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Abstract  —  rISA  (reduced  bit-width  Instruction  Set 
Architecture)  is  an  important  architectural  feature  to  reduce 
code size, which continues to be an extremely important concern 
for  low-end  embedded  systems.  rISA  reduces  code  size  by 
expressing  parts  of  the  application  in  terms  of  low  bit-width 
instructions.  ARM-Thumb,  ARCcompact  and  MIPS16/32  are 
popular  examples.  With  the  intent  to  exploit  the  dynamically 
changing "working instruction set" of today's complex software, 
ARM 11 now comes with two rISAs, which can be interleaved in 
the application binary.  However,  it  was demonstrated  that  the 
code compression achieved by rISA is extremely sensitive on the 
selected  rISA  design.  Therefore,  it  is  important  to  design  the 
optimal rISA for a given embedded application. The one optimal 
rISA  per  application approach  has  already  been  explored  by 
previous works. In this paper, we present a scheme to design a 
multiple  rISA  architecture for  embedded  systems.  Our 
experiments  on  MiBench  report  an  average  of  19%  code 
compression  and  up  to  7%  power  reduction  of  instruction 
memory when compared to previous approaches using only one 
optimal rISA. 

I. INTRODUCTION

Code size continues to be an extremely important concern 
for low-end embedded systems, where the system power and 
performance is dominated by the RAM size. Although a clear 
majority of embedded processors manufactured each year fall 
into this  category,  they remain invisible  to  human eyes,  but 
aiding us in our daily lives in the form of controllers in cars, 
TVs, refrigerators, and music players. While employing RISC 
processors  to design modern embedded systems is preferred, 
since they provide increased design flexibility using a simpler, 
low power  core,  one  of  their  fundamental  drawbacks  is  the 
poor code density.  For such systems, a higher  code size can 
imply  the  impossibility  to  execute  the  functionality,  in  the 
worst case, and a significant impact on the system power and 
cost, in the best case. The problem is becoming complex with 
the current trend of increasing software content on embedded 
systems by 10X per decade. 

rISA (reduced bit-width Instruction Set Architecture) is an 
effective  and  popular  solution  to  this  code  size  problem. 
Architectures with rISA have two instruction sets, the “normal” 
set,  which  is  the  original  32-bit  instruction  set,  and  the 
“reduced  bit-width”  instruction  set,  which  encodes  the  most 
commonly used instructions in 16-bit narrow instructions. By 
expressing  parts  of  the  application  using  the  "reduced  bit-
width" ISA, significant code size reduction can be achieved. In 
addition,  since  the  fetch-width  of  the  processor  remains  the 
same,  the  processor  when  operating  in  rISA  requires  less 
fetches to the instruction memory, thus saving memory energy 

[1].  However rISA architectures  that  have just  one "reduced 
bit-width" ISA are unable to exploit the dynamically changing 
"working  instruction  set"  of  today's  embedded  applications. 
This is true not only because of the increasing complexity of 
software, but also because a "reduced bit-width" ISA can have 
only a  very  limited  number  of  instructions  due  to  bit-width 
constraints. Realizing this, the new ARM 11 architecture [2] 
comes  with  two  "reduced  bit-width"  ISAs,  which  can  be 
interspersed  in  the  program.  Furthermore,  the  code 
compression  and  power  reduction  obtained  by  this  dual 
instruction  set  technique  is  heavily  dependent  on  the 
application  computational  requirements  and  on  the  narrow 
instruction  set  design.  Consequently,  previous  works  about 
rISA  suggested  techniques  to  design  the  best  "reduced  bit-
width" architecture for a given (set of) application(s). However 
they only solve the problem for single "reduced bit-width" ISA 
architectures.  If  the  focus  is  now  changed  to  develop  dual 
"reduced bit-width" ISA for architectures such as ARM 11, the 
different computational requirements inside a single application 
should  be  considered  and,  in  response,  the  rISA parameters 
should be adapted accordingly.

