
53

EXPERTISE: An Effective Software-level Redundant
Multithreading Scheme against Hardware Faults

HWISOO SO, Yonsei Universty, Republic Of Korea
MOSLEM DIDEHBAN, Arizona State University, USA
YOHAN KO∗, Yonsei University, Republic Of Korea
AVIRAL SHRIVASTAVA, Arizona State University, USA
KYOUNGWOO LEE, Yonsei Universty, Republic Of Korea

Error resilience is the primary design concern for safety- and mission-critical applications. Redundant Multi-
Threading (RMT) is one of the most promising soft and hard error resilience strategies because it does not
require additional hardware modification. While the state-of-the-art software RMT scheme can achieve a high
degree of error protection, our detailed investigation revealed that it suffers from performance overhead and
insufficient fault coverage. This paper proposes EXPERTISE, a compiler-level RMT scheme that can detect
the manifestation of hardware faults in all processor components. EXPERTISE transformation generates
a checker-thread for the main execution thread. These redundant threads are executed simultaneously on
two physically different cores of a multicore processor and perform almost the same computations. After
each memory write operation is committed by the main-thread, the checker-thread loads back the written
data from the memory and checks it against its own locally computed values. If they match, the execution
continues. Otherwise, the error flag is raised. In order to evaluate the effectiveness of the proposed solution,
we performed soft and hard error injection experiments on all the different hardware components of an ARM
Cortex53-like `-architecturally simulated microprocessor. Based on statistical fault injection campaigns, we
have found that EXPERTISE provides 188× better fault coverage with 27% faster performance as compared to
the state-of-the-art scheme.

CCS Concepts: • Software and its engineering → Software fault tolerance; • Computer systems orga-
nization → Reliability; • Hardware → Transient errors and upsets; Error detection and error correction.

Additional Key Words and Phrases: soft error, transient fault, redundant multithreading

ACM Reference Format:
Hwisoo So, Moslem Didehban, Yohan Ko, Aviral Shrivastava, and Kyoungwoo Lee. 2022. EXPERTISE: An
Effective Software-level Redundant Multithreading Scheme against Hardware Faults. ACM Trans. Arch. Code
Optim. 19, 4, Article 53 (September 2022), 25 pages. https://doi.org/10.1145/3546073

1 INTRODUCTION
Advances in semiconductor technology have integrated electronic systems in virtually all aspects
of human life. Many modern applications, including autonomous cars, electricity distribution, and
∗Corresponding author

Authors’ addresses: Hwisoo So, shs7719@yonsei.ac.kr, Yonsei Universty, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic Of
Korea, 03722; Moslem Didehban, moslem.didehban@asu.edu, Arizona State University, 660 S Mill Ave, Tempe, Arizona,
USA, 03722; Yohan Ko, yohan.ko@yonsei.ac.kr, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do, Republic Of Korea,
26493; Aviral Shrivastava, aviral.shrivastava@asu.edu, Arizona State University, 660 S Mill Ave, Tempe, Arizona, USA,
03722; Kyoungwoo Lee, kyoungwoo.lee@yonsei.ac.kr, Yonsei Universty, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic Of
Korea, 03722.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
1544-3566/2022/9-ART53
https://doi.org/10.1145/3546073

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

HTTPS://ORCID.ORG/0000-0002-3496-6079
HTTPS://ORCID.ORG/0000-0002-9456-0927
https://doi.org/10.1145/3546073
https://orcid.org/0000-0002-3496-6079
https://orcid.org/0000-0002-9456-0927
https://doi.org/10.1145/3546073

53:2 So et al.

embedded medical devices, are considered safety- or mission-critical applications because even
small errors in their computations can lead to tragic consequences. Hardware faults are one of
the main reasons for erroneous computations. Hardware faults are of two types: transient and
permanents faults. Transient faults or soft errors are temporary malfunctions of computing devices
that do not cause permanent damage to the microprocessor circuitry. In contrast, permanent faults
or hard errors 1 have a lasting impact on the microprocessor functionality. The overall system failure
rate due to hardware faults grows continuously due to the ever-increasing level of integration in
different layers of computer-based systems, that is, more transistors per core, more cores per chip,
and more chips per system [3, 40].

Although hardware solutions to protect from soft and hard errors like ARM Triple Core Lock-Step
(TCLS) Cortex-R5 microprocessors [17] and HERMES [5, 10] exist, software-level error resilience
schemes [7, 29, 49, 51] are desirable. This is because that such software-based protection schemes
can be applied to all past, present, and future computing hardware, and also protect the parts of
applications that require error resilience selectively. Furthermore, recent neutron beam testing
experiments have demonstrated the effectiveness of software-level error resilience solutions [2, 18].
Among the existing techniques to protect the computation from hardware errors, redundant

multithreading (RMT) approaches are desirable. They can provide a robust defense against hard
and soft errors by utilizing the core redundancy of multicore microprocessor. The main idea of such
techniques is to create two copies of the application’s main thread, so-called leading- and trailing-
threads, and execute them in parallel. The leading-thread sends critical data (such as the register
operands values of shared memory write operations) to the trailing-thread for error detection. The
trailing-thread receives critical values and checks them against its redundantly computed ones. If
there is no mismatch, the leading-thread proceeds and submits the results, that is, writing data to
the shared memory. Otherwise, the error flag is raised. Existing RMT schemes [29, 49, 51] have
been considered as practical solutions for hardware unreliability, and researchers have enhanced
their applicability to high-performance computing (HPC) [16] and even graphics processing unit
(GPU) [14] domains.

However, our error coverage analysis revealed severe protection holes in the state-of-the-art
RMT schemes. We observed that frequent and unprotected input replication operations (takes place
on all shared memory read and system call operations) and shared memory update operations
restrict the protection of existing RMT schemes to the computational/arithmetical operations
of a program. Although they considerably improve the error detection capability, our extensive
microprocessor-wide fault injection experiments revealed critical vulnerabilities.

We present EXPERTISE, a compiler-level protection scheme that provides microprocessor-wide
transient and permanent fault detection from fail-continue faults (the computations are erroneous,
but execution usually continues). We ran two slightly different versions of an application thread,
named the main- and checker-threads, on physically different cores of a multicore processor. The
main-thread performs all the program instructions and updates the memory state; in contrast, the
checker-thread performs all computations and memory read operations redundantly but executes
no memory write operation. Instead, it verifies the correctness of main-thread computations and
write operations by loading back the main-thread written value from memory and checking it
against its own locally computed value, based on the load-back checking from the previous in-
thread replication schemes [6–9]. EXPERTISE separates the store execution and load-back checking
process into individual threads and orchestrates two threads to cooperate. Owing to the replicated
memory read operations and load-back checking, EXPERTISE transformation does not suffer from
a vulnerable input replication process and frequent unprotected memory write operations.

1In this paper, we use the terms transient faults and soft errors as well as permanent faults and hard errors, interchangeably.

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

EXPERTISE: An Effective Software-level Redundant Multithreading Scheme against Hardware Faults 53:3

Table 1. Comparison with existing software-level solutions for hard and soft error detection

Technique Scope of Protection
Control-flow

Error
Detection

Error
Detection
Latency

Fault Coverage
Evaluation
Scheme

Additional Notes

En
/d
ec
od

in
g ED4I [32] Functional units

and buses YES ~109
instructions

Functional
simulator

- Limited applicability
-∼3× runtime overhead

ANCode [11],
ANBCode [38]

Microprocessor
datapath and memory NO ~106

instructions
Functional
simulator - ∼10× runtime overhead

Delta
Encoding [21]

Microprocessor
datapath and memory NO ~103

instructions
Functional
simulator - ∼5× runtime overhead

M
ul
tit
hr
ea
di
ng SRMT [49] Microprocessor

datapath YES ~102
instructions

Functional
simulator

- ∼4× runtime overhead
- Frequent spofa

GPU
RMT [14, 48] GPU datapath YES ~102

instructions
Not

evaluated - 1-126× runtime overhead

EXPERTISE
(This work)

Microprocessor datapath
and private caches YES ~102

instructions
Cycle-accurate

simulator - ∼3× runtime overhead

a spof: single-point-of-failure

However, the load-back checking of EXPERTISE is still vulnerable in the case of a silent store [25],
which attempts to write the same value to a memory location already present. If a soft error
corrupts the address of the silent store, load-back checking cannot detect the corruption of the store
operation [9]. EXPERTISE eliminates such vulnerabilities by adopting the silent store avoidance from
the previous in-thread replication scheme [9] and extending it into RMT. Further, we reduced the
performance overhead of the software-level RMT scheme by store packing optimization. EXPERTISE
requires thread synchronization on memory write operations to guarantee coherence memory
accesses for redundant threads and facilitates a check-after-write error detection policy. To reduce
the number of such synchronization points, we identify independent successive store operations
and group them at compile time. Then, we add just one synchronization point to a pack instead of
a single memory write operation. Our analysis reveals that EXPERTISE can provide 188× better
fault coverage and 27% faster performance than the state-of-the-art software-level RMT scheme.

2 SOFTWARE SOLUTIONS FOR HARDWARE ERROR PROTECTION
Existing software-level solutions for hard and soft error detection can be divided into i) program
data encoding/decoding and ii) redundant multithreaded execution, as described in Table 1.

2.1 Software encoding/decoding
Researchers have thoroughly investigated software-level data and computation encoding/decoding
for hard and soft error protection [11, 21, 31, 37, 38]. The ED4I source-code transformation [31]
generates a functionally equivalent AN-coded version of the program. In the AN-coded version, all
program data and computations are multiplied by a constant factor A, after which the ED4I executes
original and encoded versions of the program and compares their outputs for error detection –
the final output of the AN-coded version of the program should be A-multiples of the original
ones; however, these software encoding/decoding techniques are inefficient because of the long
error detection latency, significant performance overhead, and limited fault coverage. The error
detection latency is defined as the time between the occurrence of an error and its detection. If
the error detection latency is short, the system can have a longer response time to the safe mode.
Furthermore, because of the program dynamicity (interaction with a user and other applications
during the execution), error detection on the final program output is not practical in many cases.
However, the error detection latency of the ED4I scheme is long because it is proportional to
program execution time.

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

53:4 So et al.

Second, software encoding/decoding techniques incur huge performance overhead. The schemes
presented in [11, 38] improve the efficacy of ED4I by utilizing more advanced coding mechanisms,
for example, ANB and ANBD encoding, and addressing practical issues, that is, overflow through
an intermediate-level compiler transformation. Unfortunately, such implementation of program
encoding/decoding accompanies significant performance overhead (6× to more than 60× as reported
in [38] and up to 250× reported in [21]). To overcome these limitations, [21] introduced delta-
encoding, which is a source-to-source transformation that combines AN-encoding with instruction
duplication. However, software-only delta-encoding transformation still requires around 4.08 ×
execution time to achieve its maximum fault coverage, compared to unprotected architectures.
Finally, software encoding/decoding techniques suffer from a lack of fault coverage. AN-based

encoding schemes can fail to protect the system against errors in logical andmemory operations [37]
and hard-to-detect control-flow errors [21]. Furthermore, they significantly reduce the range of
computations. For example, an unsigned char variable (8 bits) typically holds any value between
0 and 255 (256 valid numbers). However, after applying an AN-code with factor 4, it reduces the
number of valid numbers by 4 – from 256 to 64! Therefore, AN-based encoding/decoding solutions
are not practical for programs that use a wide range of values.

