) points to disparate control structures
like those in Fig. 1(b), requiring manual intervention to resolve
into complete tasks. HotLoop (HL) finds complete loops in the
structure but misses loops critical for optimization and may also
include information about the task that is not useful, as seen
in Fig. 1(c). Finally, all structuring techniques cannot resolve
indirect function calls and lack communication information
between tasks, though memory profiling techniques exist [10].
An ideal solution, like Fig. 1(d), captures each complete task
and observes its communication patterns with others.

The Cyclebite toolchain [11] extracts produce-consume task
graphs from programs. Cyclebite observes the frequency of
basic-block transitions to construct a Markov Control Graph
(MCG). Cyclebite identifies CGTs by searching for the struc-
tures that give rise to frequent execution, i.e., a graph cycle.
To facilitate that cycle finding, Cyclebite inlines branches and
functions such that strongly connected components become
cycles. With the CGTs identified, Cyclebite performs a sec-
ond pass of the program’s execution to localize the epochs
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Fig. 1. State-of-the-art structuring techniques may find sub-optimal structures in Code From The Wild (CFTW). All SoA techniques cannot resolve function
pointers. Static Analysis (SA) (a) does not contain any information on the relative importance of different codes. HotCode (HC) (b) detection captures hot
code that may not include critical sections of the task. HotLoop (HL) (c) detection incorporates statically-defined loop information to HC but captures all
static code - including unused code. An ideal task structure (d) resolves the function pointer, captures each task in its entirety (including orange code), rejects
all unimportant code like unused error checks, and finds communication patterns between the tasks it finds (like read-after-write (RAW) dependencies).

(a section of time in which the target application is within a
distinct section of its code) [12], [13] observe the data-flow
between CGTs. We demonstrate the robustness of this approach
using a corpus of 2,019 C/C++ applications spanning image and
signal processing, linear algebra, cryptography, and software-
defined radio.

The contributions of the paper are the methods to
1) generate a simplified Markov Control Graph (MCG)
2) extract coarse-grained tasks from that MCG
3) use coarse-grained tasks to localize epochs and attribute

data-dependencies to those epochs.

II. BACKGROUND

Portable high performance requires a high-level program
structure: a produce-consume interconnection of CGTs [14].
Halide [3] and DeLite [2] leverage the explicit structure of
an application to optimize the schedule and communication
of concurrent interdependent tasks - including a trade-off be-
tween locality, parallelism, and re-computation. This structure
parameterizes computation and memory access patterns to ac-
commodate architecture specifics (e.g., cache hierarchy and
compute-lane width). Further, that parametric high-level rep-
resentation extends the compilation support beyond general-
purpose processors to include graphics processors [15] and
programmable gate arrays [8]. Thus, our work seeks to extract
the produce-consume task graph (a directed acyclic graph of
nodes and edges; a node is a task and each edge points from
producer to consumer) from CFTW.

CGTs encapsulate fine-grained tasks called atoms (e.g.,
matrix multiplication encapsulates multiply-accumulate) in a
high-level abstraction describing the interrelation of those

atoms, which facilitates optimization. Polyhedral optimization
tools [16] utilize the memory access pattern relationship be-
tween atoms to re-order and fuse their execution to improve data
locality and parallelism. Domain-specific languages (DSLs) [3],
[6], [17] relax the constraints required to detect polyhedral
parallel patterns in static code by bringing those patterns into the
language semantic, resulting in greater freedom of expression.
Cyclebite provides the flexibility and performance of DSL se-
mantic templates without requiring that programs (e.g., CFTW)
be re-written into DSLs.

State-of-the-art (SoA) structuring techniques match tasks to
templates. A HotCode (HC) based approach seeks contiguous
sections of code with a high frequency of execution [18], [19].
Unfortunately, the complete description of a task will likely
include low-frequency code, as with low probability control
flow. The HotLoop (HL) template identifies static affine loops
containing HC to incorporate those low-frequency components
[20], which is critical for polyhedral analysis [16]. However,
static loops often contain additional code unsuitable for opti-
mization and fail to capture recursive tasks. Another templated
approach, called HotFunction (HF), assumes functions that
contain HC indicate the CGTs of the program [21], [22]. HL
and HF require continuous static code, meaning that function
indirection (function pointers) may result in task fragmentation.
Additionally, code reuse causes false positives and fuses unre-
lated tasks when structuring CFTW. The gaps between these
template models and the required code are significant, and we
quantify this difference in Section V-C. We require a control
pattern sufficiently general to accommodate all existing patterns
while excluding the false-positive and false-negative tasks SoA
techniques find in CFTW.
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Fig. 2. Overview of the Cyclebite structuring pipeline. A C/C++ program and its dependencies are compiled into a static LLVM IR bitcode file and
instrumented with a dynamic profile pass - the Markov Profile (MP). The instrumented program is compiled and run, allowing MP to generate a state-
transition table, which is exported as a Markov Control Graph (MCG). Four transformations designed to simplify the localization of cycles are applied to the
MCG - this results in the simplified MCG. Cycles are localized and grouped into hierarchies, forming coarse-grained task (CGT) candidates. CGT candidates
are exported into a second dynamic profile pass, the Epoch Profile (EP), that localizes program epochs and observes their memory transactions. After all
epochs have been localized, memory transactions are used to form producer-consumer relationships between epochs. This results in a task graph - nodes are
epochs and edges are read-after-write (RAW) dependencies.

Cyclebite contributes a widely applicable CGT template:
cyclic subgraphs in the observed dynamic control flow graph
(DCFG). This generalized template captures the parallel pro-
gramming patterns described by Asanovic [23], as their naive
and optimized expressions utilize loops (not necessarily affine)
which result in DCFG cycles. When a CGT comes from a
hot loop, hot function, or strongly connected component (SSC)
[24], Cyclebite finds it while rejecting the code that appears hot
but is not part of a CGT. In addition to their cyclical structure,
Cyclebite requires that each CGT have at least one instance
with significant frequency. Prior structuring techniques focus
on the total frequency count of each task (e.g., HC) and rely
on static boundaries of program primitives (e.g., static loops
(HL) or functions (HF)) - they do not take into account the
frequency of task instances. Significantly, Cyclebite’s gener-
alized template captures parallel patterns (e.g., sparse matrix
multiply, breadth-first search) that are not captured by HL as
their implementations are rarely affine loops.

