
gemV: A Validated Toolset for the
Early Exploration of System Reliability

Karthik Tanikella∗, Yohan Ko†, Reiley Jeyapaul‡, Kyoungwoo Lee† and Aviral Shrivastava∗
∗School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Arizona, US

Email: {karthik.tanikella, aviral.shrivastava}@asu.edu
†Department of Computer Science, Yonsei University, Seoul, Korea

Email: {yohan.ko, kyoungwoo.lee}@yonsei.ac.kr
‡ARM Research, Cambridge, UK
Email: reiley.jeyapaul@arm.com

Abstract—Decades of technology scaling has brought the threat
of soft errors to modern embedded processors. Though several
methods have been proposed to protect systems from soft errors,
their effectiveness in ensuring error-free computing cannot be
guaranteed; without accurate and quantitative estimation of
system reliability. The metric vulnerability – which defines the
likelihood of device failure by accurately evaluating the time it
is exposed to soft errors – provides the most effective means
to perform early design space explorations to estimate system
reliability in the presence of transient soft errors. In this paper,
we present gemV – the first accurate and comprehensive vulner-
ability estimation toolset, which is configurable and extendible to
analyse future/novel architecture and microarchitecture designs.
Some of the key features of gemV are: (1) all possible microarchi-
tecture components that store bits, even temporarily, are modeled
for their vulnerability in the gem5 cycle-accurate simulation
platform, (2) its models have been validated (<3% correlation
error with 90% statistical confidence) through exhaustive bit-
level fault injection experiments, (3) the analytical models have
incorporated microarchitecture-level masking effects like specu-
lative executions, flushes, and etc. (4) the modular design of the
vulnerability models make it easy to be extended and integrated
when novel microarchitecture designs are explored. In addition
to microarchitecture-level evaluation of system reliability, gemV
provides a means to perform software-level design space explo-
rations – that explore performance-vulnerability trade-offs of
algorithm choices, compilers used, compiler optimization levels,
etc. A system designer can further use gemV to explore the
performance-vulnerability trade-offs of choosing different ISAs.

I. INTRODUCTION

A soft error is a transient bit flip in the processor caused
by a number of sources both internal and external to the chip.
Among the sources of errors, charge carrying cosmic particles
(alpha particles, protons, and even low energy neutrons) have
been shown to significantly impact technology nodes sub
45nm [1], [2]. Technology scaling below 10nm dimensions,
only exacerbates the vulnerability of devices to such charge
carrying particle strikes [3], [4]. As applications of computing
systems expands from embedded safety-critical systems [5] to
large HPC systems [6], the possible cost of random transient
errors involves exorbitant costs in operation and sometimes
even loss of life.

Over the years, researchers have proposed many techniques
across design layers, to protect modern processors from soft
errors [7]. A system architect would always have to make

a trade-off analysis between reliability and efficiency; but
there does not exist to date a standard methodology for
quick and accurate reliability evaluation of system designs.
Traditionally, fault injection campaigns have been used to
evaluate the effectiveness of protection schemes against soft
errors [8]. Faults (bit-flip) are injected into a random bit of the
microarchitecture or RTL at a random time, and any deviation
from expected behavior is considered a failure. For thorough
examination of a processor design exhaustive fault injection
experiments on all the bits in the hardware is required, which
is not practically possible [9]. Previous works have used
statistical methods based on probability theory to estimate
failure rate with a reduced number of fault injection runs [10].
However, the accuracy and relevance of such methods, to
real-life applications is dependent heavily on the type and
randomness of the faults injected. In addition, a fault injection
campaign is very difficult to set up correctly and is often
flawed [11], [12].

An effective alternate method to estimate failure rate is the
metric vulnerability – which defines the probability of failures
in a system, as the proportion of hardware bits in the processor
carrying useful data that will be used by the system [13],
[14]. In other words, a datum or bit b in the processor is
considered vulnerable in time t if an error in this datum will
be consumed by the processor in any time t + n, with the
potential to cause failures in the execution and/or program
output. The vulnerability of that datum is then n bit− cycles.
For a system, the sum (in bit-cycles) that bits in the processor
are vulnerable during program execution, is the vulnerability
of the system. Unlike fault injections, vulnerability analysis
can be performed in a single simulation run since it is
based on microarchitectural working of each component in the
processor. This, therefore becomes the only viable method to
perform efficient fast and early design space exploration [15],
[16] across design layers – hardware specifications, software
options, and even architecture choices.