2.2 Software spatial redundant execution
Software spatial redundant techniques rely on the inherent core redundancy presented in modern
multi/many-core microprocessors to achieve error protection. They run two functionally identical
versions of an application on two separate cores and check the results for error detection. Thread-
level redundancy-based schemes can provide adaptive and flexible resilience [16].
Traditional thread-level redundancy schemes execute the original and replicated threads and

compare their result with hardware support. These schemes execute these threads on simultaneous
multithreading (SMT) processor [34, 36, 46] or chip multiprocessor (CMP) [13, 30]. Fingerprinting-
based schemes [22, 42, 43] optimize the hard-wired result comparison of threads on the CMP-based
schemes by summarizing the execution results of each thread into hash-based fingerprints [43].
However, these techniques require additional hardware modification to support their features and
the following hardware costs. For the sake of simplicity, this paper focuses on the software-based
schemes since they can be applied to the general processors without additional modifications.
The software-based redundant multithreading (SRMT) scheme [49] is the first software-only

multithread scheme that can potentially detect both soft and hard errors. SRMT executes two
redundant threads, leading-thread and trailing-thread, on two different physical cores. The leading-
thread is responsible for shared memory read and write accesses, where the shared memory is
protected by hardware-level solutions such as error correction code (ECC). In contrast, the trailing-
thread is responsible for the detection of errors in the register values that the leading-thread used
for shared memory read and write operations. To satisfy the above-mentioned functionality, SRMT
exploits a circular software queue for communication between the leading-thread and the checker-
thread. The leading-thread enqueues the register values for the input of shared memory read and
write accesses (address for a load instruction, and address and data for a store instruction) to the
queue before the execution of such instructions.When the trailing-thread reaches the corresponding
execution point, it dequeues the register values from the queue, and compares them with its locally
calculated register values. Because the trailing-thread does not execute the load instruction, the
leading-thread also needs to send the loaded value after the load instruction to the trailing-thread.

Fig. 1 shows the SRMT transformation for a simple snippet of code. In this example, both threads
execute computational instructions redundantly, except for the load and store instructions. For the
load instruction, the leading-thread first sends the value of the load address register operand (r4)
to the trailing-thread and then executes the memory read operation. The sendBuf (r4) function

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

EXPERTISE: An Effective Software-level Redundant Multithreading Scheme against Hardware Faults 53:5

Leading-thread Trailing-thread

Original Code SRMT-protected Code

mov r4, 0xfa

load r0[r4]

r0 = r0 + 16
r4 = r4 + 4

store r0[r4]

Input
Replication
(vulnerable)

Output
Comparison
(vulnerable)

Redundant
Computation

mov r4, 0xfa

sendBuf (r4)

load r0[r4]
sendBuf(r0)

r0 = r0 + 16
r4 = r4 + 4

sendBuf(r4)
sendBuf(r0)

store r0[r4]

mov r4, 0xfa

temp= recvBuf()
If (temp != r4) Error()
r0 = recvBuf()

r0 = r0 + 16
r4 = r4 + 4

tmp= recvBuf()
if (tmp != r4) Error()
tmp= recvBuf()
if (tmp != r0) Error()

1

2

Redundant
Computation

sendBuf (r4)

load r0[r4]

sendBuf(r0)

Leading-thread

temp= recvBuf()

If (temp!= r4) Error()

r0 = recvBuf()

Trailing-thread

Correct r4

Wrong r0

Memory

Wrong
load

Problem: r0 can be corrupted in both threads

sendBuf(r4)
sendBuf(r0)
store r0[r4]

Leading-thread

tmp= recvBuf()
if (tmp!= r4) Error()
tmp= recvBuf()
if (tmp!= r0) Error()

Trailing-thread
Correct r4

Memory

Wrong
store

Problem: memory can be corrupted without detection

Fig. 1. SRMT transformation duplicates the original program execution thread. Only the leading-thread
performs memory operations. The trailing-thread validates the correctness of memory instruction register
operands while the execution of memory operations remains unprotected.

shown in the figure is responsible for sending the value of the load address register operand to the
trailing-thread. Then, once the leading-thread receives the requested data from the memory, it sends
the loaded data for the trailing-thread by calling the sendBuf(r0) function. The trailing-thread
receives the value of the load address register operand from the buffer by calling recvBuf() and
checks the load address by comparing the received value against its own locally computed value
for the load address register operand (r4). If they match, the trailing-thread considers that the
load address is correct, reads the next value from the buffer, and places it in the corresponding
data register (r0). Once the leading-thread reaches a memory write operation, it sends the values
of data and address registers of the store (r0 and r4) to the trailing-thread for error detection
and then performs store instruction. Similar to load memory address register value checking, the
trailing-thread retrieves the leading-thread computed store data and register values from the buffer
and checks them against its own redundantly computed values.

Our detailed analysis of fault coverage of SRMT transformation reveals two major vulnerability
windows. First, it is vulnerable to input replication process. In redundancy-based error detection
strategies, input replication provides the same inputs for redundant computations. The input
replication process can be considered as a single point of failure in redundancy-based error detection
schemes. If any error affects the input data before (or during) the input replication, the error remains
undetected. This is because both redundant executions start their computationswith the samewrong
data and produce the same wrong output. One of the main disadvantages of SRMT transformation
is frequent input replication operations that occur after all shared memory read accesses and system
call operations. In SRMT transformation, the leading-thread performs shared memory read and
system call operations and sends the results (the loaded value from the memory or system call return
values) to the trailing-thread. Therefore, if any error occurs during such single-instance operations,
they will propagate to the trailing-thread, leading to a user-visible failure. For instance, assume an
error that permutes the effective address calculation of the leading-thread load instruction shown
in Fig. 1 (marked as 1○). Because of this error, the wrong value is loaded into the load instruction
destination register (r0). Then, the leading-thread sends the faulty value to the trailing-thread,
and both threads continue their execution with the same wrong value in the register r0. Note that
this fault not only corrupts the register (r0) in both threads equally; it is also not detected by the
checking instructions of trailing-thread because it compares the value in the queue that is inserted
before the fault. Faults on pipeline stage register bits while processing load operations, memory
address generation units or load/store units are examples of errors that may remain undetected in
the SRMT scheme because of the frequent input replication process.

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

53:6 So et al.

Second, SRMT transformation is vulnerable during the output comparison process. Output
comparison is defined as the process of checking the results of redundant computations for error
detection and committing results if there is no discrepancy. In SRMT transformation, a shared
memory write operation is considered as an output comparison; therefore, SRMT should detect
incorrect store instructions. As shown in Fig. 1, the leading-thread sends the value of data and
address registers (r0 and r4) to the trailing-thread before the execution of the store instruction, and
the trailing-thread compares the register values from the leading-thread against its locally calculated
register values to ensure that the store instruction is executed with the correct input. However, the
errors that occur after checking the results and during the result submission process (marked as 2○
in Fig. 1) will directly affect the memory write operation without being detected. This is because
trailing-thread does not verify the execution of the store directly, but it only checks the old snapshot
of the register values that leading-thread sent before the execution of store instruction. Note that
soft errors that occur in the vulnerable period (marked as 2○ in Fig. 1) does not affect the execution
of sendBuf(r0) and sendBuf(r4). Therefore, trailing-thread considers that the received values of
r0 and r4 from the leading-thread are correct, regardless of the correctness of the execution of the
original store instruction. Examples include errors in pipeline data path registers while processing
store instructions, store effective address functional units, store buffers, and even store register
operands (after sending their data to the trailing-thread and before being read for memory write
operation). Moreover, because store operations can stay in the microprocessor store buffer for a
long time, they have a considerably high exposure time, leading to a high chance of corruption.
Note that hardware-level memory protection such as ECC cannot cover this vulnerability because
the system cannot be aware of the corruption of the store instruction, and the system calculates
the ECC bits based on the corrupted store instruction.

In this study, we mainly concentrate on the SRMT scheme. However, all existing software-only
RMT schemes suffer from the above-mentioned vulnerable intervals. For instance, the DAFT [51]
technique improved the performance overhead of SRMT by applying an in-thread instruction
duplication scheme for the entire use-def chain of register operands of volatile memory write
accesses, rather than verifying their correctness in the trailing-thread. Therefore, DAFT-protected
programs need no synchronization between redundant threads and execute faster. Not only does
DAFT suffer from all SRMT protection holes, but its fault coverage is limited to soft errors. The
COMET [29] scheme also improves the performance overhead of SRMT by applying several
optimizations, including in-lining sendBuf() and recvBuf() functions, and reducing the number
of such functions with packing store data and memory register values together. Several schemes [14,
48] have applied the SRMT error detection strategy to GPUs. Furthermore, RedThreads [16] takes
advantage of SRMT flexible error detection and accomplishes programmer-tunable protection by
providing programming-language support for applying partial SRMT in HPC applications. Overall,
because all existing software-level redundant multithreaded schemes mainly attempt to improve
the performance overhead of SRMT, they suffer from SRMT protection holes. The only exceptional
solution is process-level redundancy (PLR) [41], which replicates the application into redundant
processes and compares the external results of them. However, PLR suffers memory overhead due
to the memory replication and can only be applied in a process-level granularity [51].

3 OUR APPROACH
3.1 Basic idea of EXPERTISE
We present EXPERTISE, a compiler-level RMT approach that eliminates the input replication and
output comparison vulnerability windows of state-of-the-art schemes. The main design goal of
EXPERTISE is to provide processor-wide transient and permanent fault detection. More specifically,

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

EXPERTISE: An Effective Software-level Redundant Multithreading Scheme against Hardware Faults 53:7

Original Code EXPERTISE-protected Code

mov r4, 0xfa

load r0[r4]

r0 = r0 + 16
r4 = r4 + 4

Main
Memory

isSync = 0
before
store

operation

Main-thread (Core i)

mov r4, 0xfa

load r0[r4]

r0 = r0 + 16
r4 = r4 + 4

isSync =1

wait(break if isSync==0)

load tmp[r4]
If (tmp != r0) Error()

Checker-thread (Core j)

mov r4, 0xfa

load r0[r4]

r0 = r0 + 16
r4 = r4 + 4

1

store r0→[r4]

wait(break if isSync==1)

store r0→[r4]

isSync = 0

EXPERTISE protects load instructions
by directly replicating them

EXPERTISE checks the result of store instructions
by loading back their results from the memory

Before the store, Main-thread should wait until
Checker-thread reaches same execution point

Before the load-back checking, Checker thread
should wait until Main-thread completes the store2

MemoryMain-thread

load r0[r4]

Checker-thread

load r0[r4]
Wrong

load
Correct

load

MemoryMain-thread

store r0→[r4]

Checker-thread

load tmp[r4]
If (tmp != r0) Error()Wrong

store
Compare

with clean r0

Fig. 2. EXPERTISE transformation runs two copies of a program thread and synchronizes them on store
operations. The main-thread performs store, and the checker-thread verifies the correct execution of the store
by loading the written value from the memory and checking it against the locally-computed value.

we consider the single bit-flip model including flip-to-1 and flip-to-0 [19, 33] for transient faults
and the single stuck-at fault model [12] for permanent faults.2 EXPERTISE targets single-threaded
applications running on a multicore processor in which the memory subsystem (excluding core
private caches) is protected by ECC. The EXPERTISE transformation assigns a checker-thread to
the main application thread. The checker-thread is executed on a different core than that executing
the main execution thread. The key idea here is to orchestrate the main- and checker-threads in
such a way that after each memory write operation is committed by the main-thread, the checker
loads the written value from the memory back and checks that against its own locally computed
value. The major features of EXPERTISE are as follows.

1) The EXPERTISE transformation eliminates single-point-of-failures of the input
replication process. As discussed in Section 2, the input replication process for memory read
instructions introduces a protection hole in the existing RMT schemes. EXPERTISE eliminates
such vulnerabilities by adopting a memory read instruction duplication strategy. Fig. 2 illustrates
the EXPERTISE transformation. In this example, memory read and write instructions and the
corresponding checking instructions are indicated in bold and instructions for synchronizing main-
thread and checker-thread are indicated in italicswith gray boxes. As shown in Fig. 2, the EXPERTISE
transformation replicates memory read instructions as well as computational instructions. With
duplicated memory read instructions, EXPERTISE can achieve redundancy of load instructions.
The main challenge here is how to provide input replication coherency (how to guarantee that
both redundant threads will receive the same data from the shared memory). For instance, consider
a case in which the main-thread reads some value from memory, performs computations, and store
the updated data back to the memory. Later, once the checker-thread performs the redundant read
operation, it receives a different value from what the checker-thread received, which eventually led
to false error detection. Therefore, we need a mechanism to ensure that both threads perform their
previous memory read operations before writing to the memory. EXPERTISE uses a shared variable
(isSync) and a busy-waiting mechanism to provide the required ordering between redundant
thread executions. The operations required for coherent input replication are marked as 1○ in the
figure. Although it is possible to place such memory barrier operations on different places of the
code (i.e., after load and store instructions) to satisfy the input coherency problem, we choose to

2EXPERTISE cannot detect multi-bit faults if two redundant threads are corrupted identically. However, multi-bit faults are
frequent compared to single-bit faults [24] and redundancy-based scheme that targets single-bit faults can detect most of
the multi-bit faults if the scheme can detect single-bit faults sufficiently [35].