As  far  as  we  are  aware,  this  is  the  first  effort  to 
automatically  design  "reduced  bit-width"  ISAs  for  multiple 
rISA architectures.  Our approach  adapt-rISA is  aware of the 
potential different computational requirements inside a single 
embedded application, adapting the rISA parameters to them at 
compilation  time.  At  run  time,  static  reconfiguration 
capabilities  are  available  to  correctly  decode  these  reduced 
instructions, created using different rISA parameters. This way, 
adapt-rISA achieves better results than rISA (as explored by 
previous  works,  i.e.,  with  only  one  optimal  rISA  per 
application), both on code compression (19% on average) and 
on power reduction (up to 7% less fetch requests). In addition, 
this work also employs a new rISA design that may simplify 
the  translation  unit  implementation,  a  block  necessary  to 
translate reduced to normal instructions at run time.

II. RISA ARCHITECTURAL FEATURE

The normal code and the corresponding reduced code of a 
small  section  of  the  CRC32  program  of  the  MiBench 
benchmark  [3]  are  shown  in  Figure  1  –  MIPS  16/32 
architecture. The reduced code in Figure 1b constitutes a block 
of  reduced  instructions  or  a  reduced  block.  A  program, 
compiled using a rISA compiler,  is  composed by several  of 
these  reduced  blocks  and  also  by  blocks  containing  only 
normal  instructions  (the  normal  blocks).  The  change  mode 
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instructions and the reduced nops (rISA_nop), present in the 
figure, are explained in detail later in this text.
(a)
lw      $4,12($fp) (b)
addi    $2,$4,-1 Change Mode Instruction

move    $4,$2 reduction lw_r $4,12($fp)| addi_r   $2,$4,-1  
sw      $4,12($fp) move_r $4,$2 | sw_r $4,12($fp)
lw      $4,8($fp) lw_r $4,8($fp) | addi_r $2,$4,1
addi    $2,$4,1 move_r $4,$2 | sw_r $4,8($fp)
move    $4,$2 rISA_nop | Change Mode Instr.
sw      $4,8($fp)

Figure 1. Normal code (a) and Reduced code (b)

If  Ό is the set of different opcodes in the application code 
and N is the cardinality of this set, for each of the opcodes in 
Ό, there are Xi occurrences of instructions in the code, with Xi 

> 0 and 0 ≤ i ≤ N-1. Since there are, in general, fewer bits in 
the reduced instructions to specify the opcode, a conversion-to-
rISA algorithm will employ a set  Γ, subset of  Ό. For each of 
the opcodes in Γ, whose cardinality is  n, being n < N, all the 
corresponding xi occurrences of instructions will be marked to 
be reduced, with xi ≥ 0 and 0 ≤ i ≤ n-1. Actually, not all the xi 

occurrences of instructions of the opcodes used, or selected, by 
the conversion-to-rISA algorithm can be reduced; some of them 
must  be  discarded  from  reduction.  This  way,  only  x'i 

occurrences of a given selected opcode are actually reduced, 
being x'i <= xi. The role of a rISA compiler is to find the best 
rISA design and also the best  rISA design configuration to 
maximize  the  number  of  reduced  instructions  in  the  final 
executable code, i.e., to maximize the ∑

0

n−1

x ' i . We call a rISA 
design the information related to the number of bits reserved to 
each  field  of  the  reduced  instruction,  which  includes  the 
definition of n, the cardinality of Γ, and also the use (or not) of 
special  reduced  instructions,  employed  to  support  the 
conversion  process,  as  the  instruction  rISA_extend to 
complete  immediate  values.  A  rISA  design  configuration 
specifies the combination of different opcodes from  Ό in the 
subset  Γ,  whose  occurrences  will  be  initially  marked  for 
reduction  in  the  application  code.  If,  for  example,  the  rISA 
design  (rd)  employs  four  bits  to  specify  the  opcode,  each 
corresponding  rISA  design  configuration  (rdc)  will  have  its 
own set Γ, containing 16 (n = 16) different opcodes from Ό. If 
the goal is to increase code density, rdc must include the most 
frequently encountered instructions in the code, but if the goal 
is  power  reduction,  the  most  executed  instructions  must  be 
selected. 