When SoA techniques construct control flow graphs on
CFTW, the CGT structures are obfuscated by redundant func-
tion calls, high-branching sequences, and function indirection.
CFTW often contains software engineering practices such as
code reuse (i.e., modular functions), flexible code (i.e., high-
branching sequences), and interposable functionality (i.e., func-
tion pointers); these techniques appear often in open-source
libraries. Modular functions are implementations of a mundane
task (e.g., logging, exception handling, error-checking); they
are difficult to structure because they may be truly important
code (and thus should be accepted) or just incidentally hot from
many singleton calls, or its alias (and should be rejected). High-
flexibility code will accommodate many different cases within
a single CGT, making CGTs appear bloated when structured
by HL even though they only use a small portion of their static
code. Static information alone will have missing edges in both
the control flow graph and the call graph, possibly fracturing a
CGT into many disconnected tasks. To obtain the information
to resolve these issues, dynamically-observed frequency of each
state transition (a change in program state from the previous
state to the current) is necessary.

Cyclebite resolves function indirection and dynamically-
determined control code by constructing a DCFG where the

nodes are basic blocks [25] and the weighted directed edges are
the observed frequency of transitioning from one basic block
to the next. Frameworks relying on HC [26], [27] annotate the
static control flow graph with the frequency of basic block exe-
cutions, which encounter the same state-transition ambiguities
of a purely static analysis. Cyclebite records a state transition
history of 1 in its dynamic profiles, meaning its memory over-
head and execution-time dilation are manageable, allowing it to
scale to large applications. A complete history of the execution
order of basic blocks, while capturing significant information,
requires arbitrarily large log files, limiting the scope of this tech-
nique to short-running programs [28]. A complete, simplified
DCFG and call graph have all the necessary information for
Cyclebite to localize its cycles.

Cyclebite localizes CGT instances and their data-flow pat-
terns by dynamically observing the epochs of the program and
the memory transactions each epoch executes, combining prior
work on instruction-level memory dependency analysis [10],
[26], [27] and epoch-based simulation abstractions [13]. Cy-
clebite localizes the epochs of an application by incrementing
the epoch each time a critical edge (a basic block transition that
denotes the boundary of a CGT) is observed (further explained
in Section III-D) - when an epoch maps to a cycle localized
by Cyclebite, that epoch is a CGT instance. SoA structuring
techniques do not account for the frequency of the instances of
the tasks they select - this gives rise to false-positive tasks that
were used many times over the execution of a program but rep-
resent common functionality rather than a task’s atom. In order
for programmers to hide the communication and memory over-
heads of accelerators [29], its utilization must be significant -
this makes CGTs with low per-instance utilization poor
accelerator candidates. Cyclebite rejects false-positive CGTs by
rejecting CGTs whose per-instance utilization is low. Modern
memory profiling frameworks [30] attribute memory informa-
tion to simple static structures like individual instructions and
static loops. SD3 [10] and Cyclebite use the temporal order-
ing of CGT instances to find last-writer dependencies [31].
However, while contributing methods to reduce memory us-
age and runtime overhead, SD3 only supports localizing the
instances of static loops, limiting the scope of its analysis to
dependencies only between tasks (which may miss important
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memory operations in serial code like memmov and memset)
and only supports tasks from HL. Cyclebite’s memory pass
supports CFTW - serial code operations are also captured in
their own epochs, and all CGTs captured by Cyclebite can be
profiled. Cyclebite exports a task graph - the final structure of
the target program - that represents program epochs as nodes
and communication patterns between epochs as edges.

III. CYCLEBITE

Cyclebite structures CFTW by generating a model of the
target application’s control structure, called the Markov Control
Graph (MCG), and using the MCG to create a produce-consume
task graph. Cyclebite observes the DCFG of a target application
with the Markov Profile (MP) - a dynamic profiling backend
that observes the frequency of state transitions in the program -
which exports a state transition table (a sparse matrix that
contains the observed frequencies of each state transition in the
program - row IDs are source node IDs, and column IDs are sink
node IDs) as seen in Fig. 3(b). Then Cyclebite constructs a sim-
plified MCG from the state transition table by building an MCG
and applying a set of transforms that simplify cycle localization.
Cyclebite localizes the cycles within the simplified MCG, form-
ing CGT candidates until no more localizable cycles are left.
Finally, Cyclebite executes a second dynamic profile, the Epoch
Profile (EP), that localizes the epochs of the target program and
discovers communication patterns between them to form a task
graph. CGT candidates whose per-instance utilization are found
to be sufficient by EP are designated as CGTs (coarse-grained
tasks that have at least one instance whose local frequency is
32 or greater).

A. Markov Profile

MP dynamically observes each state transition during the tar-
get application’s execution, collecting all information necessary
to resolve ambiguous control flow like function pointers and
unused code. SA, HC, and HL cannot resolve function pointers,
as shown in Fig. 1(a)–(c). Further, HC and HL will not be able
to recognize the hot modular function (nodes 21 & 22), which
both fuses disparate cycles together and upgrades the cold cycle
(nodes 1 & 2) to a hot one. Unlike a dynamic trace that records
each state in chronological order, as shown in Fig. 3(a), MP
observes the frequency of each first-order state transition (the
transition that occurs between the previous basic block and the
current basic block) which captures all information necessary
to resolve function pointers and unused code. A target program
is instrumented with MP using an LLVM pass, which injects
a function call to MP at the entry point of each basic block
in the program. To simplify the control sequence of context
switches, MP transforms basic blocks that contain context-
switching (like function calls) and context-ending (like return
instructions) instructions to only contain that instruction. At
each call, MP records each state transition by hashing the pair of
basic blocks involved in the state transition and incrementing
the frequency of that entry. MP stores the frequency of each
state transition in a state transition table, shown in Fig. 3(b).

Fig. 3. A dynamic trace records both the state transition and its timestamp
during the execution of a target program. Dynamic profiles like the Markov
Profile (MP) record the frequency of each state transition, which omits the
timestamp of each state transition. While MP is far more efficient in time
and memory than a dynamic trace, functions shared among many tasks can
cause these tasks to fuse together, making tasks challenging to separate
during localization.

The state transition table is then exported and used to generate
the MCG of the program.

The MCG structures the state transition table into a graph
representation of the program’s control flow, free of control
ambiguities like function pointers and unused code. MCG is a
directed graph with nodes as LLVM basic blocks and directed
edges as probability-weighted state transitions. To calculate
each edge weight, the total frequency of all outgoing edges of a
given node normalizes each edge frequency, forming probabil-
ities; this forms a Markov chain. While the basic block groups
with cyclical structure can be localized in this abstraction, the
MCG likely contains control sequences that make cycle local-
ization difficult (off-path control inside cycle bodies, functional
reuse that makes disparate cycles appear in the same cycle). To
address this problem, cycle-preserving transforms are applied
to the MCG.

