
COMSAT: Modified Modulo Scheduling Techniques for

Acceleration on Unknown Trip Count and Early Exit Loops

by

Quoc Long Vinh Ta

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved October 2022 by the
Graduate Supervisory Committee:

Aviral Shrivastava, Chair
Chaitali Chakrabarti

Michel Kinsy

ARIZONA STATE UNIVERSITY

December 2022

ABSTRACT

Coarse-grain reconfigurable architectures (CGRAs) have shown significant improve-

ments as hardware accelerator whilst demanding low power. Such acceleration inher-

its from the nature of instruction-level parallelism and exploited by many techniques.

Modulo scheduling is a popular approach to software pipelining techniques that pro-

vides an efficient heuristic to accelerations on loops, repetitive regions of an applica-

tion. Existing scheduling algorithms for modulo scheduling heuristic persist on loop

exiting problems that limit CGRA acceleration to only loops with known trip count

and no exit statements. Another notable limitation is the early exit problem, where

loops can only terminate after certain iterations as CGRA moves to kernel stage.

In attempts to circumvent such obstacles, COMSAT introduces a modified modulo

scheduling technique that acts as an external module and can be applied to any ex-

isting scheduling/mapping algorithms with minimal hardware changes. Experiments

from MiBench and Rodinia benchmark suites have shown that COMSAT achieved an

average speedup of 3x in overall benchmarks and 10x speedup in kernel regions. With-

out COMSAT techniques, only 25% of said loops would have been able to accelerate,

reducing benchmark and kernel speedups to 1.25x and 3.63x respectively.

i

DEDICATION

Sincere thanks to my family for always being by my side and providing uninterrupted

supports.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . iv

LIST OF FIGURES . v

CHAPTER

1 INTRODUCTION . 1

2 RELATED WORKS . 5

3 BACKGROUND AND DEFINITION . 8

4 COMSAT . 11

4.1 Epilog Adjustment . 12

4.2 Prolog Schedule Generation . 14

4.3 Circular Dependency . 17

4.4 Constraint Implementation . 18

5 EXPERIMENT . 21

5.1 COMSAT-Enabled Scalability . 23

5.2 Benchmark Speedup . 23

5.3 Mapping Quality . 25

6 CONCLUSION . 27

REFERENCES . 28

iii

LIST OF TABLES

Table Page

5.1 Benchmark Profile . 22

iv

LIST OF FIGURES

Figure Page

1.1 CGRA Comprising of Array of PEs Each With a Register File, Config-

uration Memory Containing Instructions and a Local Memory Buffer

in Each Row For Load/Store Operations. 2

1.2 (a) DFG of GEMM Benchmark. (b) Iteration Schedule of the DFG.

(c) Modulo Schedule. 3

4.1 (a) Kernel and Epilog Schedules From GEMM With Control Node

Moved Down 1 Stage. (b) Loop Stages Constructed From (a). (c)

Adjusted Epilog Schedule. 13

4.2 (a) Prolog Schedule From Fig. 1.2(c). (b)(c)(d)(e) Respective Prolog

Versions Starting From Control Node’s Cycle. 15

4.3 (a) DFG Containing Circular Dependency Created by Loop Control

Edge (LCE). (b) Route Nodes are Added To De-Circular Dependency. . 17

5.1 Benchmark and Kernel Speedup Achieved by COMSAT. 24

5.2 Effects of II When Imposing Scheduling Requirement Needed For COM-

SAT. 25

v

Chapter 1

INTRODUCTION

In the rapid advancement of technologies, especially in machine learning appli-

cations that require immense amount of computations, general purpose CPUs can-

not keep up with the demand, thus leaving the workloads to hardware accelerators.

Whilst GPUs are the most common accelerator, they suffer from energy efficiency due

to numerous low-efficiency cores (Mittal and Vetter (2014)). FPGAs help in their pro-

grammability for general purpose accelerators, but they are still power demanding.

ASICs, in contrast to GPUs and FPGAs, show their efficiency in computation but

exchange for programmability and hence production cost (Nurvitadhi et al. (2016)).

This leaves CGRA a promising candidate thanks to its high programmability and

low energy consumption. Whilst CGRA execution focuses on repetitive regions of

a program, many GPU applications can also accelerate on CGRAs (Bouwens et al.

(2008a)). Among different CGRA models including ADRES (Bouwens et al. (2008b)),

REMARC (Miyamori and Olukotun (1998)), Morphosys (Singh et al. (2000)) and

more shown in (Hartenstein (2001)), ADRES shows a promising model for general

purpose applications with high energy efficiency (60 GOps/W). The ADRES hard-

ware model consists of a 2D rectangular PE array, each houses an ALU/FU to perform

arithmetic, logic and memory operations, a register file and 2 input muxes to choose

from its 4 neighbors (overlaps at edges), as shown in Figure 1.1. Since each row of

PE shares the same memory buffer, only 1 memory operation can be executed per

row per cycle. The configuration memory stores all instructions for every PE at every

cycle. Note that above architecture does not include a predicate register file, which is

used for fully-predicated issuance scheme (Hamzeh et al. (2014)) and is not required

1

Figure 1.1: CGRA Comprising of Array of PEs Each With a Register File, Con-
figuration Memory Containing Instructions and a Local Memory Buffer in Each Row
For Load/Store Operations.

by COMSAT.

