
SPX64: A Scratchpad Memory for General-Purpose
Microprocessors

ABHISHEK SINGH, Lehigh University
SHAIL DAVE, Arizona State University
PANTEA ZARDOSHTI, Lehigh University
ROBERT BROTZMAN, Pennsylvania State University
CHAO ZHANG, Lehigh University
XIAOCHEN GUO, Lehigh University
AVIRAL SHRIVASTAVA, Arizona State University
GANG TAN, Pennsylvania State University
MICHAEL SPEAR, Lehigh University

General-purpose computing systems employ memory hierarchies to provide the appearance of a single large,
fast, coherent memory. In special-purpose CPUs, programmers manually manage distinct, non-coherent
scratchpad memories. In this paper, we combine these mechanisms by adding a virtually addressed, set-
associative scratchpad to a general purpose CPU. Our scratchpad exists alongside of a traditional cache, and is
able to avoid many of the programming challenges associated with traditional scratchpads without sacrificing
generality (e.g., virtualization). Furthermore, our design delivers increased security and improves performance,
especially for workloads with high locality or that interact with nonvolatile memory.

CCS Concepts: • Hardware→Memory and dense storage; • Computer systems organization→ Het-
erogeneous (hybrid) systems; • Security and privacy → Hardware security implementation; Hard-
ware attacks and countermeasures.

Additional Key Words and Phrases: Scratchpad Memory, Cache, Persistent Memory, Security, Software
Managed Memory

ACM Reference Format:
Abhishek Singh, Shail Dave, PanteA Zardoshti, Robert Brotzman, Chao Zhang, Xiaochen Guo, Aviral Shrivas-
tava, Gang Tan, and Michael Spear. xxx. SPX64: A Scratchpad Memory for General-Purpose Microprocessors.
In xxx. ACM, New York, NY, USA, 25 pages. https://doi.org/xxx

1

1 INTRODUCTION
General-purpose microprocessors employ coherent caches to ensure that the processor has the
data it needs in order to continue executing a program. Some special-purpose [18, 24] and embed-
ded [5, 16] microprocessors do not have caches. Instead, they employ scratchpad memories: small,
physically addressed, direct-mapped storage devices that offer low latency and high predictability,
1New Paper, Not an Extension of a Conference Paper

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
xxx, xxx, xxx
© xxx Association for Computing Machinery.
ACM ISBN xxx. . . $xxx
https://doi.org/xxx

1

https://doi.org/xxx
https://doi.org/xxx

xxx, xxx, xxx A. Singh et al.

at the cost of generality. These special-purpose systems must use explicit data transfer instructions
(e.g., DMA) to fetch data from DRAM to the scratchpad or to write data from the scratchpad to
DRAM. In some cases, the compiler can generate DMA instructions automatically [38, 40]. In others,
programmers must explicitly manage data movement [10, 13, 24, 27].
Explicitly managing data movement and remapping to the scratchpad’s flat address space is

cumbersome, but brings some advantages. First, scratchpads require fewer transistors than caches:
They do not implement coherence, and they have less metadata (e.g., tag, valid, and dirty bits). The
lower transistor counts and simpler design lead to lower energy consumption and lower access
latency than caches. Second, scratchpad performance is more predictable than cache performance:
when data is in the scratchpad, the programmer can be certain that it will not be evicted, and
thus the average memory access time should have low variance. Third, scratchpad geometry can
be independent of system-wide memory hierarchy considerations. This is in stark contrast to
caches, which must handle aliasing, and must obey constraints imposed by page size and address
translation.

While these benefits are appealing, using scratchpads in general-purpose processors bring new
challenges. Chief among them is resource management: whereas a special-purpose chip may never
context switch among programs that require the scratchpad, a general-purpose design must deal
with context switching, as well as the possibility that a scratchpad resource needs to be shared (i.e.,
partitioned) among many hardware threads. Effective resource management is likely to require
both hardware and software support that is not present in traditional scratchpad-based systems.
In this paper, we explore the question of whether it would be beneficial to add a scratchpad

memory beside a traditional cache. The simplest motivation for doing so is that the scratchpad could
provide the CPU with an additional close, fast, low-power memory, without changing the L1 design.
We also show that augmenting a CPU with a scratchpad provides the ability for programs to shut
down certain side-channels, by placing their most sensitive data in the scratchpad. Furthermore, if
we expand the scratchpad design to support more general-purpose features like associativity and
virtual addressing, it also becomes possible to use the scratchpad as a shadow address space for
executing code speculatively, as is the case in transactional programming models for nonvolatile
memory.

Our design, SPX64, blurs the distinction between caches and scratchpads. It introduces a “scratch-
pad data cache” (SD$), which is not a part of the regular memory hierarchy, and is virtually
addressed. The SD$ is set associative, but raises an exception instead of evicting data in response
to an associativity overflow. Furthermore, it is populated via register transfers, not DMA. Thus it
is both separate from the regular memory hierarchy, but also interacts with the regular memory
hierarchy through explicit data movement between from and to it via uncachable memory accesses.
The operating system (OS) manages a core’s SD$ at the granularity of its ways, by securely

partitioning them among a core’s hardware threads. The OS reserves the right to revoke a software
thread’s scratchpad allocation at any time, which leads to a best-effort programmingmodel. Through
a trivial OS extension, programs can give “hints” about their scratchpad use. These hints allow
the OS to virtualize the scratchpad for two of the three use cases we consider, enabling context
switching and thread migration.
In summary, this paper proposes a practical method to achieve the performance, predictability,

security, and transactional benefits of a scratchpad memory in general-purpose computing setting
without adding much programming complexity or hardware overhead. In specific, the salient points
of the proposed SPX64 design are:

2

SPX64: A Scratchpad Memory for General-Purpose Microprocessors xxx, xxx, xxx

Instruction Behavior Instruction Behavior
SpxRead %r1 [%r2] Read from a scratchpad block SpxClear Drop all blocks from the scratchpad
SpxWrite [%r1] %r2 Write to a scratchpad block SpxManage %r1 %r2 Allocate scratchpad-way (supervisor mode)
SpxZero [%r1] Zero a scratchpad block SpxAlloc %r1 Request scratchpad-ways (user mode)
SpxInv [%r1] Drop a block from scratchpad SpxRelease Release scratchpad-ways (user mode)

Table 1. SPX64 Instructions.

• SPX64 integrates SPM in the regular cache hierarchy of a general-purpose processor to
provide power-efficient and predictable (latency) computing, without excessive increase in
programming complexity.

• SPX64 provides a way to isolate security-critical data of an application to protect it against
many cache-based side-channel attacks.

• SPX64 can serve as a private shadow address space, which can be used to reduce the cost of
redo-logging thereby improving the performance of transactional workloads.

We demonstrate through simulation that SPX64 can deliver significant performance improve-
ments: up to 17% for security workloads, up to 10% for general compute workloads, and up to 20%
for persistent workloads.
The remainder of this paper is organized as follows. In section 2, we describe SPX64 from a

programmer’s perspective, and present its software API. We give examples of how a SD$ can benefit
programs in Section 3. Section 4 discusses the implementation of SPX64 and its interaction with the
rest of the CPU. Section 5 and 6 describes the operating system support and programming model
for SPX64, respectively. Section 7 describes experimental methodology. In Section 8, we evaluate
the programmability and performance of SPX64 for three use cases: shutting down cache-based
side channels, reducing the overhead of redo logging for persistent transactions over nonvolatile
memory, and accelerating workloads with high locality. We contrast SPX64 with related work in
Section 9, and then discuss conclusions and future work in Section 10.

2 SPX64: A PROGRAMMER’S VIEW
The easiest way to think of SPX64 is as a fixed-size hash table parameterized by a power-of-two
block size (𝐵). The keys in this hash table are virtual addresses, where the lowest 𝑙𝑜𝑔2 (𝐵) bits are
zero, and the values are 𝐵-byte arrays. A thread reserves an SD$ through a system call (Section 5).
Below, we discuss the instructions that interact with the SD$. They are summarized in Table 1.
A thread creates a key/value mapping in the SD$ with the SpxWrite command. The data to be

written is provided via the %r2 operand, and the destination within SD$ is determined by %r1. The
size of %r2 is typically 1, 2, 4, 8, or 16 bytes, but can be larger when using SIMD registers. It is
most natural for the block size to be larger than the register size (e.g., 64 bytes, to match the L1
cache). When the register size is larger than the block size, multiple memory access instructions are
generated. If the store is a hit (i.e., there is an existing mapping for %r1), then the appropriate bytes
of the corresponding mapping in the SD$ are updated, and the operation completes. When there
is no mapping for %r1, SPX64 uses a copy-on-allocate strategy: it issues non-cached load requests
to the lower level of the memory to creates a mapping in the SD$ from the address to the data,
and then updates the data. If there is insufficient space in the SD$ to create the mapping, then an
exception is raised. SpxZero is an optimized version of SpxWrite: on a hit, it zeroes the block, and
on a miss, it skips fetching data from the memory hierarchy, instead zeroing the entire block. As
with SpxWrite, SpxZero can raise an exception if the SD$ cannot allocate a block.

SpxRead reads from the SD$ and places the result in %r1. On a hit, the address is already present
as a key, and the appropriate bytes are read from the corresponding block, with the size of %r1
determining the number of bytes read. If there is no mapping for the requested address, then the

3

xxx, xxx, xxx A. Singh et al.

same copy-on-allocate technique is used as in SpxWrite: either the block will be requested from
the memory hierarchy via a non-cached load, or else an exception will raise.

The programmer is able to selectively drop blocks from the SD$ via SpxInv. If the block is dirty,
its modifications will be discarded. If an invalidated block is subsequently re-accessed via SpxRead
or SpxWrite, the contents will be refreshed with the latest values from the memory hierarchy.
Finally, the programmer can drop all blocks from the SD$ with the SpxClear instruction. This
returns the SD$ to the state it was in immediately after the system call that allocated the SD$ to
the thread.
We briefly highlight differences between an SPX64 scratchpad and a cache. First, if capacity or

associativity constraints prohibit the allocation within the SD$, an exception is raised, which must
be handled by the programmer or a run-time library; there are no silent evictions of scratchpad
blocks. Second, when any core issues a regular store to its cache, no SD$ is notified: Remote memory
accesses do not cause evictions from the scratchpad, nor do local stores cause updates. Third, when
any core issues a regular load to its cache, no SD$ is notified: Regular memory accesses do not
receive the latest scratchpad updates, even from a local SD$. The scratchpad is not coherent, even
with the local cache of the same core. Fourth, the programmer must explicitly write-back data to
the memory hierarchy, by SpxReading it into a register, and then performing a regular store to the
memory hierarchy. Finally, the programmer can manage the contents of the SD$, by way of the
SpxClear and SpxInv commands.