Figure  2  shows  the  translation  of  the  addi instruction, 
present in the code of Figure 1, from 32 bits (Figure 2a) to 16 
bits (Figure 2b), using the rISA design rISA_4444. This design 
uses four bits to specify,  respectively,  the opcode, the source 
register  (rs),  the target  register  (rt)  and the immediate  value 
(imm).  Since  the  values  are  not  semantically  altered,  the 
instruction can be reduced. The reduced opcode is arbitrary, but 
it must be converted to the original opcode during the decode 
phase  at  run  time.  During  this  phase,  rISA  processors 
dynamically  expand  the  reduced  instructions  into  their 
corresponding  normal  instructions.  Only  normal  instructions 
are actually executed. Usually, each reduced instruction has a 
corresponding instruction in the normal set.  This simple and 

direct transformation demands only a simple translation unit in 
the decode logic of the processor. No other hardware module is 
necessary. 

(a)
addi    $2,$4,-1              (normal)
Opcode(6 bits) - rs(5) - rt(5) - imm(16)

001000 – 00010 – 00100 - 1111111111111111

(b)
addi_r    $2,$4,-1            (reduced)
Opcode(4 bits) – rs(4) – rt(4) - imm(4)

0000 – 0010 - 0100 - 1111

Figure 2. addi instruction: Normal (a) and Reduced (b)

III. RELATED WORK

In  the  contemporary  embedded  processors  market, 
important  companies,  such  as  ARM  [2]  and  ARC  [4], 
implement  rISA  features  in  their  products.  [5,  6]  present  a 
design space exploration framework for rISA design aimed at 
improving code density. The experiments employ various rISA 
designs  (one  design  and  one  configuration  per  application) 
working  with  a  minimum  of  16  and  a  maximum  of  128 
opcodes (n = 16 to n = 128). Four to seven bits were required 
to specify the opcode in these designs. The works show that the 
rISA  design  rISA_4444 presents  the  best  results  when 
balancing  code  compression  and  the  complexity  of  the 
translation process at run time. If a normal instruction, selected 
by a rISA_4444 design configuration, cannot fit on a reduced 
instruction, without losing information, it is simply discarded 
from reduction. Some other rISA designs solve this problem 
adding special reduced instructions to the application original 
code:  rISA_extend to  complete  immediate  values  is  an 
example. Other examples are the special reduced instructions 
employed to perform spills (either to memory or to non-rISA 
registers) and reloads of values in registers, due to the limited 
availability of registers by the reduced instructions. 

The focus of [1] is energy reduction using rISA. It is shown 
that a  conversion-to-rISA algorithm aimed at improving code 
density does not  achieve  the best  results  in terms of  energy 
reduction, because it does not consider the dynamic aspects of 
the application execution. An algorithm that is aware of this 
dynamic  behavior  is  presented  and  applied  on  a  MIPS 
processor  model.  This  algorithm  selects  the  most  executed 
instructions,  instead  of  the  most  frequent  in  the  application 
code. An average of 26% reduction in the number of fetches to 
the instruction memory is reported. 