B. Virtualization and Simplification

Cyclebite simplifies cycle localization by applying a series of
transforms to the MCG that reduce the complexity of subgraphs
and preserve all CGT-eligible cycles. Cycles that contain off-
path control, nested cycles, and shared functions are difficult to
localize because of many possible traversals through their ex-
ecution. Fig. 1(a) demonstrates a few cycles whose executions
contain many possible paths, including through other cycles.
Thus, transforming this cycle to a form that contains as few
paths of execution as possible and with as little overlap with
other cycles as possible simplifies its localization.

Cyclebite eliminates the overlap of independent cycles that
share modular functions by inlining their subgraphs in the
MCG. The bodies of these shared functions merge otherwise
unrelated cycles, making separating fused tasks impossible.



WILLIS et al.: CYCLEBITE: EXTRACTING TASK GRAPHS FROM UNSTRUCTURED COMPUTE-PROGRAMS 225

Fig. 4. Shared functions can fuse unrelated cycles together. To unfuse their control flow in subfigure a), Cyclebite inlines shared function bodies at all their
call sites, seen in green. Inlining is done in reverse-hierarchical order, meaning Cyclebite transforms the child-most function calls first and the parent-most
function calls last. In b), a function body used by all four cycles is inlined, and then in c), a function called twice is inlined at each call site.

Fig. 5. Cyclebite reduces the complexity of cycle localization by simplifying
the MCG. Nodes with apostrophes succeeding their ID are virtual nodes
(nodes that represent a transformed subgraph). Serial Transform is applied
to the MCG first (a). Next, Complex Transform (b) reduces subgraphs
with multiple execution paths and no cycles to single nodes. Once no
transform opportunities are present (c), the simplified MCG is ready for
cycle localization.

Fig. 4(a) shows the MCG with shared function bodies high-
lighted. This transform inlines “child-most” functions first, then
its parent functions, and so on, until no inlinable function bodies
are left. Fig. 4(b) shows the MCG after “cmplx_mul” has been
inlined at all its call sites, resulting in 4 instances of its function
body. Next, Cyclebite inlines the “fft” function body. Fig. 4(c)
shows the MCG after “fft” has been fully inlined, resulting in an
MCG that contains no overlap between disparate cycles. After
function virtualization is complete, simplification of the MCG
can begin.

Cyclebite reduces complex subgraphs in the MCG to a single
node. Serial chains like the subgraphs highlighted in Fig. 5(a)
increase the size of the MCG without providing information
about cyclical subgraphs. Fig. 5(b) shows these subgraphs af-
ter being reduced to a single node. Cycles whose body con-
tains predication, like the highlighted subgraph in Fig. 5(b),
have multiple execution paths that must enter through a sin-
gle node and exit through a single node, making cycle local-
ization difficult while providing no useful information about
cycles. Fig. 5(c) shows this subgraph transformed into a single
node. Additionally, when low-frequency cycles (whose iteration
count is insignificant, below a threshold = 16) exist in the
program, Cyclebite transforms their control flow to a single
node. We believe that any cycle that recurs less than 16 times
is executing a mundane task - allocating memory, initializing
a static filter, or performing error checking. To preserve the
semantics of the start and end of the MCG, each transform is

Fig. 6. Cyclebite localizes cycles in hierarchical order. Starting with the
child-most cycles (a) Cyclebite transforms the subgraphs highlighted in
purple into single nodes found in b). The nodes with arrows on their
border represent virtualized cycles. Then, the parent cycles 13–14” and 13’–
14”’ are transformed in subfigure b) until no more cycles are available for
localization (c).

not allowed to eliminate the beginning and ending nodes (the
beginning node has zero predecessors, and the ending node has
zero successors). When no transform opportunities are left, the
MCG is called a simplified MCG and is ready for its CGT
candidates to be localized.

C. Cycle Localization

Cyclebite uses a modified version of Dijkstra’s shortest
path algorithm (which projects edge weights onto a negative
log space to transform maximum probabilities to minimum
probabilities) to localize cycles in an order that is determined
by two cycle characteristics. First, cycles are evaluated for
their entrance and exit edges: the cycles with the smallest
sum of entrance and exit edges are localized first. Second, if
a tie exists in the entrance/exit sum of two or more cycles,
Cyclebite selects the cycle with the highest path probability.
Path probability is the permutation of all edge weights that
must be traversed to complete one revolution of a cycle - thus,
cycles with the highest probability of recurring are prioritized.
Cyclebite uses these rules to order the localization of cycles
when cycle overlap exists.

Cycles overlap in the MCG as a consequence of nesting.
The ordering of cycles in a cycle nest matters because each
cycle serves a unique purpose - indexing dimensions in the
memory working set of the cycle nest, carrying out reductions,
or mapping orthogonal dimensions onto a transformed space.
Cyclebite prioritizes the inner-most (child) cycles first, as high-
lighted in Fig. 6(a) - these are the cycles commonly found with
one entrance and one exit to its parent cycle only. Fig. 6(b)
shows the result of Cyclebite’s first iteration of localization:
each child-most cycle has been transformed. The hierarchical
relationship of each cycle is used to group them together as they
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are localized. Fig. 6(c) shows the final iteration of localization.
Though not explicitly shown in Fig. 6, Cyclebite applies sim-
plifying transforms to the MCG between each iteration. Cycle
localization executes iteratively until no eligible cycles are left.
Each localized cycle hierarchy becomes a CGT candidate - a
group of basic blocks that forms at least one cycle, has an iter-
ation count of at least 16, and boundaries (called critical edges)
unique to all other CGT candidates. The Epoch Profile (EP) uses
the critical edges of each CGT candidate to localize the epochs
of the program and discover communication between them.

D. Epoch Profile

EP evaluates the utilization of CGT candidates and discovers
memory dependencies between code sections of the target ap-
plication by localizing each epoch (a period of time in which the
program executes a distinct section of its code) with a dynamic
profile. When discovering memory dependencies between the
tasks of an application, the information that maps a memory
transaction to its task at the time of its observation is not
readily available. While the target program is executing, EP
increments the current epoch every time the executing pro-
gram encounters a critical edge (a basic block transition that
either enters or exits a CGT candidate). Epochs may denote the
instance of a CGT or non-CGT code; a CGT candidate instance
is an epoch, but an epoch is not necessarily a CGT candidate
instance. EP observes the utilization of each CGT candidate
instance by recording its local frequency (the frequency of the
member basic block with the highest frequency in that epoch).
CGT candidates also have a global frequency (the sum of the
local frequencies of all instances of a CGT candidate). A CGT
candidate with high local frequency has significant utilization
when it executes - Cyclebite upgrades this CGT candidate to
a CGT. A CGT candidate with high global frequency but low
local frequency indicates low utilization each time it executes -
Cyclebite rejects it.