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

53:8 So et al.

put them immediately before store operations because it will give us the minimum number of
synchronization points. Generally, number of write operations is lesser than read operations [45].

2) The EXPERTISE transformation does not suffer from a vulnerable output comparison
process. The existing software-level multithreaded scheme suffers from a very fragile output
comparison/delivery process owing to the indirect store verification that only checks the snapshot
of the register values before the store instruction. To solve this vulnerability, EXPERTISE adopts
the load-back checking from the existing in-thread instruction replication schemes [6–9] that
directly verifies the correctness of the output delivery process to eliminate vulnerability from
the output comparison. EXPERTISE extends such comprehensive error checking into RMT by
assigning execution of store instruction to the main-thread, and the load-back checking process
to the checker-thread. Therefore, EXPERTISE verifies the right execution of a store instruction
in the main-thread by loading the main-thread written data from memory in the checker-thread
and comparing it against the redundant computed version of data, as shown in Fig. 2. Because
this load-back checking directly accesses the result of the store instruction of the main-thread,
EXPERTISE can effectively detect a soft error even if the fault corrupts the execution of the store
instruction.

However, the load-back checking requires strict order between the original store instruction and
the following load-back checking process. While in-thread level schemes can easily accomplish this
requirement by the instruction ordering in identical threads, accomplishing such a requirement on
RMT requires the communication between two threads. Therefore, The challenge for combining
load-back checking and RMT is to ensure that the checking operation in the checker-thread will take
place after the write operation in the main-thread. EXPERTISE addresses this problem by inserting
a memory barrier after memory write operations (marked 2○ in Fig. 2). When the main-thread
performs a memory write operation, it rewrites the value of the isSync flag as 0. Then, the checker-
thread breaks the wait and verifies the result (computations and execution of the memory write
operation) of the main-thread. The checker-thread accomplishes this by loading the main-thread
written value from the memory and checks it against its own locally computed value. Note that in
the EXPERTISE error detection strategy, errors altering the effective address of the store instructions
are also detected. If the main-thread updates an incorrect memory location, the checker-thread
reads the data from the right memory location and detects a mismatch. Further, EXPERTISE also
can detect a fault on checker-thread by load-back checking. In this case, the load-back checking
can detect mismatch by comparing the result of store instruction from the main-thread that is not
affected by the fault and the corrupted locally-computed values of checker-thread.

3.2 Solution for erroneous silent store
Even though post-store detection discussed in Section 3.1 can provide high-level fault coverage,
it can still be vulnerable to errors that impact the address of silent stores [9]. A memory write
operation is silent if it writes a value in the memory that is presented in the target memory
location even before the execution of the store [25]. Therefore, even if it skips over the execution
of store instruction for such cases, the result is still correct. Silent stores are frequent in real-world
applications, and independent profiling results shown in [20, 26] reveal that up to ∼75% (on average
more than ∼ 30%) of dynamic stores in SPEC benchmark programs are silent! In this subsection, we
first introduce the vulnerability of EXPERTISE from the address corruption of a silent store. Then,
we present the EXPERTISE solution based on the silent store avoidance from the previous in-thread
replication scheme [9] that solved the silent store problem of load-back checking. Specifically,
EXPERTISE extends this solution into RMT by assigning redundant silent store checkings into main-
and checker-threads and combining synchronization signal and transfer of silent store checking
result into one variable. For the sake of understanding, we first present two naive solutions to

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

EXPERTISE: An Effective Software-level Redundant Multithreading Scheme against Hardware Faults 53:9

Compute(r0); // r0=0
Compute(r4);

wait(break if isSync==1)

store r0→[r4]

isSync = 0

Compute(r0); // r0=0
Compute(r4);

isSync =1

wait(break if isSync==0)

load tmp[r4]
If (tmp != r0) Error()

Main-thread (Core i) Checker-thread (Core j)

0

?→ 0

Memory

1

Faulty
mem[r4]

Original
mem[r4]

3

1. If address register
(r4) is corrupted

before (or during)
execution of

the silent store,

2. Store instruction will update memory with wrong address
while data in the correct address is not updated

2

3. Because r4 in checker-
thread is correct, it will load

the old value in target
memory. However, the

loaded data (0) is
considered as correct

because the value of r0 is
also 0.

Fig. 3. Load-back checking is vulnerable to an error affecting the memory address of silent stores.

solve the vulnerability issue from silent stores and discuss their drawbacks. Then, we present our
solution to solve both the vulnerability of load-back checking in EXPERTISE and the drawbacks of
the naive solutions.
1) Load-back checking of the EXPERTISE transformation cannot detect the address

corruption of a silent store. Assume that a soft error corrupts the address of a silent store, and the
main-thread writes a value in the wrongmemory location. Then, the load-back checking mechanism
of EXPERTISE presumes no errors in computations because the checker-thread still reads the
expected value from memory. Fig. 3 shows the vulnerability of the EXPERTISE transformation in
the case of silent stores. In Fig. 3, thread synchronization and error detection operations are indicated
in italics with gray boxes and bold, respectively. Fig. 3 depicts a code snippet that computes r0
and r4 registers, and stores r0 into the memory location (mem[r4]). Note that in this example, both
the results for r0 computation and the original data in the memory location (mem[r4]) before the
store operation are zero, and therefore the store operation is silent. The vertical line (marked as
1○) shows the vulnerable period of register r4. If any errors alter the value of r4 on the main-
thread during this vulnerable interval, it leads to an unwanted write to a random memory location
(marked as 2○) through the execution of memory write instruction. However, checker-thread error
detection operations cannot detect the manifestation of such an error because the correct value
has been sitting in the target memory location (marked as 3○). Note that including errors directly
affecting the value of register r4, errors hitting the address calculation of store instruction also
remain undetectable. Such undetectable cases include errors on the address (or immediate value) of
store instruction in the instruction cache and microprocessor pipeline, errors affecting functional
units during the computation for the effective address of store instruction, and errors affecting the
load-store unit. The importance of memory write operations, the frequency of silent stores, and the
sensitive components during the execution of stores make silent store vulnerability non-negligible.
2) Avoiding silent store can solve the silent store problem of load-back checking, but

naively detecting a silent store in one thread induces another vulnerability. Avoiding the
execution of silent stores can eliminate the vulnerability of load-back checking in EXPERTISE. The
key idea to avoid the execution of silent stores is to detect silent stores dynamically and skip their
execution. Note that skipping silent stores can eliminate the vulnerability of load-back checking. It
does not affect the original behavior of the program because it does not change any architectural
states or memory instances. Intuitive method for compiler-level silent store detection and avoidance
is to read the value inside the store’s target memory before its execution and check it against the
store value register. If they are equal, the store is silent, and its execution can be skipped [9]. We
refer to this process as a silent store checking. Fig. 4 (a) shows a first-cut silent store checking
solution. In this simple solution, the main-thread does not perform the store operation if the value
that already exists in the memory is the same as the store value.
This solution can successfully skip the execution of silent stores in fault-free execution, thus

avoiding the silent store problem. However, it fails when a fault impacts the address register operand

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

53:10 So et al.

(a) EXPERT with naive silent-store check on Main-thread

Main-thread (Core i)

Compute(r0);
Compute(r4);

wait(break if isSync==1)

if (mem[r4] != r0)
store r0→[r4]

isSync = 0

Checker-thread (Core j)

Compute(r0);
Compute(r4);

isSync =1

wait(break if isSync==0)

load tmp[r4]
If (tmp != r0) Error()

Parallel
Redundant

Computations

r 4
V

u
ln

er
ab

le
 P

er
io

d

2
1

3

Main-thread (Core i)

Compute(r0);
Compute(r4);

wait(break if isSync==1)

if (!isSilentChk)
store r0→[r4]

isSync = 0

Checker-thread (Core j)

Compute(r0);
Compute(r4);

if (mem[r4] != r0)
isSilentChk = 0

isSync =1

wait(break if isSync==0)
=

load tmp[r4]
If (tmp != r0) Error()

Parallel
Redundant

Computations

(b) EXPERT with naive silent-store check on Checker-thread

2

1

3

r 4
V

u
ln

er
ab

le
 P

er
io

d

4

r 0
V

u
ln

er
ab

le
 P

er
io

d

Fig. 4. EXPERTISE transformation with naive silent store checking on the main-thread (a) and checker-thread
(b). r4 is vulnerable in (a) if the original store is silent. In contrast, r0 and r4 are vulnerable on (b) if the
original store is not silent, but the corrupted register values make the result of the silent store checking silent.

of the silent store checking. Consider a case in which the store operation is silent, and an error has
changed its memory address register (r4 in Fig. 4 (a) to r4*3) before the execution of the silent store
checking operation (marked as r4 Vulnerable Period). In this case, an incorrect value (present
at the memory location r4*) will be compared against the store value register, and if they happen
to be different (which is more likely), the store operation will update the wrong memory location (
r4*). However, because the store is silent, the checker-thread error detection operations cannot
catch the error, the correct value will be loaded from memory, and no mismatch will be observed.

3) EXPERTISE eliminates the vulnerability to the one-side silent store checking by re-
dundant silent store checking. The above vulnerability can be avoided by dividing the execution
of the store operation and the silent store checking into different threads as shown in Fig. 4 (b). In-
tuitively, another first-cut solution is to proceed with a silent store checking on the checker-thread,
and the main-thread utilizes the result of the silent store checking from the checker-thread to deter-
mine whether to skip the store operation. However, this approach fails to protect store operations
that are not silent. Assume that a fault has changed the data register (r0 to r0*) of the store operation
before the execution of the silent store checking operation (marked as r0 Vulnerable Period). If
the value of the corrupted data register (r0*) is the same as that of the data in the target address
(r4), the checker-thread will assume that the store operation is silent. Therefore, the main-thread,
which utilizes the result of the silent store checking on the checker-thread, will skip the store
operation. This error cannot be observed by load-back checking on the checker-thread because it
utilizes the corrupted data register (r0*) again. Consequently, the target memory location will not
be updated, although the original store is not silent. Note that such a failure case can occur in a
similar manner when an error changes the memory address register (r4).

EXPERTISE employs redundancy in silent store checking operations by performing them sepa-
rately on both the main- and checker-threads. This is because the main reason behind the inef-
fectiveness of the two first-cut solutions is that there is no redundancy for silent store checkings.
Fig. 5 (a) shows the EXPERTISE transformation with a redundant silent store checking. In this
example, thread synchronization and error detection operations are indicated in italics with gray
boxes and bold, respectively. Further, the variables for inter-thread communication between the
main-thread and checker-thread are underlined. EXPERTISE uses two variables, IsSilentMain
and IsSilentChk, to hold the results of silent store checking operations conducted by the main-

3* means erroneous value due to hardware faults

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

EXPERTISE: An Effective Software-level Redundant Multithreading Scheme against Hardware Faults 53:11

(a) EXPERTISE with redundant silent-store check

Main-thread (Core i)

Compute(r0);
Compute(r4);

wait(break if isSync==1)

if (mem[r4] != r0)
isSilentMain = 1
store r0→[r4]

else isSilentMain = 0
if (isSilentMain

!= isSilentChk) Error()
isSync = 0

Checker-thread (Core j)

Compute(r0);
Compute(r4);

if (mem[r4] != r0)
isSilentChk = 1

else
isSilentChk = 0

isSync =1

wait(break if isSync==0)

load tmp[r4]
If (tmp != r0) Error()

Parallel
Redundant

Computations

2

3

(b) Combining silent-store check result with synchronization variable

Main-thread (Core i)

Compute(r0);
Compute(r4);

wait(break if isSync!=0)

if (mem[r4] != r0)
isSilent = 1
store r0→[r4]

else
isSilent = 2

if (isSilent != isSync) Error()
isSync = 0

Checker-thread (Core j)

Compute(r0);
Compute(r4);

if (mem[r4] != r0)
isSync = 1

else
isSync = 2

wait(break if isSync==0)

load tmp[r4]
If (tmp != r0) Error()

isSync = 1:
store looks non-silent

+ start store

isSync = 2:
store looks silent

+ start store

isSync = 0:
start store checking

isSync = 0
Before the store

1

4

5

6

Fig. 5. EXPERTISE employs the redundancy of silent store detection (a). To avoid the additional communica-
tion, EXPERTISE combines the synchronization variable and the result of the silent store checking (b).

and checker-threads, respectively. For correctness, the checker-thread silent store checking should
take place before the execution of the store instruction.