Researchers have presented methods to estimate the vul-
nerability based on cycle-accurate simulators [14], [17], [18].
However, there is still a need for an validated, comprehensive,
and flexible vulnerability modeling: (a) prior vulnerability
estimation tools are incomprehensive as they evaluate only a



subset of the microarchitectural components, (b) most of the
existing tools cannot provide configurable vulnerability mod-
eling (e.g., varying ISA, full-system execution, and multi-core
systems) and accurate vulnerability modeling (e.g., register
renaming unit pipeline queues) which is due to the underlying
simulation platform used, and (c) the accuracy of vulnerability
modeling in previous tools are not validated through extensive
fault injection campaigns or other schemes.

In this work, we present gemV: a tool for accurate and com-
prehensive vulnerability estimation based on gem5 [19] – a
popular cycle-accurate system-level simulation platform [20].
For instance, gem5 explicitly models most of the microar-
chitectural components of an out-of-order processor, various
ISAs, multicore processors, and system calls. And, extensive
fault injection experiments validate gemV to 97% accuracy
with 90% confidence. gemV also comprehensively models
the vulnerability for all the microarchitectural components
of out-of-order processors. gemV presents the most effective
toolset for early design space exploration of reliability in
the presence of soft error failures. It enables us to answer
key design questions such as: (i) Can we decrease the
vulnerability by just changing hardware configurations with
comparable performance? (ii) Can software engineers improve
the hardware-level reliability against soft errors? In a program,
the algorithm, the optimization-level of the compiler can also
affect the runtime and vulnerability. (iii) System designers
can alternate ISAs for better performance, but how can they
ensure that protection mechanisms for the previous ISA still
works for alternative ISA? The trade-offs between runtime
and vulnerability can now be answered rapidly and accurately
using the gemV toolset.

In our demonstrations of the capabilities of gemV, we
perform a wide range of design space explorations, and
observe that vulnerability varies by changing architectural
parameters like the number of entries in reorder buffer (ROB),
instruction queue (IQ), load store queue (LSQ), and pipeline
queues. Among configurations, there is an interesting design
configuration with 82% less vulnerability at most 1% per-
formance penalty. A software designer can also use gemV
to find the least vulnerable algorithm for a program. For
example, we show that switching from a selection sort to a
quicksort algorithm can affect the system vulnerability by 91%
with the fixed configurations. With the perspective of system
designers, it is interesting that the distribution of vulnerabilities
among microarchitectural components is sensitive to the ISA.
While protecting register rename map and register file will
be the most effective in SPARC architecture (more than 75%
vulnerability reduction), but the protection will only reduce
the vulnerability by 21% in ARM architecture. In contrast,
protecting history buffer and IQ will be the most effective in
ARM architecture in our study.

II. GEMV: COMPREHENSIVE AND VALIDATED
VULNERABILITY ESTIMATION

Vulnerability has been used as an alternative metric for the
failure rate of architectural components against soft errors. A

bit b in a microarchitectural component at the specific time
t during execution time is vulnerable if a soft error into
(b, t) may result in system failure. Otherwise, (b, t) is not
vulnerable. Vulnerability is the sum of these vulnerable bits
in microarchitectural components of a processor. The unit of
vulnerability is bit × cycle in order to consider both time
and space domains. Assume that 2 bits in a microarchitectural
component are vulnerable for 5 cycles. The vulnerability of
this microarchitectural component is 10 bit × cycles (= 2
bits × 5 cycles). In a processor, a bit which may induce
failures should be tracked to estimate the vulnerability based
on behaviors of microarchitectural components. Note that
the vulnerability estimation can be performed in just one
simulation run.

In order to estimate the vulnerability, prior works have ex-
ploited cycle-accurate and software-based simulators. Mukher-
jee et al. [14] proposed AVF (Architectural Vulnerability
Factor) based on Asim [21] that simulates Itanium2-like IA64
processors. Li et al. [17] proposed SoftArch models the
error generation and propagation based on the probabilistic
theory in Turandot simulator [22]. Sim-SODA [18] has been
proposed to estimate the vulnerability of microarchitectures
based on Sim-Alpha simulator [23]. However, previous works
are incomprehensive, unavailable for public use, inextensible,
and not validated.

