
A software-level Redundant MultiThreading for
Soft/Hard Error Detection and Recovery

Hwisoo So∗, Moslem Didehban†, Aviral Shrivastava†, Kyoungwoo Lee∗
∗Department of Computer Science, Yonsei University, Seoul, Korea

Email: {Shs7719,Kyoungwoo.Lee}@yonsei.ac.kr
†Compiler Microarchitecture Lab, Arizona State University, Tempe, AZ

Email: {Moslem.Didehban, Aviral.Shrivastava}@asu.edu

Abstract—In this work, we investigate the potential of software-
only RMT (Redundant MultiThreading) schemes for soft and
hard error detection and recovery. We first implement and
evaluate the error protection capability of basic software level
triple redundant multithreading (STRMT) and analyze its vul-
nerability. Then we introduce FISHER (FlexIble Soft and Hard
Error Resiliency) as a software RMT scheme which can achieve
high degree of error resiliency and does not suffer from STRMT
vulnerability holes. FISHER executes three threads and rather
than having a centralized voting mechanism, it distributes and
intertwines error detection and recovery operations between
redundant threads. We performed 135,000 soft/hard error in-
jection experiments on different hardware components of an
ARM cortex53-like µ-architecturally simulated microprocessor.
The results demonstrate that FISHER can reduce programs
failure rate by around 42× and 26× compared to original and
basic STRMT-protected versions of programs, respectively.

I. INTRODUCTION

Advances in semiconductor technology have made
computer-based systems as an indivisible part of virtually
all aspects of human life. While some of these systems are
inherently error tolerant, some cannot tolerate any erroneous
behavior. Hardware malfunctions have been considered as one
of the main reasons behind unexpected program behaviors
and system failures. Hardware faults are classified into two
categories: a) transient faults or soft errors i.e., temporarily
bit flip errors – caused by high-energy particles, voltage
violations, and other electromagnetic interference, and b)
permanent faults or hard errors caused by process variation,
thermal stress, or oxide wear-out. It has been predicted that
overall system failure rate due to hardware errors grows
continuously mainly due to the ever-increasing level of
integration in different layers of computer-based systems,
i.e., more transistors per core, more cores per chip and more
chips per system [1], [2].

Software level error resilience schemes are promising be-
cause they can boost the reliability of execution even for
commercial-off-the-shelf microprocessors. Redundancy is the
key strategy behind error resilience schemes. While software
error resilience transformations can apply redundancy in var-
ious abstraction levels (e.g. instruction-level [3] or thread-
level [4], [5]), in this work we concentrate on thread-level or
Redundant MultiThreading (RMT) schemes. The main idea
of thread-level error mitigation schemes is to statically create
redundant copies of main execution thread and achieve error
resilience by dynamically checking the results of register
operands of memory operations. Since redundant threads can
potentially be executed on physically different hardware cores
for a multicore microprocessor, they can detect the mani-
festation of both soft and hard errors. Many of the existing

of software-based RMT error resilience schemes assume that
the microprocessor memory subsystem (TLBs, caches and
main memory) is ECC-protected and only focus on soft error
detection on microprocessor core components.

We also presume that memory subsystem is protected and
we investigate the potential of Software-level Triple RMT
(STRMT) for soft/hard error detection and recovery. We
first implement and analyze the error coverage capability
of a basic STRMT scheme – a straightforward extension
of state-of-the-art software-level thread duplication and error
detection solutions. The basic STRMT runs three redundant
threads on different cores of a multi-core microprocessor and
performs majority voting operations between store register
operands immediately before the execution of each store.
The results of microprocessor-wide single bit soft/hard error
injection experiments demonstrate that significant amount of
errors (∼12%) cause failure (wrong output) in basic STRMT
protected programs!

Furthermore, we propose FISHER as a software-level thread
triplication error resilience scheme which eliminates basic
STRMT single-point-of-failures by distributing and intertwin-
ing error detection, diagnosis and recovery operations between
main and redundant threads. To detect the manifestation of per-
manent errors, FISHER double-checks for errors in the com-
putations after each error detection and recovery. To eliminate
vulnerabilities introduced by the single-instance memory write
operations, both redundant threads independently verify the
results (not operands) of main thread memory write operations.
As a result, FISHER’s sphere of protection encompasses all
program instructions (i.e., computational, memory and control
flow operations) and can handle both soft and hard error ef-
fectively. Micro-architectural level error injection experiments
show that FISHER improves the reliability of basic STRMT
by ∼26×!