Once the checker-thread completes silent store checking, it sets the synchronization flag (marked
as 2○ in Fig. 5 (a)) and main-thread execution continues by performing three conditional branch
operations. First, IsSilentMain is set if the store is silent inside the main-thread (marked as 3○). If
the store is not silent in the second condition statement, main-thread advances by the execution
of store instruction (marked as 4○). Third, the main-thread compares the result of its own silent
store checking test (IsSilentMain) against the checker-thread (IsSilentChk), and raises the error
flag in the case of mismatch (marked as 5○). If they are the same, the main-thread resumes the
execution of the checker-thread by setting the value of isSync as 0 (marked as 6○).
The silent store avoidance with redundant silent store checkings eliminates all possible vul-

nerabilities from the address corruption of silent store operations. Note that this solution also
eliminates the vulnerabilities of the naive solutions in Fig. 4 (a) and (b). This is because a sin-
gle fault in the vulnerable period of the naive solutions (marked as r0 Vulnerable Period and
r4 Vulnerable Period in Fig. 4 (a) and (b)) can only corrupt either isSilentChk or isSilentMain,
and comparing the results of the redundant silent store checking (marked as 5○ in Fig. 5 (a)) can
detect this fault.

However, the redundant silent store checkings in Fig. 5 (a) induce another vulnerability against
soft errors. This solution requires two variables for inter-thread communication (isSync and
isSilentChk), as underlined in Fig. 5 (a). Without additional hardware support, these variables
are located in the memory because both threads should be able to access them. Therefore, write
operations for these variables are implemented using store instructions. The problem is that these
instructions can also be affected by soft errors. If a soft error corrupts the address of the store
instruction for isSilentChk, the store instruction corrupts the data in the wrong address. If the
corrupted write operation of isSilentChk was originally silent (the value of isSilentChk that the
checker-thread is going to send to the main-thread is the same as the previous value that remains
in the memory), the main-thread cannot be aware of this corruption. This is because the value of
isSilentChk that is not updated owing to the address corruption of the write operation is the
same as the value of isSilentMain. Note that isSync does not suffer such vulnerability, because
soft errors that affect a store operation of isSync will break the communication rules between the
main-thread and checker-thread, which will result in system-visible failures such as an infinite
loop. Further, store instructions for isSync are never silent.
To resolve the vulnerability from the additional communication variable, we combine isSync

and isSilentChk, as shown in Fig. 5 (b). While the main-thread of the previous solution in Fig. 5 (a)

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

53:12 So et al.

Original-thread

Compute(r1)
Compute(r2)

store r1→ [r2]

r2 = r2 + 4
load r1 [r3]

store r1→ [r2]

(c) EXPERTISE-applied threads with store packing

Main-thread (Core i)

Compute(r1)
Compute(r2)

wait(break if isSync==1)

store r1→ [r2]

r2 = r2 + 4
load r1 [r3]

store r1→ [r2]

isSync = 0

Checker-thread (Core j)

Compute(r1)
Compute(r2)

isSync = 1

wait(break if isSync==0)

If (mem[r2] != r1) Error()

r2 = r2 + 4
load r1 [r3]

If (mem[r2] != r1) Error()

Parallel

Serial

(a) Original code (b) EXPERTISE-applied threads without store packing

Main-thread (Core i)

Compute(r1)
Compute(r2)

wait(break if isSync==1)

store r1→ [r2]
isSync = 0

r2 = r2 + 4
load r1 [r3]

wait(break if isSync==1)
store r1→ [r2]
isSync = 0

Checker-thread (Core j)

Compute(r1)
Compute(r2)

isSync = 1
wait(break if isSync==0)

If (mem[r2] != r1) Error()

r2 = r2 + 4
load r1 [r3]

isSync = 1
wait(break if isSync==0)
If (mem[r2] != r1) Error()

Fig. 6. To apply pure EXPERTISE to the original code (a), as many inter-thread synchronizations as the number
of store instructions are required (b). EXPERTISE store packing reduces the number of synchronization points
by executing multiple stores and adjacent instructions inside one serial segment of the execution (c).

waits till the checker-thread attains the break condition isSync==1, the new solution in Fig. 5 (b)
utilizes the break condition isSync!=0. Therefore, the checker-thread can awake the main-thread
by writing any values except 0 to isSync. The new solution utilizes a variety of the value of
isSync to encode the functionality of isSilentChk. When the checker-thread awakes the main-
thread, isSync is set to 1 if the result of the silent store checking in the checker-thread indicates
that the store instruction is not silent. Otherwise, if the result of the silent store checking in the
checker-thread indicates that the store instruction is silent, the checker-thread sets isSync as 2.
The main-thread utilizes the local variable isSilent as a result of silent store checking in the
main-thread, and the main-thread compares isSilent with the received value of isSync, to check
the validity of redundant results of silent store checkings. Finally, the main-thread sets isSync to
resume the execution of the checker-thread. Consequently, the solution in Fig. 5 (b) requires only
one communication variable isSync, which is the same as the original solution without a silent
store checking, as shown in Fig. 2.

4 PERFORMANCE OPTIMIZATION
The performance advantage of RMT comes from the observation that redundant threads can be
executed on physically different cores on a multicore processor to detect hardware faults. The
downside of this assumption is that redundant thread communication (marked in italic with gray
in Fig. 5 (b)) is becoming inter-core communication which is considerably slower than intra-core
communication. Previous analysis of RMT execution of GPUs reveals that, on average, 80% of
the redundant execution overhead is caused by inter-core communication [14]. For the sake of
understanding, we first introduce store packing optimization with the basic EXPERTISE without
load-back checking, which is discussed in Section 3.1, and discuss the challenges of applying a
silent store checking that is discussed in Section 3.2 with the store packing optimization. Second,
we present improved store packing optimization with fingerprint-based load-back checking to
relieve the conflicts of register values when we apply silent store checking with store packing
optimization. Finally, we apply compressed synchronization, which combines the multiple results
of silent store checkings and synchronization variables into one shared variable.

4.1 Basic idea of store packing optimization
The main goal of our performance optimization is to reduce the number of inter-core communica-
tions based on the main idea of Give-N-Take [47] and Sink-N-Hoist [50]. The number of thread
synchronization points in the baseline EXPERTISE is equal to the memory write operations. We

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

EXPERTISE: An Effective Software-level Redundant Multithreading Scheme against Hardware Faults 53:13

Checker-thread (Core j)

Compute(r1)
Compute(r2)

fillZero(isSIlentChk)

if (mem[r2] != r1) isSilentChk[0] = 1

r2 = r2 + 4
load r1 [r3]

if (mem[r2] != r1) isSilentChk[1] = 1

isSync = 1

wait(break if isSync==0)

if (mem[r2] != r1) Error()

r2 = r2 + 4
load r1 [r3]

if (mem[r2] != r1) Error()

Main-thread (Core i)

Compute(r1)
Compute(r2)

wait(break if isSync==1)

fillZero(isSIlentChk)

if (mem[r2] != r1)
store r1 [r2]
isSilentMain[0] = 1

r2 = r2 + 4
load r1 [r3]

if (mem[r2] != r1)
store r1 [r2]
isSilentMain[1] = 1

If (isSilentMain
!= isSilentChk) Error()

isSync = 0

Original-thread

Compute(r1)
Compute(r2)

store r1 [r2]

r2 = r2 + 4
load r1 [r3]

store r1 [r2]

P
ackin

gP
ac

ki
n

g

2

1

3

5

4

6

Fig. 7. Directly applying store packing to EXPERTISE cannot ensure the correctness of load-back checking.

apply store packing, which exploits only one synchronization point for a group of store instruc-
tions. With the store packing optimization, EXPERTISE executes multiple store instructions in
main-thread, then checker-thread executes the corresponding load-back checking instructions with
one synchronization point. Fig. 6 (a), (b), and (c) describe an example original code, EXPERTISE-
applied code without store packing, and EXPERTISE-applied code with store packing optimization,
respectively. Note that in this example, we do not apply silent store avoidance discussed in Sec-
tion 3.2 to concentrate on the concept of store packing optimization. Because there are two store
instructions in the original code, as shown in Fig. 6 (a), two synchronizations are required for
the pure EXPERTISE transformation, as shown in Fig. 6 (b). Instead, EXPERTISE merges these
two store instructions into a pack with one synchronization, as shown in Fig. 6 (c). Note that the
computational instructions between the store instructions are also packed by store packing. Store
packing sacrifices parallelism because packed instructions, including computational instructions
between stores, should be executed serially. However, it improves the overall runtime performance
by reducing the number of thread synchronizations.
However, simply applying store packing optimization can be inefficient because of the silent

store checking discussed in Section 3.2. Fig. 7 shows the conflicts of register values when applying
store packing optimization to EXPERTISE without considering the redundant executions of packed
instructions on the checker-thread. The transformation of the checker-thread consists of two
parts. The first part (marked as 1○, 2○, and 3○) deals with silent store checking and results sent
for the two store operations and are performed before synchronization signals (isSync = 1 and
wait(break if isSync==0)). The second part is for reading the results of the main-thread from
the memory and checking them for error detection (marked as 4○ , 5○, and 6○). In this example, both
the first and second original store instructions access r1 and r2 as data and address operands where
the packed instructions between them (2○ and 5○) modify r1 and r2. Therefore, the transformed
instructions for the first store instruction (1○ and 4○) should be executed based on the values of
r1 and r2 before the packed instructions (2○ and 5○), and those for the second store instruction
(3○ and 6○) should be executed based on the values for r1 and r2 after the packed non-store
instructions. Naive store packing on EXPERTISE harms the above conditions: i) The load-back
checking for the first store in the second part (4○) accesses r1 and r2 after the packed instructions
(2○), while the main-thread does the first store based on the values for r1 and r2 before the packed
instructions (2○). ii) Because the packed instructions are executed twice (2○ and 5○), the load-back
checking for the second store in the second part (6○) might access the wrong r1 and r2 values. In
this example, the r2 value is increased by 8 for the load-back checking of the second store, while
the main-thread does the second store with the r2 value that is increased by 4. Note that naively
eliminating redundant packed instructions (2○) in the first part can solve this problem, but it harms

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

53:14 So et al.

Checker-thread (naive)

Compute(r1)
Compute(r2)

fillZero(isSIlentChk)

if (mem[r2] != r1) isSilentChk[0] = 1

r2 = r2 + 4
load r1 [r3]

if (mem[r2] != r1) isSilentChk[1] = 1

isSync = 1

wait(break if isSync==0)

re-compute(r1)
r2 = r2 - 4

if (mem[r2] != r1) Error()

r2 = r2 + 4
load r1 [r3]

if (mem[r2] != r1) Error()

Checker-thread (fingerprint-based)

Compute(r1)
Compute(r2)

fillZero(isSIlentChk) & fingerprint = 0

if (mem[r2] != r1) isSilentChk[0] = 1
fingerprint = fingerprint XOR r1

r2 = r2 + 4
load r1 [r3]

if (mem[r2] != r1) isSilentChk[1] = 1
fingerprint = fingerprint XOR r1

isSync = 1

wait(break if isSync==0)

r2 = r2 - 4

fingerprint = fingerprint XOR mem[r2]

r2 = r2 + 4
fingerprint = fingerprint XOR mem[r2]

if (fingerprint != 0) Error()

5

Main-thread (Core i)

Compute(r1)
Compute(r2)

wait(break if isSync!=0)

fillZero(isSIlentChk)

if (mem[r2] != r1)
store r1→ [r2]
isSilentMain[0] = 1

r2 = r2 + 4
load r1 [r3]

if (mem[r2] != r1)
store r1→ [r2]
isSilentMain[1] = 1

If (isSilentMain
!= isSilentChk) Error()

isSync = 0

(b) Main-thread
with store packing

(c) Checker-thread
with naive store packing

(d) Checker-thread with
fingerprint-based store packing

Original-thread

Compute(r1)
Compute(r2)

store r1→ [r2]

r2 = r2 + 4
load r1 [r3]

store r1→ [r2]

(a) Original-thread
without EXPERTISE

1

4
3

2

6

7

8
9

Fig. 8. While the naive store packing requires extra instructions to re-compute the data and address registers,
the fingerprinting-based store packing needs to re-compute only the address registers.

the silent store checking of the second store (3○) because it accesses the values of r1 and r2 that
are not updated by the packed instructions (2○).