First off, gemV is comprehensive as it models the vul-
nerability of all major hardware structures in an out-of-
order processor. Previous vulnerability modeling techniques
are incomprehensive since they estimate the vulnerability of
just a small subset of the microarchitectural components of the
processor. In [14], [17], they do not model the vulnerability
estimation for register files, memory hierarchy, and pipeline
structures. Sim-SODA considers more components than the
other estimation tools, but it still does not model the vulnera-
bility for pipeline queues and renaming units. We model the all
the out-of-order components and complete register renaming
unit. Comprehensiveness is an important quality to study the
breakdown of vulnerabilities of a specific hardware structure as
a percentage of the total processor vulnerability. This is useful
in studying the effectiveness of new protection mechanisms
and also in designing new protection mechanisms to target
the hardware structure contributing the highest percentage of
the overall system vulnerability. Fig. 1 shows the breakup of
processor vulnerability in the default configuration of gem5
ARM out-of-order processor running stringsearch benchmark.
More than half of the total system vulnerability (54%) that
we model has not been modeled in previous works (i.e.,
pipeline queues and renaming unit). Thus, gemV can provide
the entire system-level vulnerability rather than just sum of
vulnerabilities of a few microarchitectural components.

Secondly, gemV can provide the accurate and flexible vul-
nerability modeling due to gem5 simulator. Since vulnerability
analysis is based on simulated behaviors of each compo-
nent, the accuracy and configurability of simulator affects
that of vulnerability modeling. Previous tools are inflexible
and inaccurate due to the limitations of simulators they



Fig. 1. About 54% of the vulnerability (i.e., vulnerabilities of pipeline queues
and register renaming units) has not been considered in previous works

use. Vulnerability estimation techniques in [14], [17] use the
proprietary and private tools which model Intel’s Itanium 2-
like processor and IBM’s Power-PC, respectively. Sim-SODA
estimates the vulnerability based on publicly available Sim-
Alpha simulator, but it is limited to ALPHA and single-core
processors. And, Sim-Alpha has been shown to be up to 43%
inaccurate in runtime estimations [24] as compared to real
hardwares. Further, Sim-Alpha does not model the floating
point pipeline execution accurately.

We use gem5 simulator to implement the vulnerability mod-
eling since gem5 can provide up to 99% accuracy as compared
to the real hardware board [20]. Moreover, gem5 simulator is
updated actively since it is based on open source infrastructure.
gemV is also flexible in its support for multiple ISAs, multi-
cores, and system call simulation. Due to this, gemV offers
several advantages in vulnerability estimation over previous
works. gemV can estimate vulnerability irrespective of the
underlying ISA. This can be used in estimating vulnerability of
the same program across different ISAs such as X86, ARM,
SPARC, and ALPHA as demonstrated in Fig. 4. gemV can
estimate the vulnerability of a program running on out-or-order
processors in both single core and multi-core configurations.

Lastly, we perform extensive fault injection campaigns in
all the microarchitectural components in gem5 as listed in
Table I in order to validate our vulnerability estimations in
gemV. For each microarchitectural component, we inject a
single bit-flip in a microarchitectural bit chosen at random,
at randomly selected cycle per each execution of a program in
gem5. we inject 300 faults per component for each of ten
benchmarks from MiBench [25] and SPEC CPU2006 [26]
for the comprehensive simulations. Note that gem5 simulator
shares the same information of instructions among ROB, LSQ,
and IQ, i.e., a bit flip into one component can affect the
behaviors of all these three components. Thus, we modify
gem5 by duplicating fields in order to observe single bit flip’s
impact on a specific component exclusively.

