
CHITIN: A Comprehensive In-thread Instruction
Replication Technique Against Transient Faults

Hwisoo So∗, Moslem Didehban†, Jinhyo Jung∗, Aviral Shrivastava‡, Kyoungwoo Lee∗
∗Dependable Computing Lab, Yonsei University, Seoul, South Korea. {Shs7719,Jinhyo.Jung,Kyoungwoo.Lee}@yonsei.ac.kr

†Cadence Design Systems, San Jose, California. Moslem@cadence.com
‡Compiler Microarchitecture Lab, Arizona State University, Tempe, AZ. Aviral.Shrivastava@asu.edu

Abstract—Soft errors have become one of the most important
design concerns due to drastic technology scaling. Software-
based error detection techniques are attractive, due to their
flexibility and hardware independence. However, our in-depth
analysis reveals that the state-of-the-art techniques in the area
cannot provide comprehensive fault coverage: i) their control-flow
protection schemes provide incomplete redundancy of original
instructions, ii) they do not protect function calls and returns,
and iii) their instruction scheduling leaves many vulnerabilities
open. In this paper, we propose CHITIN – code transformations
for soft error resilience that adopts the load-back checking
scheme of nZDC, an improved version of SWIFT-like control-flow
protection scheme, and a contiguous scheduling of the original and
redundant instructions to dramatically improve the vulnerability
from soft errors that disrupt the control-flow. Our fault injection
experiments demonstrate that CHITIN can reduce more than 89%
of the silent data corruptions in the state-of-the-art solutions.

I. INTRODUCTION

Transient faults or soft errors, unexpected temporary bit flips
in the transistor caused by energetic particles, electromagnetic
interference, electrical noises, etc., have been identified as
one of the main sources of hardware malfunctions in mod-
ern microprocessors [1]–[3]. Traditionally, soft errors were a
concern only in high-altitude settings such as satellites and
airplanes. However, due to continued device scaling and higher
integration, soft errors are now a serious reliability concern even
in terrestrial settings [4], [5], and are considered as a first-class
suspect in many system-level failure scenarios [6]–[9].

Hardware-level solutions, such as ARM Cortex-R dual/triple
core lock-step microprocessors [10], [11], have been frequently
used to mitigate the problem of soft errors. However, they
require modifications in the design, and are inapplicable to
existing off-the-shelf processors. Software-level solutions are
more desirable as they can be applied on any past, present or fu-
ture processor, and can be applied opportunistically only when
required [12], [13]. Some of the most popular software-level
protection techniques can be classified as in-thread instruction
replication techniques [12]–[20]. These techniques replicate the
assembly-level instructions and execute the original and redun-
dant (shadow) execution streams inside the same thread, so that
an error would make a difference between the architectural state
of the two streams. Intermittent checking among the original
and shadow streams is performed to detect errors.

However, our in-depth analysis reveals that the state-of-the-
art in-thread replication techniques suffer from several limi-
tations. SWIFT (SoftWare Implemented Fault Tolerance) [12],

the most cited technique, has flaws in its checking algorithm for
stores and branches. nZDC (near Zero Data Corruption) [13],
another popular technique, resolves these problems but still fails
to provide complete redundancy for control-flow instructions.
Furthermore, both do not prescribe any transformation for
function calls and returns, and their instruction scheduling
strategy leaves them open to several more vulnerabilities. These
limitations make the techniques more vulnerable to control-flow
errors, which are less likely to be masked compared to data-
flow errors [21]. Consequently, such drawbacks make existing
schemes ineffective for mission-critical applications running on
embedded microprocessors.

To address the above mentioned drawbacks, we propose
CHITIN1 – CompreHensive In-Thread INstruction replication.
The contributions of CHITIN are:
i) Complete redundancy for control-flow instructions: Pre-
vious techniques for control-flow instructions either let errors
in the original branch instruction propagate to corrupt the
checking instruction, or fail to detect the faults that illegally
transfers the control-flow to another block. CHITIN protects the
control-flow instructions by completely separating the branch
and its corresponding error checking instructions to different
(original or shadow) instruction streams.
ii) Protection for function calls and returns: To the best of
our knowledge, CHITIN is the first in-thread replication scheme
to provide a comprehensive transformation ruleset for function
call and return instructions. Utilizing a signature-based method
with a redundant link register, CHITIN guarantees the correct
execution of these instructions.
iii) Contiguous instruction scheduling: The instruction
scheduling strategies of previous works generate frequent
equal-point-of-executions, points in which the architectural
states of the original and shadow streams are identical.
Naturally, errors causing jumps between two equal-point-of-
executions in the same basic block cannot be detected. CHITIN
uses a contiguous original-shadow instruction scheduling strat-
egy, which minimizes the number of equal-point-of-executions
in a basic block, and therefore reduces the number of unde-
tected control-flow errors.