II. BASIC STRMT
Basic STRMT is a straightforward implementation of

software-level thread triplication and voting for error detection
and recovery. In basic STRMT, we simply follow prevalent
rules of state-of-the-art thread detection schemes [4]–[6], but
we apply triplication rather than duplication and perform
voting rather than error checking. Main idea here is to mask
the manifestation of single error by performing majority
voting between redundant versions of store register operands
immediately before execution of memory write operations.

As Figure 1 depicts, basic STRMT runs two extra redundant
threads (marked as Redundant Thread 1 and Redundant Thread
2 in Figure 1), for each main execution thread. These three
redundant threads run on physically different cores and execute

Main Thread Redundant Thread 2Redundant Thread 1

wait if (count != 2);

RETRIEVE(r0*, r1*);
RETRIEVE(r0**, r1**);

r0=vote(r0, r0*, r0**);
r1=vote(r1, r1*, r1**);

store r0 [r1]
atomic count--;
atomic count--;

SAVE(r0*, r1*);

atomic count++;

SAVE(r0**, r1**);

atomic count++;

wait if (count != 0); wait if (count != 0);

Thread
Synchronization
points

1

2

Fig. 1: Basic STRMT error resilience strategy.

mostly identical computations, but only the main thread per-
forms program memory write instructions. Redundant threads
send out the results of their computations, i.e., the values
of store data and address register operands (r0* and r1*
for redundant thread 1 and r0** and r1** for redundant
thread 2) to the main thread through a shared memory buffer
write operations (SAVE). Main thread retrieves the results
of redundant threads computations from the shared buffer
(RETRIEVE), and performs 2-of-3 majority-voting between
results and then executes the store instruction1. Basic STMRT
requires two synchronization points for correct execution: one
immediately before main thread collects redundant threads re-
sults (marked as 1©), and one immediately after the execution
of store (marked as 2©). The first synchronization barrier is
required to guarantee that the RETRIEVE operations in main
thread take place after that redundant threads wrote their values
into the shared buffer. The second synchronization is required
to provide consistent memory view for redundant threads. If
we eliminate the second synchronization point, chances are
that redundant threads perform a conflicting memory operation
(i.e., load from the same memory location as store target
address) before the main thread updates the memory. In such
cases, redundant threads will read the wrong (not updated)
memory value and the program may produce wrong output.

To evaluate the effectiveness of basic STRMT, we conduct
statistical fault injection experiments (detailed explained in
section IV) on different benchmark programs protected by
basic STRMT. The results reveal that a significant number
of (around 12%) of injected errors lead to program failure
(wrong output or silent data corruption)! We analyze the
results and realize that while basic STRMT can correct (mask)
the manifestation of data flow errors which alter computations
(visualized as down-flow arrows in Figure 1), it suffers from
four main vulnerability windows:
(i) Main thread write operations. If an error affects the exe-
cution of a main thread store instruction, it remains undetected
because checking operations are placed before store.
(ii) Redundant threads SAVE operations. To send the results
of their computations to the main thread, redundant thread
shall write their results to a shared memory buffer. This
happens through write (store) instructions that are annotated as
SAVE operations in Figure 1. Errors affecting effective address

1SAVE and RETRIEVE operations are indeed store and load instruction.
We opt to use different terms to distinguish between program related load and
stores and the memory operations required for error detection and corrections.

Main Thread Redundant Thread 2Redundant Thread 1

mem[r1*]memBackup*;

atomic count++;

wait if (count != 0);

If (mem[r1*] == r0*)
r1Err=0;

else
r1Err=1;

wait if (count != 2);

mem[r1]memBackup;
strPC strPCBackup;
store r0 [r1];

atomic count = count - 2;

atomic count++;

wait if (count != 0);

If (mem[r1**]==r0**)
r2Err=0;

else
r2Err=1;

Do recovery if needed

1

2

Fig. 2: FISHER error detection process.