3 NOVEL USES OF SPX64
The availability of an SD$ immediately provides the programmer with the benefits of a traditional
scratchpad: predictable performance at lower energy than a cache. The argument for this claim
is simple: if a compute kernel can use DMA to fetch a region of memory, then compute over that
region, and finally use DMA to write back some subset of that region to main memory, then it can
do the same with the SD$. The initial DMA is replaced with a loop that repeatedly calls SpxRead,
the final DMA is replaced with a loop that repeatedly calls SpxWrite, and in between, loads and
stores become SpxRead and SpxWrite instructions. While it may be possible to avoid some latency
by skipping the initial SpxRead loop, doing so might decrease predictability. Additional benefits
can be gained by using the SD$ to avoid unnecessary writebacks of temporary data [17]. We now
turn our attention to novel use cases that SPX64 provides for general-purpose CPUs.

3.1 Preventing Cache-Based Side Channels
Side channels are unintended information channels that allow an attacker to steal sensitive data by
exploiting observable execution behaviors (e.g., Cache states, timing, power consumption). Side
channel attacks have been demonstrated to be feasible against a variety of cryptographic ciphers,
such as RSA [26, 36, 44], AES [19, 35, 39], and ElGamal [30, 48]. These attacks only require the
attacker to share hardware resources with the confidential computation (e.g., in a cloud-computing
environment), and can reveal private information such as a cryptographic key.
CPU cache side channel attacks take two general forms [7, 19, 22, 30, 35–37, 39, 43, 44, 48].

In access-based side channel attacks, an attacker probes the cache to determine what memory
locations the victim has recently used. These attacks can occur during execution or after program
termination [14], by observing the memory access patterns of the victim program. In timing-based
attacks, an attacker observes the overall execution time of the victim program and correlates
faster times with cached data and slower times with uncached data. More recent attacks, such
as Spectre [25], leverage speculative execution in conjunction with the aforementioned cache
side-channel techniques to obtain an even broader attack surface.

4

SPX64: A Scratchpad Memory for General-Purpose Microprocessors xxx, xxx, xxx

SPX64 provides programmers with a new mechanism for hiding their program’s memory access
pattern. Despite its proximity to a CPU core and its reliance on the memory hierarchy to fetch
data, memory accesses that hit in the SD$ are not visible to other hardware threads. This allows
the programmer to mitigate cache-based side-channel attacks by isolating the user’s cache from
potential adversaries, preventing the adversary from observing the user’s cache access patterns.
Note that while SPX64 removes a shared medium that an adversary could otherwise access, isolation
alone does not prevent timing attacks. SPX64 can also be used to remove timing variations due the
CPU cache, but may not prevent all possible timing attacks since timing variations can result from
many sources (e.g., variable time instructions such as division, branches, etc.). These sources of
variation are outside of the scope of this work.

void AES () { / / Round 1
c i p h e r [0] = r o l (SBox [(p l a i n [0] ^ rk [0]) > > 0] , 0) ;
c i p h e r [3] = r o l (SBox [(p l a i n [1] ^ rk [1]) > > 8] , 8) ;
c i p h e r [2] = r o l (SBox [(p l a i n [2] ^ rk [2]) > > 1 6] , 1 6) ;
c i p h e r [1] = r o l (SBox [(p l a i n [3] ^ rk [3]) > > 2 4] , 2 4) ; . . . }

Listing 1. The use of the round key (secret key) by AES.

Listing 1 shows part of the first round of an AES encryption, in which each of the lines of the
plaintext and round key is XORed together and then used as an index to the substitution box (SBox).
This code is vulnerable to cache side-channel attacks: different indices in the SBox will map to
different and predictable cache lines; to steal a victim’s secret AES key, an adversary observes
which cache lines are accessed by the victim [7, 35]. The mapping from cache lines to indices is
typically known in these scenarios. The last step for the adversary is to compute the key, which
is trivial if the plaintext is known. Even if the plaintext is unknown, the adversary can correlate
observed cache lines with the key, by collecting many samples. With SD$, we can shut down this
side channel. We place the victim’s SBox in the SD$. While the initial bulk copy of the SBox to SD$
is observable, it reveals no information about the key. All subsequent accesses to the SBox by the
victim are invisible to the attacker, who cannot see SD$ accesses, since they are private to the core.

Cache-based side-channel attacks have also been shown to be effective on modern asymmetric
cryptographic algorithms that use modular exponentiation, such as RSA and ElGamal. Attacks such
as CacheBleed [45] target precomputed exponentiation tables in these routines that are indexed
using key dependent data. Again, by placing these precomputed tables into the SD$, a hardware
thread can ensure that its access pattern cannot be inferred by other hardware threads.

An SD$ can also aid in preventing the variant of Spectre-style attacks [25] that leverage the CPU
cache to exfiltrate data (this discussion does not apply to non-cache leakage mediums). Once a
user identifies the sensitive data, that data can be loaded into the SD$ without involving shared
caches, after which accesses to it cannot be observed by an attacker as long as the sensitive data is
only accessed using SD$ instructions, thus preventing inter-procedural attacks. This suffices to
prevent Spectre attacks on direct branches, since the potential targets are known. For speculative
attacks leveraging indirect branches, SPX64 can be used with existing software mitigations, such
as retpoline [1]. Additionally, Section 8.1.1 shows a variant of SPX64 (spx-2-nonSpec) that does
not access SD$ speculatively, and thus denies a cache-based covert channel for retrieving sensitive
data even in an intra-procedural setting. This also applies to hardware multithreading, since SPX64
allocates resources on a per-thread basis.
While the example given in Listing 1 only requires a few kilo-bytes of data to be stored in the

scratchpad, some applications may require more memory than the SD$ has available at a given
time. This may seem like a cause for concern; however, our design prohibits other threads from
accessing the data in the SD$ ensuring cache-based side channels are mitigated even if data needs

5

xxx, xxx, xxx A. Singh et al.

to be replaced in the SD$. The isolation enforced by the SD$ ensures an adversary cannot infer the
state of the user’s cache, thus mitigating the threat. We note that if the user application replaces
data from the SD$ in a manner that depends on sensitive data, they may introduce a timing-channel
which is outside of the scope of this design.

3.2 Accelerating Log Lookups in Persistent Transactions
Non-volatile memory (NVM) is byte-addressable (like DRAM) and persistent (like storage). The
easiest way to interact with it is to treat it as a RAM disk and interact with it via a file-system
interface [3, 9, 15]. Better performance is possible by directly mapping the NVM into a process’s
address space. However, for as long as caches are not persistent, such a strategy requires the explicit
addition of special “flush” instructions to ensure that data moves from cache to NVM at the right
time, and “fence” instructions to ensure persistent ordering for crash recovery.
Correct placement of fences and flushes is easiest when using language-level storage trans-

actions [41]. There are two main strategies for implementing storage transactions. In undo log-
ging [8, 31], every modification of memory is preceded by a store of the original value to a persistent
log. The log is used to restore memory if the system crashes during a transaction, and discarded
when a transaction commits. In redo logging [41], all updates are computed and stored in a separate
log, which is persisted and written back at transaction commit time. Undo logging requires up to
𝑂 (𝑊) memory fences, where𝑊 is the number of stores performed by a transaction. Redo logging
avoids this cost, but every read by a transaction must check the redo log, to see if the enclosing
transaction has a pending write. This lookup overhead is expensive [12, 46].
SPX64 can serve as a sparse, private, shadow address space, which reduces the cost of redo

logging. Listing 2 shows how traditional transactions interact with a redo log, and Listing 3 shows
a version that leverages SPX64. To illustrate the difference, consider a transaction that increments
the values at locations {𝑙0, 𝑙1, 𝑙2, . . . , 𝑙𝑛}, where for 𝑖 ≠ 𝑗 , it is possible that 𝑙𝑖 = 𝑙 𝑗 . For each location,
the transaction executes increment_byte(&l_i). Without SPX64, the transaction must maintain
a hash table in which the keys are addresses (with the 𝑘 low bits zeroed, for some 𝑘) and values are
blocks of 2𝑘 bytes. To increment the value at some location 𝑙 , the transaction would employ the
technique in Listing 2. There are two reasons to use "read_cache_line" in Listing 2 : (1) if there is
good spatial locality, then caching the entire cache line once will be more efficient for subsequent
reads, and for commit-time writeback. (2) if the program accesses an address with casts to different
sized primitive types (e.g., write a char now, read the enclosing int that covers that byte later), then
this approach is significantly faster than storing masks in the hashtable and reconstructing values
with partial results from the hashtable and partial results from memory. Note that overheads of the
operation include the hash function itself, traversing links in the hashtable implementation, and
computing offsets.

void i n c r emen t_by t e (char ∗ addr) {
a l i g n _ a d d r = mask_ lowbi t s (addr) ;
i f (! redo_hash . c o n t a i n s (a l i g n _ a d d r)) {

b = r e a d _ c a c h e _ l i n e (a l i g n _ a d d r) ;
redo_hash . put (a l i gn_add r , b) ; }

b = redo_hash . g e t (a l i g n _ a d d r) ;
b [addr − a l i g n _ a dd r] + + ; }

Listing 2. Interaction with a redo log (no SPX64)

With a virtually-tagged, set-associative SD$, as long as the working set of the transaction does
not overflow the SD$, a much simpler approach is possible, as depicted in Listing 3. The hash table
is replaced with a simple vector (the writeback log). To update a value, rather than search the hash,

6

SPX64: A Scratchpad Memory for General-Purpose Microprocessors xxx, xxx, xxx

the thread uses SpxRead to search the scratchpad. On a miss in the scratchpad, the scratchpad
automatically fetches the needed data from the L1 cache. The thread then computes the new value
and writes it to the scratchpad and log.

void i n c r emen t_by t e (char ∗ addr) {
tmp = SpxRead (addr) + 1 ;
SpxWrite (addr , tmp) ;
w r i t e b a c k_ l o g . push_back ({ addr , tmp }) ; }

Listing 3. Interaction with a redo log (with SPX64)

Whereas the original code included an explicit hash table, which could be iterated through during
the writeback phase, our new code requires an explicit writeback log. Reads never perform lookups
in this log, so it does not require hashing or a complex linked structure; a simple vector suffices.
Additionally, with SPX64, each writeback is of exactly the granularity of the corresponding update,
whereas in the hashtable code, each writeback is a full block of data. Since there are no lookups,
the SPX64 approach may lead to multiple entries for the same l in the vector. The scratchpad
approach is expected to be favorable when high frequencies of writes to a single location from
a single transaction are rare, or when writes to only a small number of bytes per cache line are
common.