Our statistical transient fault injection experiments on a
Verilog description of OpenRISC microprocessor show that
CHITIN can reduce the number of undetected failures of
SWIFT and nZDC by around 14.8x and 9.0x, respectively.

1pronounced kı̄tn, is the main constituent of exoskeletons.

TABLE I
INSTRUCTION CATEGORIES AND THE FOLLOWING TRANSFORMATION RULES OF SWIFT, NZDC, AND CHITIN

Instruction Category In-Thread Replication Techniques
SWIFT [12] nZDC [13] CHITIN [THIS WORK]

Arithmetic & Logical Operations Operation replication with shadow registers assigned for redundancies of register operands

Memory
Operations

Load Operation replication with shadow registers assigned for redundancies of register operands

Store Pre-store checking (Vulnerable
against post-check pre-store error) Post-store load-back checking

Control
Operations

Jump Signature-based checking
Conditional

Branch
Signature-based checking (Vulnerable

against wrong-direction error)
Signature-based checking (Vulnerable
against inter-block control-flow error)

Signature-based checking completely
independent of the branch

Function
Call and Return (Not implemented) Signature-based checking utilizing

the redundant link register

Inst. #1
Inst. #2
Inst. #3

Original code

Basic Block 0
Instruction

Replication &
Transformation
(Section II.A)

Shadow stream

Original stream

Inst. #1
Inst. #2
Inst. #3

Inst. #1*
Inst. #2*
Inst. #3*

Instruction
Scheduling

(Section II.B)

Protected code

Basic Block 0

Inst. #1
Inst. #1*
Inst. #2
Inst. #3

Inst. #2*
Inst. #3*

Fig. 1. In-thread replication replicates an execution stream and schedules the
original and shadow streams in the same thread.

II. RELATED WORKS
In-thread instruction replication schemes consist of replicat-

ing instructions in the original stream based on their functional-
ity, and scheduling the original and replicated execution streams
into one thread, as illustrated in Figure 1. In-thread replication
schemes aim to detect errors by spotting the discrepancies
the errors cause between the two streams. The most cited in-
thread replication scheme is SWIFT [12], which replicates the
instructions and the corresponding registers into two execution
streams without replicating the data memory. Recent in-thread
replication schemes [13]–[20] are largely based on SWIFT,
and most of them focus on lowering the performance penalty
of SWIFT. nZDC [13], on the other hand, pointed out some
vulnerabilities in SWIFT and attempted to resolve them.
A. Instruction transformation

To protect the system against soft errors, in-thread replication
transforms the replicated instructions to form a redundant
execution stream that accurately repeats the functionalities of
the original stream. Table I summarizes the classification of
instructions and the corresponding transformations of represen-
tative in-thread replication techniques, SWIFT and nZDC.

1) Arithmetic and logical instructions: Arithmetic and log-
ical instructions update the destination register with their re-
sults. In-thread replication creates replicas of such instructions,
replacing the register operands with shadow registers so that
the replicated instructions provide redundant results. For this
purpose, in-thread replication partitions the general purpose
registers into original and shadow registers. The original in-
structions and registers form the original execution stream,
and the replicated instructions and shadow registers form the
shadow execution stream, which should be identical to the
original stream if the system executes both streams correctly.

2) Memory instructions: The memory subsystem is usually
protected by hardware solutions such as parity code or error
correction code, and therefore popular in-thread techniques do
not replicate the data memory space. They rather focus on pre-
venting errors in corrupted store instructions from propagating
to the memory subsystem.

As load instructions only update the data registers, they
can be replicated just as arithmetic and logical instructions as
described in Table I. However, replicating store instructions
is more complicated, since its result should be stored in the
memory subsystem. Therefore, SWIFT-based schemes [12],
[14]–[20] compare the original and shadow data and address
registers of the store to detect potential errors. The store
instruction is executed in the original stream after the checking
ensures its correctness.

nZDC [13] pointed out a vulnerability in these schemes;
soft errors that occur after the checking but before or during
the execution of store could corrupt memory without being
noticed. Accordingly, nZDC proposed load-back checking as an
alternative to pre-store checking. Load-back checking executes
the store with original registers, and then loads the stored value
back with the shadow address register to check the correctness
of the executed store.

