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Abstract: Aggressive technology scaling and near-threshold computing have made soft error
reliability one of the leading design considerations in modern embedded microprocessors. Although
traditional hardware/software redundancy-based schemes can provide a high level of protection,
they incur significant overheads in terms of performance and hardware resources. The considerable
overheads from such full redundancy-based techniques has motivated researchers to propose low-
cost soft error protection schemes, such as symptom-based error protection schemes. The main
idea behind a symptom-based error protection scheme is that soft errors in the system will quickly
generate some symptoms, such as exceptions, branch mispredictions, cache or TLB misses, or
unpredictable variable values. Therefore, monitoring such infrequent symptoms makes it possible
to cover the manifestation of failures caused by soft errors. Symptom-based protection schemes
have been suggested as shortcuts to achieve acceptable reliability with comparable overheads. Since
the symptom-based protection schemes seem attractive due to their generality and simplicity, even
state-of-the-art protection schemes exploit them as the baseline protections. However, our detailed
analysis of the fault coverage and performance overheads of such schemes reveals that the user-
visible failure coverage, particularly of ReStore, is limited (29% on average). By contrast, the runtime
overheads are significant (40% on average) because the majority of the fault injection experiments,
which were considered as detected/recovered failures by low-level symptoms, are actually benign
faults by program-level masking effects.

Keywords: embedded systems; fault tolerance; protection technique; soft error; symptoms; transient fault

1. Introduction

Soft errors or transient faults are considered primary sources of unreliability in modern
processors. Soft errors caused by external sources, such as high-energy neutrons and alpha
particles, or internal events, such as noise in the power voltage, can alter the state of a
transistor or change the logical value stored in a memory element of the microprocessor.
Despite the existence of several masking effects, ranging from circuit-level [1] to software-
level [2,3], some soft errors might not be masked, causing system failures. Traditionally,
soft errors have been problematic for high-altitude applications, such as airplanes [4] and
space craft [5,6]. However, even ground-level applications have experienced soft error-
induced failures owing to sub-nano transistor scaling and near-threshold computing. The
International Technology Roadmap for Semiconductors (ITRS) [7] predicted that even
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low-energy terrestrial particles, that is, muon particles, will become the main source of soft
errors. Nevertheless, because fault-free execution remains common, it is crucial to control
the cost (in terms of area, energy consumption, and performance) of soft error protection.

The total cost of a fault-tolerant scheme can be divided into error detection and
recovery. The baseline error-tolerant scheme calculates two redundant versions of the
computations and checks the results for error detection. If there are any mismatches, a
checkpoint and rollback policy can be adopted for recovery purposes. In such schemes, the
cost of error detection comes from redundant executions and error checking operations
(approximately 100%), and the cost of error recovery comes from preserving the check-
points for re-execution in the case of an error (we assume 1× for frequent checkpointing).
Overall, the overheads of the baseline error-tolerant scheme are approximately 200% or
more. Whereas software-only schemes impose overheads in terms of the execution time of
the programs, hardware redundancy-based schemes incur an area overhead. However, the
redundancy-based protection schemes are inappropriate for resource-constrained embed-
ded systems due to severe overheads in terms of performance and hardware area. The
considerable overheads of full-redundancy-based schemes have motivated researchers to
propose low-cost soft error protection schemes.

Symptom-based fault-tolerant schemes have been proposed to provide a low-cost
reliability solution [8–15]. As the main difference between conventional error-tolerant and
symptom-based error-tolerant strategies, the former triggers a recovery only in cases in
which a manifested error has been detected. Meanwhile, the latter invokes an error recovery
routine upon the observation of symptoms, which may even occur in the fault-free run of
the program. As the main claim of symptom-based error-tolerant schemes, if there are any
soft errors in a microprocessor (i.e., within a window of 100 instructions), a symptom, such
as a branch misprediction, ISA-defined exception, or cache/TLB miss, will occur. Therefore,
by re-executing a small portion of the instructions upon observing the symptoms, the
impact of soft errors can be eliminated from the computations. Several studies [16–20] have
considered symptom-based error detection/recovery schemes as effective and low-cost
error resilience strategies. For instance, Venkatagiri et al. [16] described symptom-based
error detection schemes as “ promising owing to their ultra-low cost, which occasionally
allows some errors to escape silent data corruptions of SDCs”.

In this study, we conducted a thorough soft error coverage analysis for symptom-
based protection schemes [8,11,21–23] from both hardware and software perspectives.
Surprisingly, not only is the coverage of such schemes minimal (approximately 29% on
average), the associated performance overheads are also considerably high (approximately
40% on average). Further, it is challenging to prevent system failures by tracking variable
value changes. It is because system designers need to answer which variables are related
to system failures.

Our investigation reveals that the reasons behind such misunderstandings are (1) an
immature failure definition and (2) a flawed error coverage metric, which was used in exist-
ing symptom-based protection schemes. They consider any corruption in the architectural
state of the program (architectural registers and memory), control-flow mispredictions,
and latent errors as failures. Moreover, if the architecture detects such an immature failure,
the authors consider it an improvement in microprocessor reliability. However, we found
that most of these immature failures were benign faults and did not affect the program
output because of various program-level masking effects, for example, Y-branches [3] and
silent/dead stores [24,25]. For instance, we discovered that more than 55% of dynamic
branches in the Mibench [26] test suite programs were Y-branches, and more than 40%
of dynamic memory operations were dead. The existence of these program-level mask-
ing effects is entirely against the symptom-based solution because there is always a high
chance that errors causing branch mispredictions or cache misses will become masked. No
reliability is gained in detecting/covering such errors.

