GemV: A Validated Micro-architecture Vulnerability Estimation Tool
by

Srinivas Karthik Tanikella

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree
Master of Science

Approved December 2016 by the
Graduate Supervisory Committee:

Aviral Shrivastava, Chair

Rida Bazzi
Carole-Jean Wu

ARIZONA STATE UNIVERSITY
May 2016

ABSTRACT

Several decades of transistor technology scaling has brought the threat of soft errors
to modern embedded processors. Several techniques have been proposed to protect
these systems from soft errors. However, their effectiveness in protecting the compu-
tation cannot be ascertained without accurate and quantitative estimation of system
reliability. Vulnerability — a metric that defines the probability of system-failure (re-
liability) through analytical models — is the most effective mechanism for our current
estimation and early design space exploration needs. Previous vulnerability estima-
tion tools are based around the Sim-Alpha simulator which has been to shown to have
several limitations. In this thesis, I present gemV: an accurate and comprehensive
vulnerability estimation tool based on gemb5. Gemb is a popular cycle-accurate micro-
architectural simulator that can model several different processor models in close to
real hardware form. GemV can be used for fast and early design space exploration
and also evaluate the protection afforded by commodity processors. gemV is compre-
hensive, since it models almost all sequential components of the processor. gemV is
accurate because of fine-grain vulnerability tracking, accurate vulnerability modeling
of squashed instructions, and accurate vulnerability modeling of shared data struc-
tures in gemb5. gemV has been thoroughly validated against extensive fault injection
experiments and achieves a 97% accuracy with 95% confidence. A micro-architect
can use gemV to discover micro-architectural variants of a processor that minimize
vulnerability for allowed performance penalty. A software developer can use gemV
to explore the performance-vulnerability trade-off by choosing different algorithms
and compiler optimizations, while the system designer can use gemV to explore the

performance-vulnerability trade-offs of choosing different ISAs.

TABLE OF CONTENTS

Page
LIST OF TABLES . ..o e iii
LIST OF FIGURESo e iv
CHAPTER
1 INTRODUCTION ... e 1
2 BACKGROUND AND PREVIOUS WORKo 4
2.1 Background 4
2.2 Limitations of Previous Works 5
3 GEMV: FINE-GRAINED COMPREHENSIVE VULNERABILITY ES-
TIMATTON o 8
3.1 Modeling. 8
3.1.1 GemVis Accurate ... 8
3.1.2 GemV is Comprehensive................ 13
3.1.3 GemVis Validated i 15
3.1.4 GemVis Flexible 17
3.1.5 GemV Models COTS Processors 17
3.1.6 Limitations of GemV oL 17
3.2 GemV: Implementation in Gemb5 18
4 GEMV FOR DESIGN SPACE EXPLORATION 20
4.1 GemV for Hardware Design 20
4.2 GemV for Software Design i 23
4.3 GemV for System Design.......... 24
5 SUMMARY .. 27
REFERENCES .. 28

i

Table
3.1

4.1

4.2

4.3

LIST OF TABLES

Page
GemV Validation Against Fault Injection. 300 Faults Injected Per
Component for Each of the Following Benchmarks: Matrixz Multiplica-
tion, Hello World, Stringsearch, Perlbench, Gsm, Qsort, Jpeg, Bitcount,
Fft, and Basicmath 16
Runtime Overhead(%) For an Optimal Component Size to Minimize
Vulnerability 22
Vulnerability Overhead(%) For an Optimal Component Size to Mini-
mize Runtime 22

Effects of Software Configuration(Algorithm, Optimization Level And

Compiler) On Run-time and Vulnerability (Sorting) 24

1l

Figure
3.1

3.2

3.3

3.4
3.5

3.6

4.1

4.2

LIST OF FIGURES

Page
Percentage of Pipeline Register Fields That Are Actually Vulnerable
(Normalized Over the Case When All the Bits Are Considered Vul-
nerable). A Naive Method of Vulnerability Analysis Assumes That
All The Pipeline Register Bits Are Vulnerable. However, Fine-grained
Analysis Shows That Actual Vulnerability Of the Pipeline Is Only 21%
Of the Naive Method. 10
Cache Vulnerability Comparison Between a Coarse-Grained and Fine-
Grained Model for Various Benchmarks. The Coarse-grained Model
Overestimates Cache Vulnerability By an Average 12% 11
Shared Dynamic Instruction in Gemb is Split Among Individual Hard-
ware Structures in GemV for Realistic Hardware Modeling. 12
A Scenario Under Which the History Buffer is Vulnerable. 13
Breakup of total processor vulnerability of which 53% has not been
modeled in previous work. 14
Vulnerability Tracking in GemV. The Tracker Tracks Read and Write
Accesses to Calculate Total Vulnerability. 14
Different Hardware Configurations Generates Interesting Design Space
in Terms of Runtime and Vulnerability. Vulnerability Can be Reduced
by up to 82% With Less Than 1% Runtime Overhead by Varying
Hardware Configurations........... i 21
Different Software Configurations can Generate Interesting Design Space
in Terms of Vulnerability on the Same Hardware. Vulnerability can be

Reduced by 91% Without Runtime Overhead With Software Changes. . 23

v

4.3 Variation in Runtime And Vulnerability For Stringsearch Under Dif-
ferent ISAS ...

Chapter 1

INTRODUCTION

A soft error is a transient bit flip caused by external radiation, alpha particles,
neutrons, and cosmic rays Baumann (2005). With transistor technology scaling, soft
errors are becoming an important design concern Dixit and Wood (2011). Soft error
rate is increasing with decreasing feature size and supply voltage Martinez-Alvarez
et al. (2012). In modern embedded systems, reliability is especially important due to
aggressive dynamic voltage and frequency scaling Mahatme et al. (2013).