of these memory write operations are also vulnerable because
they will lead to writing data to a wrong memory location.
(iii) Main core permanent faults. If a permanent error occurs
on the core executing main thread instructions, the error can
propagate to the memory. For instance, consider a permanent
stuck-at error on an arbitrary bit of physical register holding
store data value (r0 in the Figure). Despite of majority voting
operations the written value into the memory would be wrong,
simply because store instruction gets its data from register file
which is permanently erroneous.
(iv) Main thread control-flow errors. Errors which alter
the control flow of the main thread execution in such a
way that it skips over the execution of at least one store
instruction remain unrecoverable. Similarly, control flow errors
jumping over some computations instructions and at least
one of the majority-voting operation before the execution of
store also remain unrecoverable. Examples are faults in the
program counter register (PC, nPC) and the target address of
conditional/direct branches.

III. OUR SOLUTION: FISHER
To solve the above-mentioned vulnerability intervals, in this

section we introduce FISHER as an effective software-only
soft and hard error detection and recovery scheme. Similar to
the basic STRMT, FISHER adopts forward-recovery strategy
to protect the execution of programs against single bit soft and
hard errors.
Post-store error checking: FISHER adopts post-store error
detection (ED) strategy utilized in the state-of-the-art error
detection schemes [3], [7]–[9]. The core idea is that first main
thread performs store instructions and then asks redundant
threads to check the results. More specifically, after each
memory write operation committed by the main thread, both
redundant threads load the already written data from the
memory and check it against their own locally computed
version of store value register. Figure 2 illustrates an example
of FISHER transformation for a typical store instruction.
Recovery information preservation: FISHER preserves the
value of about-to-write memory location (mem[r1]) and store
id (strPC) into two specific registers prior to the store exe-
cution. These information will be used for unrecoverable error
diagnosis and memory restoration in the case of error. Store
id can be any static value which is uniquely assigned to each
store instruction at compile time. We use the corresponding
store program counter as store ID. Note that FISHER keeps

TABLE I: FISHER error detection and recovery process.
Error Info Faulty

Core
Action

r1Err r2Err Redundant1 Main Redundant2
0 0 None Continue Continue Continue

0 1 Core 2
1 Preserve ASa

and continue Continue
2 Restore AS

and continue

1 0 Core 1
2 Restore

AS and
continue

Continue
1 Preserve AS

and continue

1 1
Main
Core

1 Preserve AS
4 Permanent

Check
and continue

2 Restore
Memory
and AS

3 Retry
Store

4 Continue

a AS: Architectural State

recovery information in two specific registers (rather saving
them to memory) to avoid executing hard-to-protect memory
write operation.
Collaborative error detection and recovery planning: Re-
dundant threads load the data from the store target address and
check it against their own locally computed version of store
value. If any thread detects a discrepancy, it sets its designated
shared error detection flag (r1Err and r2Err variables for
first and second redundant threads, respectively). Once both
redundant threads make their decisions about the error, the
next execution phase which can be either continuing normal
execution or starting recovery process will be determined
based on the value of the shared error flags.

Table I shows ED and recovery processes in different
situations based on the values of error detection flags. As
the first row shows, if both r1Err and r2Err are set to
zero, there is no error in computations and all threads can
continue their execution. If only one of the error detection
flags (either r1Err or r2Err) is set one, that implies only
one of the redundant threads (the one that its corresponding
error detection flag is set to one) has experienced some sort
of error. In such situations (second and third rows of Table I),
first, the error-free redundant thread preserves its architectural
registers in a designated shared memory space and then
continues its execution. Then, the faulty thread loads recently-
saved architectural state from designated shared memory and
copies them into their corresponding registers and continues its
execution. Note that in these cases, the main thread can safely
continue its execution because the scope of error is limited to
the faulty core.

If both error detection flags are set to one (last row of
the Table I), main thread/core is erroneous. In this case, the
recovery process is more evolved because potentially both
memory and register state restorations are required which may
not be even possible in all scenarios. The actions required
for safe recovery from the errors affecting main thread are as
follow: (i) One of the redundant threads (redundant thread
1 in our implementation) saves its architectural state (AS)
in the designated shared memory space and informs main
thread that AS preserving is done. (ii) Main thread checks
if the error is recoverable (next bullet explains this process).
If yes, main thread first restores the memory state to the
right before the execution of faulty store and then reverts the
impact of error from its register file. To restore the memory
state, all needed is to write back the memory preserved data
(which was preserved right before the execution of store) to