Due to the nature of software pipelining, there can be more than 1 iteration being

concurrently executed in a cycle and as for the scheduling objective, minimizing ini-

tiation interval (II) implies increasing the number of concurrent iterations. Problems

arise when a loop tries to terminate at an iteration that by the time its conditions

are evaluated, part of the succeeding iterations would have been executed and as

CGRA exits the loop, final result would reflect those exceeding trip counts. This is

known as the trip count problem and it would have been trivial if trip count was

known at compile time so that CGRAs acknowledged the exit even before evaluating

loop conditions. Unfortunately, trip count information is rarely given and accurate

accelerations on such loops become impossible without human intervention to adjust

exits, defeating purpose of compilers. In another observation, modulo scheduled loops

require some minimum numbers of iterations to accurately execute them, referred to

as the early exit problem. This is because modulo scheduled loops include 3 stages,

2

Figure 1.2: (a) DFG of GEMM Benchmark. (b) Iteration Schedule of the DFG. (c)
Modulo Schedule.

prolog, kernel and epilog, adding to some iterations that become a minimum trip

count requirement. As CGRAs must execute through all these stages before exiting,

loops with trip counts fewer than their schedules’ minimums are unreliable for execu-

tion. Another prominent issue comes from exit statements in some loops since abrupt

exits defy trip counts even when they are static, and challenge CGRA’s branching

ability required to exit. These 3 problems are ubiquitous and tremendously limit the

potential acceleration on many applications under modulo scheduling heuristic.

Consider an example of a DFG generated from the innermost kernel loop of a gen-

eral matrix multiplication (GEMM) application and its iteration schedule generated

using CRIMSON (Balasubramanian and Shrivastava (2020)), as shown respectively

in Figure 1.2(a) and (b). Figure 1.2(c) illustrates the modulo schedule with dashed

lines separating the kernel region from prolog and epilog stages. Each rectangular

box in (c) shows a set of nodes from the same iteration that are executed in the same

cycle. Each column resembles an entire iteration schedule and a row corresponds to

an executing cycle containing operations from across iterations. Note that the edge

3

going from node 16 to 14, denoted as LCE in (a), marks the dependency between

control node 16 and live out node 14. The modulo schedule in (c) also points out

the boxes containing control node and live out node to highlight their executing cy-

cles. With the focus on control node as it exits the loop in kernel stage, we can see

epilog carries an additional iteration, shown as the dashed column in epilog sched-

ule. This is because a new iteration is initiated in the same cycle as control node in

kernel, causing epilog to finish off this redundant iteration. As trip count is provided

before execution, exit signals from the control node are ignored and CGRAs would

switch to epilog 1 iteration early to account for the exceeding iteration. However,

loops with unknown trip count are unable to do so since they can only exit upon the

signal. Furthermore, we can see this schedule contains 7 columns, indicating that

CGRAs have to execute this loop for at least 7 iterations. If the loop was to exit

after the third trip count (as indicated by the early exit box in (c)), CGRAs would

have exceeded 4 iterations and caused memory fault since it may have read/written

to invalid addresses. This is known as the early exit loop problem and it happens

when loops try to exit in the prolog stage. Although above example does not have

exit statements, for the sake of problem illustration, imagine node 8 was a hypothet-

ical node evaluating conditions for the exit. As node 8 resets and issues exit signal,

CGRA finishes off the kernel trip count and branch to epilog schedule. Similar to

the unknown trip count problem, we can observe that epilog would carry 3 excessive

iterations if the loop was to exit after node 8. With COMSAT techniques applied

to the schedule in (c), operations in the exceeding iterations are excluded in epilog

stage and different prolog schedules are generated to support early exit loops. As a

result, CGRAs running on schedules refined by COMSAT do not require trip count

nor predication on any operations whilst still guaranteeing correctness.

4

Chapter 2

RELATED WORKS

Modulo scheduling technique to software pipelining is a great way to accelerate repet-

itive regions of an application, but it is not flawless since loops with multiple exits

or branches and loops without counters pose challenges (Lavery (1997)). Branching

is problematic because nodes in the DFG are scheduled to repeat themselves and

there are concurrent iterations being executed in any cycle, as branching happens,

certain nodes should not be repeated and data dependencies would be violated. Loops

with unknown trip count and exit statements face the same problem since exits are

unpredictable and they require branches to terminate loops.

The unknown trip count problem was partially addressed in (Tirumalai et al.

(1990)), by proposing a technique using rotating predicate file to support full predi-

cation issuance scheme. Specifically, a special node called wtop and its rotating pred-

icate file are used to determine whether nodes from succeeding iterations should be

executed or not. Operations in the exceeding iterations were NO-OP’ed out thanks to

the fully-predicating scheme that predicates every loop operation at runtime. How-

ever, this technique is limited to only certain loop conditions and its predicating

register size. Each element in the predicate register file corresponds to an iteration’s

predicate, a value of 1 for the element hints the CGRA to execute operations from

that trip count. Since the predicate for each iteration depends on loop conditions,

some conditions such as EQUAL or NOT EQUAL may only reset for 1 iteration that

signals the CGRA to go to epilog, iterations beyond that would still assert for execu-

tion, making exceeding iterations in the epilog stage executed. Furthermore, as every

iteration depends on a predicate register for execution, stage count, i.e. number of

5

concurrent iterations in a pipeline, is limited to the register size and hence severely

affects schedule quality in bigger loops. LASER (Balasubramanian et al. (2018)),

though did not explicitly address the problem, proposed an approach to issuing pred-

icated operations by fusing instructions. Analogous to branches in imbalanced loops,

LASER can be used to fuse live out nodes with NOOP instructions and take control

node’s result for predication. However, similar to (Tirumalai et al. (1990)), pro-

posed LASER architecture stores every instruction’s predication and still relies on a

predicate buffer which has a limited size, thus also limiting schedule quality. As the

predicate buffer also takes evaluations from loop conditions, LASER may only work

on LESS THAN or GREATER THAN conditions. (Aiken et al. (1995)) showed an

alternative approach to software pipelining by dynamically schedule nodes in different

branches at run-time depending on the predicate results. Hardware models running

under this scheduling heuristic are immune to the loop branching and exit problems.