The second reason for an overestimation of the ReStore error coverage is the flawed
coverage metric used in their approach. In order to quantify the fault coverage of protection
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schemes, the accurate way is the beam testing to generate radiation-induced soft errors [27].
However, beam testing takes lots of time, and it is even challenging to set up correctly.
Therefore, fault injection, which mimics transient faults, can be an alternative to estimate
the fault coverage. As Schirmeier et al. [28] revealed, the error coverage metric usually
misrepresents the soft error protection and creates the illusion that the fault-tolerant scheme
has improved the system reliability when, in fact, it might have not. To quantify the
importance of using the wrong error coverage metric, we calculate the effectiveness of
symptom-based protection schemes in the same way as in the original study. In this case,
the precise evaluation showed only a 30% failure rate reduction.

2. Background and Motivation

Both academia and industry have been dealing with soft error problems for more than
half a century. The first widespread indication of soft errors was reported in 1970 when it
was demonstrated that high-energy neutrons from cosmic radiation could cause soft errors
in memory and combinational circuits [29]. Although advanced FinFET technology has
been shown reduced soft error rates against alpha particles [30], the soft error rate trends
for FinFET technology still increase because of proton and muon-induced single-event
upsets [31].

2.1. Protection Schemes against Soft Errors

In order to protect systems against soft errors, diverse hardware-based approaches
have been proposed. One of the most straightforward techniques is hardening, making
hardware resist the damage or system malfunction caused by ionizing radiation. The
amount of radiation can be affected by altitude, nuclear energy, and cosmic ray [32].
However, it is impossible to protect systems by hardware hardening perfectly, e.g., neutron-
induced soft errors can pass through many meters of concrete [33]. Moreover, hardware
hardening techniques also induce severe overheads in terms of area and power consump-
tion. In order to mitigate overheads, optimized hardware-based protection has been pro-
posed. For memory systems, information redundancy techniques, such as error detection
code (e.g., parity) and error detection code (e.g., Hamming code), have been proposed [34].
On the other hand, modular redundancy (e.g., dual or triple modular redundancy) has
been presented for non-memory systems [35].

Many software-based techniques for protecting the computations from soft errors
have been proposed. Most of the proposed schemes are redundancy-based solutions, the
computations of which are executed redundantly in space or time, and the presence of
an error is determined from any discrepancy in the results. It has been shown that the
hardware implementation of these simple fault-tolerant strategies is extremely effective,
and such techniques have been used in many safety-critical applications [36], such as air
traffic control systems [4] and NASA spacecraft [5,6]. However, because the cost of such
hardware redundancy-based schemes is considerably high, they cannot be used in many
cost-sensitive embedded applications. Software-level redundancy-based schemes shift the
cost of using redundant hardware to the software and apply a trade-off between program
execution time and extra hardware. Through both radiation-based testing and extensive
fault injection campaigns, it has been shown that software-level redundancy-based schemes
can achieve a high degree of error coverage [37,38].

However, the main drawback of hardware/software redundancy-based schemes is
that they impose a considerably large overhead on the system. For instance, software
redundancy-based schemes such as EDDI [39] and nZDC [38] cause a considerable per-
formance overhead (more than double) to the system by applying temporal redundancy
to low-level instructions. This considerably high overhead of redundancy-based error-
tolerant schemes has motivated researchers to develop low-cost error-tolerant approaches.
Existing low-cost error-tolerant schemes can be divided into four main categories: (i) partial-
redundancy schemes [40,41], (ii) control-flow checking schemes [42], (iii) vulnerability-
reduction schemes [43], and (iv) symptom-based fault-tolerant schemes.
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Partial-redundancy schemes protect more important data [40] or duplicate more criti-
cal instructions [41] than full-redundancy schemes to mitigate the performance overhead.
However, they have limited fault coverage because they only protect a subset of systems.
Although control flow checking schemes [42] have been considered reliable protection tech-
niques for detecting control flow violations, a quantitative analysis [44] showed that control
flow checking is ineffective and unreliable against soft errors. Vulnerability-reduction
schemes [43] use a reliability-driven instruction scheduler at the compiler level to improve
the hardware reliability against soft errors. However, their fault coverage is limited because
they are not system-level schemes. This study focuses on symptom-based error-tolerant
schemes because the fault coverage and effectiveness of symptom-based techniques have
yet to be elucidated through a comprehensive analysis.

2.2. Symptom-Based Fault Tolerant Schemes

As the key idea of symptom-based fault-tolerant schemes, it is possible to detect the
manifestation of errors by monitoring some rare execution phenomena. In general, the
existing symptom-based fault-tolerant schemes can be divided into three categories, as
described in Table 1: (i) Low-level hardware symptoms for error detection: techniques
that monitor low-level hardware symptoms for error detection, (ii) OS-level symptoms for
error detection: schemes that utilize OS-level abnormalities for error detection, and (iii)
Application-level symptoms for error detection: techniques that explore application-level
features for error detection. For error recovery, all such schemes rely on the existence
of some type of regular checkpoint support. They can then simply roll back to the last
checkpoint and re-execute the instructions.

Table 1. Overview of existing symptom-based schemes.

Descriptions Coverage Possible Symptoms Concerns

Low-level hardware symptoms
for error detection [8,21]

• Soft errors
• Low-detection latency

• Branch mispredictions
• Exceptions
• TLB/cache misses

• Frequent false alarm by natural symptoms
• HW support for checkpointing interval of 100 s

of instructions

OS-level symptoms for
error detection [22]

• Soft errors and hard errors
• High-detection latency

• Fatal traps
• High OS activity
• Hang/segmentation faults

• Offline profiling
• Sophisticated HW support for rollback to 10 s

of millions

Application-level symptoms
for error detection [11,23] • Soft and hard errors, • Range-based invariant • Offline profiling

• Application-level modification

Table 1 summarizes the main features of these techniques. The first symptom-based
fault-tolerant scheme is called ReStore [8,21], by which the authors propose that soft error
detection is easily achievable by monitoring low-level hardware symptoms. Figure 1
depicts a conceptual diagram for ReStore-protected microprocessor. In such architecture,
symptoms such as branch mispredictions, ISA-defined exceptions, and cache misses, can
be detected during the execution. If one of these symptoms are detected, it re-executes last
N instructions. As the main argument of research into ReStore, errors leading to failures
usually generate symptoms “noisily” and “quickly”. Noisily means that if there is a failure-
inducing soft error in a system, it causes abnormal behaviors in the program executions.
For instance, a branch misprediction will occur because errors usually alter the control
flow of the program. Alternatively, an exception such as an unknown opcode execution
divided by a zero exception or illegal memory access may occur. TLB and cache misses
can also be considered symptoms because an incorrect data flow can affect the spatial
locality. Finally, as a key part of the argument, soft errors usually generate symptoms
almost immediately (within 100 instructions) after their occurrence. Therefore, assuming
that hardware can provide an effective checkpointing scheme by simply rolling back to the
last checkpoint and resuming the execution from there, the effect of soft errors from the
system can be eliminated.
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Figure 1. Diagram of symptom-based fault tolerant techniques.