EP injects backend calls at the start of each basic block to
profile state transitions during the program’s execution. Like
MP, EP transforms the target program before instrumentation -
basic blocks with context-switching instructions (like function
call and return) only have that instruction. EP increments the
current epoch when it encounters a critical edge. During each
epoch, like those shown in Fig. 7(a), EP records each member
basic block’s frequency count, which determines the local fre-
quency of the epoch. If the epoch refers to a CGT candidate and
its local frequency is greater than a parameter (parameter = 32),
EP designates that CGT candidate as a CGT. We chose to set the
parameter to 32 because a task with fewer than 32 operations
likely does not justify the overhead cost of running it on an
accelerator. The resulting structure is a directed graph: epochs
(which may or may not refer to a CGT) are nodes, and temporal
relationships are edges pointing toward increasing time. EP uses
the temporal ordering of epochs to evaluate the communication
patterns between CGT and non-CGT epochs.

E. Communication Extraction

EP discovers communication between epochs by recording
the memory transactions of each epoch as they execute and

Fig. 7. The Epoch Profile (EP) localizes the epochs of the target application
by observing the unique entrances and exits (called critical edges) of the CGT
candidates extracted from the simplified Markov Control Graph (MCG). An
epoch is a period of time in which the program executes a distinct section
of its code, and may or may not be a CGT candidate instance. At each
critical edge, EP increments the current epoch of the application (a). As the
epoch executes, EP observes its local frequency (the frequency of the member
basic block with the highest frequency) and its memory transactions (load,
store, memset, memmov, etc.). If the epoch is a CGT candidate instance, and
its local frequency is sufficient, that CGT candidate becomes a CGT. CGT
candidates whose instances have high local frequency require significant work
when called, making them good accelerator candidates [29]. Once all epochs
have been localized, their memory transactions are used to discover producer-
consumer relationships (b). The resulting structure is a task graph (c) - each
node is an epoch (which may or may not be a CGT), and each edge is a
read-after-write (RAW) dependency.

finding intersections between the input working set of the cur-
rent epoch and the output working sets of its predecessor epochs
in reverse-temporal order. Localized CGTs are only part of a
program’s structure - communication between these CGTs con-
strains concurrent execution, scheduling, and memory locality.
EP stores the addresses from both load and store instructions,
and memory operations (like memset and memov), executed
during each epoch. To better manage the memory usage of EP,
it implements a lossless compression scheme (called memory
tuples) where contiguous memory accesses are combined into
one entry that represents the memory footprint of the combined
memory accesses. Once execution is complete, EP discovers
communication relationships between epochs by overlapping
touched memory addresses of a given epoch with the touched
memory addresses of its temporal predecessors (in reverse-
chronological order, i.e., most-recent predecessor first). Using
the temporal ordering of epochs, EP ensures that each inter-
section is the true dependency of that intersection, called the
“last writer” [32] of that memory. Thus, EP forms a task graph:
program epochs are nodes, and directed edges (that point from
producer to consumer) are the communication between epochs.

During execution, EP records read-from and written-to ad-
dresses inside each epoch, shown in Fig. 7(b). After execution,
EP discovers communication between epochs by walking the
epoch history in reverse-chronological order. For each prede-
cessor of the epoch under evaluation (the current epoch), EP
overlaps the written-to addresses of the predecessor with the
read-from addresses of the current. Any overlap “explains”
that portion of the read-from addresses of the current epoch -
this forms a RAW relationship. Before evaluating the next pre-
decessor, each explained read-from address is removed from
the current epoch. This process is repeated until one of two
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conditions is reached: all read-from memory addresses are
explained, or no predecessors remain. Once all RAW rela-
tionships between tasks are discovered, the task graph of the
program is complete, shown in Fig. 7(c). In the next section,
we demonstrate Cyclebite’s structure extraction capability in a
real-world example.

IV. EXTRACTED STRUCTURE STUDY

We demonstrate Cyclebite’s ability to extract a comprehen-
sive pipeline of parallel tasks from CFTW with a case study.
The input program is a working example of CFTW: a Harris
corner detector from an open-source C++ computer vision li-
brary that utilizes modular function reuse, templated objects,
function pointers, and loop body predication. Our case study
shows Cyclebite automatically extracts parallelism from CFTW
despite these challenges. Fig. 8 presents the results of the pro-
gram structure extracted by Cyclebite and is discussed below.

A. Methodology

We selected the Harris corner detection algorithm driven by
NVision [33], an open-source C++ computer vision API, as
the application for our structuring case study. The NVision
library is a comprehensive example of the programming style
of CFTW. The author utilized C++ primitives to modularize the
code for many use cases (including object templating, exception
handling, and function overloading, which bloat the static code
with unused templated objects; and function indirection, which
creates holes in the static structure of the program). Addi-
tionally, Harris utilizes a few general operations (convolution,
Sobel, matrix searching) found widely throughout signal and
image processing, making it a good example of applications
from these domains.

LLVM9.0.1 was used with compiler flags with -O3 -g3 to
compile the target application. Full debug symbols mapped the
extracted tasks back to the source code. Cyclebite structured
the program on an idle machine with dual Intel Xeon E5-2650
processors and 256GB of memory.

B. Structure

Cyclebite extracts a comprehensive structure of parallel
CGTs from the Harris corner detector. Fig. 8 shows Cyclebite’s
results. Fig. 8(a) is a pseudo-code program describing each
CGT extracted by Cyclebite. Each line has a function name
(which describes what the CGT does), arguments (which in-
dicate what the dependencies of that CGT are), and a returned
variable (which shows the data it produces). Fig. 8(b) is the
simplified MCG constructed by Cyclebite with CGT candidates
highlighted. Fig. 8(c) is the task graph extracted from the target
application by Cyclebite with non-CGT epochs omitted for sim-
plicity. Nodes are CGT instances and edges are communication
patterns between them.