The  work  in  [5]  details  various  software  and  hardware 
aspects  of rISA designs.  Some of them are listed here since 
they are also used by  adapt-rISA: (a) in order for the normal 
instructions to adhere to the word boundary, there can be only 
an even number of contiguous rISA instructions. To achieve 
this, a rISA instruction that does not change the state of the 
processor is needed: the rISA_nop instruction. The compiler 
can  then  pad  odd-sized  sequences  of  rISA instructions  with 
rISA nops; (b) in order to dynamically change the execution 
mode of a processor, there should be a mechanism in software 
to  specify  the  change  in  execution  mode.  For  most  rISA 
processors,  this  is  accomplished  using explicit  mode change 
instructions. An instruction in the normal instruction set that 
changes mode from normal to rISA mode is  termed the  mx 



instruction, and an instruction in the rISA instruction set that 
changes  mode  from  rISA  to  normal  is  the  rISA_mx 
instruction.  A  piece  of  code  including  the  mode  change 
instructions  was  shown in Figure  1;  (c)  the fetched  code  is 
interpreted (decoded) as normal or rISA instruction depending 
on the operational mode of the processor. When the processor 
is in rISA mode, the fetched code is assumed to contain two 
rISA  instructions.  The  first  one  is  translated  into  a  normal 
instruction, while the second one is latched and kept for the 
next cycle of execution. The translation can be performed in 
terms of simple and small table lookups. Since the conversion 
to normal instructions is done during or before the instruction 
decode stage, the rest of the processor remains the same - only 
the decode logic needs to be modified.

Another class of techniques for code size reduction is code 
compression  with  dynamic  hardware-based  decompression. 
These  techniques  typically  propose  a  hardware  block  that 
dynamically decompresses the instruction stream as it arrives at 
the  processor.  This  decompression  block  resides  between 
memory (either the main memory or instruction cache) and the 
processor.  [7]  first  proposed  a  Huffman-coding  based  code 
compression scheme for the MIPS architecture. [8,9] explored 
dictionary-based  compression  techniques.  [10]  considered  an 
improvement  to  the  standard  dictionary-based  compression 
based on vector Hamming distances. They report a code size 
reduction of 20% to 28% for the TI TMS320C6x processor. 
[11,12] proposed a bitmask-based code compression technique 
that significantly improves on the dictionary-based approach. 
With  application-aware  bitmask  and  dictionary  selection 
methods they were able to achieve a code size reduction of 
upto 42% for the TI TMS320C6x processor.  These dynamic 
code compression techniques are relatively independent from 
the rISA technique and can be combined with rISA to achieve 
greater code size reduction.

IV. ADAPTIVE RISA
The central  idea supporting the adaptive rISA concept  is 

that a  divide and conquer rISA approach can be employed to 
extract  better  results  from a  single  embedded  application  in 
terms  of  code  compression  and  also  of  power  reduction. 
Previous works did not consider such granularity: they search 
for the optimal rISA design, and configuration, for an entire 
application  (only  one  rISA  design  configuration  per 
application).  The  software  and  hardware  aspects  behind  the 
adapt-rISA solution  are  the  same  as  those  used  in  [5]  and 
similar to that in ARM's Thumb ISA [2]. They are: (a) use of 
rISA_nops and change mode instructions; (b) conversion from 
reduced to normal instructions performed during the instruction 
decode  stage;  and  (c)  the  actual  execution  of  normal 
instructions only.

A. Motivation
Even an embedded application of low complexity probably 

includes distinct sections of code with different computational 
requirements (based on string manipulation, or on bitwise and 
logical operations, or on arithmetic operations, and others). In 
general, only a subset of Ό will be needed to reference all the 
different opcodes in a specific section of the application. As a 
consequence, the same cardinality of  Γ, specified by a given 

rISA  design,  can  encompass  more  of  the  opcodes  in  that 
region. This is important not only to increase the number of 
reduced instructions in the final code, but also because lesser 
number of bits may be employed to specify the opcode in the 
reduced instructions. The additional bits may then be employed 
to specify immediate values, for example. This assertion and 
also the fact that  rISA_4444 presents a solution with a good 
trade-off  between  code  compression  and  translation  process 
complexity, when compared to other designs, led us to select 
such  design  in  our  experiments.  The  smaller  number  of 
opcodes,  in  previous  works,  was  used  by  the  design 
rISA_4444: sixteen only.