Many techniques have been proposed to protect embedded processors against soft
errors Nicolaidis (2011); Lee et al. (2011). However, soft error protection is not cheap,
and also not always effective. Traditionally, fault injection has been used to evaluate
the effectiveness of protection schemes against soft errors Entrena et al. (2012). Since
statistical fault injection is time consuming Nguyen and Yagil (2003), previous works
have used targeted fault injection to estimate the failure rate Michel et al. (1991);
Alkhalifa et al. (1999). However, estimating failure rate using targeted fault injection
is very difficult to set up correctly and is often flawed Shrivastava et al. (2014); Cho
et al. (2013).

An alternate method to estimate failure rate is to first estimate vulnerability
factor, which is the probability that a fault in a hardware bit will result in program
failure Mukherjee et al. (2005, 2003). For a given program, vulnerability is the sum of
vulnerable bits in a processor over its execution period. Compared to fault injection,
vulnerability analysis can be performed in a single simulation. This makes it useful for
fast and early design space exploration Biswas et al. (2008); Jeyapaul and Shrivastava

(2011). Vulnerability analysis must take into account the effects of all masking effects

1

to accurately estimate the failure rate or reliability.

Several works have been presented to estimate the system vulnerability based on
cycle-accurate simulators Li et al. (2005); Fu et al. (2006). However, prior vulner-
ability estimations tools are limited by the underlying simulator platforms, due to
which they are: i) not comprehensive, i.e., only model the vulnerability of only a
small subset of the microarchitectural components of the processor, ii) are inaccurate
iii) are inflexible and iv) are not validated.

Gemb is an accurate micro-architecture simulator Butko et al. (2012) that ad-
dresses several problems with previous simulators. It models the processor quite close
to hardware form and allows modeling various ISAs and also multicore processors.
In this work, we present gemV: a tool for comprehensive and accurate vulnerability
estimation based on gemb Binkert et al. (2011). gemV comprehensively models the
architectural vulnerability for all the sequential components of a processor. Architec-
tural vulnerability takes into account the masking effects at micro-architectural level,
but does not consider logical masking or software level masking. gemV achieves accu-
rate architectural vulnerability estimation through i) fine-grained modeling of hard-
ware components in a processor, ii) correctly modeling the vulnerability of squashed
instructions, and iii) correctly modeling the vulnerability of inaccurately modeled
hardware components. gemV is thoroughly validated by extensive fault injection
experiments against benchmarks with minimal software masking. Extensive fault
injection experiments validate gemV to 97% accuracy with 95% confidence.

These qualities allow gemV to be used as an early design space exploration tool
for architectural vulnerability analysis. It enables us to answer questions like: how
does altering the issue width of the processor affect vulnerability? Is a dual-issue
processor more vulnerable than a single-issue processor? The answer is not obvious,

as reducing the size of the hardware reduces the number of vulnerable bits at a given

time but it could also increase the runtime. Since bit-size and runtime affect vulner-
ability in opposing terms, the effect of varying hardware size can only be answered
through quantitative experiments. In the same vein, how does the number of cores
affect vulnerability? The algorithm of the program, the compiler used or the level of
optimization used also affect the runtime. These questions of the trade-offs between
runtime, hardware and software configuration, and vulnerability can now be answered
rapidly and accurately. A hardware designer can use gemV to find alternate proces-
sor designs to minimize vulnerability. In my experiments, I observe that vulnerability
decreases when increasing issue-width from 1 to 3. Beyond this, any increase in issue-
width does not have a noticeable effect on vulnerability as any decrease in runtime is
offset by the increased hardware size. A software designer can also use gemV to find
the least vulnerable algorithm for a program. For example, I show that switching

from a selection sort to a quick sort algorithm can affect the system vulnerability by

91%.

Chapter 2

BACKGROUND AND PREVIOUS WORK

2.1 Background

Mukherjee et al. (2003) propose the concept of vulnerability and present a system-
atic methodology to calculate vulnerability. A bit b in a microarchitectural component
at a specific time ¢ is vulnerable if a soft error in (b,¢) results in system failure Mukher-
jee et al. (2003). Vulnerability is the sum of all vulnerable bits in a processor. The
vulnerability of a processor can be estimated through micro-archtectural simulation
by tracking the vulnerable bits in the processor. To accurately estimate vulnerability,
the simulation must evaluate the effects of masking. Masking occurs when a soft error
in a bit of the processor does not translate to system failure.

A transient error in a logical circuit might not be captured in a memory circuit
because of masking Blome et al. (2005). This masking could be because of:

Logical masking, which occurs when the transient error is effectively gated from
propagating futher due to other input values. For example, a transient error at the
output of a circuit which is ANDed with 0 is logically masked.

Temporal masking, which occurs when the transient error does not arrive at a latch
at the clock transition and is not latched.

Electrical masking, which occurs when the transient error is attenuated by subse-
quent logical gates due to the electrical properties of the gates.

Once a transient error is captured in a memory circuit, it is still possible for the
error to be masked by

Architectural masking, which occurs when the soft error is masked by the architec-

tural state of the processor. For example, a soft error in a misspeculated instruction
in an out-of-order processor does not result in system failure and thus is said to be
masked.
Software masking, which occurs when the soft error is masked by the instructions
being executed on the processor. For example, a soft error in a dynamically dead
instruction does not result in system failure and is said to be masked.

A vulnerability model that can capture all masking effects will give an accurate
estimation of reliability or failure rate. In this work, we only model architectural level

masking effects.
2.2 Limitations of Previous Works

Several works have used cycle-accurate simulators to estimate vulnerability. Soft-
Arch Li et al. (2005) modeled the error generation and propagation based on a prob-
abilistic model in Turandot simulator Moudgill et al. (1999), a trace drive simulator.
SoftArch Li et al. (2005) requires circuit-level details, such as latch and gate count,
to estimate vulnerability. This is not always possible during design space explo-
ration. Mukherjee et al. (2003) propose the concept of vulnerability and present a
systematic methodology for calculating it. However, this tool is not publicly avail-
able. The closest work to this is Sim-SODA Fu et al. (2006), a microarchitectural
simulator based vulnerability estimation tool which uses the Sim-Alpha simulator.
Sim-SODA presents a unified simulator framework to estimate the vulnerability of
various hardware structures within a processor using vulnerability computing meth-
ods introduced in Mukherjee et al. (2003). They estimate vulnerability by tracking
the vulnerable bits in the processor pipeline for committed instructions and discard-
ing squashed instructions. However, Sim-SODA has several limitations primarily due

to the limitations of Sim-Alpha.