Subfigures in Fig. 8 relate to each other in three different
ways. First, each pseudo-code line in a), CGT candidate in
b) and CGT instance in c) is color-matched (by an expert
inspection of the code underneath each CGT) to its general

Fig. 8. Cyclebite extracts a comprehensive structure of parallel CGTs
in code-from-the-wild (CFTW). Cyclebite structured a 3-line application
implementing the Harris corner detection algorithm using NVision [33].
Subfigure a) uses pseudo-code to describe the CGTs extracted from the
target application, each color-matched to its general operation (e.g., “Sobel”).
Cyclebite found all five general operations in the target application. Subfigure
b) Shows the simplified Markov Control Graph (MCG) with each CGT
candidate highlighted and color-matched to its general operation and annotated
with its epochs and their local frequencies (e.g., “e0: 84” is the only epoch of
the first task candidate, which reads an input image, and has a local frequency
of 84). Subfigure c) is the task graph extracted by Cyclebite with non-CGT
epochs omitted for simplicity. Each node is a CGT instance labeled with its
epoch name (e.g., “e0” maps to the first CGT candidate in subfigure b) and
is color-matched to its general operation. Cyclebite discovered parallelism in
the calls to Sobel, Elem_multiply and gaussian_blur.

operation (e.g., “Sobel”, “gaussian_blur”) to demonstrate the
components of the Harris processing pipeline we would expect
to capture. Second, each pseudo-code line in a) maps 1:1 with
a node in c) and describes the work done in its corresponding
CGT instance. Third, each epoch ID and its local frequency
(e.g., “e0: 84”) that annotates a highlighted CGT candidate in
b) maps to a node (with that label) in c) to demonstrate why
that CGT candidate was selected as a CGT (its frequency was
greater than 32).
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Cyclebite detects parallel tasks in CFTW. Each CGT can-
didate in Fig. 8(b) with multiple annotated epochs ran that
many times, and in each of these cases (Sobel, Elem_multiply,
gaussian_blur) Cyclebite found parallelism in those instances.
Fig. 8(a) shows the parallelism between these CGT instances
with the variables produced and consumed by each instance.
Fig. 8(c) is the task graph that results from this detected paral-
lelism - the task graph shows which epochs depend on which,
how many stages are in the extracted task graph, and which
stages have parallel tasks.

Cyclebite extracts the executed structure of its target appli-
cations, not the intended structure. The executed structure is
the structure implemented by the programmer (and may in-
clude discretionary or unnecessary steps), whereas the intended
structure is the structure that contains all operations required to
execute the desired algorithm. CGTs labeled “mundane details”
and colored dark in Fig. 8(a) were not considered essential to
the Harris algorithm after expert inspection of their underlying
source code. The three dark-colored epochs (e14, e16, e17)
pre-allocated, sorted and structured the corners found by the
algorithm (which is not required by Harris).

In the next section, we demonstrate the potential speedups
and scalability that Cyclebite’s extracted structure makes avail-
able, and compare its extracted structure to that of two SoA
techniques: HC and HL.

V. RESULTS

Cyclebite extracts a parsimonious structure from CFTW
compared to SoA techniques that leads to profitable speedups.
We demonstrate the potential performance benefits that Cy-
clebite’s automatic task graph extraction makes possible with
two experiments. First, we show the performance improve-
ments task graphs make possible when mapping a small cor-
pus of SDR applications to a domain-specific system-on-chip
(DSSoC) using the DS3 [34] simulation platform. Second, we
use Halide to “hand-compile” extracted task graphs from a
corpus of image processing algorithms and demonstrate their
performance scalability with thread count. Each experiment
generates a proxy result for the optimizations one could expect
from Cyclebite-extracted task graphs if an automated down-
stream optimization and compilation pipeline existed, and the
results are a guide for expectations of future results. We com-
pare the extracted structure of Cyclebite with two SoA structur-
ing techniques: HotCode (HC) and HotLoop (HL). Our results
show that Cyclebite captures the important codes from CFTW,
while HC and HL miss important codes and capture the wrong
ones. Finally, we show that Cyclebite is robust to a broad cross-
section of CFTW, and the overheads incurred by its toolchain
are manageable.

A. DSSoC Speedup

1) Methodology: We use Cyclebite to structure a basket
of SDR applications and map the extracted task graphs to a
DSSoC. The task graph extracted by Cyclebite provides infor-
mation for accelerator candidates and parallelism. Using the
DS3 architecture simulation platform, we generate performance

TABLE I
APPLICATION CORPUS STRUCTURED BY CYCLEBITE AND

MAPPED TO THE DS3 [34] SIMULATION FRAMEWORK

Application APIs
Temporal Mitigation (TempMit) -

Radar Correlator (Corr) GSL
Single-Carrier Receive (SCR) GSL & FFTW
Single-Carrier Transmit (SCT) GSL & FFTW

Wifi Transmit (Wifi_Tx) GSL & FFTW
Wifi Receive (Wifi_Rx) GSL & FFTW

TABLE II
PERFORMANCE SCALING OF APPLICATIONS SIMULATED WITH

DS3. EACH APPLICATION IS STRUCTURED INTO TASKS WITH

COMMUNICATION PATTERNS

Application Baseline [μs] Performance [μs] Speedup
TempMit 8,300 876 9.5

Corr 6,360 961 6.6
SCR 21,700 924 23.5
SCT 1,570 827 1.9

Wifi_Tx 16,779 881 19.0
Average 12.1

estimates for 5 SDR applications listed in Table I. We use
two versions of each application: a “baseline” version and a
“performance” version. The difference between the simulated
runtimes of each application type yields a speedup value made
possible by the extracted application structure.

DS3 simulates the Dash DSSoC, a domain-specific architec-
ture built for SDR applications like communication and radar.
To simulate a Cyclebite task graph in DS3, an expert selects
the CGTs (extracted by Cyclebite) that describe the application
and annotates each one with its communication patterns with
other CGTs (from the Cyclebite task graph) - precisely what
Cyclebite automates. The CGTs DS3 supports are a significant
fraction of the runtime of each application, though they are not
comprehensive in the tasks that are required to make real-world
applications work. The simulation results are a reasonable es-
timate of the optimized performance of each application.

DS3 simulates each application in two ways. The baseline
version implements the application on a single-core scalar
processor, executing each task in the application serially. The
performance version implements the application on a 4-core
processor with two GEMM, two FFT and two Viterbi acceler-
ators using an integer linear programming (ILP) schedule [35].
Both versions are run 10 times back-to-back - each time listed
in Table II is the time it took to run all 10. The speedup obtained
by the performance version over the baseline version represents
the speedup possible when structuring CFTW and optimizing
it based on that structure.

2) Applications: We used a corpus of applications found in
software-defined radio (SDR). Since DS3 simulates an architec-
ture built for this domain, we naturally used a corpus of target
programs for that architecture. Table I shows these applications.
The open-source libraries used in the corpus are ubiquitous
among SDR applications from the wild. FFTW implements
the fast Fourier transform (FFT) and GSL implements general
matrix-matrix (GEMM).

3) Speedup: Cyclebite’s extracted task graphs enable sig-
nificant speedups on the simulated DSSoC. Table II shows
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speedups of 12.1 on average (arithmetic mean) of the per-
formance applications versus their baseline counterparts. All
applications performed better in their performance implemen-
tations than the serial ones, indicating that Cyclebite extracted
an effective structure from each application. The larger the
application, the more speedup it had due to the application-
wide optimization opportunities task graphs make available.
While some applications experienced significant speedups (like
Single-Carrier Receive (SCR)) because of their high degree
of parallelism and mappability to dedicated hardware, other
applications saw low speedup (Single-Carrier Transmit (SCT))
because of a lack of parallelism in their task graph.