Furthermore, authors studying ReStore have argued that because the hardware struc-
tures required for creating low-level checkpointing/rollback mechanisms already exist in
the modern speculative processor to handle improper speculations, the ReStore technique
can be applied to the existing processors through a minimal hardware modification. As
the main drawback of the ReStore scheme, the symptoms are often natural and appear
even during the normal execution of the program. For instance, cache misses and branch
mispredictions can occur even in a fault-free run of the programs. These natural symp-
toms can cause a false alarm, leading to an unnecessary rollback and a re-execution of
the instructions.

Figure 2 illustrates the execution traces of a program running on a normal and ReStore
architecture. Figure 2a shows the program execution trace for a simple system with one
natural symptom is shown without any symptom-based protection schemes. Figure 2b
illustrates how the execution trace of the program changes on a ReStore-protected machine.
As shown, upon observing a symptom, the ReStore architectures re-execute the instructions
from the recovery window. If the same symptom reappears, it assumes that the symptom
is natural and keeps executing the program. Figure 2c demonstrates the ReStore execution
in the presence of a soft error. In this case, the soft error caused a symptom, and the
symptom-generation latency was less than that of the re-execution window. Therefore, the
ReStore architecture can roll back the execution of the program to a fault-free checkpoint,
and it eliminates the effect of the error from the system through a re-execution. Because
the symptoms will not be generated again, it is assumed that an error is detected and
successfully recovered. However, if the error does not create a symptom or the symptom-
generation latency of the error is larger than the re-execution window, the error will remain
unrecoverable. Owing to its generality and simplicity, the ReStore strategy has also been
used in a hybrid approach (symptom + redundancy), for example, Shoestring [45] and
profiling-based soft error protection schemes [46].

OS-level symptom techniques [22] look at the high-level impact of symptoms, such
as hardware traps, crashes, and high OS activity, and enhance the fault coverage to hard
errors. Rather than detecting low-level symptoms (i.e., exceptions and TLB/cache misses),
OS-level symptom techniques postpone error detection until the impact of a fault causes
atypical behaviors at the operating system level. Therefore, OS-level symptom techniques
trade off the high false alarm rate of low-level symptom-based error detectors with at least a
five-orders-of-magnitude longer detection latency. The high error detection latency implies
that OS-level symptom techniques require a recovery/rollback strategy to re-execute the
last tens of millions of instructions upon observing operating-system-level symptoms. In
this case, the overheads of a false alarm are enormous because of the large number of
re-executed instructions. Offline program profiling is used to determine the threshold of
hang and high OS activity symptoms.



Electronics 2021, 10, 3028 6 of 19

Figure 2. (a) Execution traces of a program running unprotected, and a program execution path
on a ReStore-protected processor (b) without and (c) with a soft error. Upon the observation of
a symptom, the ReStore architecture re-executes the instructions in the re-execution window (last
100 instructions). It ignores the symptom if it happens again; otherwise, it is assumed that a soft error
is detected and recovered.

SWAT techniques [23] improve upon OS-level symptom techniques by including likely
program-invariant and value-range checking as application-level symptoms. The key idea
is to extract the likely values of important program variables by offline profiling and to
check whether the dynamically computed value is within the accepted range. The mSWAT
framework [11] enhances the SWAT concept for error detection and recovery in multicore
systems. The main drawback of OS-level and application-level symptom-detection-based
schemes is the lack of generality. Many OS-level symptoms (e.g., hangs, high OS activity,
and an acceptable range of variables) are extracted through offline program profiling. They
might have difficulty being held under different situations, i.e., changing the input data or
using different architectures may show completely different results. Moreover, to replay
tens of millions of instructions, sophisticated checkpointing mechanisms that demand
major hardware modifications are required.

In order to prove the fault coverage from application-level symptoms by preliminary
experiments, we have profiled the value changes of program-defined variables. Then,
the authors have picked the specific variables which can affect the program output based
on the heuristic way. Lastly, we have added high-level assertions to detect the notable
changes of selected variables. For this simple set of experiments, we have chosen a
benchmark susan (smoothing). The benchmark handles the multimedia image to smooth
the quality, and many variables are limited to the size of the image in ordinary cases. For
the specific benchmark susan (smoothing), it can prevent 37% of failures with less than 10%
performance overheads. However, the changing value depends on the input. The same
benchmark susan (smoothing) cannot detect any failures if we use another set of inputs.
Further, it is challenging to select the target variables and their ranges at the profile stage.
Thus, we will use the hardware-detectable symptoms in this manuscript.

Even state-of-the-art protection techniques rely on symptom-based techniques due
to their simplicity. For example, Minotaur [14] and gem5-Approxilyzer [15] assumed that
hardware faults could be detected without severe overheads if they generate the observable
symptoms. However, we have to answer the two following questions to exploit symptom-
based protections as the baseline guideline. First, how often do failure-inducing soft errors
eventually generate symptoms? Secondly, are symptom-based approaches effective in
terms of performance? In this paper, we have analyzed the performance effectiveness and
reliability improvement of symptom-based protection schemes.
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2.3. Reconsidering Low-Level Symptoms

OS and application-level symptom-based techniques are limited since they are chal-
lenging to apply for the general-purpose processors. On the other hand, low-level symptom-
based schemes, mainly ReStore, become an attractive solution for embedded applications
due to the high level of generality. However, research into symptom-based protection
schemes has not provided any intuition in this area other than fault injection experimental
results that explain why a failure-inducing soft error will generate a symptom quickly after
its occurrence. We notice the following weaknesses in the experimental results (the sole
reason for bounding failures to symptoms), highlighting the need for a precise evaluation
of such schemes.