3) Control-flow instructions: Since control-flow instructions
such as jumps and branches update the program counter (PC)
immediately, it is hard to directly replicate such instructions. In-
thread replication schemes rather adopt CFCSS (Control-Flow
Checking by Software Signatures) [22], reserving some general
purpose registers to function as a redundant PC. A common
implementation constitutes of assigning signatures to each basic
block, using one register to hold the current signature, and
another register to hold the signature difference of the current
and next block [12]. Upon entering a block, the signature
register is updated with the difference, and compared with the
signature of the block to check the validity of the control-flow.

However, the state-of-the-art in-thread replication techniques
make mistakes in implementing their versions of CFCSS,
exposing them to vulnerabilities. SWIFT makes a signature
update instruction depend on the branch that it should protect.
This allows a single error to corrupt both the direction of a
branch and its checking signature, making SWIFT vulnerable
to wrong-direction control-flow errors. nZDC uses a constant
uniformly as the correct signature for every block, and in turn
misses some errors that jump from one block to another block.

4) Function calls and returns: Function calls and returns
directly update the PC. Since both the original and shadow
streams share the PC, soft errors on these instructions can
corrupt the two streams simultaneously. Although previous
in-thread replication schemes protect function parameters by
replicating them with shadow registers, the schemes provide no
information on how to replicate the function calls and returns.
A recent scheme [21] suggests a signature-based protection for

these instructions. However, it does not protect the link register,
which is essential for the correct execution.
B. Instruction scheduling

The replicated and original instructions should be carefully
scheduled in the same thread to avoid malfunctions. For exam-
ple, the instructions should be placed so that they do not break
any dependencies or change the semantics of the program.
Previous schemes adopt the alternating instruction scheduling
strategy. This strategy schedules one shadow instruction right
before or after the corresponding original one, and the system
alternates between executing original and shadow instructions.

Poor scheduling can also cause the system to be vulnerable to
unwanted jump errors, in which the control-flow unintentionally
jumps from one execution point to another. With the example
of alternating scheduling, every point after the execution of
a pair of original and shadow instruction is an equal-point-
of-execution, meaning that there is no difference in the two
execution streams at the point. Unwanted jump errors between
two such points in the same block do not cause any difference
between the two execution streams, and hence cannot be
detected. Alternating scheduling is especially vulnerable since
it induces frequent equal-point-of-executions [23].

III. OUR SOLUTION: CHITIN

We introduce CHITIN, which overcomes the limitations of
previous in-thread replication schemes and presents a compre-
hensive set of rules for instruction replication, transformation,
and scheduling. CHITIN adopts the instruction transformation
of nZDC for arithmetic, logical, and memory instructions as it
provides sufficient fault coverage. For control-flow instructions,
CHITIN builds on the transformation of SWIFT, which is
efficient but incomplete. CHITIN also provides transformation
for function calls and returns and a contiguous scheduling
strategy to extend its error coverage. In each subsection, we
describe the problems that exist in previous techniques, and
explain how CHITIN resolves the vulnerabilities. The rightmost
column in Table I summarizes the instruction transformation of
CHITIN as compared to previous techniques.

A. Transformation for compare and branch instructions

To protect a branch instruction, SWIFT creates a replicate
compare instruction with shadow registers, and updates the
signature difference register based on the result of the shadow
compare. However, if the branch is not taken, SWIFT updates
the signature difference register to indicate not taken, regardless
of the result of the shadow compare. Therefore, if a soft error
alters the branch direction from taken to not taken, the error
cannot be detected by SWIFT. This vulnerability is shown
in Figure 2 (a). In this example, the branch is either taken
(T) or not taken (NT), based on the result of the compare.
Assume that the values of original registers R0 and R1 are
equal in this example, and therefore the branch should be
taken. Accordingly, shadow registers R0* and R1* are equal,
and SWIFT updates the signature difference register with the
signature of block T (sig(T)). Then, if a fault corrupts the
branch direction from T to NT as marked by 1 (e.g., an error
changes R1), the signature difference register is overwritten

Compare R0*, R1*
(if equal): sig_diff = sig(B_0) xor sig(T)

sig_diff = sig(B_0) xor sig(NT)
goto NT

sig_now =
sig_now xor sig_diff

sig_now == sig(T)?

sig_now =
sig_now xor sig_diff

sig_now == sig(NT)?

Compare R0, R1
(if equal): goto T

Basic Block T Basic Block NT

① If Error alters
branch direction
T → NT

② Error cannot be detected
since value of sig_now is sig(NT)

(a) SWIFT protection for compare and branch

Compare R0, R1
(if equal): sig_diff = sig(B_0) xor sig(T)
(else): sig_diff = sig(B_0) xor sig(NT)

Compare R0*, R1*
(if equal): goto T
goto NT

sig_now =
sig_now xor sig_diff

sig_now == sig(T)?

sig_now =
sig_now xor sig_diff

sig_now == sig(NT)?