(i) Sim-SODA has limited usability due to Sim-Alpha. The Sim-Alpha
simulator Desikan et al. (2001b) is a purely user-level functional simulator. The
simulator has been shown to be up to 43% inaccurate in runtime estimations Desikan
et al. (2001a). They show that in many cases, Sim-Alpha underestimates the runtime
of macro benchmarks with a maximum negative error of -38.4%, while its performance
is inaccurate by up to 43% for other benchmarks. Since vulnerability is directly
proportional to runtime of the program Mukherjee et al. (2003), the inaccuracy is
also reflected in the estimated vulnerability. Furthermore, Sim-SODA is limited to a
single ISA (ALPHA) model. It can only simulate single core architectures and has
limited microarchitectural detail. Several pipeline buffers are not modeled in Sim-
Alpha. It does not model a floating point pipeline and thus is limited to integer
benchmarks.

(ii) Sim-SODA is inaccurate. They estimate vulnerability at a coarse level of
granularity, leading to inaccurate estimation of vulnerability. For instance, several
hardware structures in the instruction fetch and issue logic are modeled as a single
hardware structure — “the instruction window”, which does not model individual
hardware structures such as the fetch queue, decode queue, and therefore cannot be
evaluated for their vulnerability.

(iii) Sim-SODA is not comprehensive in its vulnerability modeling. Sev-
eral hardware structures such as the pipeline registers, rename map, and history buffer
are not modeled. Comprehensiveness is an important quality for a vulnerability es-
timation tool to study the breakdown of vulnerability of a specific hardware struc-
ture as a percentage of the total processor vulnerability. This is useful in studying
the effectiveness of new protection mechanisms and also in designing new protection
mechanisms to target the hardware structure contributing the highest percentage of

the overall system vulnerability. Furthermore, Sim-SODA does not model realistic

hardware with protection mechanisms. Caches on many modern processors are built
with parity protection techniques or ECC. Modeling these protection mechanisms
within a vulnerability estimation tool allows for realistic estimation of vulnerability.

(iv) Sim-SODA tool is not validated. As described in Section 3.1.3 , gemV

has been validated against fault injection experiments and its accuracy established.

Chapter 3

GEMV: FINE-GRAINED COMPREHENSIVE VULNERABILITY ESTIMATION

3.1 Modeling

This section describes my approach to gemV as a vulnerability estimation tool by

addressing the problems observed in previous works.
3.1.1 GemV is Accurate

I achieve accurate vulnerability estimation with a four-pronged approach:

Leveraging the gem5 simulator framework: gemV is built on gem5, which is
a pretty accurate cycle-accurate simulator, with 1-17% error in runtime estimation
Butko et al. (2012). Furthermore, unlike previous simulation infrastructures (e.g.,
Simplescalar, Sim-Alpha), gem5 models the microarchitectural components of pro-
cessor in a close to hardware form. This allows us to track the read and write to the
bits inside the component accurately and therefore model vulnerability accurately.
Further, gem5 has the ability to run in full system mode that can simulate the be-
haviour of an operating system. Any operating system activity during the execution
of the program should also be analyzed for vulnerability. By adding the vulnerability

due to operating system calls, the accuracy of total system vulnerability is improved.

Fine-grained vulnerability tracking: To understand why fine-grained modeling is
important, it is first important to understand what fine-grained modeling is. This sec-

tion describes fine-grained modeling and its importance using two examples - pipeline

registers and cache.

A naive or coarse grained vulnerability analysis model views a hardware structure
as monolothic for the purposes of vulnerability analysis. This means that when an
instruction is read in that hardware structure, all the bits in the hardware structure
are considered vulnerable. In a fine-grained vulnerability model, the hardware struc-
ture is broken down into its indivudual fields. Some of these fields may not be used
by some instructions. For example, pipeline registers in the Rename/IEW stage have
fields to hold memory addresses for memory reference instructions. However, these
fields are not used by other instructions. Thus treating them as vulnerable would lead
to inaccurate vulnerabilty estimates. In an ARM-v7a pipeline, ALU instructions use
71 bits of the Rename/IEW pipeline stage, whereas memory-reference instructions
use 132 bits Jeyapaul (2015). Fine-grained modeling is thus important because not all
bits of a hardware structure are vulnerable for every instruction. During execution of
an instruction, only the bits in a micro-architectural component that store data spe-
cific to that instruction are vulnerable. By identifying the subset of fields in a pipeline
registers that are vulnerable for different instruction types, we can compare the dif-
ference between a fine-grained and a coarse-grained vulnerability model. The subset
of fields in the pipeline register used by different instruction types can be identified
using RTL analysis on the processor pipeline. As shown in Fig. 3.1, on an average
21% of the fields in the pipeline registers are actually vulnerable. Coarse-grained
vulnerability models assume that all the fields are vulnerable, thus overestimating
the vulnerability by 5X.

In the case of caches, coarse-grained vulnerability models treat entire cache blocks
as vulnerable. However, reads and writes to the cache often occur at the word-level.
Treating the entire cache block as vulnerable in this case would again lead to an over-

estimation of vulnerability. Fine-grained vulnerability analysis is thus also important

23.5

(normalized over total PR size)

%o of Pipeline Register that is vulnerable

Figure 3.1: Percentage of Pipeline Register Fields That Are Actually Vulnerable
(Normalized Over the Case When All the Bits Are Considered Vulnerable). A Naive
Method of Vulnerability Analysis Assumes That All The Pipeline Register Bits Are
Vulnerable. However, Fine-grained Analysis Shows That Actual Vulnerability Of the
Pipeline Is Only 21% Of the Naive Method.
for caches for accurate vulnerability estimation. Fig. 3.2 shows the comparison be-
tween a coarse-grained vs a fine-grained cache vulnerability mode. The coarse-grained
model treats entire cache blocks as vulnerable whereas the fine-grained model tracks
vulnerability for individual words in the cache. We observe that the coarse-grained
model consistently overestimates the vulnerability of the cache for various benchmarks
and on an average it overestimates it by about 12%.