Provably flawed evaluation metric: Traditional symptom-based protection schemes
have used the percentage of failures

numbers o f f aults cause system f ailures
numbers o f total f ault injection experiments

(1)

as a metric to demonstrate the effectiveness of the scheme. They injected several faults into
microarchitectural components, and they counted the number of system failures due to
faults. For instance, if 30 faults induce system failures out of totally injected 100 faults, the
failure rate will be 30%. However, as a study [28] revealed, such metrics can significantly
overestimate the protection capability of schemes such as symptom-based protection
schemes, which prolongs the runtime of the program and requires additional hardware.

For example, consider an imaginary fault tolerance scheme that, rather than applying
a re-execution of the last 100 instructions on the observations of the symptoms, without
reason re-executes the last 100 instructions for some random points of execution. If we
randomly inject the same number of faults in the original and imaginary fault-tolerant
schemes, the percentage of failures will be reduced. This is because faults inserted close
to the randomly selected re-execution point in the imaginary fault-tolerant scheme will
become masked, and fewer faults can cause a failure. Therefore, the overall percentage
of failures will be improved upon in the baseline architecture, which is an illusion (We
strongly encourage the reader to reference [28] for a more detailed explanation of the flaws
in the traditional and widely used fault coverage metrics extracted from random fault
injection experiments.).

Interestingly, in [18], the authors estimate the coverage of ReStore by both a fault
injection campaign and ACE analysis [2]. Because the coverage of the ACE analysis was
significantly (around 10×) less than the fault coverage extracted from fault injection results,
they improperly conclude that the latter is correct; however, from [28], we know that fault
injection results were incorrectly deciphered.

Immature failure definition: Many terms and definitions in studies on ReStore are
inconsistent with the widely accepted versions, which have caused frequent misinterpre-
tations regarding the fault coverage capability of the ReStore architecture. For instance,
ReStore defines silent data corruptions (SDCs) as cases in which the injected faults corrupt
the architectural state of the program (register file and memory state). However, in most
studies [12,38,39,45,47], the SDC is considered to be the case in which the error affects the
final (user-visible) output of a program [48]. Because several software-level masking effects
prevent error propagation from the architectural state to the final output of the program, it
is possible that ReStore detects/recovers benign errors (those that eventually do not affect
the program outputs). Likewise, ReStore considers all control-flow violations and latent
errors as failures. However, as [3] demonstrated, our experimental results also verified
that, on average, more than 50% of conditional branches do not affect the correct program
behaviors even when forced into incorrect paths. It is also possible that the effects of
many latent errors (errors remaining in the system for a long time) will eventually become
masked by the program. Therefore, it is crucial to evaluate the protection offered by the
ReStore architecture in terms of real user-visible failures. These failures are defined as
silent output corruptions (SOCs) [49], a meaningful subset of silent data corruptions.
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3. Fault Coverage: Overview of Results

To quantify the coverage offered by the architecture covered by symptom-based protec-
tion schemes, we supplied a cycle-accurate microarchitecturally simulated microprocessor
with perfect branch predictors and caches. There is no branch misprediction, cache miss, or
hardware exception in the fault-free runs of programs on the simulated microprocessor.
We then injected more than 600,000 single-bit flips on different core components of the
simulated processor. We collect information regarding whether the injected fault causes
a symptom. If it does, we estimate the distance (in terms of the committed instructions)
between the fault injection time and the appearance of the first symptom. Finally, if the
symptom-generated fault eventually leads to a user-visible failure, it is defined as a silent
output corruption.

Figure 3 demonstrates overall soft error protection coverage of ReStore architecture
with the checkpointing interval of 100 instructions. Note that we have exploited the cycle-
accurate gem5 simulator [50] to implement the low-level symptom protection scheme,
ReStore. We have injected faults that mimic soft errors into the simulator and then estimated
the fault coverage of the protection scheme. The Y-axis represents the percentage of silent
output corruptions, which can be covered by the ReStore architecture, whereas the X-
axis shows programs from the Mibench [26] test suite. As the figure demonstrates, even
considering all types of symptoms (the right sidebar for each program), the coverage offered
by ReStore is on average approximately 29%. If we consider branch misprediction or cache
misses only as symptoms, the average fault coverage is approximately 19% and 16%,
respectively. However, because of overlapping symptom phenomena (some faults generate
several different symptoms), the overall coverage of ReStore when combining all symptoms
is less than the summation of the coverage offered by considering symptoms separately.

As we will discuss later in Section 6.2, the runtime overhead when considering all
architecture symptoms is approximately 40%. Overall, we conclude that the assumption
that a high level of coverage can be achieved with an extremely low performance overhead
by monitoring low-level symptoms is incorrect, as revealed by our comprehensive analysis
and exhaustive fault injection campaigns.

Figure 3. ReStore architecture can recover just 29% of user-visible failures while considering branch
mispredictions, cache misses, and exceptions as symptoms and a recovery window of 100 instructions
on average.
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4. Fault Coverage Analysis

According to [28], to estimate the protection offered by fault-tolerant schemes, which
modify the fault space of a program, the performance and hardware overheads of such
a scheme are required. Then, by simply computing the conventional failure rate by con-
ducting random fault injection experiments (percentage of failure-inducing fault injection
experiments divided by the total number of fault injection experiments) and multiplying it
by the correlation factor γ (essentially the product of the performance and the hardware
overheads), the correct failure rate cover can be computed. However, because the failure
mentioned in the above rate estimation is heavily implementation dependent, we develop
an analytical model for symptom-based protection coverage estimation.