In our fault injection campaigns, we run 300 simulations per
component. Theoretically, 300 simulations are large enough
to observe the statistical fault injection based experiments re-

TABLE I
GEMV VALIDATION AGAINST FAULT INJECTION. 300 FAULTS INJECTED

PER COMPONENT FOR EACH OF THE FOLLOWING 10 BENCHMARKS: matrix
multiplication, hello world, stringsearch, perlbench, gsm, qsort, jpeg,

bitcount, fft, AND basicmath

Component Faults
Injected

Matched
Results

Mismatched
Results

Accuracy
(in %)

Register file 3,000 2,899 101 96.63
Rename map 3,000 2,748 252 91.60
History buffer 3,000 2781 219 92.70
Instruction queue 3,000 2,978 22 99.27
Reorder buffer 3,000 2,760 240 92.00
Load-store queue 3,000 2,979 21 99.30
Fetch queue 3,000 2,890 110 96.33
Decode queue 3,000 2,902 98 96.73
Rename queue 3,000 2,827 173 94.23
I2E queue 3,000 2,959 41 98.63
IEW queue 3,000 2,873 127 95.77

Overall Accuracy 96.78

gardless of an initial population size with the 90% confidence
level [27]. Experimentally, we also validate that 300 runs can
provide the stable results for all the components as compared
to validation results with more than 300 runs. We have injected
1 through 2,000 single-bit flips randomly by incrementing 1
for each microarchitectural component into a benchmark. If the
number of runs is smaller than 300, the accuracy is unstable.
However, if the number of runs is equal to or larger than 300,
the accuracy is stable. Indeed, the difference is less than 2%
among all the runs over 300 in our simulations. Thus, 300 runs
per microarchitectural component should be large enough to
validate our gemV with fault-injection campaigns.

Table I lists the results of our fault injection experiments
for each microarchitectural component. The results show that
component vulnerability estimated using gemV is about 97%
accurate. Benchmarks are chosen to minimize the effects
of software-level masking effects on error propagation. The
result of a validation run is declared as a match if the result
of the fault injection agrees with the prediction made by
gemV. For example, if gemV predicts that a bit is vulnerable,
then the corresponding fault injection run should result in an
incorrect output or program failure. As shown in Table I, we
observe 2,899 matched ones and 101 mismatched results for
the register file, giving us an accuracy of 96.63%.

III. GEMV: TOOL FOR FAST AND EARLY DSE

The value of gemV is in making possible fast and early
DSE or Design Space Exploration. Radiation testing requires
developers to build a fully working prototype before evaluating
the reliability, and even register-transfer level fault injection
requires developers to bring down the design to synthesizable
form before reliability can be quantified. As opposed to these,
gemV allows hardware architects, software engineers, and
system designers to evaluate the reliability at a very early high-
level design stage.

A. gemV for Hardware Implementation

Extending hardware configuration to a larger design space,
one interesting question is, that given an existing processor
configuration, and performance leeway, how can we change



Fig. 2. Different hardware configurations generates interesting design space
in terms of runtime and vulnerability. Vulnerability can be reduced by up to
81% with less than 1% runtime overhead by varying hardware configurations.

some hardware configurations to minimize the vulnerability.
This can be answered with gemV by plotting design points
for runtime against vulnerability. In this experiment, we vary
the total number of entries in ROB, LSQ, IQ, and pipeline
queues to plot a design space for a benchmark stringsearch
in MiBench suites [25] as shown in Fig. 2. We establish a
baseline runtime and vulnerability with sizes of 192, 64, and
8 entries for ROB, LSQ, and IQ respectively. A hardware
designer can use this design space to choose the required hard-
ware configuration as dictated by runtime and vulnerability
bounds. Given a certain runtime target, the hardware designer
can now find several design points for vulnerability as shown
by the grey band in Fig. 2. In this example, for a runtime
overhead of 1%, it is possible to find a design point with 81%
less vulnerability. Given any runtime or vulnerability overhead
it is now possible to find alternate design points with lower
vulnerability or runtime with gemV.

B. gemV for Software Development

gemV can also be used by the software engineer to find
alternate design points with lower vulnerability or runtime.
Alternate design points can be realized with software changes
in either the algorithm, the compiler used or the level of
optimization. For example, given the choice of two sorting
algorithms - such as quicksort and insertion sort - which
would be the optimal choice for the best trade-off between
runtime and vulnerability? gemV can be used to study the
design space for runtime and vulnerability due to changes in
software. To study such changes, we perform an experiment
by establishing a baseline runtime and vulnerability for an
insertion sort algorithm compiled with gcc at the highest
(O3) level of optimization. Fig. 3 presents the normalized
runtime and vulnerability for various combinations of algo-
rithms, compilers and optimization levels. We consider an
array sorting application with five sorting algorithms (bubble,
quick, insertion, selection, and heap sorting), two compilers
(GCC and LLVM [28]), and four optimization levels (no
optimization, O1, O2, and O3). We note that vulnerability can

be reduced by up to 91% without additional runtime overhead
with software changes. The software engineer can use this
design space to choose optimal design points to meet runtime
and vulnerability requirements. In this example, switching
from a selection sort algorithm at O1 level of optimization
to quicksort at O3 level of optimization can reduce runtime
by 53% and vulnerability by 91%.