the memory. To restore register state, the main thread loads the
saved architectural state from shared memory and copies them
into their corresponding registers. On the other hand, if error
annotated as unrecoverable, then main thread notifies the user
and terminates the program execution. (iii) At this point, the
impact of error from the execution is reverted and main thread
execution can resume from right before the store instruction.
Safe stop in presence of unrecoverable errors: Soft errors
are unrecoverable if they permute memory address of the
store operation in such way that the store updates a wrong
memory location different from the preserved (backed up)
ones. To deal with such cases, FISHER diagnosis routine
checks for validity of the memory backup. It uses previ-
ously redundantly preserved memory backups (denoted as
memBackup and memBackup* in Figure 2), last store ID
(denoted as storePCBackup in Figure 2), the current state of
memory (mem[r1]) and the value of store operand registers
of main and redundant threads. Other required information of
redundant thread is also accessible to the main thread because
one of the redundant threads has already saved its AS which
includes the value of its registers as well as its memory backup
(memBackup*) to the shared checkpointing area.
Results double-checking: One of the redundant threads re-
checks the execution of memory write instruction (after recov-
ery) simply by re-loading the written data from the memory
and checking it against its own locally computed value. If
any discrepancy is observed in this step, the redundant thread
raises the detected-unrecoverable error flag and terminates the
program execution. This double-checking process after each
recovery takes care of main thread unrecoverable permanent
errors (third vulnerability hole in basic-STRMT technique).
Thread control-flow errors: Any control-flow error which
causes a thread to violate FISHER synchronization will result
in deadlock error. If an error changes any thread control to
jump to a different block without violating the synchroniza-
tion, it will be detected by load-back checking, as corrupted
one holds different store information from other clean threads.
Then FISHER recovery scheme calculates proper control-flow
information (in other words, pc vlaue) of corrupted thread from
the error-free thread to return the corrupted one to the correct
block.

IV. EXPERIMENTAL RESULTS

We used LLVM 3.7 compiler [10] to implement basic-
STRMT and FISHER transformations. We compiled nine
benchmarks from MiBench suite [11] with -O3 compiler
optimization flag and generated three binary versions (ORG,
Basic STRMT, FISHER) for each program. We implemented
basic-STRMT and FISHER as compiler back-end passes
for ARMv7-A 32 bit architecture. We used gem5 [12] µ-
architectural level simulator and modeled a two-issue in-order
dual-core microprocessor in SE mode.

A. Fault Injection Setup
We injected single bit-flip transient and single stuck-at 0/1

permanent faults on sequential elements of different hardware
components of the simulated processor while running original,
basic-STRMT and FISHER versions of programs. Targeted
hardware components are register file, fetch and decode stage
pipeline registers, functional units as well as load/store unit.
For each component, we inject 500 transient faults and 500
permanent stuck-at faults per each version which makes 5,000

N
o
rm

a
li
z
e
d
 N

u
m

b
e
r

o
f

S
D

C
s

0

1000

2000

3000

8,886

(19.7%)

5,532

(12.3%)

207
(0.5%)

2
,3

3
4

6
,5

5
2

4
,3

7
7

1
,1

5
5

Original soft error Basic STRMT soft error FISHER soft error

Original hard error Basic STRMT hard error FISHER hard error

Fig. 3: Normalized soft and hard error failure rate for original,
basic STRMT and FISHER programs. Compared to basic STRMT,
FISHER reduces the number of normalized SDCs by ∼26×.

(5*500 transient + 5*500 permanent faults) random processor-
wide fault injection experiments per each version of programs.
Overall, we performed around 135,000 (9 * 5000 * 3) fault
injection experiments which provide us with less than 5% error
with 95% confidence interval for each component.

Normalized SDC as comparison metric: Similar to [13],
we consider the impact of execution time and hardware
overhead of protected schemes on reliability estimation by
multiplying the absolute number of SDCs by a correction
factor which is proportional to the performance and hardware
overheads of the protected schemes. For original versions of
the programs Normalized SDC is equal to the number of
SDCs. For basic STRMT and FISHER, the hardware overhead
is 3 since these transformations require two extra cores for the
execution of redundant threads and their execution overhead is
also extracted from their corresponding performance overhead.