It  was  stated  earlier  that  not  all  the  initially  marked 
instructions, as specified by the  rdc, are actually reduced (x'i 

<= xi). Some of these instructions are discarded from reduction. 
The  main  cause  of  discard  is  overflow.  An  instruction  is 
discarded by overflow if some specific bit field in its normal 
form, such as the immediate value, cannot be expressed using 
the reduced number of bits in the corresponding reduced form. 
However,  there  are  two other  reasons  for  discarding.  If  the 
number of contiguous instructions, marked to be reduced, is too 
small, the potential reduced block to be formed will cause an 
expansion in the code, instead of a reduction (the later addition 
of change mode instructions will cause this expansion). These 
contiguous instructions must then be discarded from reduction. 
Branches and jumps between normal and reduced blocks are 
allowed only when the source is a normal instruction and the 
target  is  a  change  mode  instruction  at  the  beginning  of  a 
reduced  block.  In  all  other  cases,  the  instructions  acting  as 
source and target must be discarded from reduction.

We decided to measure the discard of instructions, during 
compilation, related to the three causes presented above. These 
numbers were not presented by previous works. The results for 
the  MiBench  program  qsort,  reduced  using  the  design 
rISA_4444, are shown in Figure 3 (in the bars on the right in 
each  pair).  The  first  pair  of  bars  show the  total  number  of 
marked  instructions,  the  last  pair  shows  the  number  of 
instructions  that  were  actually  reduced,  and  the  other  pairs 
show the number of instructions discarded and corresponding 
causes.  The  values  in  Figure  3  show  a  lot  of  instructions 
discarded  by  the  design  rISA_4444.  The  other  MiBench 
programs, used in this work, presented similar values. 

Furthermore,  we  remember  that  a  smaller  number  of 
opcodes  may be considered by rISA designs  when handling 
different sections of an application. These two reasons led us to 
try a new rISA design with a set Γ of cardinality 8 (n = 8). It 
was called  rISA_8ops and used in the same qsort program of 
the MiBench. The discard results are also shown in Figure 3 (in 
the bars on the left). A significant improvement was reached: 
almost  three  times  more  instructions  were  actually  reduced. 
Because of this, the new design was adopted. It has not been 
considered  by  previous  works  about  rISA,  whose  Γ set 
cardinality  varies  from  16  to  128.  In  this  experiment,  the 
rISA_8ops used  the  eight  most  executed  opcodes  in  the 
corresponding  rISA_4444 design configuration, for the whole 
application.



Figure 3. Discard of instrs., qsort program – r_4444 (right) x r_8ops (left)

B. Code Conversion
The  input  to  our  conversion-to-rISA algorithm  is  the 

Assembly  code  generated  by  the  gcc  cross-compiler.  This 
Assembly  code  is  traversed  and  operated  by  a  series  of 
methods  that,  based  on  the  rISA  design  and  configuration 
previously specified, produce the final reduced code (Figure 4). 

INPUT: application's Assembly code produced by gcc
PARAMETERS:rISA design and rISA design configuration
if (mips.usingRISA ( )) {
          mips.rISA.mapRegisters ( );
          mips.rISA.markCandidates ( );
          mips.rISA.isPossibleToReduceCandidates();
          mips.rISA.discardSmallBlocks ();
          while(mips.rISA.treatBranchesAndJumps())
               mips.rISA.discardSmallBlocks ();
          mips.rISA.countFinalBlocks ();
          mips.rISA.translateToRISAstep1 ( );
          mips.rISA.translateToRISAstep2 ( );
          mips.rISA.generateFinalCode ( output);
}