We argue that the protection provided by symptom-based protection sachems is
proportional to P, where P is the probability that a failure-inducing soft error generates
a symptom quickly after its occurrence. In our definition, failure-inducing soft errors are
those that modify the user-visible output of the programs. We demonstrate the correctness
of our argument for the two cases. Note that we have used three symptoms for detecting
soft errors such as cache misses and branch mispredictions as the low-level symptoms [21]
and exceptions as the OS-level symptom [22]. For brevity’s sake, we call the specific
architectures covered by symptom-based protection sachems ReStore. We have assumed
ReStore architecture can detect symptoms from various levels, and it can re-execute the
latest 100 instructions upon the detection.

A perfect system with no natural symptom: As the ideal case for ReStore coverage,
when the branch predictor, as well as caches and TLBs, are perfect, the program execution
never exercises any symptoms during its fault-free execution. In this case, there will be no
false alarms, and soft errors can be safely considered as the sole reason for any symptoms.
By applying ReStore to such an ideal system, however, only soft errors that generate a
symptom within the re-execution window size of 100 instructions can be recovered. The
ReStore architecture is based on the ability of the system to roll back to a checkpoint and
re-execute the last 100 instructions upon the observation of symptoms. If the distance
(in terms of instruction) between an error and the generated symptom is larger than the
re-execution window size, the error has propagated to the checkpoint, and the re-execution
from the checkpoint cannot eliminate the effect of the soft error from the system. In such
latent error cases, the symptom will appear again, and ReStore logic considers it a natural
symptom. Therefore, even in the case of an ideal branch predictor and cache, the overall
protection of ReStore is equal to P, the probability that a failure-inducing soft error will
generate a symptom after its occurrence within a distance less than the checkpointing
interval. Note that the results shown in Figure 3 are extracted from fault injection in a
symptom-free system based on the same argument. The (a) and (b) parts in Figure 4
demonstrate the execution trace of a program with 500 instructions on an unprotected and
ReStore-protected machine.

A real system with natural symptoms: As we mentioned before, symptoms do occur
even in the fault-free run of the programs. For instance, branch mispredictions and cache
misses are part of the executions in real processors. When considering the implementation
of the ReStore architecture for a real system, we can assume that the program execution
within 100 instructions of natural symptoms is protected (This is an overestimation of fault
coverage because (2% in our experimental results) soft errors sometimes occur close to a
natural symptom, causing the natural symptom to disappear.). However, we argue that it
will not improve the soft error protection in the entire program because the probability of
error occurrence before a natural symptom should be considered equal to the probability
that an error will after the natural symptom (during the re-execution of the last 100 instruc-
tions). In other words, as compared to unprotected systems, natural symptoms protect
against soft errors that occur within the re-execution window before natural symptoms;
however, because they prolong the program execution time, they introduce almost equal
soft error vulnerability to the program by a re-execution. Figure 4c,d show traces of a
program with 500 instructions and one natural symptom. The entire program execution,
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500 instructions, is susceptible to soft errors on an unprotected machine, as shown in part
(c). By applying the ReStore scheme to the machine, we can mostly protect the execution
time of the 100 instructions before the natural symptom.

Moreover, we also have P% protected parts, that is, the re-executed instructions and
the rest of the program executions. Note that if we negate the 100 protected instructions
from the complete instructions (600 executed instructions on a ReStore-protected machine),
there will still be 500 (=150 + 100 + 250) P% protected instructions, which is exactly the
same as a system without natural symptoms in part (b) of Figure 4. Natural symptoms
impact the coverage of the ReStore scheme both positively and negatively, and overall, it
does not affect the total program fault coverage. Therefore, the coverage of the ReStore
scheme will not be affected by the natural symptoms, and this case can be simplified as a
perfect system, which means that even in cases with natural symptoms, the coverage of the
ReStore architecture remains equal to P.

Overall, by merely estimating the probability of P for systems with natural symptoms,
we can estimate the coverage of the ReStore scheme. We need to estimate P, which is the
probability that a failure-inducing fault will generate a symptom within 100 instructions
from its occurrence. If this probability is high, the architecture coverage of ReStore should
also be high. Otherwise, the coverage of ReStore is as good as P.
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Figure 4. Coverage provided by the ReStore architecture on a system without and with natural
symptoms. In the first case, the protection of the ReStore architecture is P, which is the probability
that a failure-inducing soft error generates a symptom quickly after its occurrence. Even in the case
of systems with natural symptoms, the coverage of ReStore remains the same.

5. Experimental Setup

As described in the previous section, we break down the effectiveness of ReStore to the
probability P that a user-visible failure-inducing soft error generates at least one symptom
within 100 instructions after its incident. For this purpose, we conducted extensive fault
injection experiments on gem5, a cycle-accurate microarchitectural-level simulator [50].
Figure 5 depicts our fault injection and output classification framework. We simulate an
ARM Cortex-A53-like processor (The processor is a 32-bit in-order processor with a fixed
pipeline, whereas symptom-based fault-tolerant techniques do not depend on the architec-
tures.), which is a modern high-performance and low-power embedded microprocessor.
For a ReStore protection estimation, we customized the branch predictor, cache replace-
ment, and prefetching policy for each program so that there are no natural symptoms
(branch misprediction and cache miss) in the fault-free run of the programs. We save the
fault injection time for each fault injection run, the final output of the program, time, and
type of any symptoms if introduced by the injected fault. We use the ARM-GCC 4.6.2 cross
compiler with optimization flag O3 to compile benchmarks from the MiBench suite [26].
We categorized MiBench as computation-intensive and communication-intensive applica-
tions. The computation-intensive application is composed of numerical calculation (e.g.,
basicmath, bitcount, qsort, and stringsearch) and image processing (e.g., jpeg encoding
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and decoding). Additionally, the communication-intensive application is composed of
communication (e.g., gsm and FFT) and security algorithms (sha and crc).