However, this is not a modulo scheduling technique and still inherits its own chal-

lenges. COMSAT, on the other hand, does not depend on runtime predication nor

require a register file, can work on any condition of a loop whilst not being limited

to register size, enabling many more loop accelerations on CGRA and improving

scalability of modulo scheduling technique.

Many modulo scheduling and mapping algorithms (Dave et al. (2018a), Balasub-

ramanian and Shrivastava (2020), Hamzeh et al. (2012), Dave et al. (2018b), Kou

et al. (2020)) suffer from the loop exiting problems since they work under an as-

sumption that trip count is given at compile time and loops do not contain exit

statements. Therefore, when executing loops with unknown trip counts, CGRAs rely

on loop conditions to exit and not the conditions for exit statements, leading to false

terminations. Even for loops with known trip counts, CGRAs would require a lower

bound on their schedules, limiting the usability of accelerators. COMSAT proposes

6

an ideal solution to this problem by providing simple modifications to the generated

schedules whilst minimally affects scheduling quality. With COMSAT techniques ap-

plied, CGRAs are able to accelerate on many more loops that previously required

manual adjustments for correctness.

7

Chapter 3

BACKGROUND AND DEFINITION

At the first stage of compilation, targeted loop is analyzed to search for data de-

pendencies and realize data flow, which are represented in a data-flow graph (DFG).

Operations that hold or store the loop outcomes are called live out nodes and oper-

ations that evaluate loop conditions and emit exit signals are called (loop) control

nodes. Similarly, exit statements accompanied by their conditions are also recognized

as control nodes since they can terminate loops. All operations in the DFG establish

an entire iteration and an iteration schedule holds all these nodes with their execution

cycles respective to the start of an iteration (first scheduled operation). This iteration

schedule is duplicated and placed II cycles apart to realize a modulo schedule.

Modulo scheduling is a scheme to scheduling operations of an iteration such that

when the iteration is repeated every II cycles, no data dependency are violated and no

resource usage are conflicted (Rau (1996)). At a glance, once an operation is mapped

to a PE, it will be repeatedly executed in that same PE every II cycles until the loop

terminates. Modulo schedules consist of 3 stages, prolog, kernel and epilog. Kernel is

the repetitive stage of a schedule where every node of an iteration is executed. Prolog

is analogous to the filling-pipeline stage starting from the root nodes of the DFG

down to where kernel can be realized. Epilog is analogous to the draining stage of a

pipeline where no new iterations are initiated and nodes are repeated until the final

iteration is reached. Due to resource constraints from hardware models and recurrent

constraints from data dependencies, minimum II (MII) is determined and acts as an

upper bound on schedule quality. MII is calculated by Max{ResMII,RecMII},

where ResMII is MII due to resource constraint and RecMII is MII due to recurrent

8

constraint. (Balasubramanian and Shrivastava (2020)) shows how to estimate these

2 quantities. A loop stage is a set of nodes that reconstruct the same iteration in

a kernel trip count. In II cycles of kernel, all stages of an iteration schedule are

executed. Depending on the kernel start cycle, the maximum number of stages (stage

count) is as follow:

SC =

⌈
schedule cycles

II

⌉
+ 1

Loops are categorized into 2 types: pre-conditioned and post-conditioned loops.

Pre-conditioned loop is the same as while loop where its conditions has to satisfy

before going to the first iteration. Do-while loop is an example of post-conditioned

loop where its conditions apply for the succeeding iteration. In a perspective of

modulo scheduling, loop control node’s outcome applies to its belonging iteration in

pre-conditioned loops and succeeding iteration for post-conditioned loops. Techniques

proposed in this paper assume that target loops are post-conditioned. This assump-

tion is insignificant because transformation from pre-conditioned to post-conditioned

loops can be done by evaluating their conditions before starting acceleration on the

loop body.

Exit signals in post-conditioned loops imply that the iteration triggering such

signal should be the final one. Since CGRAs usually take some cycles before switching

to epilog, they accidentally initiates further iterations. With trip count being known

before acceleration, CGRAs would switch to epilog a certain number of iterations

before even realizing the exit signal. However, very few loops can ignore evaluating

their conditions at run-time. Even when trip count is given, manual adjustments are

made to account for the extra iterations that CGRAs take for switching to epilog.

Loops containing exit statements experience the same problem since trip count is

never given and the exceeded iterations are also reflected in epilog. Moreover, control

9

nodes scheduled in prolog stage cannot terminate the loop since accelerators have

to execute through kernel and epilog stages, thus modulo schedules require a lower

bound on the number of iterations, regardless of trip count status. These factors

extremely limit the number of loops that can be accelerated and diminish automation

of compilers since human intervention is involved.

10

Chapter 4

COMSAT

In the absence of trip count and with the assumption that live out nodes are sched-

uled after control nodes, the exceeded live out nodes are always reflected in epilog

schedule. Thus it is only necessary to revise epilog stage to account for the exceeding

iterations. The first part of COMSAT proposes an algorithm to find and delete nodes

from the exceeding iterations, solving the unknown trip count and exit statements

problems. In the second part, COMSAT shows how early exit loops should be ex-

ecuted and proposes an algorithm to generate different schedules for prolog stage.