B. Thread-Scalability

We demonstrate the thread scalability of task graphs by
translating applications structured by Cyclebite to Halide. The
Halide DSL relies on a program abstraction that closely re-
sembles the structure extracted by Cyclebite. Once this struc-
ture is extracted from CFTW and made available to Halide, it
compiles and exports an optimized version of the application
whose performance scales with thread count. We selected linear
algebra and image processing algorithms as the input corpus
for their task-oriented, communication-driven structures. Using
Halide to implement extracted task graphs from Cyclebite leads
to strong thread-scaling of program performance, improving ap-
plication runtimes by 24x on average with 16 threads compared
to SoA auto-parallelization tools.

1) Methodology: We used the Halide v10.0.0 domain-
specific language [3] as our proxy for a future Cyclebite
optimization framework. It specializes in image-processing
algorithms, which present various parallel optimization oppor-
tunities. Halide’s framework requires a programmer to structure
the input program statically and explicitly with a 1-to-1 map-
ping between functions and tasks and using polyhedral iterator
spaces to define communication patterns clearly - the same
structure exported by Cyclebite. Thus, Halide’s optimization
framework receives the same information from Cyclebite as it
would from the programmer.

Static LLVM IR bitcode archives give Cyclebite and LLVM-
Polly all the necessary visibility into the function symbols of
the program to extract structure. We compiled test programs
statically to maximize visible function symbols at compile time.
Naive programs are compiled statically into LLVM IR bitcode.
We compiled library-driven programs with static LLVM IR
bitcode archives, making all their function symbols visible to
Cyclebite. For Halide programs, we compiled them into LLVM
IR bitcode first, then to the target architecture.

The scalability study has the following design. Each program
has five versions: Naive, Naive + Polly, Library, Library +
Polly, and Cyclebite + Halide. For each application in Table III,
we constructed three versions: a naive version, a library ver-
sion, and a Cyclebite + Halide version. Novice programmers
wrote the Naive version and used no external dependencies.
Each library program used an external dependency (GSL for
SGEMM and OpenCV for all other algorithms) and consisted
entirely of API calls. Each Cyclebite + Halide program was

TABLE III
ALGORITHMS FOR THREAD SCALABILITY

Algorithm Description
SGEMM Single-precision matrix-matrix multiply.
IIRBlur Two-tap linear infinite-impulse response image filter

implemented column-wise in two passes. The first pass
is along the columns, both down and up. The second
pass is along the columns of the transposed result of the
first pass, both down and up.

Harris Harris corner detection.
Stencil Chain A 5-length chain of 5x5 linear image filters with discrete

approximations of a Gaussian filter with mean 0 and
variance 1, implemented with floating-point precision.

SIFT Scale-invariant feature-transform

either written by an expert or was taken from the Halide GitHub
repository [36]. Naive and Library programs have two ver-
sions: a non-LLVM-Polly configuration, which compiled the
program with -O3 -g0 compiler flags (using LLVM9.0.1), and
an LLVM-Polly optimized version (“+ Polly”), which enabled
LLVM-Polly to optimize each program in addition to the reg-
ular optimizer (-O3 -g0). LLVM-Polly can make all specula-
tive code optimizations and OpenMP code generations where
it sees fit.

Each scalability study ran on an idle machine with dual
Intel Xeon E5-2650 processors and 256GB of memory. Each
application data point had 225 runtime samples. We conducted
15 trials of 15 samples; each trial is the arithmetic mean of
15 samples. The final data point is the median of the trials.

2) Applications: We focus on applications from linear al-
gebra and image processing. Halide works best with these ap-
plications. We chose GSL v2.5 and OpenCV v4.6.0 for library
applications for their large open-source communities and infras-
tructures. Each library has hand-tuned API calls that achieve
state-of-the-art performance for linear algebra and image pro-
cessing algorithms. Each algorithm is listed with a brief descrip-
tion in Table III.

Cyclebite automatically scales to new applications - hand-
tuned APIs require manual hand-tuned scaling. For design ef-
forts that require optimization, Cyclebite speeds up programs
with little overhead. OpenCV and GSL have to manually hand-
tune high-performance implementations when introduced to
new algorithms, incurring significant time and effort.

3) Scalability: The scalability of each extracted task graph
shows Cyclebite extracts parallel CGTs in its exported structure.
Fig. 9 shows the thread scalability achieved by the Halide
implementation of each application. Except for SGEMM, each
Halide speedup curve is roughly linear for most thread counts -
indeed, the CGTs found were parallel kernels.

Speedups achieved from hand-compiled Cyclebite task
graphs come from both parallelism and memory locality. The
task graph extracted by Cyclebite provides delineated tasks
that are blocked and vectorized when possible, and parallelism
between tasks that run concurrently. Additionally, the working
set size, computation order and re-use, and task fusion all made
available by the task graph help optimize the memory usage
of the algorithm, increasing performance beyond the thread-
scaling limit in some cases.
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Fig. 9. Thread-scalability for each application in Table III: single-precision general matrix-matrix (SGEMM), linear infinite impulse response image filter
(IIR Blur), Harris corner detection algorithm (Harris), a chain of stencil kernels (StencilChain) and scale-invariant feature transform (SIFT). Each application
has five types: naive, which contains no external dependencies and is written by a non-expert; library, which uses GSL (for SGEMM) or OpenCV with
threading enabled (for IIR Blur, Harris, StencilChain and SIFT); Cyclebite + Halide, that models the scalability of the task graph extracted by Cyclebite from
the Naive version of the application; Naive + Polly, which is the naive implementation optimized by LLVM-Polly; and Library + Polly, which is the library
implementation optimized by LLVM-Polly. Each data point is normalized by the performance of Library + Polly with one thread.

As CGT counts and communication complexity increase, the
speedup results improved in favor of Cyclebite + Halide. When
applications contain few CGTs (with SGEMM and IIRBlur),
the API implementation is competitive with the Halide proxy
for small thread counts. Intuitively, the API calls are hand-tuned
models for the input; they used specific primitives for vector and
parallelization opportunities for that application. The Halide
implementation has a generated model for the application,
which lacks implementation details. In other words, the API
call was hand-tuned by experts, but Halide is just a compiler.
Thus, for simple workloads, we expect the API to do well, and
in this case, better than Cyclebite + Halide. More complex ap-
plications (Harris, StencilChain, SIFT) saw Cyclebite + Halide
trounce the competition as thread count increased. Cyclebite +
Halide finds optimizations that exploit parallelism and local-
ity between CGTs, leading to more profitable speedups than
programs that do not. The API implementation does not have
information about the broader application; it is stuck optimizing
within tasks.