This simplified write logging is possible because SPX64 is virtually indexed but not coherent. The
write will not be evicted back into the memory hierarchy due to capacity or associativity: software
management of the scratchpad will be invoked instead. In addition, the scratchpad does not observe
or reply to remote requests for data that it stores. Consequently, the scratchpad can be used as a
small hash table that shadows main memory, without leaking a transaction’s intermediate state.

4 MICROARCHITECTURE DESIGN
To a programmer or a compiler, SPX64 appears as a non-coherent, associative cache, whose ways
can be allocated to threads via a system call, and returned to the OS through another system
call. Through a handful of new assembly instructions, the programmer can manage the SD$ by
writing data to it, reading data from it, and invalidating lines within it. We now describe the
SPX64 architecture including its integration with the memory hierarchy, and modifications to
other microarchitectural structures such as the load-store queue (LSQ) unit, the miss status holding
registers (MSHRs), and the decode unit.

4.1 An Overview
Figure 1 provides an overview of the core’s microarchitecture with SPX64. Light shaded hardware
components indicate the presence of SPX64 instructions or SD$ blocks, while dark shaded regions
represent regular memory instructions or L1-DCache blocks. The logical location of the SD$ within
a core is parallel to the L1-DCache, so that the execution engine can issue loads and stores to the
L1-DCache and SD$. The SD$ is a virtually-addressed, set-associative, software-managed data cache.
Set associativity enables secure partitioning of the SD$ (in ways) among the hardware threads
of a core and provides associative search capabilities to software. Finally, software management
of the SD$ allows threads to securely manage private data such that accesses to the allocated
space of one hardware thread do not influence cache states of other hardware threads or the
memory hierarchy. When SPX64 accesses miss, the SD$, data blocks are fetched from the memory
hierarchy without allocating a new line or changing the LRU stacks of the existing cache lines in the
L1-DCache/LLC. It also does not change the existing coherence state of the cache line on hit/miss
in the L1-DCache/LLC. Hence, the proposed SD$ can be used as a separate shadow address space

7

xxx, xxx, xxx A. Singh et al.

Decode

SD$

IDs

DTLB DCache

LoadQ StoreQ

To lower level of the
memory hierarchy

Shared
MSHRs SD$ Way/Set IDs in SDd

Block Address DestinationValid

IDs IDs IDs

ICache
MSHRs Fetch

Rename
PhyReg

ROB Issue
Queue

FUs

Fig. 1. Microarchitecture overview for SPX64. SD$ is a virtually-addressed, software-managed cache. En-
hancements in the LSQ, MSHRs, and the decode unit facilitate its functionality.

and provides protection of private data, which is not brought into the L1-DCache or L2-Cache if it
is already not there.

4.2 SPX64 Architecture and Peripheral Logic
Figure 2 depicts the design of the SD$. The SD$ is organized into set-associative ways; each way
stores the same number of blocks, similar to ways in an L1 data cache. While it is possible for an
implementation to provide any number of ways, and a variety of block sizes, the SD$ is easiest
to reason about when its geometry matches the L1 cache. To that end, our discussion focuses on
an 8-way set-associative design with 26 blocks, where each block is 26 bytes. When paired with a
standard x86_64 ISA, SD$ has the following characteristics:
(1) Index for SD$ data blocks: For a 48-bit virtual address, the page offset is 12 bits (6 each for the

index and block offset). A 6-bit index from the page offset locates the appropriate set.
(2) Metadata per block: Each block requires a valid bit. For a 48-bit virtual address space, 64-byte

blocks, and 64 blocks per way, 36 tag bits from the virtual address are required per block.
(3) Metadata per way: For secure allocation of SD$ ways, we require: (a) Two protection bits: To

restrict some ways to kernel-mode access, the protection bits indicate if an SD$ is accessible
by a hardware thread running in kernel mode (supv=1) and user mode (prot=1). (b) Hardware
thread ID bits: Since SD$s are attached to cores, each way must store the ID of the hardware
thread that access it. Note that these bits are managed via the supervisor-mode SpxManage
instruction and their purposes are summarized in Table 3 (Section 5).

(4) Data storage: With 64-byte blocks and an 8-way set associative SD$, every set consists of 8
cache blocks or 512 bytes. With 64 blocks in each way, up to 32 KB of data can be stored.

(5) Hit/miss comparators: Hits and misses are determined by comparing the virtual tag of the
request with the stored tags in the appropriate set. The data array is accessed in parallel with
the tag array for fast accesses.

(6) Accessing data: Data is returned to the core only if (i) the block is valid, (ii) the tag-bits of the
block match those of the incoming request, (iii) the block corresponds to a way for which the

8

SPX64: A Scratchpad Memory for General-Purpose Microprocessors xxx, xxx, xxx

vTag DataV vTag DataV vTag DataV vTag DataV

=

tID
=

=

tID
=

=

tID
=

=

tID
=

EN EN EN EN

Data

Hit

tID vTag Index Offsets/p

Per.
Ck.

Per.
Ck.

Per.
Ck.

Per.
Ck.

supv

prot

Per. Ck.

s/p: 1 for supervisor mode instruction
 0 for protected mode instruction

Fig. 2. An illustration of a 4-way SD$ architecture; a way can be allocated to a hardware-thread by storing its
(OS-assigned) hardware thread ID (tID) and protection bits (supv and prot).

requesting hardware thread’s tID matches, and (iv) the way is accessible, as determined by
the protection bits. Thus, a hardware-thread can access only its private data, enabling secure
processing of thread-specific sensitive information.

4.3 Handling Memory Requests
When an SPX64 instruction accesses the SD$ for a block that is present (analogous to a cache hit),
the SD$ provides or updates data accordingly. The access latency is lower than an L1-DCache
because there is no need for replacement bit management. For write hits, the SD$ does not generate
coherence traffic, further reducing energy and latency. When a block corresponding to the request
is not present in the SD$ (analogous to a cold miss), the SD$ hardware issues a non-cacheable
request to the L1-DCache for the block. In this case, the virtual address needs to be translated to the
physical address through the DTLB, which can be done concurrently with searching the data in the
SD$. When the data block is already present in L1-DCache (due to previously executed non-SPX64
instruction corresponding to the program functionality), it is returned to the SD$. Otherwise, a
request to lower-level memory is initiated based on the status of MSHRs. SPX64 instructions are
implemented as non-cacheable memory instructions that should not have any effect on the cache
coherence state of cache lines residing in the lower-level of the cache hierarchies (e.g., L1-DCache
and LLC). It ensures that an SPX64 instruction does not alter the state of the L1-DCache. Figure 3
illustrates an example about flow of various events regarding the memory accesses to SD$.
To consolidate outstanding misses, SPX64 shares MSHRs between the SD$ and the L1-DCache

(Figure 1). Each MSHR entry has two 1-bit flags to indicate the origin of each miss (SD$ and
L1-DCache). For example, if an SpxRead misses, and also misses in the L1-DCache, the shared
MSHRs are searched. A hit in the MSHR indicates that a primary/outstanding miss had already
happened, and was either initiated by a non-SPX64 memory access or an SPX64 memory access.
On a miss in the MSHR, a new MSHR entry is allocated. In both cases, a target in the address stack

9

xxx, xxx, xxx A. Singh et al.

Instruction SpxReadB SpxReadW SpxWriteB SpxWriteW SpxClear SpxZero SpxInv SpxManage

Opcode 0F 6C 0F 24 0F 7C 0F 7D 0F 18 18 0F 0C 0F 0D 0F 04

Table 2. Example encoding of SPX64 instructions.

is created corresponding to the SPX64 instruction, and the SD$ flag for the corresponding MSHR
entry is set, indicating that the returned block should be copied to the SD$. When the primary miss
is initiated by an SPX64 memory access, the returned block is copied to only SD$, whereas it is
copied to both SD$ and L1-DCache, when the primary miss is triggered by a non-SPX64 memory
access. In the later scenario, both MSHR flags are set, indicating the copying to both the L1-DCache
and SD$. Similarly, when an L1-DCache miss is triggered by a non-SPX64 request, an MSHR entry
is created (if not already present). A target is created corresponding to the non-SPX64 instruction
and the d$ flag is set high for that MSHR entry to indicate that the returned block should be copied
to only L1-DCache. Note that SD$ uses virtual address, whereas the shared MSHRs use physical
address. When the SD$ flag is set, the MSHR entry also stores the allocated location in the SD$
(way and set IDs) to avoid reverse address translation.

The SD$ is not coherent, updates caused by SpxWrite are invisible to other hardware threads,
and cannot be read/updated using non-SPX64 instructions. Subsequent coherence events on the
concerned block are not conveyed to the SD$, and any write-back to main memory via the cache-
based hierarchy happens only if it is desired by the programmer. The latency model for coherence
updates used in our experiments is the cache access latency (2-4 cycles). However, additional
queuing delay can increase the response latency. The SD$ is a non-coherent cache structure, so it
will not be snooped during coherence events. This leads to savings in both energy and latency.

Before write-back, programmers must use SpxRead to bring data from the SD$ into registers,
and then use regular stores to update the L1-DCache. This regular store instruction following the
SpxRead instruction is responsible for updating the cache line coherence state in L1-DCache. If the
cache line hits L1-DCache, the coherence state of the cache line is changed to a Modified state and
contents of the cache line are updated. If the cache line misses in L1-DCache, it is fetched from the
memory hierarchy as store miss request. Note that it is not possible for another hardware thread
to read/alter the content of the SD$ allocated to the target thread. Thus, the proposed write-back
scheme ensures safe propagation of sensitive data from the SD$ to the main memory.
Since SPX64 resources are managed by software, the programmer must ensure that there are

enough SD$ blocks for program execution. On an SPX64 miss, block insertion and replacement
are simple; a newly brought in block is inserted at the location of the first empty (invalid) block
encountered in the allocated SD$ ways, and then the valid-bit is set. If no such block is found, an
exception is raised.

4.4 SPX64 Front-End Pipeline
The decode unit of the processor core must also be extended to support SPX64 functionality. After
decoding a memory instruction, it is assigned the following metadata, which is propagated through
the following microarchitecture structures: one bit indicating if the memory request is an SPX64
instruction; one bit indicating loads versus stores, and two additional one-bit flags to indicate
SpxClear, SpxZero, or SpxInv.
Table 2 presents an example encoding of the instructions from Table 1 into the x86_64 ISA.