Figure 4. conversion-to-rISA algorithm

Since  reduced  instructions  have  limited  register  file 
accessibility,  the  method  mapRegisters implements  a  simple 
register  mapping  strategy  where  all  the  instructions  of  the 
application are allowed to access only a fixed window of 16 
contiguous registers of the register file (half of the total number 
available). It was not a limitation for the programs used in the 
experiments of this work, but it is a point to be improved for 
future work. The method markCandidates is called to mark all 
the  instructions,  in  the  application  code,  that  constitute 
occurrences of the opcodes belonging to the Γ set of the rISA 
design  configuration  being  used.  The  method 
IsPossibleToReduceCandidates discards  (removing the mark) 
those marked instructions that cannot be reduced because the 
number of bits needed to specify their operands is greater than 
those  available  in  the  reduced  instruction.  Special  reduced 
instructions are not used. 

DiscardSmallBlocks is  used  to  make  an  analysis  on  the 
blocks  formed  by  adjacent  marked  instructions,  taking  into 
account the later insertion of the change mode instructions. The 
instructions inside blocks that cause an increase on the size of 
the  final  code  are  discarded  from  reduction. 
TreatBranchesAndJumps is  called  to  discard  those  marked 
instructions involved, as origin or target, in branches or jumps 
from a reduced block to a normal block, or vice versa.  The 
exception  is  a  branch  or  jump  from a  normal  block  to  the 
beginning  of  a  reduced  block.  This  method  is  called  in 
conjunction with the method  DiscardSmallBlocks until  there 

are  no  more  branches  or  jumps  to  be  discarded. 
CountFinalBlocks is a method for statistical data generation. 

The  translateToRISAstep1 method  effectively  creates  the 
reduced blocks, inserting the change mode instructions (mx and 
rISA_mx) and also the reduced nops. rISA_nops are also used 
to position reduced branches and jumps in the least significant 
16 bits of a word in the instruction memory. As a result, there 
is no need to offer a special handling to the latched reduced 
instruction  when  a  branch  or  a  jump  occurs.  The  method 
translateToRISAstep2 recalculates the offsets of branches and 
jumps,  generates  the  final  16 bits  sequences  of  the  reduced 
instructions, and encapsulates the pairs of reduced instructions 
in  word  size  boundaries.  Finally,  generateFinalCode is 
employed to generate the final code in the format used by our 
simulator.

C. Design Space Exploration
The DSE (design space exploration) process to obtain the 

best rISA design configuration for an application focus on the 
dynamic aspects of its code execution. It includes the following 
steps: 

1. The application is executed with a small dataset to get 
its  execution profile,  and the instructions inside the 
most  executed  sections  of  code  are  marked.  The 
different  opcodes  of  these  marked  instructions  are 
identified and stored. A small dataset means a subset 
of the applications' input data or a reduced number of 
iterations;

2. A  DSE  process  is  triggered  using  combinations  of 
these  opcodes  (8 or  16 each  time) to  try  improved 
results  in  terms  of  (i)  total  number  of  reduced 
instructions,  (ii)  average  block  size,  and  (iii)  total 
number  of  blocks.  The  application  is  not  actually 
executed;

3. The most promising combinations are used to form a 
rISA design and configuration database. Each record 
of this database is applied on the application using the 
conversion-to-rISA algorithm presented in Section IV-
B. The application is then executed.

The  adaptive  rISA  architectural  feature  arises  when  the 
granularity  of  this  DSE  process  is  changed  from  an  entire 
application to its individual routines. The result is a set of rISA 
design configurations to be applied by the  conversion-to-rISA 
algorithm  in  the  reduction  of  the  application's  individual 
routines.  Assembly  directives  (risabegin and  risaend) 
are also provided to allow the coexistence of two or more rISA 
design configurations inside a single routine. The use of these 
directives is done by the designer manually at this moment.

D. Implementation Details
Some additional software and hardware aspects are needed 

to  support  the  adaptive  rISA  architectural  feature.  First,  the 
final reduced code must provide a way to inform the processor 
not only the execution mode, as in rISA, but also which rISA 
design configuration is being employed. The solution adopted 
is  simple and direct:  the  mx instruction, used to  change the 
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execution  mode  from  normal  to  reduced,  carries  the  rISA 
design configuration identifier as an immediate value.