To achieve fine-grained vulnerability estimation in gemV, I instrument every hard-
ware component modeled in the gem5 out-of-order processor with a Vulnerability
Tracker — which tracks the read /write accesses on each component and thereby com-

putes their respective vulnerable periods at the field level granularity. In this, with

the knowledge of the type of instruction accessing the hardware, instruction specific

10

\Cache Vulnerability Word-level vs. Block-level

—_
(=3
(=}

Cache Vulnerability %
) = o (= ~1 =] O
(=} (=} (=} (=} (=} (=} (=}

593
(=]
T

10 r

> 4‘@ i°® &

&
N od

Benchmarks

Figure 3.2: Cache Vulnerability Comparison Between a Coarse-Grained and Fine-
Grained Model for Various Benchmarks. Coarse-grained Models Vulnerability at
Block-level While Fine-grained Models Cache at Word-level. The Coarse-grained
Model Overestimates Cache Vulnerability By an Average 12%

vulnerability modeling can be applied. For instance, if an ALU instruction is passing
through the Rename/IEW pipeline stage, the vulnerability tracker only tracks the
vulnerability of the bits that are vulnerable for an ALU instruction. For the cache,
accesses to a word (in a cache-block) is monitored individually, and based on the con-
figured working of the cache architecture (movement of blocks between cache levels

and memory), the vulnerability periods are computed accurately.

Accurate modeling of the vulnerability of shared data structures in gemb5:
As shown in Fig. 3.3, gemb uses the dynamic instruction structure to handle the in-
tricacies of microarchitectural simulation in software. This structure is shared across

multiple hardware components such as the pipeline registers. This is done for ease

11

~

N\

Fetch Decode Fetch Decode
Queue Queue Queue Queue
. . Dynamic Dynamic
Dynamic Instruction Insfruction Instruction
GEM5 GEMV

Figure 3.3: Shared Dynamic Instruction in Gemb is Split Among Individual Hard-
ware Structures in GemV for Realistic Hardware Modeling.

of programming and fast simulation. However, this is not how the hardware would
work. Accurate vulnerability estimation requires that all hardware structures be in-
dependently analyzed. To achieve this, I modified the gemb framework to separate
all the hardware components using the dynamic instruction and track their states
independently. This allows us to estimate the vulnerability and inject faults on each

hardware component independently.

Accurate modeling of the vulnerability of squashed instructions: Correctly
accounting for vulnerability when an instruction is squashed improves accuracy. An
instruction is squashed due to mis-speculation in an out-of-order processor. Under
these conditions, most of the bits used by the instruction are considered not vulner-
able. However, certain bits are still vulnerable. As shown in Fig. 3.4, the rename
map is used to maintain a mapping between architectural and physical registers. The

rename map uses a history buffer to maintain the previous mapping of an architec-

12

Non-vulnerable

Rename Map If mstruction is committed, do not restore rename map
Architectural Physical
Register Index | Register Index His“,ry Buffer
Sequence Architectural 0O1d Physical New Physical
1 21 Number Register Index Register Index Register Index
100 1 11 21
Vulnerable

Rename Map

If instruction 1s squashed, restore rename map

Architectural Physical .
Register Index |Register Index History Buffer
N Sequence Architectural 0O1d Physical New Physical
1 21> 11 Number | Registerlndex | Registerindex | Registerindex

100

1

T r 11 21
|

Figure 3.4: A Scenario Under Which the History Buffer is Vulnerable.

tural register. This is so that when an instruction is squashed, the processor state
can be rolled back to the last committed instruction. Therefore, when an instruc-
tion is squashed, the history buffer is vulnerable as it is read and the old mapping
written back to the rename map. Previous vulnerability estimation tools such as
Sim-SODA Fu et al. (2006) considered all squashed instructions to be not vulnerable.

However, one of the limitations of gemV is that it does not consider the effects
of software masking on vulnerability. Masking due to dynamically dead instructions

could impact the system vulnerability, but is not modeled in gemV.
3.1.2 GemV is Comprehensive

gemV is comprehensive as it models the vulnerability of all major hardware struc-

tures in a processor - such as the fetch queue, decode queue, rename queue, issue

13

Total System Vulnerability

W Register File
B Instruction Queue
M Reorder Buffer
Load-Store Queue

54% of total system vulnerability
not considered in previous works

B

B Pipeline Registers
B Rename Unit

Figure 3.5: Breakup of total processor vulnerability of which 53% has not been
modeled in previous work.

queue. I also model the complete rename map by tracking vulnerability of the re-
name map, history buffer and pipeline queue registers. Fig. 3.5 shows the breakup of
processor vulnerability in the default configuration of gem5 ARM out-of-order pro-
cessor running stringsearch benchmark. About 54% of the total system vulnerability

that gemV models has not been modeled in previous works.

Rename Map

Assembly code Arch. Reg Phy. Reg
Write to rename ma
add R1, R2, R3 .
Cycle t,
Arch. Reg Phy. Reg
Read from rename map
mul R4, R1, R2 $

Cycle t,

Figure 3.6: Vulnerability Tracking in GemV. The Tracker Tracks Read and Write
Accesses to Calculate Total Vulnerability.