Fig. 3. Different software configurations can generate interesting design space
in terms of vulnerability on the same hardware. Vulnerability can be reduced
by 91% without runtime overhead by software changes.

C. gemV for System Design
A system designer can also use gemV to make design

choices in several interesting ways. In this experiment, we
will demonstrate two such examples. (i) Given a choice
of processors running different ISAs, which one offers the
best trade-off in runtime or vulnerability? We have run this
experiment by changing the ISA within gemV while keeping
all hardware sizes constant. Fig. 4 shows vulnerability and
runtime under different ISAs such as ARM, SPARC, x86, and
ALPHA for the stringsearch benchmark, with no change in
hardware and software configurations. Baseline vulnerability
and runtime are established on the ARM ISA. A benchmark,
stringsearch, running on an ALPHA is 38% less vulnerable
than that on SPARC. The system designer can choose the
ARM ISA for minimum runtime or the ALPHA for minimum
vulnerability.

(ii) The system designer can study the breakdown of vulner-
ability to individual hardware components. This can be used
to design protection techniques targeting specific components.
Fig. 4 shows the detailed breakdown of each component such
as HB (history buffer), RM (rename map), LSQ, IQ, IEWQ
(IEW queue), I2EQ, RQ (rename queue), DQ (decode queue),
FQ (fetch queue), RF (register file), and ROB. History buffer
and IQ take up the highest fraction (50%) of the vulnerability
in an ARM processor while the Rename Map and Register
File contribute the most in case of SPARC and ALPHA
respectively. In this example, a protection mechanism such
as ECC can be applied to the register file on the SPARC
processor. However, the same protection is not very useful
on the ARM processor as the RF contributes only 21% to the
system vulnerability.



Fig. 4. Variation in runtime and vulnerability for stringsearch under different
ISAs. Bars show vulnerability and diamond points indicate runtime

IV. CONCLUSION

Several protection techniques against soft errors have been
proposed ever since reliability became an important design
concern. The need to quantitatively study the effectiveness of
such protection techniques have led to several vulnerability
estimation tools be proposed. However, previous vulnerability
estimation tools are incomplete, inaccurate, and inflexible. In
this paper, we presented gemV, a comprehensive and accurate
vulnerability estimation based on the cycle-accurate simulator
gem5. We also showed that our tool has been validated against
fault injection experiments. To demonstrate the value in gemV
as a design space exploration tool, we performed several
experiments useful to hardware and software engineers. For
the hardware designer, we showed the effects of microarchi-
tectural changes on runtime and vulnerability. For the software
designer, we showed the effects of the algorithm, compiler
and optimization level on runtime and vulnerability. We also
demonstrated the usefulness of gemV to a system designer
in designing component specific or ISA specific soft-error
protection techniques. In the future, gemV will also model
the effects of software level masking. This will improve the
accuracy and comprehensiveness of our tool even further.

ACKNOWLEDGMENT

This research was supported in part by Basic Science
Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Science, ICT and
future Planning (NRF-2015R1A2A1A15053435), by Next-
Generation Information Computing Development Program
through the NRF funded by the Ministry of Science, ICT &
Future Planning (NRF-2015M3C4A7065522), and by funding
from National Science Foundation grants CCF 1055094 (CA-
REER), and CNS 1525855.

REFERENCES

[1] R. Baumann, “Soft errors in advanced computer systems,” Design Test
of Computers, IEEE, vol. 22, no. 3, 2005.

[2] A. Dixit and A. Wood, “The impact of new technology on soft error
rates,” in Reliability Physics Symposium (IRPS), 2011 IEEE Interna-
tional, 2011, pp. 5B.4.1–5B.4.7.