For example, SpxReadB results in the opcode 0x0F 0x6C, instead of 0x8A for a regular load-byte
request. Note that processing of the macro/micro-ops is not altered for SPX64 instructions: they
are decoded, dispatched, and executed by the pipeline like regular instructions. Thus SpxRead and
SpxWrite instructions can be processed like regular mov instructions, i.e., with the same prefix and
suffix byte-codes, but are executed with different op-codes.

10

SPX64: A Scratchpad Memory for General-Purpose Microprocessors xxx, xxx, xxx

4.5 Load-StoreQueue Architecture for SPX64
The design of the load-store queue for SPX64 (SPX64-LSQ) is similar to a conventional LSQ design.
However, the proposed SPX64-LSQ also processes SpxRead, SpxWrite, SpxClear, SpxZero, SpxInv,
and SpxManage. Regular loads and stores (i.e., mov instructions) are processed in the same manner
as they are in a conventional LSQ. For example, a regular load searches for older regular stores
in the store queue for forwarding opportunities before accessing the data cache. However, since
both SPX64 and regular memory instructions can enter the SPX64-LSQ, it must employ additional
measures to ensure that the data can be safely forwarded among the correct instruction types and
that it is safe to issue read/write requests for their propagation to the SD$ or lower-level memories
in the hierarchy.
For processing SPX64 instructions, SPX64-LSQ can typically forward the data for an SpxRead

from a SpxWrite with matching address, returning the data to the execution pipeline. SpxRead can
also forward the data with value zero from an older SpxZero (that set a block to all-zeros) with
matching block address. The SPX64-LSQ ensures that the sensitive data in the SD$ is managed
securely while copying the latest version of data from the normal memory hierarchy when accesses
miss in the SD$. To enforce this, an SPX64 instruction cannot forward from a regular instruction,
or vice versa. Moreover, SpxRead is stalled if it encounters an older regular store instruction with
matching or unresolved address, which is not committed yet to the memory. Since the SPX64-LSQ
is unaware of the state of the SD$, it must consider the possibility that the SpxRead requires loading
the data from lower memory to the SD$ (compulsory SPX64-miss). Therefore, the SPX64-LSQ skips
forwarding and stalls the SpxRead until the regular store (with matching address) commits.
Before forwarding data to an SpxRead instruction from an SpxWrite (with matching address),

SPX64-LSQ checks for intervening SpxInv, SpxClear or SpxManage instructions. If found, data is
not forwarded, and the SpxRead stalls until the conflicting instruction commits. Stalling ensures
that if some data is evicted from the SD$ by a hardware thread,
the SpxRead (with the matching address) cannot access the same data from the SD$. Finally,

SpxClear, SpxZero, SpxInv, and SpxManage can be issued to the SD$ only when they reach the
head of the ROB. To eliminate security vulnerabilities, the SPX64-LSQ does not allow speculative
issuing (i.e., when following SPX64 stores with unresolved addresses) of SpxRead to the SD$.

Fig. 3. Flow of the execution events for processing an SD$ access request.
11

xxx, xxx, xxx A. Singh et al.

However, regular loads can be issued speculatively to the normal memory hierarchy to boost
performance by prefetching to the L1-DCache.

5 OPERATING SYSTEM SUPPORT FOR SPX64
The OS is responsible for resource management, virtualization, and security of the SD$. The
supervisor-mode SpxManage instruction is the primary mechanism for doing so. Recall from
Section 4 that a SD$ is attached to a core, and its ways are allocated among the threads of that core.
A way is protected in two dimensions: by the thread allowed to access it, and by the protection
level at which that thread must be operating. For simplicity in our presentation, we only consider
two protection levels, corresponding to user mode (prot) and kernel mode (supv). Extending to
additional levels is straightforward.

Let 𝐻𝑇 be the number of hardware threads per core. Each is assigned (1 + 𝑙𝑜𝑔2 (𝐻𝑇)) + 2 bits of
new architectural state: 1-bit fields has_prot_sp and has_supv_sp, and the 1 + 𝑙𝑜𝑔2 (𝐻𝑇)-bit field
sp_id. For simplicity, we assume that these bits reside in a single model-specific register (MSR)
that can be read and written via existing supervisor-mode instructions.
In addition to the bits of metadata (tag and valid bits) and block storage required to implement

the SD$, it must also contain (1 + 𝑙𝑜𝑔2 (𝐻𝑇)) + 2 bits of metadata per way. The first 1 + 𝑙𝑜𝑔2 (𝐻𝑇)
bits represent the hardware thread Id (id) that is allowed to access the scratchpad. The remaining
bits serve as Boolean flags, indicating whether that thread is allowed to access the SD$ way from
prot and/or supv mode. A summary is provided in Table 3.

Bits Name Location Purpose
1 + 𝑙𝑜𝑔2 (𝐻𝑇) sp_id HW thread Id used when accessing scratchpad.
1 has_prot_sp HW thread Flag allowing SD$ access from protected mode.
1 has_supv_sp HW thread Flag allowing SD$ access from supervisor mode.
1 + 𝑙𝑜𝑔2 (𝐻𝑇) id SP Way Id of hardware thread allowed to access this way.
1 prot SP Way Flag allowing SD$ access from protected mode.
1 supv SP Way Flag allowing SD$ access from supervisor mode.

Table 3. Additions to the architectural state of the CPU.

Managing the above information is achieved through a single new supervior-mode instruction,
SpxManage %r1 %r2. %r1 holds an unsigned integer representing the SD$ way being managed.
%r2 holds (1 + 𝑙𝑜𝑔2 (𝐻𝑇)) + 2 bits, representing the hardware thread Id required for accessing the
way, and flags for whether that thread may access the SD$ from prot and supv modes.

We assume that the OS will not assign the same sp_id value to multiple hardware threads of the
same core at the same time. Under such a scenario, two threads could simultaneously access the
same SD$, leading to undefined behavior. Furthermore, note that prot mode does not imply supv
mode: the OS can assign prot=1 and supv=0, so that a program may access its SD$ but the OS
cannot. We allow this behavior in case a system has a trusted hypervisor and untrusted guest OS.
Lastly, note that with 𝐻𝑇 hardware threads per core, and two modes, the ways of the SD$ can be
divided into as many as 2×𝐻𝑇 distinct sets. The extra bit in the sp_id and id fields accommodates
this possibility.

In addition to the above resource management functions, an OS must have a means of delivering
signals to a program when it uses the SD$ incorrectly. There are two conditions that can generate
a signal. The first is the case in which a thread executes one of the five SPX64 instructions but
has_prot_sp is not set. The second case is when a thread has𝑊 ′ ways of allocated to it, an access
to the SD$ requires a block to be allocated, but there are no remaining ways within the set.

12

SPX64: A Scratchpad Memory for General-Purpose Microprocessors xxx, xxx, xxx

6 PROGRAMMING MODELS
Clearly, the OS must provide a way for a program to request that SpxManage is executed on its
behalf, and to release its SD$ when it is no longer in use via two system calls. The two system calls
are SpxAlloc and SpxRelease. The guarantees that the OS provides to the program between these
two system calls are the basis for the programming models that SPX64 can provide to software.

The SpxAlloc system call reserves ways of a SD$ for use by a process, and SpxRelease returns
those ways to the OS when the thread is finished using them. SpxRelease takes no parameters and
has no return value. SpxAlloc has a single parameter: the amount of memory requested. It may
return −1 in the case where the request cannot be granted. Otherwise, it returns 𝑠 , the size in bytes
of the allocated region. The OS is free to return more memory than requested, i.e., by rounding up
to a multiple of the size of a way. Note that as part of SpxRelease, the OS must temporarily assign
the SD$ to itself, so that it can SpxClear it, and must also clear the calling thread’s has_prot_sp bit.
SpxAlloc must assign the thread a unique (across threads of the core) sp_id and set has_prot_sp.

Internally, the OS must track how each way of each SD$ is allocated. At a bare minimum, this is
required to ensure that a SD$ is not taken away from a thread accidentally. Given the expanded
range of thread Ids, the OS may also reserve some ways of each core’s SD$ for itself, e.g., as a way
to protect its secrets from Meltdown-style attacks [29]. Note, too, that as defined, a SD$ is not
cleared upon context switch. These characteristics provide the foundation upon which the OS can
introduce policies for how SD$ resources are managed upon a context switch, and hence the SPX64
programming models. Below, we summarize three programming models for SD$. Table 4 contrasts
these programming models in terms of the workloads for which each is well-suited.

6.1 Model #1: Static Assignment
A general-purpose SD$ must remain secure in the event of context switches. A SD$ (or part of it) can
be dedicated to a performance-critical application, in which case the OS could leave a switched-out
thread’s data in the scratchpad, and simply deny SpxAlloc requests by the switched-in thread. This
technique is simple to implement: the new thread can be denied access to the SD$ by simply clearing
the ℎ𝑎𝑠_𝑝𝑟𝑜𝑡_𝑠𝑝 bit. Virtual addressing of the SD$ is a fundamental enabler of this approach: Even
if the switched-out thread’s pages are all flushed to disk, and when the thread is switched back in,
it is allocated an entirely new set of physical pages, its contents in the SD$ remain correct, because
the SD$ is virtually tagged, and the virtual addresses did not change, regardless of TLB remapping.
The downside of this approach is that threads cannot migrate once they have been assigned

SPX64 resources statically. An OS designer may choose to make extensive modifications on account
of this constraint. Examples include incorporating knowledge of SD$ requirements when mapping
processes to cores, or incorporating past SD$ use into affinity scheduling, and using the SD$ to
protect the OS from malicious device drivers. Note that the first call to SpxAlloc by a thread serves
as a just-in-time declaration of the resources needed by a thread, and that the OS may need to
context switch threads immediately after a SpxRelease in order to reallocate SPX64 resources to
waiting threads.

6.2 Model #2: Effectively Direct Mapped
While the proposed SPX64 design is associative, a program is free to use its SD$ resources as a
contiguous array of data (e.g., the example in Section 3.1, and the discussion at the beginning of
Section 3). For this use case, a small amount of additional information enables simple virtualization
of the SD$ upon context switches. This new information, provided by the SpxRange syscall, informs
the OS that a specific range of virtual addresses (provided as a base and an offset) are mapped to

13

xxx, xxx, xxx A. Singh et al.

the SD$. Again, since the SD$ is virtually tagged, both the OS and the process can use the same
addresses to access the same data within the scratchpad. There is no address remapping.