The  translation  unit  must  receive,  as  an  input,  the  rISA 
design configuration identifier provided by the mx instruction. 
It  may also store the translation information partitioned into 
smaller and independent sub-units. These subunits are activated 
by the rdc identifier in the mx instruction. We remember that 
each reduced instruction has a corresponding instruction in the 
normal set. Then the size of these sub-units will be proportional 
to the number of opcodes employed by the rISA design - less 
opcodes  require  smaller  sub-units.  Thus,  even  having  only 
simulated  the translation unit,  we argue  that  this  partitioned 
characteristic  may  make  adapt-rISA improve  power,  when 
compared to rISA, not only by reducing the number of fetch 
requests,  but  also  during  the  transformation  of  reduced  to 
normal  instructions.  More  specifically,  power  gains  may be 
obtained because (i) only one part of the total data structure, 
used  for  translation,  is  needed  at  each  time;  and  (ii)  less 
hardware is required to find the correct data for translation in a 
small data structure. 

A  framework  [13]  for  design  space  exploration  of 
embedded processors has been used in this work. We adopted 
the MIPS simulator, one of the processor models available in 
the framework. 

V.EXPERIMENTS AND RESULTS

The methods and tools described in the last section were 
used  to  experiment  with  the  bitcount,  CRC32,  qsort and 
stringsearch programs of the MiBench benchmark. First, the 
experiments were executed using these programs individually 
and, afterwards, they were grouped, two by two, in six different 
and also more complex embedded applications, with different 
computational requirements. Our interest is to show that adapt-
rISA can  improve  power  and  energy  concerns  in  embedded 
processors, thus the main metric focused is the number of fetch 
requests to the instruction memory. A reduction in this metric 
directly corresponds to an energy reduction due to the reduced 
number of  bus transactions.  The reduction in overall  energy 
and power is, however, not calculated. In the experiments, we 
present  the  following  metrics:  (1)  normalized  number  of 
fetches – presented as a percentage of the number of fetches 
required by the application without reduction; (2) percentage of 
actual reduced instructions in the final code; (3) average size of 
the reduced blocks – considering only the instructions in the 
original code, i.e., change mode instructions and rISA_nops are 
not  considered;  (4)  total  number  of  reduced  blocks; and (5) 
application's code size reduction – presented as a percentage of 
the normal code size. Since the number of fetch requests is the 
primary metric, the other four are defined based on the most 
executed instructions.  Because  of this,  the application's  code 
size  reduction  numbers,  presented  in  the  graphs,  are  only 
informative.  It  is  worth  to  mention  that  (a)  the  code  size 
reduction is higher in the presence of adapt-rISA1 and (b) these 
numbers  would  be  improved  if  we  had  chosen  the  most 
frequent instructions. In the next paragraphs, we will refer to 
these other metrics as code compression metrics.

1 - The only exception is for the stringsearch program

Figures  5a  and  5b  present  the  results  for  the  programs 
bitcount and  stringsearch.  The  number  of  fetches  are  only 
slightly smaller in the presence of adapt-rISA and the average 
block size experienced a small reduction. But the number of 
reduced  blocks and  also the  number  of  reduced  instructions 
have  a  significant  improvement:  21% and 24% on average, 
respectively.  This  compensates  the  reduction  on the average 
size of the reduced blocks. In the case of the programs CRC32 
and  qsort  (not shown in the figure), the  adapt-rISA approach 
produced  the  same  results  as  the  one  optimal  rISA  design 
configuration found by the DSE process. These programs, even 
having  a  small  number  of  reduced  instructions,  39  and  89 
respectively,  achieve  good levels  of  reduction  related  to  the 
number  of  fetch  requests:  24%  and  28%,  respectively.  As 
illustration, the numbers  of reduced instructions are 158 and 
152  for  bitcount and  stringsearch,  respectively.  The  term 
adapt-rISA* in the figures identifies the use of the  adapt-rISA 
Assembly directives introduced in the last section.