When scheduling with above assumption, circular dependencies in a DFG may occur

and no valid schedule would be found in such case, COMSAT shows a simple solu-

tion to alleviating this problem in the following sections. Lastly, we show 2 examples

of how the scheduling assumption is implemented in 2 popular modulo scheduling

algorithms, IMS (Rau (1996)) and CRIMSON (Balasubramanian and Shrivastava

(2020)). The COMSAT technique suite is outlined as follow:

1. Epilog adjustment shows how loop stages are constructed to find the number of

exceeding iterations and from that, Algorithm 1 shows how exceeding iterations

are excluded from the epilog stage.

2. Prolog schedule generation solves the early exit problem by showing what nodes

should be collected and how schedule versions should look like (Algorithm 2).

3. Circular dependencies disable scheduling algorithms to find a valid schedule.

This section shows a simple solution to breaking circular graphs in DFGs.

11

Algorithm 1: Revise Epilog Schedule(epilog schedule, loop stage map,

control op)

1 N exceeding iteration←

get exceeding iteration(control op, loop stage map);

2 for N = 1→ N exceeding iteration do

3 for cycle = |epilog schedule| → 0 do

4 scheduled ops← epilog schedule[cycle];

5 for each Operation ∈ scheduled ops do

6 if is at highest stage(Operation, schedule ops, loop stage map)

then

7 remove operation(epilog schedule, Operation);

4. Constraint implementation will show how scheduling algorithms can be modified

to adhere to the scheduling assumption (Algorithm 4.4 and 4.4).

4.1 Epilog Adjustment

The epilog schedule adjustment works under a scheduling assumption that control

nodes are scheduled before live out nodes to ensure that live out nodes in the exceeding

iterations are always in epilog stage. This is because each control node only appears

once in a kernel trip count, and as it issues an exit signal, the next redundant control

node will be scheduled in epilog stage. Since live out nodes are scheduled after the

redundant control node, they are also redundant and guaranteed to be in epilog. Note

that this also applies to exit statements, as when their conditions satisfy, CGRA would

switch to epilog where exceeded live out nodes are removed from the schedule.

Figure 4.1(b) illustrates loop stages separated by dashed lines, constructed from

12

Figure 4.1: (a) Kernel and Epilog Schedules From GEMM With Control Node
Moved Down 1 Stage. (b) Loop Stages Constructed From (a). (c) Adjusted Epilog
Schedule.

13

the kernel schedule in (a). Note that this schedule in Figure 4.1(a) is taken partially

from Figure 1.2(c) with the control node hypothetically moved to either node 3 or

6 (indicated by control node’s box), we can see that control node is moved down 1

stage, leaving 2 stages above itself. Accordingly, there are now 2 iterations exceeded

in the epilog schedule (Figure 4.1(a)). Thus, the number of stages scheduled above

control nodes is the number of exceeding iterations as CGRA switches to epilog.

The redundant nodes, including live out nodes, in the exceeding iterations are then

eliminated in the epilog schedule, as shown in (c). Algorithm 1 shows how these nodes

are collected and removed. The 3-level nested loop looks at every cycle (row) in epilog

schedule from bottom up (line 3) and removes nodes that are scheduled at the highest

stage (as done in line 6 and 7), this process repeats for all exceeding iterations (line 2).

Removing nodes at the highest stage excludes redundant operations because nodes

in the top stage always belong to the latest iteration at every cycle. Although Figure

4.1(c) still shows some redundant operations in kernel, these are not live out nodes

and would not affect loop correctness.

4.2 Prolog Schedule Generation

CGRAs following modulo schedules, which are composed of several iterations,

limit themselves to loops with trip counts higher than their minimums since they

cannot exit after finishing prolog. To enable execution on early exit loops, CGRAs

should remain in prolog stage upon exit signals, and not initiate/execute further iter-

ations. COMSAT solves this problem by generating schedules modified from prolog’s,

and since there can be more than 1 exiting iteration, COMSAT has to generate as

many schedules as the number of control nodes in the prolog stage to accommodate

for every exit. Each generated schedule corresponds to an iteration where exit signal

is issued, and it should complete previous iterations whilst excluding succeeding ones.

14

Figure 4.2: (a) Prolog Schedule From Fig. 1.2(c). (b)(c)(d)(e) Respective Prolog
Versions Starting From Control Node’s Cycle.

Since there are multiple schedules added, accelerators need additional information on

which to branch to. Thus, instruction format for control nodes is modified to include

this information and architectures are slightly tweaked to support branching in pro-

log stage when loop conditions fail and CGRAs need to branch to the corresponding

schedule.

Figure 4.2(a) takes the prolog schedule from Figure 1.2(c) and shows how the gen-

erated schedules look like. Each generated schedule in (b), (c), (d) and (e) illustrates

15

Algorithm 2: Generate Prolog Schedule(prolog schedule,

iteration schedule, control op)

1 N versions← count operation(prolog schedule, control op);

2 start cycle← get cycle(iteration schedule, control op);

3 for N = 0→ N versions− 1 do

4 start cycle← start cycle+ (N ∗ II);

5 adding schedule← ∅;

6 for iter = 0→ N do

7 start cycle← start cycle− (iter ∗ II);

8 appending op← get subset(iteration schedule, start cycle);

9 append set(adding schedule, appending op, 0);

10 append set(prolog schedule, adding schedule, final prolog cycle);

the modified schedules that would be branched to if loop exits after 1, 2, 3, 4 or 5

iterations, respectively. Note that each schedule includes nodes in the previous iter-

ations and excludes nodes in the succeeding ones. Algorithm 2 shows how different

schedule versions are generated given prolog and iteration schedules. At every version

being generated from line 3, start cycle is moved down and adding schedule set is

initiated. Operations are then added to this schedule set for every iteration (line 6).