Basic Block T Basic Block NT

④ Error can be detected
since value of sig_reg is sig(T)

③ If Error alters
branch direction
T → NT

(b) CHITIN protection for compare and branch

Basic Block 0: sig_now is sig(B_0) Basic Block 0: sig_now is sig(B_0)

Fig. 2. While SWIFT cannot detect errors that corrupt the branch direction
from taken to not taken, CHITIN detects the errors by isolating the signature
update and the branch.

by the signature of block NT (sig(NT)). Consequently, even if
control-flow wrongly jumps to NT block, the error cannot be
detected, as marked by 2 .

While the transformation of nZDC does not share this
vulnerability, it suffers from a different problem. Since nZDC
keeps the correct signature of every block as the same constant,
it cannot detect errors that jump from one block to another. In
addition, it requires more than 10 extra instructions to transform
one branch instruction, which makes nZDC terribly inefficient.

The vulnerability in SWIFT occurs because the signature
update instructions, which should protect the branch instruction,
are partially dependent on the branch instruction. To break this
dependency, CHITIN updates the signature difference register
solely based on the original compare, and decides the direction
of the branch based on the result of shadow compare. After the
original compare, the signature difference register is updated
with the signature of either the taken block or the not taken
block, depending on the result of the original compare. CHITIN
then replicates the compare with shadow registers and lets the
branch instruction depend on the result of the shadow compare.
Since the signature updates and the branch instruction depend
on different compare instructions, CHITIN no longer suffers
from errors that corrupt the direction of a branch. CHITIN
also gives a unique signature to every block, resolving the
vulnerability of nZDC.

Figure 2 (b) shows the CHITIN transformation for compare
and branch. Note that the signature update instructions are
dependent on the original compare with R0 and R1, and the
branch is dependent on the shadow compare with R0* and R1*.
Therefore, even if a soft error corrupts the branch direction from
T to NT as marked by 3 , the error cannot affect the signature
update instructions. After the control-flow incorrectly jumps
to block NT, the error is detected since the signature register
contains the signature of T (sig(T)), as marked by 4 . CHITIN
can also detect errors in the opposite direction, corrupting the
branch direction from NT to T, in a similar manner.

The signature register must be updated every time control-
flow transfers to another basic block. On the other hand, its
verification can be occasionally skipped since the corrupted
signature register remain invalid across updates [12]. CHITIN
therefore inserts checks only when needed. Checks are inserted
in basic block with store instructions to avoid wrong memory
writes. Checks are also inserted in the first basic block of a

Function_A

lr* = address(A_1)
sig_diff = sig(A_0) xor sig(B_0)
call Function_B

Basic Block A_0: sig_now is sig(A_0)

sig_now = sig_now xor sig_diff
sig_now == sig(A_1)?

Basic Block A_1

Function_B

sig_now = sig_now xor sig_diff
sig_now == sig(B_0)?

Basic Block B_0

.
.

.

Implicitly
updates lr

(link register)

1

2

lr* = address(A_11)
sig_diff = sig(A_10) xor sig(B_0)
call Function_B

Basic Block A_10: sig_now is sig(A_10)

sig_now = sig_now xor sig_diff
sig_now == sig(A_11)?

Basic Block A_11
Implicitly
updates lr

(link register)

1

2

(if lr == address (A_1))
sig_diff = sig(B_10) xor sig(A_1)

(if lr == address (A_11))
sig_diff = sig(B_10) xor sig(A_11)

Return by lr*

Basic Block B_10: sig_now is sig(B_10)

4

3

3

...

Fig. 3. To protect a function call, CHITIN updates the shadow link register (lr)
and the signature difference register (sig diff). For a function return, CHITIN
updates sig diff based on lr, and changes function return to utilize shadow lr.

loop if the loop does not have any basic block with store. The
reason is because if a soft error corrupts the loop condition,
the directions of the branch in the loop and its corresponding
signature updates can be opposite twice during the loop. In this
case, the signature is first incorrect but later gets corrected and
CHITIN loses the chance to detect such errors.

B. Transformation for function call and return instructions

Previous in-thread replication techniques do not provide
a concrete methodology to protect function calls. CHITIN
therefore extends the signature-based control-flow checking to
protect function calls and returns. CHITIN considers a function
call as a combination of two instructions: a jump to the
beginning basic block of the target function and an update of
the original link register. To protect a function call, CHITIN
updates the signature difference register with the signature
value of the first basic block of the function, and updates the
shadow link register explicitly. Faulty function calls that jump
to illegal blocks are detected by checking the signature register.