If a thread has called SpxRange, then upon a context switch, the OS can copy the SD$ contents to
a kernel buffer: as long as the supv bit is set for each way, and has_supv_sp is set, the OS can assign
to itself the same sp_id used by the switched-out thread. It can then use SpxRead instructions,
starting at the given base virtual address, to read the SD$ contents to registers, and then write
them to another space in memory. To restore the SD$ before switching the thread back in, the OS
performs these steps in reverse, using SpxWrite. In this scenario, the OS can store the contents
of the SD$ in the thread control block, and thus the thread can migrate to another CPU without
losing its SD$ contents.

6.3 Model #3: Best Effort
In Section 3.2, the SD$ served as a sparse shadow copy of the program’s virtual address range. Here
SpxRange is not useful, because the associativity of the SD$ is allowing the efficient storage and
retrieval of non-contiguous data. This use case coincided with two other properties: all of the writes
to the SD$ were also shadowed in a vector, and the uses of the SD$ were within a transaction that
could roll back. For this use case, total required capacity may not be known in advance, and hence
the thread must already be able to handle an inability to use the SD$. Thus on a context switch, the
OS can simply revoke the thread’s access to SPX64 resources, clear the thread’s allocation of the
SD$, and leave it up to the thread to recover when it is swapped back in.

Upon an exception under this “best effort” model, the thread could abort its transaction, request
new SPX64 resources, and restart. However, more fine-grained recovery is possible. If the exception
is because has_prot_sp is unset, then since the thread has a vector storing its prior SpxWrites, it
can request a new SD$, re-populate it by re-issuing SpxWrites with values from that vector, and
then resume.

Re-creating the SD$ can be beneficial. Recall that the thread must use SpxRead for all accesses to
program data within a transaction, so that it can see its pending SpxWrites. Many of these reads
will be to locations for which there was no prior SpxWrite, which means they waste the capacity of
the SD$. For programs with reasonable spatial locality, it may be beneficial to explicitly SpxClear
and then re-create the contents of the SD$ mid-transaction, or upon a SPX64 capacity exception, in
order to “trim” from the SD$ lines that were read but never written.

Model Workload Characteristics
Static Assignment Appropriate for embedded and compute-intensive workloads; poor fit

for workloads with high rates of context switching (e.g., web services)
Direct Mapped Appropriate for use in a single kernel with regular access pattern (e.g.,

embedded workloads, security applications)
Best Effort Appropriate for workloads that leverage speculation (e.g., transactional

workloads); requires programmer-provided fallback code.

Table 4. Appropriate workloads for each programming model.

7 SIMULATION CONFIGURATION
We simulate SPX64 using the gem5 cycle-accurate, execution-driven simulator [6]. We modified the
O3CPU, X86 ISA, and the classic cache model in gem5, to provide support for SPX64 instructions
and to model the functionality and timing of the proposed architecture.

Table 5 lists architectural configuration parameters. The processor parameters are adapted from
the Intel Skylake microarchitecture [21], except that we only simulate a single core with a shallower

14

SPX64: A Scratchpad Memory for General-Purpose Microprocessors xxx, xxx, xxx

cache hierarchy with timing parameters verified from CACTI [4]. These decisions were made to
simplify the simulation and reduce overhead, while retaining as much realism as possible. Main
memory parameters are from the Micron MT40A1G8 device [32]. We used McPAT [28] to estimate
system power consumption and on-chip area and CACTI [4] to model SPX64 implementation at
22nm. Table 6 summarizes the SPX64 configuration. According to CACTI, the SD$ has a 2-cycle
access latency. However, since it adds to the overall floorplan, we consider this a best-case estimate,
and our experiments vary SPX64 access latency from 2 to 4 cycles. The exception raised due to
capacity or associativity constraints that prohibits the allocation within the SD$ is currently handled
by the programmer. A run-time library can be implemented to handle the same, which is left for
future work.

8 EVALUATION
To evaluate the impact of SPX64 on applications where traditional scratchpads are known to provide
benefits, we consider workloads from the MiBench suite [20]. To evaluate the effect of SPX64 in
security-sensitive applications, we measure microbenchmarks that use open-source implementa-
tions of important cryptographic algorithms. Lastly, we study the benefits that associativity offers
to workloads that interact with non-volatile memory via a transactional interface. This section also
presents evaluation results on the total power and area overhead. To use SPX64 in the MiBench and
cryptographic workloads, we identified the variables that we wanted to place on the scratchpad,
and then changed the type of each variable to a simple C++ template. The template ensured that
each load and store used the appropriate SpxRead or SpxWrite assembly instruction, respectively.
This approach minimizes source code modifications, but results in poor register utilization, since
the template chooses which registers to use for data movement, instead of the compiler. As we will
show, SPX64 is still able to improve performance, even though this strategy increases instruction
counts and register pressure. For the persistent workloads, a transactional compiler inserts the
SPX64 calls, using the same static register allocation policy. The total instruction counts are reported
in Table 7 for each instrumented application. The impact of the increased instruction counts on
performance will be discussed for each group of applications.

8.1 Performance
8.1.1 Security Applications.

To determine the effectiveness and performance impact of SPX64 for security-critical workloads,
we developed microbenchmarks that stress-test five algorithms from the OpenSSL and Libgcrypt
libraries: AES, DES, and RSA. For each benchmark, we protect memory access patterns by placing

Core Parameters 7-stage OoO, no SMT, 4-issue, 2.6GHz, 22nm, 224 ROB, 128 LSQ, 180INT/180FP PRF, 8INT/
4MEM/ 6FP/ 4SIMD FUs, Tournament branch predictor, 4096 BTB entries, 16 RAS entries

L1 ICache 32KB, 8-way, LRU, 64B block, 1 port, 3 cycles, 4-entry MSHR
L1 DCache 32KB, 8-way, LRU, 64B block, 3 ports, 4 cycles, 4-entry MSHR
L2 Cache 2MB, 16-way, LRU, 64B block, 1 port, 20 cycles, 20-entry MSHR
Main Memory 8GB (x8 I/Os), DDR4-2400 17-17-17 , 1 channel, 2 ranks, 8 banks, tRAS=32ns, tXAW =

21ns, tWR = 15ns, tRTP = 7.5ns, tRTW = 1.666ns

Table 5. Baseline configuration.

SD$ 32KB, 8-way, 64B block, 2-4 cycles, 1 port
Shared MSHRs 8 entries
SPX64-LSQ 128 entries

Table 6. Modifications for SPX64 Architecture.

15

xxx, xxx, xxx A. Singh et al.

Application
Type

Applications Committed
Instructions

Security

AES-GCRYPT 1.05
AES-OPENSSL 1.04
DES-GCRYPT 1.21
DES-OPENSSL 1.13
RSA-GCRYPT 1.02

Application
Type

Applications Committed
Instructions

Persistent TATP_OPT 0.95
TPCC 0.91
VACATION 0.99

Embedded
System

STRINGSEARCH 1.24
DIJKSTRA 1.14
ADPCM_ENC 1.05
BASICMATH 1.01

Table 7. Total committed instructions for the SPX64-version of applications normalized to the baseline.

sensitive data in the SD$. We consider two variants of SPX64: one in which SpxRead instructions
are allowed to issue speculatively, and one in which they are not.
We begin with the case in which SpxRead is allowed to issue speculatively. Figure 4 presents

the performance of five systems, normalized to a baseline 32KB L1-DCache (Table 5). The spx-2,
spx-3, and spx-4 systems have a 32KB SD$ with 2, 3, and 4-cycle access latency, respectively. These
configurations let us study the best, common, and worst-case latencies for SPX64. Since these
systems have 64KB of memory close to the pipeline, we also compare against two systems with
larger L1-DCaches. The base64-4 and base64-5 systems have a 64KB L1-DCache and with 4-cycle
(optimistic) or 5-cycle (more realistic) access latency.

As Figure 4 shows, doubling the size of the L1-DCache to 64KB does not boost performance.
This is because the selected workloads have relatively small working sets, and the sensitive data
exhibits high spatial and temporal locality. Thus the sensitive data are never evicted from the
32KB L1-DCache of the baseline. The remaining data is accessed in a streaming fashion, and thus
increasing cache capacity does not provide any benefit. We confirmed this by measuring miss
rates: the miss rate remains the same between 32KB L1-DCache (baseline) and 64KB L1-DCache
(base64-4). This result also indicates that our SPX64 design is not benefiting from larger space for
these workloads.
The normalized performance results (higher is better) shown in Figure 4 indicate that for each

of the evaluated security applications, the SPX64 design improves performance, with gains pro-
portional to the access latency. Short latency (2 cycles) is conceivable because of the fact that the
SD$ is only a single-port cache design, does not reply to cache coherence snoop calls from a lower

PersistentSecurity Embedded System

Fig. 4. Performance normalized to a baseline with a 32KB L1-DCache; spx-n: SPX64 design with n-cycle
SD$ latency; base64-4: a baseline with a 64KB L1-DCache with impractical 4-cycle latency; base64-5: a more
realistic baseline with a 64KB L1-DCache with 5-cycle latency.

16

SPX64: A Scratchpad Memory for General-Purpose Microprocessors xxx, xxx, xxx

level cache, and does not need to maintain any replacement logic for evictions on set conflict. Note
that while we configured the SD$ with a 32KB capacity, in these workloads the sensitive data is
only 4KB. Furthermore, it is contiguous, and thus can fit in the SD$ even when the thread is only
allocated a single 4KB way, or when the SD$ is only 4KB.

In lieu of a complete place and route of all the core components, we conducted a sensitivity study
that varied the SD$ access latency from 2 cycles to 4 cycles (4 cycles matches the baseline latency).
Even when SPX64 latency is as high as the baseline, it still performs better. For example, spx-4
reduces execution cycles by 8.5%. This is because the miss penalty on a cold miss encountered by
SPX64 is smaller than the miss penalty for the L1-DCache. The lower miss penalty stems from
two main factors. First, an SPX64 cold miss on its refill/response path from DRAM bypasses the
L1-DCache and L2-Cache, because SD$ does not change the status of the lower levels of the memory
hierarchy and does not need to support coherence, as discussed in Section 4. Second, recall that the
Write-Queue or Eviction Queue (WQ) is an optimization in modern architectures to allow demand
reads to be scheduled before writes. It delays some writes to main memory, since they are not on
the critical path. SD$ does not perform any write-back or evictions, and thus SD$ is independent of
a WQ that is required for looking up L1-DCache misses prior to accessing the L2-Cache. Note that
this performance increase is despite an increase in the instruction count (Table 7).