4.2 Store packing optimization with fingerprinting-based load-back checking
Fig. 8 (a) shows an example code before applying EXPERTISE and Fig. 8 (b) illustrates the EXPERTISE-
applied main-thread code with store packing optimization. Fig. 8 (c) illustrates the first-cut solution
of checker-thread that applies EXPERTISE with store packing optimization. In the first-cut solution
(Fig. 8 (c)), packed non-store instructions are executed only in the first part (marked as 1○). Because
both data and address operand registers of the first store are modified in the first part, their values
should be restored before the execution of load-back checking of the first store in the second part
(marked as 4○). In the code example shown here, the address computations are easily revertible by
performing reverse computations (r2 = r2 - 4, as marked with 3○). For the data register (r1),
the checker-thread needs to redo the part of the parallel computation required for data register
calculation (denoted as re-compute(r1), as marked with 2○). Note that restoring data and address
registers requires extra computations, but it might be impossible if previous register or memory
data to restore data and address were overwritten. For the latter case, store packing should divide
the pack, and therefore, the efficiency of store packing decreases.

To minimize redundant computations to apply store packing optimization in the presence of the
EXPERTISE silent store checking, we propose a fingerprinting-based store packing optimization that
can be combined with the EXPERTISE silent store checking. Fig. 8 (d) illustrates the checker-thread
optimized by fingerprinting-based store packing. During the first part of the checker-thread for
silent store checking, the checker-thread generates a data fingerprint by XORing all data registers
for the silent store checkings (marked as 5○ and 6○). Note that the data of silent store checking and
the one of the load-back checking should be equal in the absence of error if both checkings target
the same store instruction. Therefore, XORing all loaded values in the load-back checking part
should be equal to the fingerprint generated during silent store checking. Instead of generating
another fingerprint and comparing it to the fingerprint of silent store checking part, we simply XOR
all the loaded values in the load-back checking part with the previous fingerprint value (marked as

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

EXPERTISE: An Effective Software-level Redundant Multithreading Scheme against Hardware Faults 53:15

Checker-thread (Core j)
Compute(r1)
Compute(r2)

isSilentChk= 0b1000...0, fingerprint = 0

if (mem[r2] != r1) isSilentChk[0] = 1
fingerprint = fingerprint XOR r1

r2 = r2 + 4
load r1 [r3]

if (mem[r2] != r1) isSilentChk[1] = 1
fingerprint = fingerprint XOR r1

isSync = isSilentChk

wait(break if isSync==0)

r2 = r2 - 4
fingerprint = fingerprint XOR mem[r2]

r2 = r2 + 4
fingerprint = fingerprint XOR mem[r2]

if (fingerprint != 0) Error()

Main-thread (Core i)
Compute(r1)
Compute(r2)

wait(break if isSync!=0)

silentArr= isSync

if (mem[r2] != r1)
store r1→ [r2]
flip(silentArr[0])

r2 = r2 + 4
load r1 [r3]

if (mem[r2] != r1)
store r1→ [r2]
flip(silentArr[1])

If (silentArr
!= 0b1000…0) Error()

isSync = 0

(b) Main-thread
with store packing

(c) Checker-thread with store packing based on
fingerprinting and compressed synchronization

1 0 0

isSync
(Shared variable)

… 0 0 1

Make MSB as 1

nth bit of isSync means
result of silent store check

for the nth store

Original-thread
Compute(r1)
Compute(r2)

store r1→ [r2]

r2 = r2 + 4
load r1 [r3]

store r1→ [r2]

(a) Original-thread
without EXPERTISE

Fig. 9. EXPERTISE compresses the synchronization and results of silent store checkings on the checker-thread
into one shared variable to minimize the number of inter-core operations.

7○ and 8○). Absence of the error, the final fingerprint value should be 0 because the checker-thread
XORed all data values twice. Based on this observation, the checker-thread compares the XORed
fingerprint with 0 to detect faults (marked as 9○).
Consequently, the fingerprinting-based store packing does not need to revert changes in data

registers and corresponding redundant computations for the load-back checking. Therefore, EXPER-
TISE only needs to revert and compute again for the address registers, as denoted by the underlined
instruction in Fig. 8 (d). Furthermore, fingerprinting-based store packing has the potential to pack
instructions that cannot be packed in basic store packing without silent store checking that is
discussed in Section 4.1. Because all instructions inside of the basic store packing will be executed
in main-thread-first-then-checker-thread fashion, store instructions cannot be packed to-
gether if there is load/store-to-store memory dependency in the basic store packing. Note
that load-/store-to-store memory dependency means that there should be no store operation
that comes after a memory operation (load or store) and access to the same memory location
as previous memory instructions. This constraint is essential in the main-thread-first-then
-checker-thread fashion because the preceding execution of store operation in the main-thread
can overwrite the loaded value in the trailing load instruction in the checker-thread. On the other
hand, all instructions in the fingerprinting-based store packing of EXPERTISE are executed in
checker-thread -first-then-main -thread fashion, except for load-back checking and corre-
sponding redundant instructions for the address. Therefore, store packing of EXPERTISE does not
suffer from load-to-store memory dependency because load instruction in the checker-thread
will be executed before the store instruction in the main-thread.

4.3 Applying compressed silent store checking
As discussed in Section 3.2, additional inter-core communication can induce another vulnerability
if the communication process is not protected. In store packing optimization, the checker-thread
should send the results of silent store checkings to the main-thread as many as the number of stores
in the instruction pack. To eliminate additional vulnerabilities from the additional communication
process for sending results of silent store checkings, we extend the idea of combining the synchro-
nization variable and the result of silent store checking in Fig. 5 (b) to compress multiple results

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

53:16 So et al.

of silent store checkings into one synchronization variable. Fig. 9 (a) shows an example original
code, and Fig. 9 (b) and (c) show EXPERTISE-applied main- and checker-threads with compressed
inter-core communications, respectively. The modified codes for the compressed communication
compared to the main-thread and checker-thread without compressed communication (Fig. 8 (b)
and (d)) are written in bold in Fig. 9 (b) and (c). The synchronization variable is underlined, and
the instructions for inter-core communications are written in italics with gray boxes in Fig. 9 (b)
and (c). In this example, isSync performs the roles of the synchronization variable and results of
the multiple results of silent store checkings in the checker-thread. The checker-thread encodes
the results of silent store checkings in the packed instructions into the bits in the temporal reg-
ister isSilentChk and sends isSilent to the main-thread via isSync. Specifically, the nth bit
of isSyncSilent indicates the result of the silent store checking (1 means silent, and 0 means
not silent) for the nth store instruction in the pack, as shown in Fig. 9. However, the value of
isSilentChk and isSync can be zero if all of the store instructions in the pack are not silent. This
should be avoided because the main-thread waits when the value of isSync for communication is 0.
Therefore, when the checker-thread sends the value of isSilentChk to the main-thread via isSync,
it always makes theMSB (most significant bit) of isSilentChk as 1. Note that isSilentChk is not a
variable for communication; therefore, this solution does not require an additional communication
process compared to EXPERTISE without silent store checking.
After notification from the checker-thread, the main-thread copies the value of isSync from

shared memory into the register (silentArr in Fig. 9). Instead of maintaining isSilentMain as in
the previous example (Fig. 8 (b)) to accumulate the results of silent store checkings, this solution
flips the nth bit of the silentArr if the nth store is silent. After executing all instructions in the
pack, every bit of silentArr except MSB should be 0 if the results of the silent store checkings in
the main-thread match the ones of the checker-thread. Therefore, the main-thread can detect the
mismatch of silent store checkings by checking whether all bits of isSilentChk except MSB are 0.

While the compressing the results of silent store checkings to the synchronization variable does
not requires additional communication for transferring the results of silent store checkings, it limits
the number of store instructions that can be packed into one inter-core communication; If the size
of isSync is n bits, The maximum number of packed store instructions is n-1. If there are more
than n-1 stores to pack, the store packing optimization should split them into multiple packs.

4.4 Algorithm for the store packing optimization
Algorithm 1 shows the algorithm to extract instruction sets that store packing optimization of
EXPERTISE can pack together from a basic block. This algorithm parses all instructions in the target
block and start packing when it encounters the store instruction by 𝑖𝑛𝑠𝑖𝑑𝑒𝑃𝑎𝑐𝑘 . If the algorithm
judges that it can not pack any more instructions, it terminates the current packing by enrolling
the current pack with the instructions from the firstly store instruction to the lastly parsed one.
Then, it initialize the variables and continues parsing until it parses all instructions in the target
block. Note that there can be multiple instruction packs in one basic block.

The algorithm terminates the current packing if it meets the following conditions. i) The current
instruction is a store instruction and it overwrites the memory address of the previous store
instructions in the pack. ii) The number of store instructions exceeds the maximum stores as
discussed in Section 4.3. iii) The current instruction is a load instruction and it accesses the memory
address of the previous store instructions in the pack. iv) The current instruction is a jump or
branch instruction. v) The current instruction updates a register that should be used as an address
register of the previous store instructions in the pack, and this result is not revertible. vi) The
current instruction is the last instruction of the basic block.

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

EXPERTISE: An Effective Software-level Redundant Multithreading Scheme against Hardware Faults 53:17

ALGORITHM 1: Pack Extraction Algorithm of Store Packing Optimization
Input: Original Program Basic Blocks.
Output: List of Packed Instructions.
𝑖𝑛𝑠𝑖𝑑𝑒𝑃𝑎𝑐𝑘 = 𝐹𝐴𝐿𝑆𝐸; 𝑓 𝑖𝑟𝑠𝑡𝑃𝑎𝑐𝑘𝑒𝑑𝑆𝑡𝑜𝑟𝑒 = 𝑁𝑈𝐿𝐿; 𝑙𝑎𝑠𝑡𝑃𝑎𝑐𝑘𝑒𝑑𝑆𝑡𝑜𝑟𝑒 = 𝑁𝑈𝐿𝐿;
𝑚𝑒𝑚𝑜𝑟𝑦𝐴𝑑𝑑𝑟𝐿𝑖𝑠𝑡 = 𝑁𝑈𝐿𝐿; 𝑎𝑑𝑑𝑟𝑅𝑒𝑔𝐿𝑖𝑠𝑡 = 𝑁𝑈𝐿𝐿; 𝑝𝑎𝑐𝑘𝐿𝑖𝑠𝑡 = 𝑁𝑈𝐿𝐿; 𝑛𝑢𝑚𝑂𝑓 𝑆𝑡𝑜𝑟𝑒𝑠 = 0;
for Each instruction Inst in Current Basic Block do

if insidePack == 𝐹𝐴𝐿𝑆𝐸 then
if isStore(Inst) then

𝑓 𝑖𝑟𝑠𝑡𝑃𝑎𝑐𝑘𝑒𝑑𝑆𝑡𝑜𝑟𝑒 = Inst; 𝑙𝑎𝑠𝑡𝑃𝑎𝑐𝑘𝑒𝑑𝑆𝑡𝑜𝑟𝑒 = Inst; 𝑖𝑛𝑠𝑖𝑑𝑒𝑃𝑎𝑐𝑘 =𝑇𝑅𝑈𝐸;
𝑚𝑒𝑚𝑜𝑟𝑦𝐴𝑑𝑑𝑟𝐿𝑖𝑠𝑡 .insert(memoryAddr(Inst)); 𝑎𝑑𝑑𝑟𝑅𝑒𝑔𝐿𝑖𝑠𝑡 .insert(addrReg(Inst));
𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑃𝑎𝑐𝑘𝑖𝑛𝑔 = 𝐹𝐴𝐿𝑆𝐸; 𝑛𝑢𝑚𝑂𝑓 𝑆𝑡𝑜𝑟𝑒𝑠 = 1;

else
if isStore(Inst) then

if memoryAddr(Inst) is in𝑚𝑒𝑚𝑜𝑟𝑦𝐴𝑑𝑑𝑟𝐿𝑖𝑠𝑡 or 𝑛𝑢𝑚𝑂𝑓 𝑆𝑡𝑜𝑟𝑒𝑠 >= maximumStoresInPack then
𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑃𝑎𝑐𝑘𝑖𝑛𝑔 =𝑇𝑅𝑈𝐸;

else
𝑚𝑒𝑚𝑜𝑟𝑦𝐴𝑑𝑑𝑟𝐿𝑖𝑠𝑡 .insert(memoryAddr(Inst)); 𝑙𝑎𝑠𝑡𝑃𝑎𝑐𝑘𝑒𝑑𝑆𝑡𝑜𝑟𝑒 = Inst; 𝑛𝑢𝑚𝑂𝑓 𝑆𝑡𝑜𝑟𝑒𝑠 += 1;

else if isLoad(Inst) then
if memoryAddr(Inst) is in 𝑎𝑑𝑑𝑟𝐿𝑖𝑠𝑡 then

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑃𝑎𝑐𝑘𝑖𝑛𝑔 =𝑇𝑅𝑈𝐸;
else if isJumpOrBranch(Inst) then