Figure 5c to 5h present the results for the six applications 
formed by the combination of the four MiBench programs, two 
by two.  The  experiments  were  arranged  in  a  way that  each 
program,  in  the  whole  application,  executes  during  an 
equivalent  number  of  clock  cycles.  For  each  of  the  four 
metrics, there are three numbers: one is for adapt-rISA and the 
other  two  are  related  to  the  (one)  optimal  rdc for  each 
individual program: both were used in the respective combined 
application. The explanation for this choice is that the optimal 
rdcs for  the combined applications  have never  shown better 
results than those of one of the individual rdcs – what indicates 
the  limitations  of  the  one  optimal  rISA  per  application 
approach. There is one exception for this presentation of three 
numbers: it is for the pair qsort+stringsearch, whose individual 
rdcs  are  the  same.  In  general,  adapt-rISA achieves  better 
results,  i.e.,  less  fetches  and  better  values  in  the  code 
compression  metrics.  There  were,  in  four  of  the  six 
applications,  less  fetches  to  the  instruction  memory,  from a 
minimum of 2% to a maximum of 7% of reduction. In the other 
two applications,  there were the same or a by 1% increased 
number of fetches. However,  in such cases, all other metrics 
were  improved by  adapt-rISA.  The total  number of  reduced 
instructions was always larger in the presence of  adapt-rISA: 
considering  the  rdcs with  less  fetches  to  the  instruction 
memory (one of  the two individual  rdcs for  each  combined 
application), the average improvement was 19%. The number 
of reduced blocks experienced a reduction, using  adapt-rISA, 
in one of the applications, but, in this case, there was a 30% 
improvement on the average size of the reduced blocks. In all 
other applications, the average size of the reduced blocks was 
improved by adapt-rISA.

These  results  were  obtained  using  only  the  new  design 
rISA_8ops. It presented better results than those of the design 
rISA_4444 for  all  applications  used  in  this  work.  Each 
experiment was validated by comparing the result(s) produced 
by the program, when running on the host platform (x86 with 
Linux),  with  the  corresponding  result(s)  produced  by  the 
simulator, available in the instruction memory of the processor 
model.
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Figure 5. Application's results2 

VI. CONCLUSION AND FUTURE WORK

This  work  introduced  the  adaptive  rISA  architectural 
feature. It goes beyond rISA (as explored by previous works) 
because it is aware of the different computational requirements 
inside  a  single  embedded  application,  what  is  important 
nowadays with the current trend of increasing software content 
on embedded systems by 10X per decade. It was showed that 
adapt-rISA presents better results than rISA in almost all the 
applications used in the experiments, and also for most of the 
metrics employed. For the code compression main metric, the 
average  improvement  was  19%,  and,  concerning  the  fetch 
requests, there were up to 7% less fetch requests. This work 
also  described  a  new  rISA  design  and  discussed  how  its 
simplicity may be employed to reduce power consumption on 
the translation unit.

We  enumerate  the  following  future  activities  to  address 
some limitations of this first work using the new  adapt-rISA 
architectural  feature:  (1)  the  work  focused  mainly  on  DSE 
(design space exploration) for rISA design configuration. The 
path is opened for a DSE focused on different rISA designs; (2) 
the definition of a more robust heuristic to find the best rISA 
design  and  configuration,  in  the  presence  of  the  adapt-rISA 
Assembly directives; (3) the hardware implementation of the 
adapt-rISA translation  unit  and  a  precise  estimation  of  the 
power  reduction;  and  (4)  evaluation  using  other  embedded 
applications.
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2   Smaller numbers are better in metrics 1 and 5, larger are better in 2,3 and 4
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