Our current approach to code generation for SPX64 instructions uses the base addressing mode,
whereas the baseline (non-SPX) code generation is able to use all of the x86 addressing modes
(i.e., any variation of base+(index*scale)+displacement). Consequently, our SPX64 binaries have
a higher instruction count, due to additional instructions for calculating addresses. In addition,
these address computation instructions can result in more register spills than the baseline. Table 8
shows the correlation between the percentage of SPX64 instructions and the increased number of
instructions versus the baseline. Each conversion from a mov to a SPX64 mov instruction causes
one to four additional instructions. For the security workload, preloading data exploited by cache
side channels (i.e., lookup tables) into the scratchpad also adds additional instructions, but the
percentage of additional instructions due to preloading is less than 0.3%. Despite the increased
instruction count, we see that the lower latency of the SD$, and the simpler design, still produces
an advantage relative to the baseline.
Figure 5 compares our SPX64 design with MuonTrap [2] and InvisiSpec-Spectre [42], results

for the open-source InvisiSpec and MuonTrap are produced for the security microbenchmarks on
the same X86 system. RSA-G microbenchmark did not run on Muontrap code, therefore the result
for RSA-G is not included. All the results are normalized to the unsafe baseline (higher is better).
InvisiSpec performed about 0.98× compared to unsafe Baseline, Muontrap performed the same as
baseline.

The above discussion considered an SPX64 implementation in which SpxRead instructions could
be executed speculatively. This design is vulnerable to Spectre [25] (Variant 1) attacks (within-
process attacks). Since we have already isolated the sensitive data of the application into the SD$,
we can trivially prevent this Spectre variant by introducing a non-speculative SpxRead instruction.

MuonTrap [2] and InvisiSpec [42] do not provide complete protection within the same process.
MuonTrap uses software mitigation, which requires to clear the filter cache when entering and
exiting a sanboxed region of code. In the case of InvisiSpec, an attacker within the same process can
request the non-speculative data followed by victim’s speculative load. The attacker’s speculative
load within the same process will lead to a hit in the speculative buffer for victim’s load, which
may result in new covert channel.
We further extend the SPX64 design to protect against Spectre [25] (Variant 1) within process

attacks by allowing SpxRead access SD$ only when it reaches the head of the ROB. We call this
version spx-2-Spec-Safe. It has on average a 12% slowdown compared to the unsafe baseline in

17

xxx, xxx, xxx A. Singh et al.

Fig. 5. Security microbenchmark performance normalized to an unsafe baseline; InvisiSpec-Spectre: InvisiSpec
design with data filter cache mt: MuonTrap design variant for Spectre protection; spx-2: SPX64 design with
2-cycle SD$ latency; spx-3: SPX64 design with 3-cycle SD$ latency; spx-4: SPX64 design with 4-cycle SD$
latency.

Figure 6. However, this performance is still more than 2× faster than the Speculation-Safe, in which
all the load instructions are non-speculative. The proposed SPX64 can strike a balance between
performance and security by selectively making certain loads non-speculative.
Using SPX64 in this manner is a remarkably simple way to protect against cache-based side-

channel attacks. In our initial benchmark implementation (Figure 4), we only needed to change one
line of code to allocate the sensitive data in the SD$; to use nonspeculative loads, we only had to
change that same line. Our libraries and compiler extensions did the rest of the work of replacing
loads and stores with SPX64 instructions. Thus, the effort to use spx-2-nonSpec is equivalent to the
effort to use safe_baseline. For this effort, the performance degradation in the microbenchmark
is 12%, versus 60% for Speculation-safe baseline. We expect that it will be possible to reduce this
slowdown further. One promising strategy is to use a hybrid approach (similar to the one used in
MuonTrap [2]) that combines the isolation provided by the default SPX64 design with software
mitigation techniques.

8.1.2 Persistent Applications.

Fig. 6. Security microbenchmark performance normalized to an unsafe baseline; Speculation-Safe: baseline
with non-speculative load instructions; spx-2-Spec-Safe: SPX64 design with non-speculative SpxRead instruc-
tions and with 2-cycle SD$ latency; spx-3-Spec-Safe: SPX64 design with non-speculative SpxRead instructions
and with 3-cycle SD$ latency; spx-4-Spec-Safe: SPX64 design with non-speculative SpxRead instructions and
with 4-cycle SD$ latency.

18

SPX64: A Scratchpad Memory for General-Purpose Microprocessors xxx, xxx, xxx

Benchmarks SPX64 instructions Instruction overhead
AES-GCRYPT 4.12% 5%
AES-OPENSSL 1.49% 4%
DES-GCRYPT 6.71% 21%
DES-OPENSSL 4.51% 13%
RSA-GCRYPT 1.61% 2%

Table 8. Correlation between number of SPX64 instructions and instruction overhead for SPX64 benchmarks.

We used the open-source LLVM persistent transaction plugin [47] to instrument and optimize our
persistent workloads. The plugin provides a suite of different PTM algorithms, to which we added
variants that employ SPX64 to reduce the overhead of redo logging. As described in Section 3.2 each
write is performed twice, to the SD$ and to a lightweight redo vector, and each read passes through
the SD$. This ensures that reads have processor consistency, and since there are no lookups in the
redo vector, it can use a simpler implementation.
In our implementation, the SPX64 instructions are inserted into the PTM library via in-line

assembly. Unlike Section 8.1.1, we are not concerned with the impact on code generation, since the
PTM library code already produces tens of instructions per load or store of nonvolatile memory.
We consider persistent benchmarks with different redo log sizes from DudeTM [31]: the TPCC

transaction processing benchmark and the TATP telecom application benchmark. We ran the New
Order TPCC benchmark, and tested Update Location transactions for TATP. Both benchmarks use a
persistent hashtable for the index. In addition to a standard application of SPX64, we also consider
an optimized use in TATP-OPT, where we use SpxZero to avoid fetching data for blocks that are
only written. We also measure the Vacation benchmark from the Whisper benchmark suite [33]
(Note that Vacation is the only benchmark from Whisper to use a transactional interface). Vacation
simulates a travel reservation system; the clients and server run in the same process, and clients
make requests from a collection of persistent data structures managed by the server.
As shown in Figure 4 the performance of TATP-OPT, TPCC, and Vacation is improved by

using SPX64. One of the key factors to understand the performance improvement in persistent
benchmarks is the size of the redo log. In TPCC, the write sets are much larger than they are in
TATP, and there is more opportunity for a SpxRead to hit in the SD$. Even with a small redo log,
the hit rate in TATP is 50%. The optimized TATP shows a significant improvement, reducing latency
by 18% and increasing the hit rate by 29% (Table 9).
To have a fair comparison with TATP-OPT, we developed TATP-Prefetch-Baseline version

which adds 4096 software prefetch instructions before transactions start to avoid demand misses
on variables being placed in SD$. We found out that TATP-Prefetch-Baseline performs same as
baseline. We also compared them on real machine [Intel Xeon Silver 4214 CPUs] and found the
same outcome. This is because prefetches still move data, which adds bandwidth overhead, even if
they are early enough to avoid demand misses.
The redo log size for Vacation is in between the redo log sizes of TATP and TPCC. In spite of

having a 85% SD$ hit rate, which is more than it is in TATP and TPCC, the performance improvement
for Vacation is about 9% lower. This is because there are fewer SPX64 accesses on the critical path in
Vacation. Table 7 shows that the number of committed instructions decreases for each benchmark:
For all the persistent workloads, replacing hash table lookups with SD$ accesses reduces the
instruction count (Section 3.2).

TATP Variation SD$ Hit Rate % Speedup (spx-2 cycle) spx-3 cycle spx-4 cycle
TATP 50 1.06 1.05 1.05
TATP_OPT 79 1.18 1.18 1.17

Table 9. Speedup for TATP variants.

19

xxx, xxx, xxx A. Singh et al.

8.1.3 Embedded Systems Applications.
To evaluate the performance improvements for workloads with high data locality, we evaluated

four embedded system applications fromMiBench [20]. Adaptive differential pulse code modulation
(ADPCM) is a popular algorithm used by wireless communication devices for compressing speech
samples. Basicmath evaluates various kernels involving mathematical operations such as cubic
function solving, square root, and angle conversions. Embedded processors in network devices
perform shortest path calculations, which are evaluated by Dijkstra’s algorithm. Finally, stringsearch
is used in text manipulation algorithms for searching given words in the phrases of text. We
evaluated these benchmarks with “small” input data sets. We manually identified the data structures
that exhibited high spatial and temporal locality, and managed them in the SD$. For example,
the node data structure and the adjacency matrix are frequently accessed during shortest path
calculations, and therefore can benefit from fast SD$ accesses. Similarly, tables for manipulating
strings or step index calculations for PCM exhibit frequently accessed and co-located data, which
we managed in the SD$.

Figure 4 shows execution cycles for our design, normalized to the baseline. We observe that
our design efficiently handles various access patterns for different data types and data structures
with a low access latency, and improves the performance up to 10%. For example, the spx-2 design
outperforms application executions on cache-based designs and improves overall performance
by 1.06× (geomean). As noted before for security workloads, performance for embedded systems
applications is also improved by SPX64 with even higher access latencies, due to reduced miss
penalty and independence from a WQ. Thus, as compared to cache-based executions, our SPX64
design offers low access latency and data management capabilities to the programmer, just like
software-managed executions on conventional scratchpads. However, as compared to scratchpads,
it alleviates the programming complexity by providing programmers or the compiler with a flexible
way to manage high-locality data and even data of various structures, while retaining the generality
of caches and avoiding the need for DMA transfers.

As with the security benchmarks, we expect these results to improve as we refine our compilation
toolchain. Presently, the generated code for these workloads (featuring SPX64 instructions) exhibits
on average 11% more total committed instructions (Table 7) than the baseline. Integrating awareness
of SPX64 into the code generation process would decrease this overhead.
To demonstrate managing large footprint of workloads on SPX64 system, we evaluated bench-

marks with large input data. Among these benchmarks, for adpcm and stringsearch, the large input
data (25 MB and 100 kB, respectively) did not fit in SD$ and required evictions and accesses to
lower-level memories. So, we allowed managing only a fraction of the input stream (e.g., a tile of
16000 samples of short integers in adpcm) in SD$ along with highly reused data structures (e.g., two
small lookup tables in adpcm). After processing each tile, the program execution issued SpxClear
instruction to flush entire SD$. Then, it continued to access the next tile of the data stream along
with the reusable data arrays. With low latency of accessing isolated data from SD$ and high SD$
hit-rate (99% for both), we observed about 9.4% and 5% performance improvement, respectively, as
compared to the baseline.