I classify the hardware structures in gemb into two types for vulnerability mod-

14

eling. (i) Pipeline structures such as the fetch queue, decode queue, rename queue.
The vulnerability of these structures is modeled by tracking an instruction moving
through the pipeline. I track the cycles at which an instruction is written to and read
from a pipeline structures. (ii) Storage structures such as the register file, rename
table and history buffer. The vulnerability of these structures is modeled by inter-
instruction dependency. Reads and writes from all the instructions to these storage
structures is tracked to find vulnerable write to read intervals. As shown in Fig. 3.6,
if an instruction writes to the rename map at cycle £; and another instruction reads
from the rename map at cycle t5. Then t5 — t; is the vulnerable period of that entry
of the rename map. A vulnerability tracker records all the reads and writes to each
field in a structure along with the corresponding cycle number. When an instruction
is committed, the tracker compiles the sequence of reads and writes into vulnerable
t, and non-vulnerable periods t,,. The vulnerability of a hardware structure can be

calculated as > t, * S where S is the size of the hardware structure.
3.1.3 GemV is Validated

In order to establish the accuracy of gemV, I perform extensive fault injection on
every microarchitectural component modeled. For each fault injection run, a single-
bit in a component is flipped at a random time (during program execution). In this
validation campaign, I inject 300 faults per component for each of the ten benchmarks
from MiBench Guthaus et al. (2001) and SPEC CPU2006 Henning (2006). 300 fault
injections give us 95% confidence in the test results Leveugle et al. (2009).

Table 3.1 lists the results of the fault injection experiments. The results show that
component vulnerability estimated using gemV is about 97% accurate. Benchmarks
were chosen to minimize the effects of software masking on error propagation.

I implement the fault injection setup in gem5. For components that are modeled as

15

Table 3.1: GemV Validation Against Fault Injection. 300 Faults Injected Per Com-
ponent for Each of the Following Benchmarks: Matriz Multiplication, Hello World,
Stringsearch, Perlbench, Gsm, Qsort, Jpeg, Bitcount, Fft, and Basicmath

Component Faults Match| Mismatch Accuracy
Injected
Register file 3000 2899 101 96.63
Rename map 3000 2748 252 91.60
History buffer 3000 2781 219 92.70
Instruction 3000 2978 22 99.27
queue
Reorder buffer 3000 2760 240 92.00
Load-store 3000 2979 21 99.30
queue
Fetch queue 3000 2890 110 96.33
Decode queue 3000 2902 98 96.73
Rename queue 3000 2827 173 94.23
I2E queue 3000 2959 41 98.63
IEW queue 3000 2873 127 95.77
Overall Accuracy 96.78%

independent structures (lists, queues, etc.), I implement a wrapper to pick a random
bit and flip it during a random cycle of execution. gemb is designed such that there
is sharing of dynamic instruction information across some of the components like
ROB, LSQ and IQ. In such components, it is not possible to directly utilize the
software design to implement bit level fault injections. To circumvent this problem,
I instrument the simulator infrastructure in such a way that for each component the
bit-fields and structures can be manipulated independently.

The result of a validation run is declared as a match if the result of the fault
injection agrees with the prediction made by gemV. For example, if gemV predicts
that a bit is vulnerable, then the corresponding fault injection run should result in an
incorrect output or program failure. As shown in Table 3.1, there are 2899 matched

results and 101 mismatched results for the Register File, giving us an accuracy of

16

96.63%.
3.1.4 GemV is Flexible

gemV is flexible in its support for multiple ISAs, multi-cores and system call
simulation Binkert et al. (2011). Due to this, gemV offers several advantages in
vulnerability estimation over previous works. Firstly, gemV can estimate vulnerability
irrespective of the underlying ISA. This can be used in estimating vulnerability of the
same program across different ISAs such as x86, ARM, SPARC, etc as demonstrated
in Fig. 4.3. Secondly, gemV can estimate the vulnerability of a program running on

out-or-order processors in both single core and multi-core configurations.
3.1.5 GemV Models COTS Processors

gemV is capable of estimating vulnerability for commodity off-the-shelf (COTS)
processors. This is achieved by taking advantage of the gemb platform as an accurate
and complete simulator framework and further build on it by modeling protection
techniques such as parity and ECC protected caches. Several modern and popu-
lar embedded processors such as the ARM1156T2S, ARM Cortex A8 and AM3359
Ko et al. (2015b) use parity protection for reads and writes in their caches. The

vulnerability of programs running on such processors can be studied using gemV.
3.1.6 Limitations of GemV

While gemV offers several advantages over existing vulnerability estimation tools,
it also has a few limitations. (i) gemV does not model several masking effects such as
logical masking and dynamic dead code masking. (ii) gemV is limited by the accuracy

of the processor model in gemb.

17

3.2 GemV: Implementation in Gemb

gemV is implemented in gemb with a Vulnerability Tracker. The vulnerability
tracker is a modular plugin to the gemb code base that allows fast prototyping and
rapid development of vulnerability tracking for new components. An an instruction
passes through the pipeline, the vulnerability tracker tracks the reads and writes to
each hardware structure simulated in gem5. When the instruction is committed, the
vulnerability tracker computes its associated vulnerability.

The vulnerability tracker wraps around all reads, writes, commits and squashes
that occur in the gem5 simulation framework. For example, when an instruction
enters the rename stage, it is written in the rename table. The vulnerability tracker

captures the tick of this write as shown in 3.1.

Listing 3.1: Capturing a read in the register file with the vulnerability tracker

Full03CPU<Impl>::readArchIntReg(int reg_idx, ThreadID tid)

{
intRegfileReads++;
PhysRegIndex phys_reg = commitRenameMap[tid].lookupInt(reg_idx);
//Vulnerability tracking. Capture the register number and the CPU cycle
this->regVulTrack.vulOnRead (phys_reg, tick);

return regFile.readIntReg(phys_reg) ;

Similarly, reads are also tracked in all the micro-architectural components. When
the instruction is retired after a commit or squash, the vulnerable intervals are cal-

culated from the reads and writes as shown in 3.2.