The get subset function in line 8 extracts partial iteration schedule starting from the

start cycle to the end. This partial schedule is then appended to the adding schedule

at the cycle 0 (line 9). After all intended iterations are added, the adding schedule is

appended to the end of prolog schedule in line 10 and final prolog cycle is updated.

As all possible schedules are generated, addresses pointing to each version are calcu-

lated by their relative offsets (not part of the algorithm), which are then updated to

16

Figure 4.3: (a) DFG Containing Circular Dependency Created by Loop Control
Edge (LCE). (b) Route Nodes are Added To De-Circular Dependency.

the control node’s instructions.

4.3 Circular Dependency

As algorithms schedule operations and try to meet the assumption, circular de-

pendency would happen when there is a data flow from control nodes to live out

nodes. This would fail algorithms to find a valid schedule regardless of II, yet the

solution to this problem is as simple as adding a route node to every live out that

causes circular dependency. This route node then becomes a live out itself, replaces

the role of its route source. Consider a different example leading to this problem with

a DFG shown in Figure 4.3(a). The 2 live out nodes (0 and 1) have 2 data flows both

going to the control node 6, and create 2 circular graphs (note that the edge from

node 7 to 0 does not pose circular dependency because it is an inter-iteration depen-

17

dency). To break these circular graphs, 2 route nodes, 1 for each live out, are added

and replace their sources’ roles so that control node 6 now points to these new nodes,

shown in Figure 4.3(b) and the resultant DFG shows no more circular dependency.

Although adding route nodes might affect mapping qualities, they only have effects

under limited resources as there is only 1 dependency edge for each route node.

4.4 Constraint Implementation

Although epilog’s and prolog’s techniques work as external modules coupled to

scheduling algorithms, the algorithms themselves have to be modified accordingly to

meet the scheduling requirement, yet the changes are simple. Algorithm 3 shows

a modified iterative modulo schedule algorithm from (Rau (1996)). Compare to the

original IMS algorithm, variables ControlNodeScheduled and ControlNodeT imeSlot

are added and updated in lines 21, 22, 23 to track schedule time of control nodes.

Lines 12-17 adjusts minimum time of the scheduling live out node to after variable

ControlNodeT imeSlot and if control nodes are not yet scheduled, the live outs are

pushed back for later. Algorithm 4 shows a modified routine used by CRIMSON

(Balasubramanian and Shrivastava (2020)) to find a scheduling time slot. Lines 4-11

are added to adjust ASAP times for live outs and ALAP times for control nodes.

This actively restraints the available time slots of control nodes to strictly less than

available time slots of the earliest scheduled live out.

18

Algorithm 3: Iterative Schedule(II, Budget)

1 Operation, Estart, MinTime, MaxTime, T imeSlot, ControlNodeT imeSlot

: integer

2 NeverSchedule, UnscheduledOperations : list

3 ControlNodeScheduled false;

4 for each Operation do

5 NeverSchedule[Operation] true;

6 UnscheduledOperations Operation;

7 Budget Budget� 1;

8 while UnscheduledOperations 6= ? & Budget � 1 do

9 Operation HighestPriorityOperation();

10 Estart CalculateEarlyStart();

11 MinTime Estart;

12 if Operation == liveout then

13 if ControlNodeScheduled == true then

14 if MinTime ControlNodeT imeSlot then

15 MinTime = ControlNodeT imeSlot + 1;

16 else

17 continue;

18 MaxTime MinTime + II � 1;

19 T imeSlot FindT imeSlot(Operation, MinT ime, MaxT ime);

20 Schedule(Operation, T imeSlot);

21 if Operation == control then

22 ControlNodeScheduled true;

23 ControlNodeT imeSlot T imeSlot;

24 Budget Budget� 1;

25 return (UnscheduledOperations == empty);

Algorithm 4: Find Random ModuloTime(Op, CGRA)

1 Op ASAP get RC ASAP (Op);

2 Op ALAP get RC ALAP (Op);

3 sched slot ?;

4 control Op get control node();

5 liveout Op get earliest liveout node();

6 if Op == liveout Op & Scheduled[control Op] then

7 if Prev Sched T ime[control Op] > Op ASAP then

8 Op ASAP Prev Sched T ime[control Op] + 1;

9 if Op == control Op & Scheduled[liveout Op] then

10 if Prev Sched T ime[liveout Op] > Op ALAP then

11 Op ALAP Prev Sched T ime[liveout Op] + 1;

12 time slots get all timeslots(Op ASAP, Op ALAP);

13 Randomize(time slots);

14 while sched slot == ? & |time slots| > 0 do

15 current time time slots[0];

16 if ResourceConflict(Op, current time, CGRA) then

17 time slots Subtract(current time, time slots);

18 continue;

19 else

20 sched time current time;

21 if sched slot == ? then

22 if !Scheduled[Op] k op ASAP > Prev Sched T ime[Op] then

23 sched slot op ASAP ;

24 else

25 sched slot Prev Sched T ime[Op] + 1;

26 return sched slot;

19

Algorithm 3: Iterative Schedule(II, Budget)

1 Operation, Estart, MinTime, MaxTime, T imeSlot, ControlNodeT imeSlot

: integer

2 NeverSchedule, UnscheduledOperations : list

3 ControlNodeScheduled false;

4 for each Operation do

5 NeverSchedule[Operation] true;

6 UnscheduledOperations Operation;

7 Budget Budget� 1;

8 while UnscheduledOperations 6= ? & Budget � 1 do

9 Operation HighestPriorityOperation();

10 Estart CalculateEarlyStart();

11 MinTime Estart;

12 if Operation == liveout then

13 if ControlNodeScheduled == true then

14 if MinTime ControlNodeT imeSlot then

15 MinTime = ControlNodeT imeSlot + 1;

16 else

17 continue;