The function return is more complicated since it can have
multiple possible return points, where the correct one is dy-
namically decided by the link register. CHITIN protects the
function return using signatures and a redundant link register.
CHITIN updates the signature difference register based on one
link register, and executes the return instruction based on the
other link register, so that a single error cannot affect both
the signature update instructions and the return instruction.
Specifically, the original link register is compared against
all possible return points, and if a compare result matches,
the signature difference register is updated with the signature
value of the matched return point. Then, CHITIN executes the
function return based on the updated shadow link register.

Figure 3 shows the CHITIN transformation for function calls
and returns. In this example, function A calls function B in
basic blocks A 0 and A 10, and basic blocks A 1 and A 11
following the function calls are the possible return points of
function B. To replicate the function call, CHITIN explicitly
updates the shadow link register to be equal to the original link
register as marked by 1 , and the signature difference register
with the signature value of B 0 (sig(B 0)), as marked by 2 . To
replicate the function return, CHITIN checks all possible return
points to correctly update the signature difference register, as
marked by 3 . Finally, the function returns using the shadow

Original inst. #1
Shadow inst. #1

(a) Replication with alternating scheduling

Bas ic Block 0

Equal-point-of-execution

Equal-point-of-execution

Equal-point-of-execution

Equal-point-of-execution

Original inst. #2
Shadow inst. #2

Original inst. #3
Shadow inst. #3

* Dashed arrows represent
undetectable unwanted jump errors

Original inst. #1
Original inst. #2
Original inst. #3
Shadow inst. #1
Shadow inst. #2
Shadow inst. #3

(b) Replication with contiguous scheduling

Bas ic Block 0

Equal-point-of-execution

Equal-point-of-execution

Fig. 4. While the number of equal-point-of-executions is proportional to the
number of instructions in the block with alternating scheduling, contiguous
scheduling induces only 2 such points regardless of the number of instructions.

link register (as marked by 4). With this transformation,
CHITIN successfully protects function calls and returns in
addition to providing redundancy for the link register.

C. Contiguous instruction scheduling strategy
Unwanted jump errors between equal-point-of-executions,

points at which the original and shadow streams are identical,
do not cause any mismatch between the two streams. Signature-
based protection schemes can detect such errors between two
different blocks, since the signature register contains the signa-
ture of the valid block. However, it cannot detect unwanted
jump errors between equal-point-of-executions in the same
basic block. Alternating scheduling strategy of previous in-
thread replication schemes is highly vulnerable against intra-
block unwanted jump errors due to the frequent number of
equal-point-of-executions it induces. For a basic block with
N original instructions, alternating scheduling induces N + 1
equal-point-of-executions, which in turn opens N+1P2 possible
cases of undetectable errors. Figure 4 (a) shows a basic block
with alternating scheduling, where red dotted arrows represent
the possible undetectable control-flow errors.

To reduce the number of equal-point-of-executions in each
basic block, CHITIN adopts a contiguous original-shadow
instruction scheduling strategy, which contiguously schedules
as many instructions of one stream as possible. With this
scheduling strategy, the number of equal-point-of-executions is
uniformly 2, regardless of the number of instructions in the
basic block. Figure 4 (b) shows an example of contiguous
scheduling, the corresponding equal-point-of-executions, and
the undetectable control-flow errors.

When scheduling the instructions contiguously, the following
rules must be kept to preserve program semantics: i) The store
instruction should precede the corresponding load-back check-
ing instructions. Otherwise, the load-back checking would load
the wrong value. ii) The signature update instructions should
precede the corresponding control-flow instructions (jump,
branch, function call, and function return). Otherwise, the
instructions would alter the program counter immediately and
skip the checking instructions. Therefore, CHITIN schedules all
instructions in original execution stream first, which deals with
register updates for original registers, store instructions, and
signature updates for corresponding control-flow instructions.
CHITIN then schedules instructions in the shadow stream,
which deals with register updates for shadow registers, load-
back checking for corresponding store instructions, and control-
flow instructions. This is summarized in Figure 5.

Add R0, R0, #4

Store R0 → [R1]
Compare R0, R2
(if equal) goto T

(Fall-through to NT)

Original code

Block 0

sig_now = sig_now xor sig_diff
sig_now == sig(Block 0)?