18

Listing 3.2: Calculating vulnerable intervals when an instruction is retired

RegisterVulnerabilityCalculator: :instRetire()
{
for(int idx = 0; idx < numRegs; ++idx) {
// Iterate over the list of reads and writes to find vulnerable
intervals
if (thist[idx].empty()) {
std::list<History>::iterator hiter = hist[idx].begin();
Cycle previous_cycle = hiter->cycle;
Operation previous_op = hit->op;
while(hit != hist[idx].end()) {
// If READ after WRITE, then interval is vulnerable
if (hit->op == READ && (previous_op == READ || previous_op ==
WRITE)) {
vul += REGISTER_WIDTH*(hiter->this_cycle -
previous_cycle)/TICKS_PER_CYCLE;
b
prev_cycle = hiter->cycle;
prev_op = hiter->op;

hiter++;

19

Chapter 4

GEMV FOR DESIGN SPACE EXPLORATION

The value of gemV is in making possible fast and early DSE or Design Space
Exploration. Radiation testing requires developers to build a fully working prototype
before evaluating the reliability, and even RTL fault injection requires developers to
bring down the design to synthesizable form before reliability can be quantified. As
opposed to these, gemV allows designers to evaluate reliability at a very early high-
level modeling stage. As opposed to fault injections in micro-architecture simulator,
gemV is hundreds of times faster, since it can estimate reliability in just one simulation
run.

4.1 GemV for Hardware Design

gemV can quantitatively answer difficult performance-vulnerability trade-off ques-
tions, e.g., how does changing the issue-width in a processor affect runtime and vul-
nerability? On one hand, a wider issue-width could reduce the runtime and therefore
vulnerability. But on the other, a wider issue-width requires more sequential com-
ponents in the processor, thus increasing the vulnerability. The overall effect on
vulnerability is not obvious. With gemV, we can study the effects of such changes
and quantitatively answer such difficult questions. For our benchmarks, we observe
that vulnerability decreases when increasing issue-width from 1 to 3. Beyond this,
any increase in issue-width does not have a noticeable effect on vulnerability as any
decrease in runtime is offset by the increased hardware size.

Extending this example to a larger design space, one interesting question is, that

given an existing processor configuration, and performance leeway, how can I change

20

|Vulnerability and Runtime Variation by Hardware Configurations (stringsearch)|

"""""""""" 400!\
___________________ 350-d-----=---------—___| Runtime 2 126.28% |
Vulnerability : 390.08%
9
=)
=
S -emmmmeemmmeeeooas 300-1---=--===- R Y B
> 7 2
= X
= u e
[SJRRRTITRE 250---==mmmmmmm oo R
) \ =
= o B
S £
R — e T
=
e =
N
< i
E T R T
o g v
4 He Runtime :126.91%
‘ : o / Vulnerability : 72.03%
o i
————————— 100 Sl — —
50 100CH=Tn 2% SO9eicn 200 250 P 300

et e 100
T L AR R

- | 20 S i T H
J LI T LT ik 7,‘7“;‘.
_____________________ §() = = o f oo

Normalized Runtime (in %)

Figure 4.1: Different Hardware Configurations Generates Interesting Design Space
in Terms of Runtime and Vulnerability. Vulnerability Can be Reduced by up to 82%
With Less Than 1% Runtime Overhead by Varying Hardware Configurations.

some design parameters, e.g., cache sizes, issue width, ROB size, load store queue
size etc., to minimize the vulnerability. This can be answered with gemV by plotting
design points for runtime against vulnerability. In this experiment, we vary the
total number of entries in the Re-order Buffer(ROB), Load-Store Queue(LSQ) and
Instruction Queue(IQ) to plot a design space for stringsearch Guthaus et al. (2001)
as shown in Fig. 4.1. We establish a baseline runtime and vulnerability with sizes
of 192, 64, and 8 entries for ROB, LSQ, and I(Q respectively. A hardware designer
can use this design space to choose the required hardware configuration as dictated
by runtime and vulnerability bounds. Given a certain runtime target, the hardware
designer can now find several design points for vulnerability as shown by the grey
band in Fig. 4.1. In this example, for a runtime overhead of +2%, it is possible to

find a design point with 81% less vulnerability. Given any runtime or vulnerability

21

overhead it is now possible to find alternate design points with lower vulnerability or
runtime with gemV. Note that the benchmarks were chosen to minimize the effects

of software level masking effects.

Table 4.1: Runtime Overhead(%) For an Optimal Component Size to Minimize
Vulnerability

ROB IQ LSQ FW DW RW I2EW

Runtime Overhead % 1.18 49.55 85.36 41.74 41.43 43.89 0.65
ROB: Re-Order Buffer, IQ: Instruction Queue, LSQ: Load-Store Queue, FW: Fetch Width, DW: Decode Width,

RW: Rename Width, I2EW: Issue Width

Table 4.2: Vulnerability Overhead(%) For an Optimal Component Size to Minimize
Runtime

ROB 1Q LSQ FW DW RW I2EW

Vulnerability Overhead % | 5.83 42.85 27.89 20.12 20.28 20.64 2.46

ROB: Re-Order Buffer, 1Q: Instruction Queue, LSQ: Load-Store Queue, FW: Fetch Width, DW: Decode Width,
RW: Rename Width, I2EW: Issue Width

I also find interesting trade-offs between runtime and vulnerability by varying the
size of a component with all other components fixed. For example, Table 4.1 shows
that choosing an LSQ size for minimum vulnerability will increase runtime up to
85% for stringsearch. Similarly, Table 4.2 shows that choosing an Instruction Queue
size for minimum runtime can increase vulnerability up to 43%. I can also observe
that the trend in vulnerability and runtime variation per component. For example,
runtime is more sensitive to LSQ size than vulnerability since runtime can be reduced
by 64% while vulnerability increases by just 28%. On the other hand, both runtime
and vulnerability decrease as the issue width increases. Interestingly, the issue width
affects vulnerability more adversely than the runtime as opposed to the LSQ. Runtime
and vulnerability can be reduced by up to 21% and 59%, respectively, with increasing

issue width.