18 MaxTime MinTime + II � 1;

19 T imeSlot FindT imeSlot(Operation, MinT ime, MaxT ime);

20 Schedule(Operation, T imeSlot);

21 if Operation == control then

22 ControlNodeScheduled true;

23 ControlNodeT imeSlot T imeSlot;

24 Budget Budget� 1;

25 return (UnscheduledOperations == empty);

Algorithm 4: Find Random ModuloTime(Op, CGRA)

1 Op ASAP get RC ASAP (Op);

2 Op ALAP get RC ALAP (Op);

3 sched slot ?;

4 control Op get control node();

5 liveout Op get earliest liveout node();

6 if Op == liveout Op & Scheduled[control Op] then

7 if Prev Sched T ime[control Op] > Op ASAP then

8 Op ASAP Prev Sched T ime[control Op] + 1;

9 if Op == control Op & Scheduled[liveout Op] then

10 if Prev Sched T ime[liveout Op] > Op ALAP then

11 Op ALAP Prev Sched T ime[liveout Op] + 1;

12 time slots get all timeslots(Op ASAP, Op ALAP);

13 Randomize(time slots);

14 while sched slot == ? & |time slots| > 0 do

15 current time time slots[0];

16 if ResourceConflict(Op, current time, CGRA) then

17 time slots Subtract(current time, time slots);

18 continue;

19 else

20 sched time current time;

21 if sched slot == ? then

22 if !Scheduled[Op] k op ASAP > Prev Sched T ime[Op] then

23 sched slot op ASAP ;

24 else

25 sched slot Prev Sched T ime[Op] + 1;

26 return sched slot;

20

Chapter 5

EXPERIMENT

Techniques proposed in this paper are implemented in CGRA Compilation Frame-

work (CCFV2.0) (Dave and Shrivastava (2018)) and as a modified version of an ex-

isting scheduling algorithm, CRIMSON (Balasubramanian and Shrivastava (2020)).

CCF compiles programs targeting ARMv7a single-core, single-threaded processor

along with the chosen kernel loops at O3 optimization level. Loops are compiled

by first generating DFGs using LLVM4.0 (Lattner and Adve (2004)) then passed

onto scheduling and mapping algorithms, namely CRIMSON (Balasubramanian and

Shrivastava (2020)) and PathSeeker (Balasubramanian and Shrivastava (2022)). An

instruction generator then takes the mapping output to generate binary files contain-

ing all instructions. The binary files are fed into Gem5 (Lowe-Power et al. (2020))

embedded with CGRA ADRES model (Bouwens et al. (2008b)) for simulation and

results. Experiments are run on 2 widely used benchmark suites, MiBench (Guthaus

et al. (2001)) and Rodinia (Che et al. (2009)), with applications taken from auto-

motive, telecommunication, machine learning, network, security and physics/biology

simulation fields. The CGRA model is implemented with either 8x8 or 4x4 PE con-

figuration depending loop size, and a register file of 16. Note that a predicate register

file is excluded from the hardware model because it is redundant with COMSAT.

Since simulation time depends on the host OS and may vary on workloads, it is not

a good performance metric, so we use number of cycles emulated by Gem5 instead.

21

Table 5.1: Benchmark Profile

Suite Benchmark Application COMSAT HP LASER Dynamic

MiBench Adpcm Telecom 2 2 2 2

MiBench Basicmath Automotive 1 1 1 1

MiBench Bitcount Automotive 1 0 0 1

MiBench Dijkstra Network 2 1 1 2

MiBench FFT Telecom 3 1 1 1

MiBench GSM Telecom 6 6 6 0

MiBench Patricia Network 6 2 2 6

MiBench Rijndael Security 10 4 4 9

MiBench SHA Security 3 3 3 2

MiBench StringSearch Office 3 2 2 2

MiBench Susan Automotive 12 11 11 12

Rodinia Backprop ML 5 5 5 4

Rodinia BFS Network 3 1 1 2

Rodinia B+Tree Network 18 6 6 16

Rodinia Hotspot3D Simulation 3 3 3 3

Rodinia Kmeans ML 7 2 2 7

Rodinia LUD Mathematic 2 0 0 2

Rodinia MRI-gridding Simulation 4 4 4 4

Rodinia Myocyte Simulation 9 9 9 0

Rodinia NN Network 2 0 0 2

Rodinia NW Simulation 9 5 5 3

Rodinia Srad Imaging 5 1 1 5

22

5.1 COMSAT-Enabled Scalability

Table 5.1 profiles applications from MiBench and Rodinia benchmark suites with

a number of kernel loops, that take a good portion of simulated cycles, accelerated by

COMSAT techniques and a proportion of such loops that can be accelerated by HP’s

(Tirumalai et al. (1990)) and LASER (Balasubramanian et al. (2018)) techniques, as

well as the number of unknown-trip-count loops. The table inferred that out of 116

kernel loop accelerations enabled by COMSAT, only 70 loops can be safely applied

by HP’s and LASER without exceeding intended iterations. In comparisons to exist-

ing scheduling/mapping techniques, that require human intervention for executions

on the 85 dynamic-trip-count loops, COMSAT, being an external module coupled

to the algorithms to modify the schedules, has enabled accelerations on these loops

without the required adjustments. Note that above table only profiles loops based

on their conditions, which regards to the first limitation of HP’s and LASER tech-

niques, whereas the other limitation on predicate register size depends on hardware

implementation and schedule quality, and cannot be explicitly illustrated.