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑃𝑎𝑐𝑘𝑖𝑛𝑔 =𝑇𝑅𝑈𝐸;
if Inst modifies x for x in addrRegList then

if Inst is not revertible then
𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑃𝑎𝑐𝑘𝑖𝑛𝑔 =𝑇𝑅𝑈𝐸;

if 𝐼𝑛𝑠𝑡 is the last Instruction in the Basic Block then
𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑃𝑎𝑐𝑘𝑖𝑛𝑔 =𝑇𝑅𝑈𝐸;

if terminatePacking then
𝑝𝑎𝑐𝑘𝐿𝑖𝑠𝑡 .insert(pack(from 𝑓 𝑖𝑟𝑠𝑡𝑃𝑎𝑐𝑘𝑒𝑑𝑆𝑡𝑜𝑟𝑒 to 𝑙𝑎𝑠𝑡𝑃𝑎𝑐𝑘𝑒𝑑𝑆𝑡𝑜𝑟𝑒));
𝑖𝑛𝑠𝑖𝑑𝑒𝑃𝑎𝑐𝑘 = 𝐹𝐴𝐿𝑆𝐸; 𝑓 𝑖𝑟𝑠𝑡𝑃𝑎𝑐𝑘𝑒𝑑𝑆𝑡𝑜𝑟𝑒 = 𝑁𝑈𝐿𝐿; 𝑙𝑎𝑠𝑡𝑃𝑎𝑐𝑘𝑒𝑑𝑆𝑡𝑜𝑟𝑒 = 𝑁𝑈𝐿𝐿;
𝑚𝑒𝑚𝑜𝑟𝑦𝐴𝑑𝑑𝑟𝐿𝑖𝑠𝑡 = 𝑁𝑈𝐿𝐿; 𝑎𝑑𝑑𝑟𝑅𝑒𝑔𝐿𝑖𝑠𝑡 = 𝑁𝑈𝐿𝐿; 𝑛𝑢𝑚𝑂𝑓 𝑆𝑡𝑜𝑟𝑒𝑠 = 0;
if isStore(Inst) and Inst is not packed in the current pack then

Repeat iteration with Inst again;

The presented store packing algorithm does not change the order of existing instructions. The
elaborate code placement optimization that re-orders the instructions to minimize the number of
non-store instructions in the store packs and places the synchronization instructions to the proper
location can further reduce the performance overhead of EXPERTISE.

5 EXPERIMENTAL METHODOLOGY
5.1 Architecture and benchmark setup
To test the runtime performance and the fault coverage, we compiled nine programs from the
MiBench benchmark suite [15]4 with the LLVM 4.0.0 compiler infrastructure [23] with the O3
optimization flag to minimize the number of store instructions [28]. For each program, we generated
three binaries: i) ORG: original unprotected version of programs, ii) SRMT: This set of programs is
protected by SRMT transformation [49], and iii) EXPERTISE: This set of binaries is protected by
EXPERTISE transformation which includes silent store detection, store packing, fingerprinting-
based error detection, and compressed inter-core communication between the main-thread and
checker-thread introduced in this work. To apply the protection schemes, we modified the compiler
to reserve registers before applying the protection schemes. EXPERTISE requires two reserved
registers to hold the address of the synchronization variable (isSync) and the temporal register for
checking (tmp in Fig. 2), and the silent store handling of EXPERTISE requires one more register to
hold the result(s) of silent store checking(s). SRMT requires two registers for holding the address and
4We modified crc32 benchmark to call crc32buf, instead of crc32file that calls fread function for every iteration.

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

53:18 So et al.

Table 2. gem5 simulator Configuration

Parameter Value
CPU Model ARMv7-A 32-bit dual-core in-order processor
Pipeline Two issue/4-stage
of FUs 2Int, 1Mul, 1Div, 1Float, 1Mem, 1Misc

L1 D/I-Cache 64KB (2-way) / 32KB (2-way), hit latency:2
L2 Cache 2MB (8-way), hit latency: 10

index of the circular queue that works as the buffer from the leading-thread to the trailing-thread,
and one more register as a temporal register for checking (temp in Fig. 1). After generating the
assembly files with the register reserving, the Python script generates the protected versions. All
of the inter-core communications in SRMT and EXPERTISE are via the shared L2 cache.

In addition to the above three versions, we also generated two versions for the detailed fault cover-
age and performance evaluation. The first version is EXPERTISE w/o silent store avoidance[44],
which includes the load-back checking and store packing of EXPERTISE but does not include silent
store checking. We exploit this version to evaluate the fault coverage improvement from the silent
store checking and the additional runtime overhead for applying silent store checking. The second
one, EXPERTISE w/o store packing optimization, excludes the store packing optimization to
evaluate the performance improvement from the store packing optimization.
We evaluated the error detection capability of SRMT and EXPERTISE version of binaries by

statistical microprocessor-wide fault injection experiments on gem5 `-architectural cycle-accurate
simulator [1]. Note that the results of such fault injection campaigns show the same trend as neutron
beam testing experiments [4]. We configured a gem5 simulator similar to the cortex-A53 dual-core
dual-issue microprocessor. Table 2 shows the simulated microprocessor parameters. Considering
that we worked with unmodified standard library calls, we excluded them from all fault injection
experiments and our simulation-based performance overhead estimation.
To measure the real-world runtime overhead of EXPERTISE-protected programs, we also run

them on a real device (REVVL 5049W) equipped with a Cortex-a53 ARM v8 in-order microprocessor
with a 32kb private data and instruction cache as well as 1024kB shared L2 cache. To execute the
EXPERTISE-protected programs on the device, we inserted data memory barrier (dmb) instructions
right before sending isSync value and right after escaping waiting. We executed each original and
EXPERTISE-protected program on the device ten times and estimated the average runtime of 8 trials
except for the maximum and minimum execution times. Since it is hard to exclude the execution
time on the unmodified standard library functions on the real device setup, the estimated runtime
on the device includes such functions, which are excluded for simulation-based experiments. In
addition, we did not use the standard input of miBench [15] for real performance measurement
since their fast execution on the device makes runtime estimation inaccurate. Instead, we increased
the input data size up to several orders of magnitude.

5.2 Fault injection setup
We injected single bit-flip transient and single stuck-at 0/1 permanent faults on sequential elements
of different hardware components of the simulated processor while running the original, SRMT,
EXPERTISE w/o silent store avoidance, and EXPERTISE versions of the programs. We injected
errors into five main hardware components of each core, including the register file, fetch and
decode stage pipeline registers, functional units5 and load/store unit. For each hardware com-
ponent, we inject 500 transient faults and 500 permanent stuck-at faults per version unless the
hardware component was not sufficiently utilized by the program. As a result, our fault injection
5Functional units consist of two integer units, multiplier, floating-point unit, memory unit (read), and memory unit (write).

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

EXPERTISE: An Effective Software-level Redundant Multithreading Scheme against Hardware Faults 53:19

experiments injected up to 20,000 (10 components* 500 fault injections * 2 types of fault * 2 cores
for multithreading) random processor-wide for each version of programs6. Overall, we performed
394,000 fault injection experiments, which yielded an error of less than 5% with a 95% confidence
interval for each component per version of the program [27].

Transient Fault Injection: To inject transient faults in a target component, we first created a
trace file per component, which included all instructions and the corresponding cycle in which
they utilized the component as well as their corresponding values. Next, we randomly selected a
bit b from the target component c and a fault injection cycle t from the trace file. Next, we started
the simulation and whenever the execution reached cycle t, we modified the value (data) associated
with b in c. Finally, we let the simulation run resume with the corrupted data until the program
permanently terminates or the allowable simulation time (2× more than error-free simulation
time). Permanent Fault Injection: Permanent fault injection is almost similar to transient fault
injection, but we permanently alter all data that utilize the targeted component in such a way that
the selected bit b in the target hardware component is always set to either zero or one.
Output Classification: We classified the output of each fault injection simulation run into: 1)
Masked: The program terminates normally, and the output is correct. 2) Failure/SDC: The program
operates and terminates normally, but the output is incorrect. 3) System-Level Symptoms: This
outcome occurs when the program encounters a fatal error, that is, segmentation faults, crashes, or
timeout (simulation time reaches its limit).
Similar to [6, 8, 39], we considered the impact of runtime and hardware overhead of protected

schemes on reliability estimation by multiplying the absolute number of SDCs by a scaled factor.
The scaled factor should be composed of two components: hardware overhead (𝛽) and performance
overhead (𝛼). Because all programs protected by EXPERTISE require the same amount of hardware
overhead (1 extra core), we need to consider the hardware overhead component. However, consider-
ing the hardware component overhead by choosing 𝛽 as 2 and injecting the same number of faults
for both original and protected ones can be dangerous because two cores run different threads
(master or checker), and their behavior can be different. As follows, instead of scaling the number
of SDCs by 𝛽 = 2, we injected the same number of faults to each core for protected versions. In
other words, we injected 2× faults to the protected versions compared to the unprotected versions.

6 EXPERIMENTAL RESULTS
6.1 Fault coverage
Fig. 10 (a) shows the scaled number of SDC for ORG, SRMT, and EXPERTISE versions of the
programs. In the Figure, Y-axis represents the normalized number of SDCs, and X-axis shows the
benchmarks. Note that the rightmost set of bars (annotated by total) represents the sum of all scaled
SDCs for all benchmarks. Fig. 10 (a) indicates that of the 78,000 fault injection experiments on the
original version of programs, 17,511 (∼22.45%) lead to SDCs. SRMT-protected versions of programs
reduced 5,858 scaled-SDCs (∼7.51%)7. On the other hand, the EXPERTISE-protected version of
programs ends up with 31 scaled-SDCs, translating to more than 99.95% error coverage.

To analyze the effectiveness of the silent store checking and avoidance, we also injected the same
number of soft and hard errors as the number of errors injected to EXPERTISE to the EXPERT
w/o silent store avoidance versions. Fig. 10 (b) shows the scaled number of SDC for EXPERTISE
w/o silent store avoidance (referred to as EXPERTISE-silent) and EXPERTISE. As shown in Figure
Fig. 10 (b), applying silent store checking and avoidance to the load back checking of EXPERTISE

6Since an original program only utilizes one core, the number of injected faults is up to 10,000 for original versions
7While we injected 157,000 faults for SRMT and EXPERTISE-protected programs, we calculated the percentage of SDCs by
dividing the number of faults for original ones, since additional faults are due to the area overhead

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

53:20 So et al.