22

4.2 GemV for Software Design

|Vulnerability and Runtime Variation by Software Configurations (sorting)|

e T Runtime 122193% |
Vulnerability : 890.36%

~
(=3
(=}

D
(=3
(=}

wn
(=3
(=}

Normalized Vulnerability (in %)

400
300
200 | Runtime N $10355% | . & !_._ ___
Vulnerability : 76.56% u =
1 u =
100 —
1ol 150 200 250

Normalized Runtime (in %)

Figure 4.2: Different Software Configurations can Generate Interesting Design Space
in Terms of Vulnerability on the Same Hardware. Vulnerability can be Reduced by
91% Without Runtime Overhead With Software Changes.

gemV can also be used by the software engineer to find alternate design points with
lower vulnerability or runtime. Alternate design points can be realized with software
changes in either the algorithm, the compiler used or the level of optimization. For
example, given the choice of two sorting algorithms - such as quick sort and insertion
sort - which would be the optimal choice for the best trade-off between runtime
and vulnerability? gemV can be used to study the design space for runtime and
vulnerability due to changes in software. To study such changes, we perform an
experiment by establishing a baseline runtime and vulnerabiity for an insertion sort
algorithm compiled with gcc at the highest(O3) level of optimization. Fig. 4.2 presents
the normalized runtime and vulnerability for various combinations of algorithms,

compilers and optimization levels. We consider an array sorting application with

23

five sorting algorithms (bubble, quick, insertion, selection, and heap sorting), two
compilers (GCC and LLVM Lattner and Adve (2004)), and four optimization levels
(no optimization, O1, 02, and 03). We note that vulnerability can be reduced by
up to 91% without additional runtime overhead with software changes. The software
engineer can use this design space to choose optimal design points to meet runtime and
vulnerability requirements. In this example, switching from a selection sort algorithm
at O1 level of optimization to quick sort at O3 level of optimization reduces runtime
by 53.34% and vulnerability by 91.4%.

Table 4.3: Effects of Software Configuration(Algorithm, Optimization Level And
Compiler) On Run-time and Vulnerability (Sorting)

Mean (%) | Max (%) | Min (%)

Runtime 32.73 113.95 11.23

Algorithm
Vulnerability 140.77 1005.44 23.44
Runtime 33.03 101.19 9.69

Optimization

Vulnerability 120.39 739.46 6.06
Runtime 26.39 52.33 0.35

Compiler
Vulnerability 48.46 314.08 5.16

As summarized in Table 4.3, software changes can result in a large design space
for runtime and vulnerability. In general, vulnerability is much more sensitive to
the software configurations than runtime. The maximum increase in runtime can
be up to 114% by changing the sorting algorithm. The choice of compiler can also
affect vulnerability up to a 314%. This vulnerability-aware design space exploration
in software can allow the software designer to meet specific requirements in runtime

or vulnerability or both.
4.3 GemV for System Design

A system designer can also use gemV to make design choices in several interesting

ways. In this experiment, we will demonstrate two such examples. (i) Given a choice

24

150 I\’ulnerability and Runtime Evaluation among ISAs (stringsearch) I
b}

C—TWEQ N [2EQ MM RQ

—/Dg Q) EE1SQ
s |EZROB | EFZAIQ C—HB RN rpenans vineant BEN
= E RM ASSIRF e Runtime

100 =

- o

30

23

R EEERe

@

Poron ol
i

-

I
%st{
I

Normalized Vulnerability and Rumtime to ARM (im %a)

W

ALPHA

RN

Figure 4.3: Variation in Runtime And Vulnerability For Stringsearch Under Differ-
ent ISAs

ISA X856 SPARC

of processors running different ISAs, which one offers the best trade-off in runtime
or vulnerability? We ran this experiment by changing the ISA within gemV while
keeping all hardware sizes constant. Fig. 4.3 shows vulnerability and runtime under
different ISAs such as ARM, SPARC, x86, and ALPHA for the stringsearch bench-
mark, with no change in hardware and software configurations. Baseline vulnerability
and runtime are established on the ARM ISA. Stringsearch running on an ALPHA is
38% less vulnerable than an equivalent SPARC. The system designer can choose the
ARM ISA for minimum runtime or the ALPHA for minimum vulnerability.

(ii) The system designer can also study the breakdown of vulnerability to individ-
ual hardware components. This can be used to design protection techniques targeting
specific components.Fig. 4.3 shows the detailed breakdown of each component such
as HB (history buffer), RM (rename map), LSQ, 1Q, IEWQ (IEW queue), I12EQ,
RQ, DQ, FQ, RF (register file), and ROB. History buffer and IQ take up the highest

25

fraction (50%) of the vulnerability in an ARM processor while the Rename Map and
Register File contribute the most in case of SPARC and ALPHA respectively. In this
example, a protection mechanism such as ECC can be applied to the register file on
the SPARC processor. However, the same protection is not very useful on the ARM

processor as the RF contributes only 21% to the system vulnerability.

26

Chapter 5

SUMMARY

Several protection techniques against soft errors have been proposed ever since
reliability became an important design concern. The need to quantitatively study
the effectiveness of such protection techniques have led to several vulnerability es-
timation tools be proposed. However, previous vulnerability estimation tools are
incomplete, inaccurate, and inflexible due to limitations in the underlying simulator.
In this paper, we presented gemV, a comprehensive and accurate vulnerability esti-
mation based on the cycle-accurate simulator gem5. We also showed that our tool
has been validated against fault injection experiments. To demonstrate the value in
gemV as a design space exploration tool, we performed several experiments useful to
hardware and software engineers. For the hardware designer, we showed the effects of
microarchitectural changes on runtime and vulnerability. For the software designer,
we showed the effects of the algorithm, compiler and optimization level on runtime
and vulnerability. We also demonstrated the usefulness of gemV to a system designer
in designing component specific or ISA specific soft-error protection techniques. In
the future, gemV will also model the effects of software level masking. This will
improve the accuracy and comprehensiveness of our tool even further. The github

location of the gemV tool will be made publicly available on publishing of this paper.

27

REFERENCES

Alkhalifa, Z., V. S. Nair, N. Krishnamurthy and J. A. Abraham, “Design and evalu-
ation of system-level checks for on-line control flow error detection”, Parallel and
Distributed Systems, IEEE Transactions on 10, 6, 627-641 (1999).

Baumann, R., “Soft errors in advanced computer systems”, Design Test of Computers,
I[EEE 22, 3 (2005).

Binkert, N., B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hest-
ness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5 simulator”, ACM
SIGARCH Computer Architecture News 39, 2 (2011).