LLVM-Polly could not recognize opportunities for speedup
in an application beyond the SGEMM example, even with all
speculative flags turned on. While it achieved the top perfor-
mance mark for SGEMM, likely because of its superior vec-
torization capability, its programs were no different from the
regular-optimization version. After analyzing the static con-
trol parts, or statically-defined polyhedral loops eligible for
optimization within LLVM-Polly’s framework, the require-
ments appeared to be more stringent than just static loop
bounds; it required clearly-defined affine loop iterators and
determinable functions within loops.

Mapping task graphs extracted from Cyclebite to DSSoC
architectures and multi-threaded implementations leads to im-
pressive performance improvements and thread scaling. First,
the task graphs extracted by Cyclebite are comprehensive in
their structure, as shown by 12.1x speedups of task graphs sim-
ulated on a DSSoC compared to their serial equivalent. Second,
Cyclebite extracts parallel task graphs, as shown by an average
of 24x speedup for a 16-thread implementation of a hand-
compiled task graph compared to SoA auto-parallelization
tools. Next, we evaluate the code Cyclebite structures from
CFTW, and the code Cyclebite rejects as unimportant.

C. Correspondence to SoA

Extracting a structured task graph representation requires
a precise selection of basic blocks. Including too many ba-
sic blocks will result in false or bloated tasks. Including
too few basic blocks will result in missing or incomplete
tasks. We examine when three techniques (HotCode, HotLoop,
and Cyclebite) agree on basic blocks selected for inclusion
in the extracted structure of CFTW across the applications
in Dash-Corpus.

1) SoA Techniques: SoA structuring techniques structure
the target program around the code that runs most frequently,
known as HotCode (HC). HC represents the parts of the pro-
gram that require the most time to complete. Naturally, program
optimization techniques focus on reducing the time to complete
these tasks first. To construct a proxy for this strategy, we
built a structuring technique that measures the frequency of
basic blocks and designates as tasks all basic blocks whose
frequency explains 95% of the total basic block frequency in
the program. However, this strategy can lead to results that
are not contiguous: hot blocks that exist by themselves spread
throughout the program that, when standing alone, are difficult
to optimize.

An extension to HC is HotLoop(HL), which incorporates
the static loops of the program into HC. HL designates as
a task any statically-defined loop with at least one hot basic
block. HL is a generous approximation of the static control
parts (SCoPs) LLVM-Polly [16] uses to structure programs -
LLVM-Polly’s performance in Section V.B.3 provides insight
into the performance benefits one can expect by using HL as
their structuring method. It structures hot basic blocks with
their cold constituents (e.g., outer loops that may be important
for optimization). Using these two structuring techniques, we
compare their results across all applications in Dash-Corpus to
Cyclebite and discuss their similarities and differences.

2) Methodology: We measure the basic blocks Cyclebite
(Cb) accepts and rejects as members of a CGT and compare
them to tasks selected and rejected by HC and HL. HC struc-
tures all hot basic blocks in an application (all basic blocks
whose frequencies, sorted from greatest to least, explain at least
95% of all basic block frequencies). HL structures all basic
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blocks that belong to a statically-defined loop with at least one
hot member basic block. Simply put, HC represents all hot basic
blocks in Dash-Corpus, and HL represents all basic blocks that
belong to a statically-defined loop in Dash-Corpus.

We ran Cb, HC, and HL on 2,019 applications in Dash-
Corpus. Comparing these three techniques - HC, HL, Cb -
yields seven categories: HC only, HL only, Cb only, HC and
HL, HC and Cb, HL and Cb, HC and HL and Cb. Each category
is mutually exclusive of all others (e.g., “HC” contains only
the basic blocks exclusively structured by HC; “HC & HL &
Cb” contains only the basic blocks structured by all three) and
collectively exhaustive of the basic blocks selected as mem-
bers of tasks.

Structuring CFTW is a balancing act - structure too much
code and the programmer has to parse through non-tasks; struc-
ture too little code and the programmer has to find tasks manu-
ally. Either of these scenarios will lead to manual intervention to
make speedups possible. Indeed, SoA techniques like HC and
HL find meaningful tasks, but they miss code that should be
tasks and capture code that shouldn’t be tasks. Thus, Cyclebite
both accepts and rejects code that HC and HL structured.

We used a cluster of 11 servers. To batch jobs to the entire
server, the SLURM workload manager distributed bash scripts
to all machines. Each server runs Ubuntu-server 18.04, two
Xeon E5-2650 processors with ten physical cores each and
256GB of RAM available. We used LLVM9.0.1 to compile each
program. All debug symbols are on, and the compiler optimizer
is at its lowest setting (-g3 -O0).

3) Correspondence: Cyclebite automates significant work
required to structure CFTW. Fig. 10 shows each of the cor-
respondence categories between Cb, HC and HL. The differ-
ences between categories in Fig. 10 are large, indicating that
SoA techniques both miss and include a significant amount
of task and non-task code. Only the colored regions are cat-
egories in the Venn - the white region is not a category. Each
magnitude represents the number of basic blocks belonging to
that category.

brown: cold code within static loops rejected by Cyclebite.
Unused basic blocks dominate this category, and Cyclebite can
trivially reject code that never ran with the dynamic information
from MP. Further, statically-defined loops may contain modular
operations that themselves are hot, upgrading the entire (cold)
loop to a hot loop. This cold loop is not a task in the application.
Cyclebite rejects this code through its function inline transform.

blue: hot code not in a static loop and rejected by Cyclebite.
Highly reused modular functions contain serial code that be-
comes hot when tasks reuse it throughout the application. Fur-
ther, EP finds cycles within these functions with a low frequency
of recurrence. Cyclebite rejects these loops.

red: hot code within static loops that Cyclebite rejects. HL
structures statically defined loops that recur a few times if they
contain hot basic blocks. HL often structures low-frequency
loops when highly-reused modular functions are members
of a loop. Cyclebite rejects this code through its function
inline transform.

olive green: code exclusively structured by Cyclebite. This
category contains code missed by SoA techniques. Any task

Fig. 10. A demonstration of which basic blocks are accepted as task
members and rejected from being task members, according to Cyclebite (Cb),
HotCode (HC), and HotLoop (HL). HC and HL are proxies of two state-of-
the-art structuring techniques. All basic blocks structured by HC are hot, and
all basic blocks structured by HL belong to a statically-defined loop with at
least one hot member basic block. Each magnitude is the basic block count of
that region. Each region is exclusive to all others and collectively exhaustive of
all basic blocks structured in Dash-Corpus. For example, “HCHL” comprises
the basic blocks only structured by HC and HL. For every 100 basic blocks
executed in a Markov Profile in Dash-Corpus, HL structured 340 blocks
(because of unused blocks), Cb structured 10, and HC structured 6.