1

10

100

1000

10000

100000

000 0

N
o
rm

a
li
z
e
d
 N

u
m

b
e
r

o
f

S
D

C
s

(l
o
g
 s

c
a
le

)

17,511
(22.45%)

31
(0.04%)

5,858
(7.51%)

Original soft error SRMT soft error EXPERTISE soft error

Original hard error SRMT hard error EXPERTISE hard error

N
o
rm

a
li
z
e
d
 N

u
m

b
e
r

o
f

S
D

C
s

(l
o
g
 s

c
a
le

)

1

10

100

EXPERTISE w/o silent store avoidance soft error EXPERTISE soft error

EXPERTISE w/o silent store avoidance hard error EXPERTISE hard error
62

31

(a) Normalized number of SDCs on original, SRMT, and EXPERTISE (b) Normalized number of SDCs on EXPERTISE with or without silent store avoidance

Fig. 10. (a) EXPERTISE transformation reduces the failure rate of SRMT[49] by around 188×. (b) The silent
store avoidance of EXPERTISE can effectively reduce the vulnerability from the corruption of silent stores.

can reduce the total scaled number of SDC from 62 to 31. Specifically, EXPERTISE dramatically
reduces the SDCs from the benchmarks that have frequent silent store instructions. For example,
the ratio of silent stores in the benchmarks susan_corners and fft are 42.7% and 24.9%, and
silent store checking of EXPERTISE reduces the number of SDCs from 25 to 5 and from 17 to 0,
respectively. On the other hand, for the benchmarks such as adpcm_c and sha, the scaled numbers
of SDCs are 0 for EXPERTISE w/o silent store avoidance while the numbers are not 0 for EXPERTISE.
Note that the faults that induce SDCs in the EXPERTISE versions of those benchmarks can also
cause SDCs for the EXPERTISE w/o silent store avoidance versions. Still, our randomly selected
faults for the EXPERTISE w/o silent store avoidance did not include such faults.

While EXPERTISE transformation can effectively remove the failure cases on the address corrup-
tion of silent store operation, EXPERTISE still cannot detect very few soft errors on the fetch unit
if they corrupt the operation code and alter any non-store operation to the store one. Specifically,
the non-store to store alteration can lead to SDC if i) the corrupted instruction was originally
silent, and as a result, the clean execution of the instruction does not alter any register state, or
ii) the load instruction of one thread is converted to the store instruction before the other thread
executes the corresponding load operation, and the latter one just receives the result of the altered
store operation. These failures occur because EXPERTISE statically inserts the error detection
codes in compile time for static store instructions, and therefore it cannot protect the altered store
instructions that are not originally store instructions in compile time. Further, we observed one
rare undetected control-flow error on EXPERTISE.

6.2 Runtime overhead
Fig. 11 shows our simulation-based execution time overhead estimation for SRMT and EXPERTISE
transformations. On average, SRMT and EXPERTISE transformations increase the program’s execu-
tion time by an average of ∼3.81× and ∼3.00×, respectively. Around 3× performance degradation
may seem high at first glance. However, almost all similar works impose the same or even more per-
formance overhead. For instance, Intel SRMT paper [49] reports ∼4× and AMD GPU software-level
redundant multithreading paper [14] shows ∼6× performance degradation for inter-group RMT
after applying different optimizations, which are similar to the evaluated performance degradation
of SRMT in our experiments as shown in Fig. 11. Note that Intel SRMT technique suffers from many
single-point-of-failures, and there is no error injection evaluation for AMD RMT approach. The
main point of the results shown in Fig. 11 is that the runtime overhead of software-level redundant
multithreading schemes varies significantly (up to ∼6×) across different benchmarks. For instance,
consider adpcm_c and bitcount applications with EXPERTISE protection overhead around 6.5×
and 1.1×, respectively.

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

EXPERTISE: An Effective Software-level Redundant Multithreading Scheme against Hardware Faults 53:21

0

2

4

6

8

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti

o
n
 T

im
e

1.0

3.81

3.00

Original

SRMT

EXPERTISE

Occupies 1 core

Occupies 2 cores

Fig. 11. EXPERTISE-protected programs run around 27% faster than SRMT-protected ones.

0

3

6

9

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti

o
n
 T

im
e

4.33
2.92

3.00

EXPERTISE w/o store packing optimization
EXPERTISE w/o silent store avoidance
EXPERTISE

All the above versions occupy two cores

0

4

8

12

16

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti

o
n
 T

im
e

5.34 3.05

3.28

EXPERTISE w/o store packing optimization
EXPERTISE w/o silent store avoidance
EXPERTISE

All the above versions occupy two cores

(a) Normalized execution time on gem5 simulation (b) Normalized execution time on the real device (REVVL 5049W)

Fig. 12. On average, the store packing optimization speeds up the EXPERTISE-protected programs 44% and
44% on (a) gem5 simulation and (b) real device, respectively.

To verify the performance improvement by store packing optimization and the runtime overhead
from the silent store checking, we measured the performance of EXPERTISE w/o store packing
optimization and EXPERTISEw/o silent store avoidance versions. Figure 12 (a) shows our simulation-
based execution time estimation for EXPERTISE w/o store packing optimization, EXPERTISE w/o
silent store avoidance, and EXPERTISE. By applying store packing optimization, the runtime
of EXPERTISE can be reduced by 4.33 to 3.00 on average, which is 27% faster than the average
runtime of SRMT. While performance improvement of store packing optimization is significant
in benchmarks fft, sha, susan_c, and susan_e, improvements from the other benchmarks are
negligible. The magnitude of improvements from the store packing optimization is proportional
to the reduced inter-core communication by the optimization. Fig. 13 shows the relationship
between the speedup by store packing optimization and the corresponding reduced inter-core
communication for the synchronization. For the benchmarks such as fft, sha, susan_c, and
susan_e, store packing optimization reduces more than 50% communication and gets higher than
40% speedup. On the other hand, the impact of store packing optimization is insignificant for other
benchmarks since the packing only reduces a small number of inter-core communications.

On the other hand, the silent store avoidance of EXPERTISE does not incur significant runtime
overhead, as shown in Fig. 12 (a). The dominant source of runtime overhead is the inter-core
communication to synchronize the main- and checker-threads. For a benchmark fft, EXPERTISE
is slightly faster than the EXPERTISE w/o silent store avoidance since they suffer from the different
data dependencies. EXPERTISE w/o silent store avoidance cannot pack two store instructions
although they access the different addresses if the load instruction between them accesses the
address of the latter store instruction. On the other hand, EXPERTISE cannot pack two store
instructions although they access the different addresses if the load instruction between them
accesses the address of the former store instruction. In Fig. 12 (a), the store packing of EXPERTISE
and EXPERTISE w/o silent store avoidance for the benchmarks adpcm_c, basicmath, bitcount,

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

53:22 So et al.

0%

25%

50%

75%

100%

0%

50%

100%

150% Speedup by store packing optimization

Corresponding reduced communication

S
p
e
e
d
u
p
 b

y
 s

to
re

 p
a
c
k
in

g
 o

p
ti

m
iz

a
ti

o
n

C
o
rre

sp
o
n
d
in

g
 R

e
d
u
c
e
d
 c

o
m

m
u
n
ic

a
tio

n

Fig. 13. The performance improvement of store packing optimization is proportional to the reduced number
of inter-core communication by the optimization.

and crc are identical, so we can assume the runtime overhead due to the additional instructions
for the silent store avoidance.
Fig. 12 (b) shows the results of runtime measurement on the real device (REVVL 5049W). The

tendencies of the runtime overhead on the device (Fig. 12 (b)) are similar to the ones on the gem5
simulation (Fig. 12 (a)), except for the benchmark fft. Around 93% runtime of fft is spent on
the library functions that EXPERTISE does not modify, and the results on Fig. 12 (b) did not
exclude the execution time on such functions for the measurement. The speedup of the store
packing optimization is 63% on the device, while it is 44% on the simulator. We assume that the
communication cost on the real device is more expensive than the simulation, and therefore the
impact of the optimization is higher correspondingly.

7 LIMITATIONS
7.1 EXPERTISE on multithreaded applications
EXPERTISE should be carefully applied when the application accesses shared memory location
since main-thread and checker-thread access memory location at different points of time. At
first, both threads execute original load instructions in parallel. Secondly, before main-thread
executes the store instruction, checker-thread accesses the target location of the store for silent
store checkings, and then main-thread accesses it after checker-thread notifies main-thread. Thirdly,
after main-thread completes the store instruction, checker-thread should access the target location
for load-back checking. If another thread changes the data in the target location between the access
of two threads, EXPERTISE will detect a mismatch between two threads and consider it an error.

7.2 Circular wait due to the faults on synchronization variable
EXPERTISE utilizes one synchronization variable isSync, and the faults that corrupt the value
of isSync can induce circular wait between main- and checker-threads. Since isSync locates in
the shared memory that is protected by parity or ECC, the corruption of isSync can only occur
if i) a soft or hard error corrupts the store instruction to isSync and ii) a hard error repeatedly
affect the load instruction from isSync. A store instruction to isSync is responsible for waking up
another thread and transferring the results of silent store checkings. Therefore, if a fault corrupts
such store instruction that another thread cannot wake up, both threads will wait for each other,
and the application cannot continue the execution. A hard error on the load-related bits can also
incur such circular wait if the load instruction from isSync for the waiting another thread always
loads the false value so that the thread cannot awake8. Note that these faults on isSync cannot
result in the SDCs, and additional solutions such as watchdog can detect them.

8Since EXPERTISE inserts load instructions from isSync for waiting and utilizes the loaded value for silent store checking, a
single failure of a load instruction from isSync only results either waiting one more iteration or detectable error.

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

EXPERTISE: An Effective Software-level Redundant Multithreading Scheme against Hardware Faults 53:23

7.3 Protecting system calls
Experiments in Section 5 and 6 excluded fault injection on the standard library functions that our
compiler cannot access and modify. Most of the instructions in these functions can be protected
by EXPERTISE if the compiler can access them, except system calls that should not be repeated
on both threads. Applying EXPERTISE to these system calls requires either kernel modification
or the addition of custom system calls for main- and checker-threads. Otherwise, system call
emulation [41] can be applied to EXPERTISE; non-repeatable system calls of main-thread are
executed, and ones of checker-thread are emulated. Suppose the system call emulation is not
applicable. In that case, the inputs of the non-repeatable system call should be compared before the
execution, and the results should be distributed from the thread that executes it to another thread.

8 CONCLUSIONS
We present a software-controlled redundant multithreading scheme, EXPERTISE, to protect appli-
cations against hardware transient and permanent errors. EXPERTISE improves the hardware-level
reliability based on the post-store error detection strategy and ensures that all writes to the memory
are executed as expected. Because the post-store load-back checking is vulnerable to address corrup-
tion in silent stores, our EXPERTISE solution avoids the execution of silent stores by dynamically
detecting the silent store in the main-thread and checker-thread. Our solution also reduces the num-
ber of thread synchronization points by applying store packing optimization, which packs multiple
store instructions into one synchronization. Furthermore, our solution relieves register conflicts
induced from store packing optimization with a silent store checking, using fingerprinting-based
load-back checking. Finally, our solution compresses inter-core communications for redundant
silent store checkings to avoid additional vulnerabilities from the additional unprotected commu-
nication process. Our extensive fault injection experiments show that EXPERTISE outperforms
state-of-the-art redundant multithreading techniques in terms of both reliability and performance.

ACKNOWLEDGMENTS
This work was partially supported by funding from National Science Foundation Grants No. CNS
1525855, CPS 1646235, CCF 1723476 - the NSF/Intel joint research center for Computer Assisted
Programming for Heterogeneous Architectures (CAPA), Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No.
2021-0-00155, Context and Activity Analysis-based Solution for Safe Childcare), National Research
Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2022-00165225),
and Samsung Electronics Co., Ltd. (FOUNDRY-202108DD007F).

REFERENCES
[1] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,

Derek R Hower, Tushar Krishna, Somayeh Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer
Architecture News 39, 2 (2011), 1–7.

[2] Matthew Bohman, Benjamin James, Michael J Wirthlin, Heather Quinn, and Jeffrey Goeders. 2018. Microcontroller
compiler-assisted software fault tolerance. IEEE Transactions on Nuclear Science 66, 1 (2018), 223–232.

[3] Shekhar Borkar. 2005. Designing reliable systems from unreliable components: the challenges of transistor variability
and degradation. Ieee Micro 25, 6 (2005), 10–16.

[4] Athanasios Chatzidimitriou, Pablo Bodmann, George Papadimitriou, Dimitris Gizopoulos, and Paolo Rech. 2019.
Demystifying soft error assessment strategies on arm cpus: Microarchitectural fault injection vs. neutron beam
experiments. In 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE,
26–38.

[5] Lawrence T Clark, Dan W Patterson, Chandarasekaran Ramamurthy, and Keith E Holbert. 2016. An embedded
microprocessor radiation hardened by microarchitecture and circuits. IEEE Trans. Comput. 65, 2 (2016), 382–395.

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

53:24 So et al.