Add R0, R0, #4
Store R0 → [R1]
Compare R0, R2
(if equal) sig_diff = sig(T)
(else) sig_diff = sig(NT)

Add R0*, R0*, #4
Load Temp  [R1*]
Compare Temp, R0*
(if not equal) ERROR
Compare R0*, R2*
(if equal) goto T
(Fall-through to NT)

Block 0

CHITIN -applied code

Original stream deals with

Shadow stream deals with

Updates for original regs

Store instructions

Updates for sig_diff

Updates for shadow regs

Load-back checkings

Control-flow instructions

Checks signatures if
Top of a loop w/o store
Or the block has store

Updates signature register

By XORing with sig_diff

Fig. 5. Applying contiguous scheduling to a block, with the original stream
underlined, and shadow stream italicized.

An exception is when a store overwrites data in memory
that is accessed by previous load or store in the same ba-
sic block. With contiguous scheduling, the shadow memory
instruction would access a value different from the original
even in the absence of soft errors. Therefore, in the case of
a write-after-read or write-after-write dependency in a basic
block, CHITIN splits the contiguous scheduling, generating an
additional equal-point-of-execution.

IV. EXPERIMENTS

We conducted statistical fault injection experiments on an
OpenRISC-based microprocessor to evaluate the fault coverage
and performance overhead of CHITIN.
Benchmarks and binaries: We compiled 7 applications of
Mibench [24] test suite with the following versions: no protec-
tion (Original), SWIFT, nZDC, and CHITIN. Note that since
SWIFT and nZDC do not provide transformation rules for
function calls and returns, we implemented both techniques by
re-initializing the signature register at the top basic block of
each function and each return point to avoid the false alarm
due to the invalid signature register. We also implemented
two additional versions of CHITIN in a step-by-step manner
to see the effects of each sub-technique. The first version
is CHITIN & alternating & naiveFunction that only replaces
the transformation for control-flow instructions of nZDC as
discussed in Section III-A. The second is CHITIN & naive-
Function that applies contiguous scheduling of Section III-C to
CHITIN & alternating & naiveFunction. Finally, CHITIN is the
comprehensive version that applies transformation for function
calls and returns of Section III-B to CHITIN & naiveFunction.
Fault injection setup: We modified synthesizable Verilog
codes of Mor1kx cappuccino microprocessor, which is the
latest version of the OpenRISC1000 processor family, to flip
random bits on hardware components. The modified Verilog
code was simulated on an Icarus Verilog simulator [25]. For
each execution, we randomly selected a bit on fault sites of
a component and an execution tick to inject the fault. A fault
site is a bit in a hardware component in which a fault can be
inserted. The list of hardware components, fault sites for each
component, and the number of faults, and the corresponding
margin of errors with 95% confidence interval based on [26] are
listed in Table II. With 7 benchmarks, 6 versions, and 10,800
faults per binary, we injected a total of 453,600 faults.
Failure classification: We only considered silent data corrup-
tion (SDC) as the failure case, since other cases can be noticed

TABLE II
THE NUMBER OF INJECTED FAULTS PER COMPONENT

Component Fault sites # of faults Margin of error*
Register File 1,024 6,000 1.27%

Fetch/Decode Unit 200 1,200 2.83%
Decode/Execute Unit 216 1,300 2.72%
Execute/Control Unit 183 1,100 2.95%

Write/Back Unit 32 300 5.66%
Arithmetic Logic Unit 36 300 5.66%

Load-Store Unit 101 600 4.00%
Total 1,792 10,800

*Margin of error with 95% confidence interval [26]
TABLE III

SDC CLASSIFICATION OF CHITIN
Failure sources # of scaled SDCs

Intra-block unwanted jump error 9.3 (17.4%)
Address corruption of silent store 10.1 (18.8%)

Non-store to store alteration 8.5 (15.9%)
Inter-block unwanted jump error 12.3 (23.0%)

System call corruption 13.3 (24.8%)
Total 53.6 (100%)

by the system. We consider a faulty run as SDC if the system
reaches a valid endpoint of application without crash or timeout
(runtime exceeds 2x of the fault-free run), and the output is
different from that of a fault-free run.
Comparison methodology: We inject one fault in every ex-
ecution regardless of the configuration, but the performance
degradation caused by different protection methods increases
the period that the application is exposed to soft errors [27].
To fairly compare the fault coverage, we scaled the number
of SDCs on each binary by multiplying it with the normalized
execution time [27], [28].

A. Result: Fault Coverage
Figure 6 (a) shows the benchmark-wise results of the fault

injection experiments for original, SWIFT, nZDC, and CHITIN.
The X-axis represents the benchmarks, and the Y-axis repre-
sents the number of scaled SDCs in log-scale. The original
version shows 6,173 SDCs. SWIFT and nZDC reduce this
number to 849.4 and 534.3, respectively. Notably, CHITIN only
shows 53.6 scaled SDCs on an average, which is 14.8x and 9.0x
better than SWIFT and nZDC, respectively.