structured by SoA techniques that uses function pointers will
not contain the code called by that function pointer. But MP
resolves that function, and Cyclebite captures its code. Addi-
tionally, low-frequency tasks outside of a hot task, like the outer
loops of a matrix multiply, may be rejected by SoA techniques
for lacking hot code.

pink: hot code outside a static loop accepted by Cyclebite.
Recursive algorithms with highly-recurrent structures give rise
to hot basic blocks without being contained within a traditional
loop structure. Furthermore, HC and HL miss function pointers
within highly-recurrent loops that Cyclebite captures. Thus Cy-
clebite finds hidden, complete tasks compared to SoA methods.

violet: cold code within a static loop that Cyclebite accepts.
Loop bodies often contain predication - branches that occur dur-
ing the execution of a loop iteration - that biases the execution
of the loops toward one side of the fork. Thus, the often-used
code becomes hot, and the seldom-used code becomes cold.
HL and Cb agree on these blocks because they capture the
entire loop.

green: hot basic blocks within static loops accepted by Cy-
clebite. All techniques agree this code should be a task. Code
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Fig. 11. Cyclebite is compliant with 84.5% (2,019) of the 2,390 applications
in Dash-Corpus. An application is compliant with Cyclebite if Cyclebite
extracts the task graph from that application without error, both known or
unknown. Green (“Compliant”) represents compliant applications. Orange
(“Transform Error”) is a known issue within the transforms applied to
the MCG. Red (“Static Structure Ambiguity”) represents applications with
function symbols not compatible with LLVM IR bitcode, creating blind
spots in the Markov Control Graph (MCG). Gray (“Unknown”) comes from
applications whose MCG had a known problem (like having more than one
start node), but the cause of this problem could not be determined.

commonly found in this category are inner loops of matrix
multiply, convolution, correlation, FFT, and others.

D. Robust

We evaluated Cyclebite’s robustness with applications from
Dash-Corpus. Robustness is Cyclebite’s ability to extract a
structure that both makes sense and is error-free, both known
and unknown. Input applications that make Cyclebite segfault
are not compliant. Further, if Cyclebite hits a known condition
in its flow of transforms that leads to a bad result, then Cyclebite
is non-compliant with the program. Once Cyclebite performs
all stages of its pipeline and produces a result, Cyclebite is
compliant with that application.

The Cyclebite toolchain was compliant with a large cross-
section of CFTW. Fig. 11 shows Cyclebite’s compliance with all
Dash-Corpus programs. Cyclebite structured 84.5% (2,019) of
2,390 applications in Dash-Corpus. For each of these compliant
programs, Cyclebite satisfied three requirements for compli-
ance. First, it completed its execution without error (such as
segfaults and other implementation-related issues). Second, the
simplified MCG had exactly one starting node and explainable
exit nodes (more than one exit node is possible when an inlined
function contains the basic block that terminated the program).
Third, the dynamic call graph of the program was a whole piece,
and all nodes were reachable.

For non-compliant programs, holes in the static structure
were the most prevalent cause. Holes in an application’s profile
come from function symbols not compilable into static LLVM
IR bitcode (like the standard C library or special vector li-
braries produced by hardware vendors like Intel’s Integrated

Performance Primitives library). Because MP cannot instru-
ment these parts of the program, MP is not able to observe
the entire execution of the program, resulting in an incomplete
profile. Non-compliant function symbols are abundant in FFTW
and OpenCV applications.

E. Profiling Overhead

The median time dilations for MP and EP were 11.5 and
253, respectively, across 2,008 applications in Dash-Corpus.
In prior work, SD3 [10], for single-threaded profiling like that
of Cyclebite, suffered dilations of anywhere between 250x–
850x. Thus, the dilation from Cyclebite’s dynamic profiles is
manageable compared to SoA memory profilers. If the dilation
of the program resulted in an extension of the program by hours
or days, shorter versions of the program solve this problem.

For EP, memory utilization is very low for a naive SGEMM
example (2,776 bytes) - this example has contiguous mem-
ory accesses which makes the compression scheme (memory
tuples) in EP efficient. In examples where memory accesses
are not contiguous (for example, accessing a single member
of a user-defined structure in an array of that structure) the
compression scheme will not be effective, and memory usage
will be much higher.

VI. DISCUSSION

A. Limitations

The Cyclebite toolchain only supports C and C++ pro-
grams, limiting Cyclebite’s scope and the number of function
symbols visible to its profilers (e.g., libraries like Armadillo
that utilize Fortran and Libc cannot be profiled completely).
Assembly-only vector libraries like Intel’s IPP library, used
by OpenCV, are not compatible. While Cyclebite’s analysis is
blind to these functions, non-compliant function symbols can be
manageable by leveraging their nomenclature (e.g., libc::qsort()
implements qsort).

Cyclebite only sees code that executes. However, MP can
trivially give each statically-defined edge a minimum fre-
quency of 1, guaranteeing each edge in the program is seen by
the analysis.

Basic block recurrence implies functional recurrence, but
functional recurrence does not necessarily imply basic block
recurrence. Libraries like FFTW and Spiral generate algorithm
code by partially or entirely unrolling the execution. Thus,
cyclical behavior in the computation may not be represented
by cyclical behavior in the basic blocks of the program.

Cyclebite ignores all user-space codes executed before and
after main(). Cyclebite’s profilers start right before main() be-
gins and end right after main() returns. These constraints on
the boundaries of dynamic profiles ensure the DCFG is a
complete piece.

B. Wider Impacts

The performance numbers Cyclebite showed in its evalua-
tions are scalable to highly parallel applications from linear
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algebra, graphics, software-defined radio, cryptography, and
graph applications.

Cyclebite can support languages and platforms beyond
C/C++ (like Python, Fortran and Node.js) with significant en-
gineering effort.

Downstream optimization tools will use the exported task
graph to automatically optimize the structure, schedule, and
communication of the program for target platforms, parallelism,
and memory locality.

VII. CONCLUSION

Cyclebite is an open-source toolchain [11] that structures
wild programs into its CGTs with communication patterns. It
is compliant with a large cross-section of open-source C and
C++ libraries. Using a dynamic execution profile of a program,
it finds CGT candidates within the program by simplifying its
dynamic execution graph and localizing the highest-probability
cycles in the program. Finally, it localizes CGTs in the target
application by localizing the epochs of the program, and observ-
ing communication patterns between those epochs, resulting in
a task graph. Its exported structure delivers speedups over state-
of-the-art optimization frameworks. Future work of Cyclebite
will increase its compliance with other programming languages
(like Python) and algorithms within and outside Dash-Corpus,
and downstream optimization tools that will use the structure
exported by Cyclebite to optimize target applications.
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