5.2 Benchmark Speedup

Figure 5.1 illustrates speedups of kernel computations and entire benchmarks,

in log scale, compared to ARMv7a single-threaded processor. The kernel loops are

first compiled and mapped using PathSeeker, then applied to COMSAT for dynamic

trip count support and finally executed on CGRA, embedded in Gem5, coupled with

the ARM processor. With exceptions of SHA and LUD benchmarks, total speedup

trends with kernel speedup, showing the dominance of accelerating kernel computa-

tions with respect to the entire program. Myocyte and Needleman-Wunsch (NW)

benchmarks did not show overall improvements because large amount of computa-

23

Figure 5.1: Benchmark and Kernel Speedup Achieved by COMSAT.

tions are pre-determined (static trip count) and the kernels were written to support

acceleration using multi-threading technique instead of loops, as shown in Table 5.1

where Myocyte and NW only have 0 and 3 dynamic loops, respectively. Figure 5.1

shows that COMSAT has enabled average speedup, across MiBench and Rodinia

suites, of 3x with average kernel speedup of 10x. Without our techniques to support

dynamic trip count, accelerations would have only been possible for GSM, Myocyte

and Needleman-Wunsch benchmarks, resulted in 1.25x and 3.63x for total and kernel

speedups, respectively. Adpcm and Rijndael gave 0x acceleration because they failed

to give mapping solutions with PathSeeker under constrained time.

To better illustrate CGRA performance, we compare our results with another

paper (Bu et al. (2018)) that also aims at accelerating MiBench suite. This paper

proposes 2 techniques, loop parallelism and procedure level speculation, for acceler-

ation on both kernel loops and serial programs (control-intensive regions). Since we

mainly focus on kernel loop acceleration, only results for loop parallelism technique

are analyzed. As illustrated in Figure 6 in (Bu et al. (2018)), experiments only show

4 benchmarks in common, bitcount, dijkstra, patricia and susan, that can be put in

24

Figure 5.2: Effects of II When Imposing Scheduling Requirement Needed For COM-
SAT.

comparisons. We can observe that COMSAT has achieved upper bounds in acceler-

ations for 3 out of 4 benchmarks, except Dijkstra. Especially in Susan and Patricia

cases, COMSAT’s total benchmark speedups are comparable to their kernel speedups.

Dijkstra gave an interesting result as COMSAT only showed kernel acceleration of 2x

whilst Bu et al. (2018) achieved 10x. This is because most loops in the benchmark

involves function calls that limits CGRA execution but Bu et al. (2018) techniques

can take advantage of accelerating those loops.

5.3 Mapping Quality

As COMSAT introduces a scheduling constraint between control and live out

nodes, we then analyze how this requirement affects mapping quality. DFGs generated

by LLVM are scheduled using CRIMSON (Balasubramanian and Shrivastava (2020))

and mapped by PathSeeker (Balasubramanian and Shrivastava (2022)). When live

out nodes are scheduled before control nodes, they have to be routed down the iter-

ation and routing nodes are added, increasing complexity for PathSeeker. However,

Figure 5.2 shows that this is not the common case as COMSAT only affected II in 2

25

out of 20 benchmarks, namely Basicmath and Hotspot3D. The event was occasional

for 2 reasons, (1) it only occurs in small loops where computation branch is shorter

than loop control branch in a DFG and (2) routing nodes affect II when mapping on

smaller CGRAs with limited resources. Note that Adpcm and Rijndael benchmarks

failed to find solutions even without COMSAT because kernel loops were too large

whilst mapping time was constrained. In other benchmarks that PathSeeker gener-

ated valid mappings, COMSAT gave the same II even when PathSeeker could not

achieve the minimum, this implies the scheduling constraint does not affect mapping

qualities in these loops.

26

Chapter 6

CONCLUSION

Accelerators operating on modulo schedules have been experiencing loop exit prob-

lems and without proper hardware model modifications, loop executions often re-

flects an incorrect number of iterations and affects its final result, some cases lead

to memory issues. This article has shown solutions to such problems, bringing much

more potential acceleration on loop whilst simplifying hardware model requirements.

Experiments shows that about 75% of loops do not have static trip count, acceler-

ation on these loops would have been much more difficult and even impossible to

execute without manual adjustments. Early exit loop problem has not also been

mentioned in related topics and many assume that accelerated loops execute much

further than their minimum trip counts. While this is true for most of the bench-

marks, the limitation prevents accelerators from being more of a general purpose and

restricts themselves from many other applications.

27

REFERENCES

Aiken, A., A. Nicolau and S. Novack, “Resource-constrained software pipelining”,
IEEE Transactions on Parallel and Distributed Systems 6, 12, 1248–1270 (1995).

Balasubramanian, M., S. Dave, A. Shrivastava and R. Jeyapaul, “Laser: A hard-
ware/software approach to accelerate complicated loops on cgras”, in “2018 De-
sign, Automation Test in Europe Conference Exhibition (DATE)”, pp. 1069–1074
(2018).

Balasubramanian, M. and A. Shrivastava, “Crimson: Compute-intensive loop acceler-
ation by randomized iterative modulo scheduling and optimized mapping on cgras”,
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED
CIRCUITS AND SYSTEMS 39, 11, 3300–3310 (2020).

Balasubramanian, M. and A. Shrivastava, “Pathseeker: A fast mapping algorithm for
cgras”, in “2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE)”, pp. 268–273 (2022).

Bouwens, F., M. Berekovic, A. Kanstein and G. Gaydadjiev, Architectural Exploration
of the ADRES Coarse-Grained Reconfigurable Array (Springer Berlin Heidelberg,
2008a).

Bouwens, F., M. Berekovic, B. D. Sutter and G. Gaydadjiev, Architecture Enhance-
ments for the ADRES Coarse-Grained Reconfigurable Array (Springer Berlin Hei-
delberg, 2008b).