To evaluate the effect of each sub-technique in CHITIN, we
also injected faults on two other versions of CHITIN as shown
in Figure 6 (b). At first, replacing the control-flow transforma-
tion of nZDC by the one of CHITIN reduces the scaled SDCs
of nZDC by around 58%. Applying contiguous scheduling
in addition to the control-flow transformation reduces this
number by 26%. Finally, employing CHITIN transformation
for function calls and returns again reduces the scaled SDCs
by 68%. This result demonstrates that each sub-technique of
CHITIN effectively reduces the vulnerabilities it targets.

Around 0.07% of the faults still cause SDCs in CHITIN-
applied applications. Table III shows the five sources of SDCs
in CHITIN. i) Intra-block unwanted jumps between the remain-
ing equal-points-of-executions are not detected. ii) The address
corruption of a silent store cannot be detected by load-back
checking. A silent store occurs when the data in the target
address of a store is already equal to the data of the store
instruction [29]. This vulnerability of load-back checking is
already discussed by Didehban et al. [30]. iii) Faults that alter

Number of scaled SDCs (log-scale)

849.4

534.3

6,173

Original SWIFT nZDC CHITIN

(a) Benchmark-wise number of scaled SDCs (b) number of scaled SDCs for step-by-step CHITIN

53.6

0%

100%

200%

300%

400%

500%
Execution time compared to original version (%)

Original SWIFT nZDC CHITIN

260

384
331

100

(c) Performance result

6,173

849.4
534.3

225.6 167.0
53.6

ORGSWIFTnZDC C C CHITIN
CHITIN &

alternating &
naiveFunction

CHITIN &
naiveFunction

1

10

100

1k

10k

1

10

100

1k

10k
Number of scaled SDCs (log-scale)

Replication for
control-flow
instructions

(Section III.A)

Contiguous
instruction
scheduling

(Section III.C)

Replication for
function call
and return

(Section III.B)

CHITIN

Fig. 6. CHITIN achieves the best error coverage as compared to the state-of-the-art techniques, while maintaining its performance penalty in-between them.

a non-store instruction to a store but does not induce a mismatch
between two streams cannot be detected. iv) Unexpected jumps
that make the control-flow return to the top of the previous basic
block might not be detected, since signature difference cannot
determine the direction; the signature difference from the first
block to the second one is the same as the difference value
from second to the first. v) Faults that corrupt the execution of
system calls cannot be detected.

B. Result: Performance Overhead
Figure 6 (c) shows the execution runtime of each configu-

ration. The X-axis represents the benchmarks, and the Y-axis
represents the execution runtime normalized to the original
runtime. On average, applying SWIFT, nZDC, and CHITIN to
an application induce 1.6x, 2.8x, and 2.3x additional execution
time overhead, respectively. CHITIN is slower than SWIFT for
two reasons: i) CHITIN inserts an additional signature check
for every loop without a store, and ii) CHITIN transformation
for function return induces significant slowdowns, especially in
benchmarks with many function calls. For example, bitcount,
which has six functions with around 20 possible return points
each, shows the highest performance degradation in CHITIN.

V. CONCLUSION

We present a comprehensive in-thread instruction replication,
CHITIN. CHITIN judiciously combines nZDC and SWIFT
with enhanced protection for compare and branch instructions.
Furthermore, CHITIN provides directions to protect function
calls and returns, using the shadow link register. Finally, the
contiguous scheduling of CHITIN reduces vulnerability of
intra-block unwanted jump errors. Statistical fault injection
experiments show that the number of SDCs in CHITIN is 6.3%
and 10.0% compared to SWIFT and nZDC, respectively.

VI. ACKNOWLEDGEMENTS

This work was partially supported by funding from Na-
tional Science Foundation Grants No. CNS 1525855, CPS
1646235, CCF 1723476 - the NSF/Intel joint research center
for Computer Assisted Programming for Heterogeneous Ar-
chitectures (CAPA), NRF-2016H1A2A1909470 (Global PH.D.
Fellowship Program, NRF, the Ministry of Education), NRF-
2015M3C4A7065522 (Next-generation Information Comput-
ing Development Program, NRF, MSIT), 2014-3-00035 (High
Performance and Scalable Manycore Operating System, IITP,
MSIT), and Samsung Electronics Co., Ltd..