MiBench
Benchmarks

Cross 
Compiler Executable Fault 

injection

Space
Randomly chosen bits in 

microarchitectural components

Time
Randomly chosen cycles 

from execution time

Microarchitectural components
Register file / Pipeline queue / 

Load/store queue

Logs

Silent output 
corruption

Output

Stats

No

Yes

Repeat fault injection 
campaigns

Compare symptom event 
logs with fault-free run

# of SOC > 1000?

No

Yes

Terminate fault 
injection campaigns

Symptom
event logs

O3 Compile 
Option

Computation-intensive basicmath bitcount qsort stringsearch jpeg (encode) jpeg (decode)

Communication-intensive gsm (toast) gsm (untoast) fft (normal) fft (inverse) crc sha

Figure 5. Diagram of our fault injection framework. In our campaigns, we gather symptom event
logs from more than 1000 silent output corruptions (SOCs) per benchmark through more than
600,000 fault injections.

We have used fault injection to mimic the impact of soft errors since soft errors per bit
are very rare in reality [28]. We consider the commonly used single transient bit flip fault as
the primary fault model since the majority of system failures is caused by soft errors on the
physical register file rather than other microarchitectural components [51]. Further, most
soft errors on the microprocessors can eventually modify the state of the physical register
file [45]. We randomly selected a fault injection cycle for each fault injection experiment
into a randomly chosen bit of the register file. At the end of each fault injection experiment,
we classified the outcomes as follows:

Masked: The program execution usually terminates, and the final output of the
program is correct.

SOC (Silent Output Corruption): The program execution usually terminates; however,
the final output of the program, compared to that from the fault-free run, is incorrect.

Others: The injected fault leads to an early termination of the program execution by
causing fatal hardware exceptions, i.e., unknown instruction opcode and illegal access to the
memory. It is also defined as “Others” if the processor hangs or the program loops forever.

Because our fault injection experiments aim to quantify the user-level reliability
provided by low-level symptom-based error detectors, we focus on the SOC fault injection
experiments in this section. In addition, as [28] shows, the number of masked faults is
irrelevant to the coverage provided by an error-tolerant scheme. We repeated the fault
injection experiments until we collected more than 1000 SOC cases for each benchmark, as
shown in Figure 5. Note that because the probability of a fault causing SOC varies with
the benchmark applied, the number of fault injection experiments in our framework can
differ according to the benchmark. For instance, the SOC rate can be as low as 2% for the
suusan benchmark and as high as 50% for the sha benchmark, which is approximately
15% in our experimental results. Consequently, we performed more than 600,000 random
fault-injection campaigns for the overall benchmarks.

We explored whether an SOC-inducing fault satisfies the ReStore error coverage
condition. If the SOC-inducing fault generates symptoms within 100 instructions, it does;
otherwise, it does not. For this, we checked the symptom event log files of the SOC fault
injection cases. If there is a record of at least one symptom within 100 instructions after
the fault injection time, we consider an SOC-inducing failure as covered by the ReStore
architecture. Otherwise, we mark the error as unrecoverable by the ReStore architectures.

6. Experimental Results
6.1. Ineffective Failure Coverage

Table 2 demonstrates the absolute number of SOC-inducing faults that can be de-
tected/recovered by a different type of low-level symptom in the ReStore architecture with
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a checkpoint interval of 100 instructions. Benchmarks are sorted in descending order by
the fault coverage of symptom-based protection schemes. As the main point of the results,
in most cases (more than 70% of the time on average), SOC-inducing soft errors do not
generate a symptom quickly after an incident. This also shows that branch misprediction
is the most helpful symptom. On average, approximately 19% of SOC failures can be
recovered by simply considering the branch as a hint for error detection. Cache misses
are the second most effective symptom. On average, approximately 16% of failures can
be avoided if we decipher such events as the presence of errors. However, approximately
6% of the SOC-inducing faults generate both cache misses and branch mispredictions.
Note that the hardware exceptions are the most ineffective symptoms, and almost all cases
in which soft error induced a hardware exception are also covered with either a branch
misprediction or symptoms of a cache miss.

Table 2. Number of recoverable SOC-inducing faults (out of 3000) by the ReStore scheme based on
the various benchmark.

Benchmarks BM EX CM All Symptoms

sha 62 49 56 76

bitcount 261 1 158 407

gsm (toast) 157 49 378 493

crc 213 2 371 579

gsm (untoast) 216 27 488 679

susan 175 4 529 683

jpeg (decode) 217 31 523 699

jpeg (encode) 785 27 412 1062

stringsearch 1087 48 431 1203

basicmath 951 93 624 1305

fft (inverse) 1031 212 768 1410

fft (normal) 1021 217 799 1417

qsort 1221 44 858 1478

Average 569 62 492 884
BM: Branch Misprediction, EX: EXception, CM: Cache Miss.

ReStore coverage varies significantly between the different applications. For instance,
ReStore performs poorly for the sha benchmark (2%) and performs much better for the
qsort benchmark (41%) when we use a branch misprediction as a single symptom. The
ratio of branch instructions is one of the main factors that affect the fault coverage of the
ReStore scheme, as shown in Figure 6. The ratio of branch instructions was defined as the
number of branch instructions over the number of total instructions. Note that the branch
instructions include conditional and unconditional control-flow instructions. For a control-
intensive benchmark (i.e., many branch instructions in the benchmark), injected faults can
cause more branch mispredictions owing to the large number of branch on-demand to
instructions are branch instructions, and the fault coverage is only 2% based on branch
misprediction symptoms.

By contrast, 20% of the total instructions are branch instructions in the benchmark
qsort. Thus, faults are likely to cause branch mispredictions owing to many control-flow
instructions, and the fault coverage of the qsort benchmark is larger than those of the other
benchmarks. Note that the fault coverage from the cache miss symptoms depends on the
ratio of the memory instructions. The ratio of memory instruction for a benchmark qosrt
is 36%, and the fault coverage achieved from cache miss symptoms is 29%. However, the
fault coverage from cache miss symptoms is only 5% for the benchmark bitcount because
only 7% of the instructions are memory instructions.
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Figure 6. ReStore performs well for control-intensive programs, but is ineffective for data-
intensive programs.