Biswas, A., P. Racunas, J. Emer and S. S. Mukherjee, “Computing accurate AVF's
using ACE analysis on performance models: A rebuttal”, Computer Architecture
Letters 7, 1, 21-24 (2008).

Blome, J., S. Mahlke, D. Bradley and K. Flautner, “A microarchitectural analysis
of soft error propagation in a production-level embedded microprocessor”, in “In
Proceedings of the First Workshop on Architecture Reliability”, (2005).

Butko, A., R. Garibotti, L. Ost and G. Sassatelli, “Accuracy evaluation of gemb sim-
ulator system”, in “Reconfigurable Communication-centric Systems-on-Chip (Re-
CoSoC), 2012 7th International Workshop on”, pp. 1-7 (IEEE, 2012).

Cho, H., S. Mirkhani, C.-Y. Cher, J. A. Abraham and S. Mitra, “Quantitative evalua-
tion of soft error injection techniques for robust system design”, in “Design Automa-

tion Conference (DAC), 2013 50th ACM/EDAC/IEEE”, pp. 1-10 (IEEE, 2013).

Desikan, R., D. Burger and S. W. Keckler, “Measuring experimental error in micro-
processor simulation”, in “ISCA”, (ACM, 2001a).

Desikan, R., D. Burger, S. W. Keckler and T. Austin, “Sim-alpha: a validated,
execution-driven Alpha 21264 simulator”, UT Austin, Tech. Rep. (2001b).

Dixit, A. and A. Wood, “The impact of new technology on soft error rates”, in

“IRPS”, (IEEE, 2011).

Entrena, L., M. Garcia-Valderas, R. Fernandez-Cardenal, A. Lindoso, M. Portela and
C. Lopez-Ongil, “Soft error sensitivity evaluation of microprocessors by multilevel
emulation-based fault injection”, Computers, IEEE Transactions on 61, 3, 313-322
(2012).

Fu, X., T. Li and J. Fortes, “Sim-SODA: A unified framework for architectural level
software reliability analysis”, in “MoBS”, (2006).

Guthaus, M. R., J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and R. B. Brown,
“MiBench: A free, commercially representative embedded benchmark suite”, in
“WWC”, (2001).

28

Henning, J. L., “SPEC CPU2006 benchmark descriptions”, ACM SIGARCH Com-
puter Architecture News 34, 4 (2006).

Jeyapaul, R., “Systematic methodology for the quantitative analysis of pipeline reg-
ister reliability in embedded systems”, Tech. rep., Arizona State University (2015).

Jeyapaul, R. and A. Shrivastava, “Smart cache cleaning: Energy efficient vulnerability
reduction in embedded processors”, in “CASES”, (2011).

Ko, Y., R. Jeyapaul, Y. Kim, K. Lee and A. Shrivastava, “Accurate cache vulnera-
bility modeling in presence of protection techniques”, in “Resiliency in Embedded
Elenctronic Systems (REES)”, (2015a).

Ko, Y., R. Jeyapaul, Y. Kim, K. Lee and A. Shrivastava, “Guidelines to design parity
protected write-back 11 data cache”, in “Design Automation Conference (DAC),
2015 52nd ACM/EDAC/IEEE”, pp. 1-6 (IEEE, 2015b).

Lattner, C. and V. Adve, “LLVM: A compilation framework for lifelong program
analysis & transformation”, in “CGO”, pp. 75-86 (IEEE, 2004).

Lee, 1., M. Basoglu, M. Sullivan, D. H. Yoon, L. Kaplan and M. Erez, “Survey of
error and fault detection mechanisms”, UT Austin, Tech. Rep (2011).

Leveugle, R., A. Calvez, P. Maistri and P. Vanhauwaert, “Statistical fault injection:
Quantified error and confidence”, in “DATE”, (2009).

Li, X., S. Adve, P. Bose and J. Rivers, “SoftArch: An architecture-level tool for
modeling and analyzing soft errors”, in “DSN”, (2005).

Mahatme, N., N. Gaspard, S. Jagannathan, T. Loveless, B. Bhuva, W. Robinson,
L. Massengill, S.-J. Wen and R. Wong, “Impact of supply voltage and frequency

on the soft error rate of logic circuits”, Nuclear Science, IEEE Transactions on 60,
6, 42004206 (2013).

Martinez-Alvarez, A., S. Cuenca-Asensi, F. Restrepo-Calle, F. R. P. Pinto,
H. Guzman-Miranda and M. A. Aguirre, “Compiler-directed soft error mitigation
for embedded systems”, Dependable and Secure Computing, IEEE Transactions
on 9, 2, 159-172 (2012).

Michel, T., R. Leveugle and G. Saucier, “A new approach to control flow checking
without program modification”, in “Fault-Tolerant Computing, 1991. FTCS-21.
Digest of Papers., Twenty-First International Symposium”, pp. 334-341 (IEEE,
1991).

Moudgill, M., P. Bose and J. H. Moreno, “Validation of Turandot, a fast processor
model for microarchitecture exploration”, in “IPCCC”, (IEEE, 1999).

Mukherjee, S. S., J. Emer and S. K. Reinhardt, “The soft error problem: An archi-
tectural perspective”, in “HPCA”, (IEEE, 2005).

29

Mukherjee, S. S., C. Weaver, J. Emer, S. K. Reinhardt and T. Austin, “A system-
atic methodology to compute the architectural vulnerability factors for a high-
performance microprocessor”, in “Micro”, (IEEE/ACM, 2003).

Naseer, R., Y. Boulghassoul, J. Draper, S. DasGupta and A. Witulski, “Critical
charge characterization for soft error rate modeling in 90nm SRAM”, in “ISCAS”,
(2007).

Nguyen, H. T. and Y. Yagil, “A systematic approach to SER estimation and solu-
tions”, in “IRPS”, (IEEE, 2003).

Nicolaidis, M., Circuit-Level Soft-Error Mitigation (Springer, 2011).

Shrivastava, A., A. Rhisheekesan, R. Jeyapaul and C.-J. Wu, “Quantitative analysis
of control flow checking mechanisms for soft errors”, in “DAC”, (2014).

30