REFERENCES

[1] R. C. Baumann, “Soft errors in advanced semiconductor devices-part I:
the three radiation sources,” IEEE TDMR, vol. 1, no. 1, 2001.

[2] P. E. Dodd and L. W. Massengill, “Basic mechanisms and modeling of
single-event upset in digital microelectronics,” IEEE TNS, vol. 50, no. 3,
2003.

[3] M. Snir et al., “Addressing failures in exascale computing,” The Interna-
tional Journal of HPCA, vol. 28, no. 2, 2014.

[4] E. Ibe et al., “Impact of scaling on neutron-induced soft error in SRAMs
from a 250 nm to a 22 nm design rule,” IEEE TED, vol. 57, no. 7, 2010.

[5] “International Technology Roadmap For Semiconductors 2.0 - Executive
Report,” [Online] http://www.itrs2.net/itrs-reports.html, 2015.

[6] H. Qi, S. Ganesan, and M. Pecht, “No-fault-found and intermittent failures
in electronic products,” Microelectronics Reliability, vol. 48, no. 5, 2008.

[7] V. Sridharan and D. Liberty, “A study of DRAM failures in the field,” in
ACM/IEEE SC. IEEE, 2012.

[8] A. Haggag et al., “Reliability/yield trade-off in mitigating “no trouble
found” field returns,” in IOLTS. IEEE, 2015.

[9] A. Haggag et al., “Mitigating “No trouble found” component returns,” in
IRPS. IEEE, 2015, pp. 3C–5.

[10] X. Iturbe et al., “A Triple Core Lock-Step (TCLS) ARM® Cortex®-R5
Processor for Safety-Critical and Ultra-Reliable Applications,” in DSN
Workshop. IEEE, 2016.

[11] W. Lyons, “Enabling increased safety with fault robustness in microcon-
troller applications,” ARM Corporation, 2010.

[12] G. Reis et al., “SWIFT: Software implemented fault tolerance,” in CGO.
IEEE, 2005.

[13] M. Didehban and A. Shrivastava, “nZDC: A compiler technique for near
Zero Silent Data Corruption,” in DAC. IEEE, 2016.

[14] G. A. Reis et al., “Automatic instruction-level software-only recovery,”
IEEE micro, vol. 27, no. 1, 2007.

[15] J. Yu et al., “Esoftcheck: Removal of non-vital checks for fault tolerance,”
in CGO. IEEE Computer Society, 2009.

[16] S. Feng et al., “Shoestring: probabilistic soft error reliability on the
cheap,” in ACM SIGARCH CAN, vol. 38, no. 1. ACM, 2010.

[17] D. S. Khudia et al., “Efficient soft error protection for commodity
embedded microprocessors using profile information,” ACM SIGPLAN
Notices, vol. 47, no. 5, 2012.

[18] K. Mitropoulou et al., “DRIFT: Decoupled compiler-based instruction-
level fault-tolerance,” in LCPC Workshop. Springer, 2013.

[19] D. S. Khudia and S. Mahlke, “Harnessing soft computations for low-
budget fault tolerance,” in MICRO. IEEE, 2014.

[20] I. Laguna et al., “IPAS: Intelligent protection against silent output
corruption in scientific applications,” in CGO. IEEE, 2016.

[21] Z. Zhang et al., “Path sensitive signatures for control flow error detection,”
in LCTES. ACM, 2020.

[22] N. Oh et al., “Control-flow checking by software signatures,” IEEE
transactions on Reliability, vol. 51, no. 1, 2002.

[23] N. Oh et al., “Error detection by duplicated instructions in super-scalar
processors,” IEEE Transactions on Reliability, vol. 51, no. 1, 2002.

[24] M. R. Guthaus et al., “Mibench: A free, commercially representative
embedded benchmark suite,” in Workload Characterization, 2001. WWC-
4. 2001 IEEE International Workshop on. IEEE, 2001.

[25] S. Williams, “Icarus verilog,” On-line: http://iverilog.icarus.com, 2006.
[26] R. Leveugle et al., “Statistical fault injection: Quantified error and

confidence,” in DATE. IEEE, 2009.
[27] H. Schirmeier et al., “Avoiding pitfalls in fault-injection based comparison

of program susceptibility to soft errors,” in DSN. IEEE, 2015.
[28] H. So et al., “EXPERT: Effective and flexible error protection by

redundant multithreading,” in DATE. IEEE, 2018.
[29] K. M. Lepak et al., “Silent stores and store value locality,” IEEE

Transactions on Computers, vol. 50, no. 11, 2001.
[30] M. Didehban et al., “NEMESIS: A software approach for computing in

presence of soft errors,” in ICCAD. IEEE, 2017.