[6] Moslem Didehban, Sai Ram Dheeraj Lokam, and Aviral Shrivastava. 2017. InCheck: An in-application recovery scheme
for soft errors. In Design Automation Conference (DAC), 2017 54th ACM/EDAC/IEEE. IEEE.

[7] Moslem Didehban and Aviral Shrivastava. 2016. nZDC: A compiler technique for near Zero silent Data Corruption. In
Proceedings of the The 53st Annual Design Automation Conference on Design Automation Conference. ACM, 1–6.

[8] Moslem Didehban and Aviral Shrivastava. 2018. A Compiler Technique for Processor-Wide Protection From Soft
Errors in Multithreaded Environments. IEEE Transactions on Reliability 67, 1 (2018), 249–263.

[9] Moslem Didehban, Aviral Shrivastava, and Sai Ram Dheeraj Lokam. 2017. NEMESIS: A software approach for
computing in presence of soft errors. In Computer-Aided Design (ICCAD), 2017 IEEE/ACM International Conference on.
IEEE, 297–304.

[10] Chad Farnsworth, Lawrence T Clark, Anudeep R Gogulamudi, Vinay Vashishtha, and Aditya Gujja. 2016. A soft-error
mitigated microprocessor with software controlled error reporting and recovery. IEEE Transactions on Nuclear Science
63, 4 (2016), 2241–2249.

[11] Christof Fetzer, Ute Schiffel, and Martin Süßkraut. 2009. AN-encoding compiler: Building safety-critical systems with
commodity hardware. In International Conference on Computer Safety, Reliability, and Security. Springer.

[12] J Michael Galey, Ruth E Norby, and J Paul Roth. 1964. Techniques for the diagnosis of switching circuit failures. IEEE
Transactions on Communication and Electronics 83, 74 (1964), 509–514.

[13] Mohamed Gomaa, Chad Scarbrough, TN Vijaykumar, and Irith Pomeranz. 2003. Transient-fault recovery for chip
multiprocessors. In Computer Architecture, 2003. Proceedings. 30th Annual International Symposium on. IEEE, 98–109.

[14] Manish Gupta, Daniel Lowell, John Kalamatianos, Steven Raasch, Vilas Sridharan, Dean Tullsen, and Rajesh Gupta.
2017. Compiler techniques to reduce the synchronization overhead of gpu redundant multithreading. In Design
Automation Conference (DAC), 2017 54th ACM/EDAC/IEEE. IEEE.

[15] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor Mudge, and Richard B Brown. 2001.
MiBench: A free, commercially representative embedded benchmark suite. InWorkload Characterization, 2001. WWC-4.
2001 IEEE International Workshop on. IEEE, 3–14.

[16] Saurabh Hukerikar, Keita Teranishi, Pedro C Diniz, and Robert F Lucas. 2018. Redthreads: An interface for application-
level fault detection/correction through adaptive redundant multithreading. International Journal of Parallel Program-
ming 46, 2 (2018), 225–251.

[17] Xabier Iturbe, Balaji Venu, Emre Ozer, and Shidhartha Das. 2016. A Triple Core Lock-Step (TCLS) ARM® Cortex®-R5
Processor for Safety-Critical and Ultra-Reliable Applications. In Dependable Systems and Networks Workshop, 2016 46th
Annual IEEE/IFIP International Conference on. IEEE, 246–249.

[18] Benjamin James, Heather Quinn, Michael Wirthlin, and Jeffrey Goeders. 2019. Applying Compiler-Automated Software
Fault Tolerance to Multiple Processor Platforms. IEEE Transactions on Nuclear Science (2019).

[19] J Karlsson and P Lidén. 1990. Transient fault effects in the MC6809E 8-bit microprocessor: A comparison of results of
physical and simulated fault injection experiments. Technical Report. Technical Report 96, Department of Computer
Engineering, Chalmers University of Technology, Göteborg, Sweden.

[20] Daya Shanker Khudia, Griffin Wright, and Scott Mahlke. 2012. Efficient soft error protection for commodity embedded
microprocessors using profile information. In ACM SIGPLAN Notices, Vol. 47. ACM, 99–108.

[21] Dmitrii Kuvaiskii and Christof Fetzer. 2015. Delta-encoding: Practical Encoded Processing. In Proceedings of The 45th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2015) (Rio de Janeiro, Brazil).
IEEE Computer Society.

[22] Christopher LaFrieda, Engin Ipek, Jose F Martinez, and Rajit Manohar. 2007. Utilizing dynamically coupled cores to
form a resilient chip multiprocessor. In 37th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’07). IEEE, 317–326.

[23] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation.
In Code Generation and Optimization, 2004. CGO 2004. International Symposium on. IEEE.

[24] Kyoungwoo Lee, Aviral Shrivastava, Minyoung Kim, Nikil Dutt, and Nalini Venkatasubramanian. 2008. Mitigating
the impact of hardware defects on multimedia applications: a cross-layer approach. In Proceedings of the 16th ACM
international conference on Multimedia. 319–328.

[25] Kevin M Lepak, Gordon B Bell, and Mikko H Lipasti. 2001. Silent stores and store value locality. IEEE Trans. Comput.
50, 11 (2001), 1174–1190.

[26] Kevin M Lepak and Mikko H Lipasti. 2000. On the value locality of store instructions. Vol. 28. ACM.
[27] Régis Leveugle, A Calvez, Paolo Maistri, and Pierre Vanhauwaert. 2009. Statistical fault injection: Quantified error

and confidence. In Proceedings of the Conference on Design, Automation and Test in Europe. European Design and
Automation Association.

[28] Guilherme E Medeiros, Felis T Bortolon, Ricardo Reis, and Luciano Ost. 2018. Evaluation of compiler optimization flags
effects on soft error resiliency. In 2018 31st Symposium on Integrated Circuits and Systems Design (SBCCI). IEEE, 1–6.

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

EXPERTISE: An Effective Software-level Redundant Multithreading Scheme against Hardware Faults 53:25

[29] Konstantina Mitropoulou, Vasileios Porpodas, and Timothy M Jones. 2016. COMET: communication-optimised multi-
threaded error-detection technique. In Proceedings of the International Conference on Compilers, Architectures and
Synthesis for Embedded Systems. ACM.

[30] Shubhendu S Mukherjee, Michael Kontz, and Steven K Reinhardt. 2002. Detailed design and evaluation of redundant
multi-threading alternatives. In Computer Architecture, 2002. Proceedings. 29th Annual International Symposium on.
IEEE, 99–110.

[31] Nahmsuk Oh, Subhasish Mitra, and Edward J McCluskey. 2002. ED4I: error detection by diverse data and duplicated
instructions. IEEE Trans. Comput. 51, 2 (2002).

[32] Nahmsuk Oh, Philip P Shirvani, and Edward J McCluskey. 2002. Error detection by duplicated instructions in
super-scalar processors. IEEE Transactions on Reliability 51, 1 (2002).

[33] Joakim Ohlsson, Marcus Rimen, and Ulf Gunneflo. 1992. A Study of the Effects of Transient Fault Injection into a
32-bit RISC with Built-in Watchdog.. In FTCS. 316–325.

[34] Steven K Reinhardt and Shubhendu S Mukherjee. 2000. Transient fault detection via simultaneous multithreading.
Vol. 28. ACM.

[35] George A Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I August. 2005. SWIFT: Software
Implemented Fault Tolerance. In Proceedings of the international symposium on Code generation and optimization. IEEE
Computer Society, 243–254.

[36] Eric Rotenberg. 1999. AR-SMT: A microarchitectural approach to fault tolerance in microprocessors. In Fault-Tolerant
Computing, 1999. Digest of Papers. Twenty-Ninth Annual International Symposium on. IEEE, 84–91.

[37] Ute Schiffel. 2010. Hardware error detection using AN-codes. (2010).
[38] Ute Schiffel, André Schmitt, Martin Süßkraut, and Christof Fetzer. 2010. ANB-and ANBDmem-encoding: detecting

hardware errors in software. In International Conference on Computer Safety, Reliability, and Security. Springer, 169–182.
[39] Horst Schirmeier, Christoph Borchert, and Olaf Spinczyk. 2015. Avoiding pitfalls in fault-injection based comparison

of program susceptibility to soft errors. In Dependable Systems and Networks (DSN), 2015 45th Annual IEEE/IFIP
International Conference on. IEEE.

[40] Muhammad Shafique, Siddharth Garg, Jörg Henkel, and Diana Marculescu. 2014. The EDA challenges in the dark
silicon era: Temperature, reliability, and variability perspectives. In Proceedings of the 51st Annual Design Automation
Conference. ACM.

[41] Alex Shye, Joseph Blomstedt, Tipp Moseley, Vijay Janapa Reddi, and Daniel A Connors. 2009. PLR: A software approach
to transient fault tolerance for multicore architectures. IEEE Transactions on Dependable and Secure Computing 6, 2
(2009), 135–148.

[42] Jared C Smolens, Brian T Gold, Babak Falsafi, and James C Hoe. 2006. Reunion: Complexity-effective multicore
redundancy. In Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Computer
Society, 223–234.

[43] Jared C Smolens, Brian T Gold, Jangwoo Kim, Babak Falsafi, James C Hoe, and Andreas G Nowatzyk. 2004. Finger-
printing: Bounding soft-error detection latency and bandwidth. ACM SIGOPS Operating Systems Review 38, 5 (2004),
224–234.

[44] Hwisoo So, Moslem Didehban, Yohan Ko, Aviral Shrivastava, and Kyoungwoo Lee. 2018. EXPERT: Effective and
flexible error protection by redundant multithreading. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2018. IEEE, 533–538.

[45] Zhenyu Sun, Xiuyuan Bi, and Hai Li. 2012. Process variation aware data management for STT-RAM cache design. In
Proceedings of the 2012 ACM/IEEE international symposium on Low power electronics and design. 179–184.

[46] TN Vijaykumar, Irith Pomeranz, and Karl Cheng. 2002. Transient-fault recovery using simultaneous multithreading.
In ACM SIGARCH Computer Architecture News, Vol. 30. IEEE Computer Society, 87–98.

[47] Reinhard von Hanxleden and Ken Kennedy. 1994. Give-N-Take—A balanced code placement framework. ACM SIGPLAN
Notices 29, 6 (1994), 107–120.

[48] Jack Wadden, Alexander Lyashevsky, Sudhanva Gurumurthi, Vilas Sridharan, and Kevin Skadron. 2014. Real-world
design and evaluation of compiler-managed GPU redundant multithreading. In Computer Architecture (ISCA), 2014
ACM/IEEE 41st International Symposium on. IEEE.

[49] Cheng Wang, Ho-seop Kim, Youfeng Wu, and Victor Ying. 2007. Compiler-managed software-based redundant
multi-threading for transient fault detection. In Proceedings of the International Symposium on Code Generation and
Optimization. IEEE Computer Society.

[50] Yi-Ping You, Chung-Wen Huang, and Jenq Kuen Lee. 2007. Compilation for compact power-gating controls. ACM
Transactions on Design Automation of Electronic Systems (TODAES) 12, 4 (2007), 51–es.

[51] Yun Zhang, JaeW Lee, Nick P Johnson, and David I August. 2012. DAFT: Decoupled acyclic fault tolerance. International
Journal of Parallel Programming 40, 1 (2012), 118–140.

ACM Trans. Arch. Code Optim., Vol. 19, No. 4, Article 53. Publication date: September 2022.

	Abstract
	1 Introduction
	2 Software Solutions for Hardware Error Protection
	2.1 Software encoding/decoding
	2.2 Software spatial redundant execution

	3 Our Approach
	3.1 Basic idea of EXPERTISE
	3.2 Solution for erroneous silent store

	4 Performance Optimization
	4.1 Basic idea of store packing optimization
	4.2 Store packing optimization with fingerprinting-based load-back checking
	4.3 Applying compressed silent store checking
	4.4 Algorithm for the store packing optimization

	5 Experimental Methodology
	5.1 Architecture and benchmark setup
	5.2 Fault injection setup

	6 Experimental Results
	6.1 Fault coverage
	6.2 Runtime overhead

	7 Limitations
	7.1 EXPERTISE on multithreaded applications
	7.2 Circular wait due to the faults on synchronization variable
	7.3 Protecting system calls

	8 Conclusions
	Acknowledgments
	References