[3] A. Martinez-Alvarez, S. Cuenca-Asensi, F. Restrepo-Calle, F. R. P. Pinto,
H. Guzman-Miranda, and M. A. Aguirre, “Compiler-directed soft error
mitigation for embedded systems,” Dependable and Secure Computing,
IEEE Transactions on, vol. 9, no. 2, pp. 159–172, 2012.

[4] N. Mahatme, N. Gaspard, S. Jagannathan, T. Loveless, B. Bhuva,
W. Robinson, L. Massengill, S.-J. Wen, and R. Wong, “Impact of supply
voltage and frequency on the soft error rate of logic circuits,” Nuclear
Science, IEEE Transactions on, vol. 60, no. 6, pp. 4200–4206, 2013.

[5] J. Yoshida, “Toyota case: Single bit flip that killed,” EE Times, vol. 8,
2013.

[6] R. A. Ashraf, R. Gioiosa, G. Kestor, R. F. DeMara, C.-Y. Cher, and
P. Bose, “Understanding the propagation of transient errors in HPC
applications,” in SC. ACM, 2015, pp. 72:1–72:12.

[7] I. Lee, M. Basoglu, M. Sullivan, D. H. Yoon, L. Kaplan, and M. Erez,
“Survey of error and fault detection mechanisms,” UT Austin, Tech. Rep,
2011.

[8] L. Entrena, M. Garcia-Valderas, R. Fernandez-Cardenal, A. Lindoso,
M. Portela, and C. Lopez-Ongil, “Soft error sensitivity evaluation of
microprocessors by multilevel emulation-based fault injection,” Com-
puters, IEEE Transactions on, vol. 61, no. 3, pp. 313–322, 2012.

[9] H. T. Nguyen and Y. Yagil, “A systematic approach to SER estimation
and solutions,” in IRPS. IEEE, 2003.

[10] Z. Alkhalifa, V. S. Nair, N. Krishnamurthy, and J. A. Abraham, “Design
and evaluation of system-level checks for on-line control flow error
detection,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 10, no. 6, pp. 627–641, 1999.

[11] A. Shrivastava, A. Rhisheekesan, R. Jeyapaul, and C.-J. Wu, “Quanti-
tative analysis of control flow checking mechanisms for soft errors,” in
DAC, 2014.

[12] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra,
“Quantitative evaluation of soft error injection techniques for robust
system design,” in DAC, 2013, pp. 1–10.

[13] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error problem:
An architectural perspective,” in HPCA. IEEE, 2005.

[14] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor,” in Micro. IEEE/ACM,
2003.

[15] A. Biswas, P. Racunas, J. Emer, and S. S. Mukherjee, “Computing
accurate AVFs using ACE analysis on performance models: A rebuttal,”
Computer Architecture Letters, vol. 7, no. 1, pp. 21–24, 2008.

[16] R. Jeyapaul and A. Shrivastava, “Smart cache cleaning: Energy efficient
vulnerability reduction in embedded processors,” in CASES, 2011.

[17] X. Li, S. Adve, P. Bose, and J. Rivers, “SoftArch: An architecture-level
tool for modeling and analyzing soft errors,” in DSN, 2005.

[18] X. Fu, T. Li, and J. Fortes, “Sim-SODA: A unified framework for
architectural level software reliability analysis,” in MoBS, 2006.

[19] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
2011.

[20] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli, “Accuracy evaluation
of gem5 simulator system,” in ReCoSoC. IEEE, 2012, pp. 1–7.

[21] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. Manne, S. S.
Mukherjee, H. Patil, S. Wallace, N. Binkert et al., “Asim: A performance
model framework,” Computer, vol. 35, no. 2, pp. 68–76, 2002.

[22] M. Moudgill, P. Bose, and J. H. Moreno, “Validation of Turandot, a fast
processor model for microarchitecture exploration,” in IPCCC. IEEE,
1999.

[23] R. Desikan, D. Burger, S. W. Keckler, and T. Austin, “Sim-Alpha: a
validated, execution-driven Alpha 21264 simulator,” UT Austin, Tech.
Rep., 2001.

[24] R. Desikan, D. Burger, and S. W. Keckler, “Measuring experimental
error in microprocessor simulation,” in ISCA. ACM, 2001.

[25] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in WWC, 2001.

[26] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, 2006.

[27] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in DATE, 2009.

[28] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in CGO. IEEE, 2004, pp. 75–86.