B. Fault Coverage
Figure 3 depicts the results of permanent and transient fault

injection experiments for unprotected (ORG), basic STRMT
and FISHER versions of the programs. In the Figure, Y-axis
represents the normalized number of SDCs and X-axis shows
the benchmarks. Note that in the figure the rightmost set of
bars (annotated by sum) represents the sum of all normalized
SDCs for different versions of programs. Results indicate that
out of the 45,000 fault injection experiment (22,500 transient
and 22,500 permanent faults) on the original version of pro-
grams, around 20% of them result in SDC. Applying basic-
STRMT error resilience scheme can reduce the normalized
number of SDC down to around 12%. As compared to these,
the normalized SDC for FISHER protected programs is only
∼0.5% which is about 26× resilience improvement compared
to basic STRMT. In fact, only one 6 transient errors have
led to failure in FISHER-protected programs, which after
normalization grows to 207 (∼0.5%).

C. Performance Overhead
Figure 4 shows execution time overhead for basic STRMT

and FISHER transformations. On an average, basic STRMT
and FISHER transformations increase the programs execution
time by on around ∼6.5× and ∼8.3×, respectively. The
performance overhead numbers of FISHER are inline with
previous works. For instance, [4] and [9] report ∼4× and ∼5×
execution time overhead just for error detection. Runtime over-
head of FISHER heavily depends on program characteristics.

0

4

8

12

16

20

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti

o
n
 T

im
e

1.0

6.5

8.3

Original

Basic STRMT

FISHER

Fig. 4: Performance overhead of basic STRMT and FISHER normal-
ized to the runtime of the original version of program.

For example, the average performance overhead for bitcount,
basicmath, crc and susan(s) programs which in them memory
write operations comprise less than 1% of total executed
instructions, is only around 2.2× for FISHER transformation.
On the other hand, for programs with a high number of store
operations (e.g., adpcm(c), sha, susan(c) and susan(e)) the
average runtime overhead is 16× for the FISHER-protected
version of the programs.

V. CONCLUSIONS

We introduced FISHER, a compiler level thread triplication
and forward error detection and recovery scheme. FISHER
distributes error detection checks to enable faulty core identi-
fication and safe error recovery.

VI. ACKNOWLEDGEMENTS
This work was partially supported by funding from

NS-FCCF 1055094 (CAREER); by funding from NRF-
2016H1A2A1909470 (Global PH.D. Fellowship Program,
NRF, the Ministry of Education); by funding from NRF-
2015M3C4A7065522 (Next-generation Information Comput-
ing Development Program, NRF, MSIT); by funding from
2014-3-00035 (High Performance and Scalable Manycore Op-
erating System, IITP, MSIT).

REFERENCES

[1] S. Borkar, “Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, 2005.

[2] J. Henkel et al., “Reliable on-chip systems in the nano-era: Lessons
learnt and future trends,” in DAC, 2013.

[3] M. Didehban et al., “InCheck: An in-application recovery scheme for
soft errors,” in DAC, 2017.

[4] C. Wang et al., “Compiler-managed software-based redundant multi-
threading for transient fault detection,” in CGO, 2007.

[5] Y. Zhang et al., “DAFT: decoupled acyclic fault tolerance,” IJPP,
vol. 40, no. 1, 2012.

[6] K. Mitropoulou et al., “COMET: communication-optimised multi-
threaded error-detection technique,” in CASES, 2016.

[7] M. Didehban et al., “nZDC: A compiler technique for near zero silent
data corruption,” in DAC, 2016.

[8] M. Didehban and A. Shrivastava, “A compiler technique for processor-
wide protection from soft errors in multithreaded environments,” IEEE
Transactions on Reliability, vol. 67, no. 1, pp. 249–263, 2018.

[9] H. So et al., “Expert: Effective and flexible error protection by redundant
multithreading,” in DATE, 2018.

[10] C. Lattner et al., “LLVM: A compilation framework for lifelong program
analysis & transformation,” in CGO, 2004.

[11] M. R. Guthaus et al., “Mibench: A free, commercially representative
embedded benchmark suite,” in WWC, 2001.

[12] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, 2011.

[13] H. Schirmeier et al., “Avoiding pitfalls in fault-injection based compar-
ison of program susceptibility to soft errors,” in DSN, 2015.