8.2 Power Consumption
As mentioned in Section 8.1.1, SPX64 can improve performance by migrating frequent accesses
from a large and complicated L1-DCache with a relatively long access latency to a simple SD$
with a relatively short access latency, while providing security benefits. The total number of L1-
DCache accesses, and the power consumed by the L1-DCache, ought to decrease accordingly.
For the security applications, we observed that L1-DCache accesses decreased by 37%, and L1-
DCache energy consumption decreased by 16%. Core and L1-ICache power increased, because of

20

SPX64: A Scratchpad Memory for General-Purpose Microprocessors xxx, xxx, xxx

Fig. 7. Power breakdown of SPX64 architecture (with 2-cycle SD$ access latency) for security, persistent, and
embedded systems benchmarks.

the increased instruction count. Overall, as compared to the baseline, the SPX64 design with a
2-cycle access latency speeds up the execution by 1.12× (geometric mean) with a 3.6% increase in
total power consumption (Figure 7).
For persistent applications, we observed an average reduction of 5% in committed instructions,

and thus a 1.3% reduction in L1-ICache power consumption. Additionally the frequency of L1-
DCache accesses decreased by 10%, causing a 12% reduction in its power consumption. Overall, the
SPX64 design with a 2-cycle access latency speeds up the execution by 1.16× (geometric mean)
with a 0.7% reduction in energy consumption (Figure 7).

In the embedded workloads, which we used to approximate the impact of SPX64 for applications
with high locality, SPX64 increased total power consumption by 0.41% (geomean). Major power
reductions are observed for the L1-DCache and L2-Cache, because frequently accessed data arrays
(e.g., the adjacency table and tables for string manipulation) were kept stationary in the SD$.
L1-DCache accesses decreased by 45% on average, resulting in a 44% geomean reduction in L1-
DCache power. When executing embedded system applications on SPX64, the geomean power
consumption of SD$ was only 7% of the L1-DCache power. The L1-DCache and SD$ collectively
consumed 61% less power (geomean) than the baseline L1-DCache. Moreover, the improved ability

21

xxx, xxx, xxx A. Singh et al.

Processor Configuration L1-I$ L1-D$ MMU L2 Core NoC SD$ L3
Single core, 2-level caches 1.75% 21.27% 0.56% 27.79% 45.35% 1.49% 1.75% -
Six cores, 3-level caches 1.47% 17.93% 0.47% 23.42% 38.22% 1.26% 1.47% 15.71%

Table 10. Area breakdown of SPX64 architectures. The first row shows the evaluation for the configurations
in Table 5 and Table 6. The second row shows the area breakdown of a system featuring six cores and a 9MB
16-way set-associative L3 cache, similar to an Intel Skylake [21] processor.

to exploit locality reduced total L2-Cache accesses by 91% on average, and reduced L2-Cache power
consumption by 64%. We expect additional power savings if the SD$ were power-gated when not
in use.

8.3 Area Overhead
In addition to requiring space for the SD$ itself, SPX64 requires changes to the LSQ (SPX64-LSQ)
for processing both SPX64 and regular instructions, and changes to MSHRs, which must be shared
between the L1-DCache and the SD$. As shown in Table 10, this leads to a 1.75% area increase for a
single-core system with a 2-level cache hierarchy. The SD$ contributes to most of the area overhead.
However, the area of SD$ is much smaller than the L1-DCache area, as L1-DCache requires 3 ports
in the baseline to satisfy the LSQ issue width and coherence requests, while the proposed SD$
requires a single port. This is because SPX64-LSQ has the same issue width as the baseline LSQ and
the SD$ does not need to support coherence. Note that the absolute area overhead will increase
with an increase in the number of cores. However, for higher core counts, a system typically is
configured with a larger last level cache and a deeper cache hierarchy. Thus, the relative area
overhead is smaller (1.47%) in such a system.

9 RELATEDWORK
A traditional scratchpad memory [5, 18, 34] is a software-managed on-chip data storage without
any tag array, which provides an address space that is disjoint from and inconsistent with main
memory. These properties can reduce energy, area, and latency [5] relative to a hardware-manged
cache. While scratchpads offer lower access latency and provide total control to programmers, who
manage the movement of data blocks in and out of the scratchpad, they may demand considerable
programming effort: the programmer or compiler must determine the timeliness of initiating a
data transfer via DMA, so that the memory access latency can be hidden[18, 24] and computation
does not stall. Applications can be accelerated by managing coarse-grained and high-locality data
blocks in scratchpad through predictable, regular, and low latency accesses.

Hardware-managed caches require less programming effort to hide memory access latency, ex-
ploit locality without explicit DMA transfers, and are more amenable to general-purpose executions
including irregular or dynamic data structures. To take advantage of both the cache and scratchpad,
virtual local store [11] and hybrid cache [10] partition existing L1 caches to allocate some blocks as
a software-managed scratchpad, with others managed by hardware. Allowing software to decide
which data to keep in the faster-to-access memory can reduce conflict misses. Virtual local store
[11] allocates a reserved space in global memory to back-up values in the scratchpad region, which
allows easy context switches. Hybrid cache [10] also reserves space in the global memory and
flexibly allocates blocks in underutilized cache sets to the scratchpad. Unlike the hybrid cache or
virtual local store, SPX64 does not partition an existing L1 cache. Instead, a dedicated hardware
storage is used, which is not disjoint from the global space, and simplifies the hardware design
while maintaining low access latency.

Stash [27] is another on-chip memory organization that combines features of cache (global
address space) and scratchpad (direct addressability). Stash has a map between the global memory

22

SPX64: A Scratchpad Memory for General-Purpose Microprocessors xxx, xxx, xxx

address space and the local “stash” address space, which enables global addressing and visibility.
The design and implementation of SPX64 differ from stash, because SPX64 emphasizes isolation
over global visibility. In contrast to Stash, DAWG [23] is specifically concerned with isolation. It
resembles VLS and Hybrid Cache, in that it partitions the L1 into an isolated region and a non-
isolated region. This strategy can deliver many of the security benefits that SPX64 achieves, but it
does not allow the programmer to exploit hardware associativity to accelerate log lookups.

10 CONCLUSIONS AND FUTUREWORK
In this paper, we argued that adding a scratchpad memory to CPUs can bring many benefits, includ-
ing increased security, the ability to avoid hash table lookup overheads for persistent transactions,
and higher performance at lower power for applications with high data locality. We presented
a comprehensive design, called SPX64, which involved changes to the CPU’s microarchitecture,
as well as a handful of small extensions to the operating system. We then showed through simu-
lation that SPX64 uses a modest amount of chip area and power, and significantly increases the
performance of our target workloads while increasing security.
The most significant feature of SPX64 is that it can accomplish all of these goals using a single

new hardware structure that is orthogonal to the rest of the core, and hence easier to reason about.
While individual solutions have the potential to provide better overall performance for one of these
application domains, the SPX64 value proposition is greater, since it is beneficial to many classes
of applications. In this paper, we show three examples. For security applications, the proposed
SPX64 can provide isolation to prevent cache-based side channels. Evaluation results show that
different variants of the SPX64 can achieve flexible trade-offs between performance and security.
For persistent transactions, the proposed SPX64 can be used to accelerate log lookups by leveraging
the virtual-addressing and set-associative features of the SD$. By changing log lookups to direct
SD$ accesses, the total number of dynamic instructions can be reduced. For embedded workloads,
the proposed SPX64 can be used to achieve performance improvements similar to other scratchpad
designs, without explicitly moving data into the scratchpad address space. This is because SD$
can be seen as a shadow address space. Up to 10% performance improvement is observed on the
evaluated embedded systems applications. The SD$ is a simpler hardware cache as compared to
the L1 data cache, and hence the access latency is relatively low and area overhead is small.
As future work, we plan to explore the value of SPX64 in areas as diverse as generational

garbage collectors, real-time workloads, and secure hypervisors. We also intend to refine our
implementation, particularly with regard to the integration of SPX64 support into compiler tool-
chains and programming languages.

REFERENCES
[1] 2018. White paper: Retpoline: A Branch Target Injection Mitigatio. Technical Report 337131-003. Intel Corpora-

tion. https://software.intel.com/security-software-guidance/api-app/sites/default/files/Retpoline-A-Branch-Target-
Injection-Mitigation.pdf?source=techstories.org

[2] Sam Ainsworth and Timothy M. Jones. 2019. MuonTrap: Preventing Cross-Domain Spectre-Like Attacks by Capturing
Speculative State. arXiv:1911.08384 [cs.CR]

[3] Joy Arulraj, Andrew Pavlo, and Subramanya R Dulloor. 2015. Let’s talk about storage & recovery methods for non-
volatile memory database systems. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data. Melbourne, VIC, Australia.

[4] Rajeev Balasubramonian, Andrew B. Kahng, Naveen Muralimanohar, Ali Shafiee, and Vaishnav Srinivas. 2017. CACTI
7: New Tools for Interconnect Exploration in Innovative Off-Chip Memories. ACM Trans. Archit. Code Optim. 14, 2,
Article 14 (June 2017), 25 pages. https://doi.org/10.1145/3085572

[5] R. Banakar, S. Steinke, Bo-Sik Lee, M. Balakrishnan, and P. Marwedel. 2002. Scratchpad memory: a design alternative for
cache on-chip memory in embedded systems. In Proceedings of the Tenth International Symposium on Hardware/Software
Codesign. CODES 2002 (IEEE Cat. No.02TH8627). 73–78. https://doi.org/10.1145/774789.774805

23

https://software.intel.com/security-software-guidance/api-app/sites/default/files/Retpoline-A-Branch-Target-Injection-Mitigation.pdf?source=techstories.org
https://software.intel.com/security-software-guidance/api-app/sites/default/files/Retpoline-A-Branch-Target-Injection-Mitigation.pdf?source=techstories.org
https://arxiv.org/abs/1911.08384
https://doi.org/10.1145/3085572
https://doi.org/10.1145/774789.774805

xxx, xxx, xxx A. Singh et al.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,
Derek R Hower, Tushar Krishna, Somayeh Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer
Architecture News 39, 2 (2011), 1–7.

[7] Joseph Bonneau and Ilya Mironov. 2006. Cache-Collision Timing Attacks Against AES. In Cryptographic Hardware
and Embedded Systems - CHES 2006, Louis Goubin and Mitsuru Matsui (Eds.). Lecture Notes in Computer Science,
Vol. 4249. Springer Berlin Heidelberg, 201–215.

[8] Dhruva R Chakrabarti, Hans-J Boehm, and Kumud Bhandari. 2014. Atlas: Leveraging Locks for Non-Volatile Memory
Consistency. In ACM SIGPLAN Notices, Vol. 49. 433–452.