However, the number of branch instructions in the benchmark determines the cover-
age. For example, the ReStore fault coverage for benchmarks bitcount and gsm (untoast)
is almost similar to that of a benchmark crc, even though the branch instruction ratio of
bitcount and gsm (untoast) is much larger than that of crc. Although different applications
have a similar ratio of branch instructions, their distributions can be different. To estimate
the uniformity of the branch instructions, we estimated the length between consecutive
branch instructions. We then calculated the standard deviation of the interval between
branch instructions. If the standard deviation is large, the branch instructions are not uni-
formly distributed. For benchmarks bitcount and gsm (untoast), the standard deviations
are 7 and 6, respectively, and their fault coverages achieved from branch mispredictions
are close to each other. For a benchmark crc, the standard deviation was only 2. The fault
coverage achieved from branch misprediction symptoms is 7%, despite this application
having a lower branch instruction ratio than that of bitcount and gsm (untoast).

In general, symptom-based fault-tolerant techniques provide better fault coverage
when there are many uniformly distributed symptoms. If there are many symptoms (e.g.,
a large ratio of branch or memory instructions) and they are uniformly distributed (e.g.,
with a small standard deviation), the number of instructions between injected faults and
symptoms should be small. If the number of symptoms is less than the other benchmarks
(e.g., a small ratio of branch or memory instructions), the number of instructions between
faults and symptoms can be considerable. If symptoms are not uniformly distributed (e.g.,
they have a large standard deviation), the instruction length between faults and symptoms
can also be greater, despite the large number of symptoms.

6.2. Considerable Performance Overhead

In general, because the symptom-based schemes re-execute some portion of the
instructions, e.g., the last N instructions, under the observation of symptoms, the runtime
overhead of such schemes is a function of the frequency of natural symptoms (false alarms)
in a system. We use the following equation to estimate the overheads (in terms of extra
instructions) in applying the ReStore scheme to a system:

Overhead = (# o f branch inst × branch mispred rate + # o f cache accesses × cache miss rate)× N (2)

The above equation simply captures the number of additional instructions that will be
re-executed on a symptom-based error coverage scheme where the branch mispredictions
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and cache misses are interpreted as signs of soft errors (We do not include exceptions as
a symptom here because they are rare, and even re-executing the last N instructions on
the observation of the exceptions does not impose a considerable performance overheads
on the system.). However, we should still be careful regarding overlapping symptoms
(symptoms with a distance of less than N). Basically, if two or more natural symptoms occur
in a window size of less than the checkpointing frequency N, using only Equation (2) may
cause a significant overhead overestimation. Therefore, in such cases, for the first symptom,
we assume N instruction overhead, and for the following overlapped symptoms, we only
consider their distance (in terms of instructions) from the last symptom as their false alarm
overhead. The runtime overheads cannot exceed the runtime of the original programs
because we do not re-execute instructions that are already covered by other symptoms.

To collect the information required for the performance overhead estimation of the
ReStore architecture, we profiled programs from the MiBench test suite and collected
the required statistics, such as the number of branch and memory instructions, branch
misprediction, cache miss ratio, and their distribution. Because the performance overheads
of the ReStore scheme depend on the branch predictor and cache performance, we compute
the overheads of ReStore for four different configurations with different branch predictors
and cache efficiencies. We exploit four different hardware architectures by configuring
the cache memory and branch predictor to compare the performance overheads due to
natural symptoms. We have modified the cache memory and branch predictor to guarantee
the certain amount of accuracy. They are categorized as (i) configuration 1, the accuracy
of the branch prediction and cache hit ratio of 95% on average; (ii) configuration 2, the
accuracy of branch prediction and cache hit ratio of 99% and 95% on average, respectively;
(iii) configuration 3, the accuracy of branch prediction and cache hit ratio of 95% and
99% on average, respectively; and (iv) configuration 4, the accuracy of branch prediction
and cache hit ratio of 99% on average. Figure 7 demonstrates the performance overhead
results for the ReStore scheme with the checkpointing interval of 100 instructions on four
different hardware configurations. Interestingly, although we use a 99% accurate branch
predictor and cache memory (configuration 4), ReStore increases the runtime by 34% on
average. If we use an inaccurate branch predictor and cache memory, which induces many
cache misses (configuration 1), the runtime overhead is more than 80%, as compared to
without protection.

Figure 7. Runtime overheads of symptom-based techniques depend on the accuracy of the branch
predictor and cache hit ratio. Even though we have exploited 99% accurate branch predictor and
cache memory, the performance overhead is more than 40% as compared to unprotected architectures.
(Conf, configuration options; BP, accuracy of branch prediction; and CH, cache hit ratio).
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To analyze the runtime overheads on the default configuration, we estimated the
accuracy of the branch prediction and cache hit ratio. On average, approximately 95%
of the predicted branches are correct for our set of benchmarks. Furthermore, the cache
hit ratio is more than 98% for all benchmarks, and the average cache hit ratio was almost
100% for our benchmark suite. Symptom-based protection techniques need to re-execute
instructions when facing natural symptoms, such as cache misses and branch mispredic-
tions during a fault-free run. Thus, the runtime increases by 40% on average compared to
the unprotected architectures. For a benchmark basicmath, the runtime overhead from a
branch misprediction as a single symptom is approximately 75%. Branch mispredictions
occur for every 70 instructions on average during a fault-free run. The frequency of a
branch misprediction is less than 100 instructions, and the runtime overhead is close to the
original runtime of the benchmark basicmath. On average, branch mispredictions have the
most frequent and heaviest symptoms, followed by cache misses and exceptions.