Bu, D., Y. Wang, L. Li, Z. Liu, W. Yu and M. Musariri, “Exploring parallelism in
mibench with loop and procedure level speculation”, in “2018 IEEE Intl Conf on
Parallel Distributed Processing with Applications, Ubiquitous Computing Commu-
nications, Big Data Cloud Computing, Social Computing Networking, Sustainable
Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom)”,
pp. 141–146 (2018).

Che, S., M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee and K. Skadron,
“Rodinia: A benchmark suite for heterogeneous computing”, in “In Proceedings of
the IEEE International Symposium on Workload Characterization (IISWC)”, pp.
44–54 (2009).

Dave, S., M. Balasubramanian and A. Shrivastava, “Ramp: Resource-aware mapping
for cgras”, in “Proceedings of the 55th Annual Design Automation Conference”,
DAC ’18 (Association for Computing Machinery, 2018a).

Dave, S., M. Balasubramanian and A. Shrivastava, “Ureca: Unified register file for
cgras”, in “2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE)”, pp. 1081–1086 (2018b).

Dave, S. and A. Shrivastava, CCF: A CGRA Compilation Framework, Arizona State
University, https://github.com/MPSLab-ASU/CCF-20.04 (2018).

28

Guthaus, M., J. Ringenberg, D. Ernst, T. Austin, T. Mudge and R. Brown, “Mibench:
A free, commercially representative embedded benchmark suite”, in “Proceedings
of the Fourth Annual IEEE International Workshop on Workload Characterization.
WWC-4 (Cat. No.01EX538)”, pp. 3–14 (2001).

Hamzeh, M., A. Shrivastava and S. Vrudhula, “Epimap: Using epimorphism to map
applications on cgras”, in “DAC Design Automation Conference 2012”, pp. 1280–
1287 (2012).

Hamzeh, M., A. Shrivastava and S. Vrudhula, “Branch-aware loop mapping on cgras”,
in “2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)”, pp. 1–6
(2014).

Hartenstein, R., “A decade of reconfigurable computing: a visionary retrospective”,
Proceedings of the conference on Design, automation and test in Europe pp. 642–
649 (2001).

Kou, M., J. Gu, S. Wei, H. Yao and S. Yin, “Taem: Fast transfer-aware effective loop
mapping for heterogeneous resources on cgra”, in “2020 57th ACM/IEEE Design
Automation Conference (DAC)”, pp. 1–6 (2020).

Lattner, C. and V. Adve, “Llvm: a compilation framework for lifelong program anal-
ysis and transformation”, in “International Symposium on Code Generation and
Optimization, 2004. CGO 2004.”, pp. 75–86 (2004).

Lavery, D. M., Modulo Scheduling for Control-Intensive General-Purpose Programs,
Ph.D. thesis (1997).

Lowe-Power, J., A. M. Ahmad, A. Akram, M. Alian, R. Amslinger, M. Andreozzi,
A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj, G. Black, G. Bloom, B. R.
Bruce, D. R. Carvalho, J. Castrillon, L. Chen, N. Derumigny, S. Diestelhorst, W. El-
sasser, C. Escuin, M. Fariborz, A. Farmahini-Farahani, P. Fotouhi, R. Gambord,
J. Gandhi, D. Gope, T. Grass, A. Gutierrez, B. Hanindhito, A. Hansson, S. Haria,
A. Harris, T. Hayes, A. Herrera, M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang,
R. Jeyapaul, T. M. Jones, M. Jung, S. Kannoth, H. Khaleghzadeh, Y. Kodama,
T. Krishna, T. Marinelli, C. Menard, A. Mondelli, M. Moreto, T. Mck, O. Naji,
K. Nathella, H. Nguyen, N. Nikoleris, L. E. Olson, M. Orr, B. Pham, P. Prieto,
T. Reddy, A. Roelke, M. Samani, A. Sandberg, J. Setoain, B. Shingarov, M. D.
Sinclair, T. Ta, R. Thakur, G. Travaglini, M. Upton, N. Vaish, I. Vougioukas,
W. Wang, Z. Wang, N. Wehn, C. Weis, D. A. Wood, H. Yoon and . F. Zulian,
“The gem5 simulator: Version 20.0+”, URL https://arxiv.org/abs/2007.03152
(2020).

Mittal, S. and J. S. Vetter, “A survey of methods for analyzing and improving gpu
energy efficiency”, ACM Comput. Surv. 47, 2 (2014).

Miyamori, T. and K. Olukotun, “Remarc: Reconfigurable multimedia array copro-
cessor”, in “IEICE Transactions on Information and Systems E82-D”, pp. 389–397
(1998).

29

Nurvitadhi, E., J. Sim, D. Sheffield, A. Mishra, S. Krishnan and D. Marr, “Acceler-
ating recurrent neural networks in analytics servers: Comparison of fpga, cpu, gpu,
and asic”, in “2016 26th International Conference on Field Programmable Logic
and Applications (FPL)”, pp. 1–4 (2016).

Rau, B. R., “Iterative modulo scheduling”, Compiler and Architecture Research , 1
(1996).

Singh, H., M. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh and M. Filho, “Morphosys:
an integrated reconfigurable system for data-parallel and computation-intensive
applications”, IEEE Transactions on Computers pp. 465–481 (2000).

Tirumalai, P., M. Lee and M. Schlansker, “Parallelization of loops with exits on
pipelined architectures”, in “Proceedings of the 1990 ACM/IEEE Conference on
Supercomputing”, Supercomputing ’90, p. 200212 (IEEE Computer Society Press,
1990).

30