[9] Jeremy Condit, Edmund Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee.
2009. Better I/O through byte-addressable, persistent memory. In Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles. Montana, USA.

[10] Jason Cong, Karthik Gururaj, Hui Huang, Chunyue Liu, Glenn Reinman, and Yi Zou. 2011. An Energy-efficient
Adaptive Hybrid Cache. In Proceedings of the 17th IEEE/ACM International Symposium on Low-power Electronics and
Design (Fukuoka, Japan) (ISLPED ’11). IEEE Press, Piscataway, NJ, USA, 67–72. http://dl.acm.org/citation.cfm?id=
2016802.2016825

[11] Henry Cook, Krste Asanovic, and David A Patterson. 2009. Virtual local stores: Enabling software-managed memory
hierarchies in mainstream computing environments. EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2009-131 (2009).

[12] Luke Dalessandro, Michael Spear, and Michael L. Scott. 2010. NOrec: Streamlining STM by Abolishing Ownership
Records. In Proceedings of the 15th ACM Symposium on Principles and Practice of Parallel Programming. Bangalore,
India.

[13] Ning Deng, Weixing Ji, Jaxin Li, and Qi Zuo. 2011. A semi-automatic scratchpad memory management framework for
CMP. In International Workshop on Advanced Parallel Processing Technologies. Springer, 73–87.

[14] Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, and Jan Reineke. 2013. CacheAudit: A Tool for the
Static Analysis of Cache Side Channels. In Proceedings of the 22Nd USENIX Conference on Security. 431–446.

[15] Subramanya Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff
Jackson. 2014. System software for persistent memory. In Proceedings of the Ninth European Conference on Computer
Systems. Amsterdam, Netherland.

[16] Poletti Francesco, Paul Marchal, David Atienza, Luca Benini, Francky Catthoor, and Jose M Mendias. 2004. An
integrated hardware/software approach for run-time scratchpad management. In Proceedings of the 41st annual Design
Automation Conference. ACM, 238–243.

[17] Christopher Garman, Xiaochen Guo, and Michael Spear. 2017. A Study of Unnecessary Write Backs. In Proceedings
of the International Symposium on Memory Systems (Alexandria, Virginia) (MEMSYS ’17). ACM, New York, NY, USA,
127–129. https://doi.org/10.1145/3132402.3132438

[18] Michael Gschwind. 2007. The cell broadband engine: exploiting multiple levels of parallelism in a chip multiprocessor.
International Journal of Parallel Programming 35, 3 (2007), 233–262.

[19] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache Games—Bringing Access-Based Cache Attacks on
AES to Practice. In IEEE Symposium on Security and Privacy (S&P). 490–505.

[20] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor Mudge, and Richard B Brown. 2001.
MiBench: A free, commercially representative embedded benchmark suite. In Proceedings of the Fourth Annual IEEE
International Workshop on Workload Characterization. WWC-4 (Cat. No. 01EX538). IEEE, 3–14.

[21] Intel Inc. 2019. Intel Skylake. https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client).
[22] G. Irazoqui, T. Eisenbarth, and B. Sunar. 2015. S$A: A Shared Cache Attack That Works across Cores and Defies VM

Sandboxing – and Its Application to AES. In IEEE Symposium on Security and Privacy (S&P). 591–604.
[23] Vladimir Kiriansky, Ilia A. Lebedev, Saman P. Amarasinghe, Srinivas Devadas, and Joel S. Emer. 2018. DAWG: A

Defense Against Cache Timing Attacks in Speculative Execution Processors. In 51st Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2018, Fukuoka, Japan, October 20-24, 2018. 974–987.

[24] Michael Kistler, Michael Perrone, and Fabrizio Petrini. 2006. Cell multiprocessor communication network: Built for
speed. IEEE micro 26, 3 (2006), 10–23.

[25] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan
Mangard, Thomas Prescher, et al. 2019. Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 1–19.

[26] Paul C. Kocher. 1996. Timing attacks on implementations of Diffie–Hellman, RSA, DSS, and other systems. In Advances
in Cryptology—CRYPTO’96.

[27] Rakesh Komuravelli, Matthew D. Sinclair, Johnathan Alsop, Muhammad Huzaifa, Maria Kotsifakou, Prakalp Srivastava,
Sarita V. Adve, and Vikram S. Adve. 2015. Stash: Have Your Scratchpad and Cache It Too. SIGARCH Comput. Archit.
News 43, 3 (June 2015), 707–719. https://doi.org/10.1145/2872887.2750374

24

http://dl.acm.org/citation.cfm?id=2016802.2016825
http://dl.acm.org/citation.cfm?id=2016802.2016825
https://doi.org/10.1145/3132402.3132438
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://doi.org/10.1145/2872887.2750374

SPX64: A Scratchpad Memory for General-Purpose Microprocessors xxx, xxx, xxx

[28] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and Norman P Jouppi. 2009. McPAT: an
integrated power, area, and timing modeling framework for multicore and manycore architectures. In Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture. ACM, 469–480.

[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard,
Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In 27th USENIX Security Symposium (USENIX Security 18). 973–990.

[30] Fangfei Liu, Y. Yarom, Qian Ge, G. Heiser, and R.B. Lee. 2015. Last-Level Cache Side-Channel Attacks are Practical. In
Security and Privacy (SP), 2015 IEEE Symposium on. 605–622.

[31] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, and Jinglei Ren. 2017. DudeTM: Building
Durable Transactions with Decoupling for Persistent Memory. In Proceedings of the 22nd ACM International Conference
on Architectural Support for Programming Languages and Operating Systems. Xi’an, China.

[32] MICRON. [n.d.]. DDR4 SDRAM. https://www.micron.com/-/media/client/global/documents/products/data-
sheet/dram/ddr4/8gb_ddr4_sdram.pdf.

[33] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Volos, and Kimberly Keeton. 2017. An Analysis of
Persistent Memory Use with WHISPER. In Proceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems. Xi’an, China.

[34] NVIDIA. 2013 (accessed October 24, 2018). Using Shared Memory in CUDA C/C++. https://devblogs.nvidia.com/using-
shared-memory-cuda-cc/

[35] Dag A. Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and countermeasures: the case of AES. Topics in
Cryptology–CT-RSA 2006 (Jan. 2006), 1–20.

[36] Colin Percival. 2005. Cache missing for fun and profit. In BSDCan.
[37] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009. Hey, You, Get off of My Cloud: Exploring

Information Leakage in Third-party Compute Clouds. In Proceedings of the 16th ACM Conference on Computer and
Communications Security. 199–212.

[38] Muhammad Refaat Soliman and Rodolfo Pellizzoni. 2017. WCET-Driven Dynamic Data Scratchpad Management With
Compiler-Directed Prefetching. In 29th Euromicro Conference on Real-Time Systems (ECRTS 2017) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 76), Marko Bertogna (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 24:1–24:23. https://doi.org/10.4230/LIPIcs.ECRTS.2017.24

[39] Eran Tromer, DagArne Osvik, and Adi Shamir. 2010. Efficient Cache Attacks on AES, and Countermeasures. Journal
of Cryptology 23, 1 (2010), 37–71.

[40] Sumesh Udayakumaran and Rajeev Barua. 2003. Compiler-Decided Dynamic Memory Allocation for Scratch-Pad
Based Embedded Systems. In Proceedings of the 2003 International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (San Jose, California, USA) (CASES ’03). Association for Computing Machinery, New York, NY,
USA, 276–286. https://doi.org/10.1145/951710.951747

[41] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Lightweight persistent memory. In Proceedings
of the 16th International Conference on Architectural Support for Programming Languages and Operating Systems. Newport
Beach, Calif.

[42] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrellas. 2018. InvisiSpec: Making Speculative Execution
Invisible in the Cache Hierarchy. In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
428–441.

[43] Yuval Yarom and Naomi Benger. 2014. Recovering OpenSSL ECDSA nonces using the flush+reload cache side-channel
attack. Cryptology ePrint Archive, Report 2014/140.

[44] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache Side-channel
Attack. In Proceedings of the 23rd USENIX Conference on Security Symposium. 719–732.

[45] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2016. CacheBleed: A Timing Attack on OpenSSL Constant Time
RSA.. In CHES (Lecture Notes in Computer Science, Vol. 9813), Benedikt Gierlichs and Axel Y. Poschmann (Eds.). Springer,
346–367. http://dblp.uni-trier.de/db/conf/ches/ches2016.html#YaromGH16

[46] Richard Yoo, Yang Ni, Adam Welc, Bratin Saha, Ali-Reza Adl-Tabatabai, and Hsien-Hsin Lee. 2008. Kicking the Tires of
Software Transactional Memory: Why the Going Gets Tough. In Proceedings of the 20th ACM Symposium on Parallelism
in Algorithms and Architectures. Munich, Germany.

[47] Pantea Zardoshti, Tingzhe Zhou, Pavithra Balaji, Michael L. Scott, and Michael Spear. 2019. Simplifying Transactional
Memory Support in C++. ACM Trans. Archit. Code Optim. 16, 3, Article 25 (July 2019), 24 pages. https://doi.org/10.
1145/3328796

[48] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-VM Side Channels and Their Use to
Extract Private Keys. In Proceedings of the 2012 ACM Conference on Computer and Communications Security. 305–316.

25

https://devblogs.nvidia.com/using-shared-memory-cuda-cc/
https://devblogs.nvidia.com/using-shared-memory-cuda-cc/
https://doi.org/10.4230/LIPIcs.ECRTS.2017.24
https://doi.org/10.1145/951710.951747
http://dblp.uni-trier.de/db/conf/ches/ches2016.html#YaromGH16
https://doi.org/10.1145/3328796
https://doi.org/10.1145/3328796

	Abstract
	1 Introduction
	2 SPX64: A Programmer's View
	3 Novel Uses of SPX64
	3.1 Preventing Cache-Based Side Channels
	3.2 Accelerating Log Lookups in Persistent Transactions

	4 Microarchitecture Design
	4.1 An Overview
	4.2 SPX64 Architecture and Peripheral Logic
	4.3 Handling Memory Requests
	4.4 SPX64 Front-End Pipeline
	4.5 Load-Store Queue Architecture for SPX64

	5 Operating System Support for SPX64
	6 Programming Models
	6.1 Model #1: Static Assignment
	6.2 Model #2: Effectively Direct Mapped
	6.3 Model #3: Best Effort

	7 Simulation Configuration
	8 Evaluation
	8.1 Performance
	8.2 Power Consumption
	8.3 Area Overhead

	9 Related Work
	10 Conclusions and Future Work
	References