6.3. Recovery Window Size Slightly Improves Coverage and Drastically Hurts Overhead

Figure 8 shows the average fault coverage and runtime overhead of ReStore with
different checkpointing intervals or recovery windows. For instance, if the recovery
window is less than or equal to 10, 16% of the silent output corruptions can be covered with
13% runtime overhead. In other words, the ReStore architecture can cover or avoid 16% of
the silent output corruptions if the hardware provides checkpointing and rollback to the
last 10 instructions at any point of the program execution. If system architects want to avoid
more than 50% of silent output corruptions, a checkpoint/rollback strategy with the ability
to re-execute 100,000 instructions is required; however, the runtime overhead is larger
than 94%, as compared to unprotected architectures. Interestingly, approximately 69% of
silent output corruptions generate at least one symptom until the end of the application,
whereas 31% of silent output corruptions do not generate any symptoms. These 31%
of the silent output corruptions cannot be handled or covered by symptom-based fault-
tolerant techniques.

Figure 8. We can cover more SOCs by re-executing more instructions when symptoms are detected.
However, the runtime overhead exceeds the fault coverage if we use a large recovery instruction window.

We also observed that the fault coverage by the recovery instruction window could
vary according to the benchmark. We examined the fault coverage of ReStore with different
recovery instruction window sizes for two benchmarks, bitcount and gsm (toast). For
the bitcount and gsm (toast) benchmarks, only 14% and 16% of the SOC-inducing faults
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generate symptoms within 100 instructions, respectively. The benchmark bitcount requires
one million instructions of a re-execution for better fault coverage; however, the fault
coverage is still 22%. By contrast, the fault coverage of the benchmark gsm (toast) can
increase significantly by extending the size of the recovery instruction window. By setting
the recovery instruction window size to 1 million, 97% of the silent output corruptions can
be covered. Thus, it is difficult to determine the optimal size of the recovery instruction
window to satisfy all types of applications.

6.4. Quantifying the Negative Impact of the Program-Level Masking Effects

As we described in Section 2.3, one of the main problems with the ReStore work
evaluation is that it did not consider the effect of program-level masking effects on the
coverage of ReStore. However, we found that the majority of faults, which generate a
symptom soon after their occurrence, will eventually become masked by program-level
masking effects. Figure 9 shows this probability separately for a branch misprediction and
cache misses. On average, only 46% and 48% of errors detected by a branch misprediction
and cache miss symptoms in the ReStore scheme are harmful.

Figure 9. Probability of a fault that quickly generates a symptom resulting in SOC is less than half on
average. Even symptoms do not strongly imply SOC.

The probability that soft errors will quickly generate symptoms resulting in SOCs
depends on the benchmarks used. For instance, Figure 9 shows that only 6% of branch
misprediction symptoms cause SOCs for the crc benchmark, whereas more than 82%
cause SOCs for the jpeg (decode) benchmark. This occurs because even incorrectly taken
branch instructions, called Y-branches, can result in correct outputs, whereas the portion
of Y-branches depends on the applications [3]. To analyze the effectiveness of branch
misprediction symptoms, we changed the control flow of 300 randomly selected branch
instructions over our benchmarks. For the benchmark jpeg (decode), approximately 36% of
the control flow violations resulted in correct outputs, whereas the rate was approximately
84% for the crc benchmark. Because the crc benchmark is less sensitive to control flow
violations than the jpeg (decode) benchmark, the branch misprediction symptom is not an
effective clue for SOCs for crc. Nevertheless, the fact that more than 57% of branches are
Y-branches on average demonstrates that a branch misprediction is a poor candidate for
representing the existence of soft errors.

The effectiveness of cache miss symptoms is affected by silent/dead memory instruc-
tions [24,25], which results in correct outputs even though the memory instructions are
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not executed. To analyze the effectiveness of cache miss symptoms, we selected 100 store
and load instructions from a benchmark. Moreover, we discarded one of the selected
memory instructions for each simulation. For the susan and sha benchmarks, almost 80%
and 4% of memory instructions do not affect the program results, respectively, despite not
being executed. Approximately 8% of cache miss symptoms induce SOCs for the susan
benchmark, as shown in Figure 9, because many memory instructions are not critical in this
benchmark. By contrast, 96% of the symptoms cause SOCs for the benchmark sha because
most memory instructions are not silent/dead. On average, 48% of memory instructions
do not cause failures at all, despite not being executed over our benchmarks, which induces
an overprotection of the cache miss symptoms.

7. Conclusions

With aggressive technology scaling, the soft error rate is increasing, particularly in
modern embedded systems. In order o protect embedded systems against soft errors,
several hardware and software redundancy schemes have been proposed. However, they
can be expensive in terms of performance and hardware, and they are not suitable for
resource-constrained embedded systems. Symptom-based techniques have been suggested
as an alternative to protect embedded processors effectively. As the main claim behind
symptom-based techniques, soft errors generate symptoms quickly when soft errors cause
a failure. Failures can then be avoided by re-executing the last 100 instructions when symp-
toms are detected. Symptom-based fault-tolerant techniques seem compelling because
they do not have to duplicate all instructions or require expensive hardware modifications.
Since the symptom-based protection schemes seem attractive due to their generality and
simplicity, even state-of-the-art protection schemes exploit them as the baseline protec-
tions. In this work, we have implemented the reliability analysis module to reconsider
the existing protection schemes. Then, we have found that there are no royal roads to
achieve the high reliability. Our experimental results show that symptom-based techniques
can cover only 29% of silent output corruptions. Furthermore, their runtime overhead is
almost 40% compared to unprotected architectures owing to frequent false alarms caused
by natural symptoms. Finally, symptom-based fault-tolerant techniques are ineffective
because more than half of the quickly generated symptoms do not cause failures owing to
several masking effects.

Our future work will include implementing a more general framework to analyze
the efficacy of existing protection schemes since this work focuses on low-level symptom-
based protection schemes. Our detailed experimental results found that selective protection
schemes need to be validated thoroughly and comprehensively. Then, the analysis will be
the first step to reach the reliability goal.
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