
104 IEEE Internet of Things Magazine • January 20242576-3180/24/$25.00 © 2024 IEEE

Abstract
Time has become an essential aspect of many

computing systems where temporal correctness
is as important as functional correctness. Auton-
omous vehicles, Industry 4.0, and smart grids
are a few examples of time-sensitive systems. As
time-sensitive applications become large, complex,
and distributed, traditional methods fall short of
achieving the desired orchestration among com-
ponents. In this vision article, we first propose a
standard to maintain an accurate notion of time
among all components of the system, i.e., sensors,
computing platforms, and actuators. Then, we pro-
pose explicit-time state estimation and closed-loop
control algorithms that can tolerate large delays
while achieving reasonable performance, and an
integrated fail-safe mechanism that achieves a high
level of robustness when timing failures happen.

Introduction
Large-scale, distributed, and time-sensitive appli-
cations are becoming the backbone of human
society. Multiple robots working in sync on a fac-
tory floor will optimize production and realize
Industry 4.0. Autonomously driven vehicles that
communicate with each other to achieve safer
and more efficient transportation will realize our
dreams of smart transportation. Handling system
transients such as weather events for renewable
energy sources and sudden insertion/removal of
micro-generators will propel us toward a reliable
and resilient Smart Grid. All these important appli-
cations have performance and safety constraints
that are inextricably linked to time.

Since some timing constraints are so crucial
for the correct and safe operation of time-sensi-
tive applications, systems have traditionally been
designed in a way to avoid timing constraint fail-
ures. This is typically achieved by carefully craft-
ing the control algorithm, selecting the hardware
and software of the computing components, and
tuning the execution mechanism of the software,
including describing the application as a list of
repeating tasks, specifying the periods, deadlines,
and priorities, mapping and schedule of the tasks,
etc. — all so that the timing constraints can be
guaranteed to be met by design. However, this
approach does not scale well for large, distributed
time-sensitive applications. As such systems grow
in complexity, the use of commercial off-the-shelf
hardware together with software libraries, lan-

guages, and compilers — not designed with timing
in mind, makes the system design challenging.
Engineering out every possible timing constraint
failure necessitates anticipation of every failure
mode (including soft errors, aging effects, ...) that
could have timing implications — an impossibly
tall order for practical systems. Rather than fram-
ing the problem this way, we argue that system
designers should embrace the possibility of occa-
sional timing constraint failures and explicitly-pro-
grammed ways to deal with them.

The traditional approach of designing systems
to avoid timing constraint failures has inherent
appeal. It stems from a rather logical desire to
segregate time-based control systems into two
parts: the time part and the control part. When
it can be done, the control part can be time-ag-
nostic. Sensors can just read values and forward
them along. Computing can happen when data
are available. Actuators can just do their actuation
when commands arrive in blissful ignorance of
time because all of the timekeeping machinery
is somehow above, beside, and around, assuring
that everything remains in a good temporal order.
Indeed there is irony in the fact that time-sen-
sitive systems execute in a time-agnostic man-
ner. But freedom from thoughts of time within the
control logic comes at a substantial implicit cost:
the machinery on which it runs needs to be more-
or-less deterministic in its temporal behavior. And
as systems grow, the cost of making them so
becomes prohibitive.

Communication latencies and their variation
can be orders of magnitude longer than the update
frequency of state estimation or control algorithms.
Consider the case of autonomous vehicles sharing
a highway — each one with its own navigational
agenda but all seeking to maintain safe separation
at all times. To do this, they should exchange posi-
tion information periodically, updating state infor-
mation in their control algorithms that are adjusting
the vehicle’s trajectory every few milliseconds.
Would it be consequential to a time-agnostic state
estimator if one such exchange was delayed by 100
msec (not at all atypical in a cellular network)? At
highway speeds (say, 100 kilometers per hour), the
“surprise”delay could correspond to an aggregate
misestimation of position in excess of five meters
— certainly enough to cause concern. Although
next generation communication technologies (like
5G) are being deployed, they have limitations and

Aviral Shrivastava, Mohammad Khayatian, and Bob Iannucci

Aviral Shrivastava is with Arizona State University, USA; Mohammad Khayatian is with Vecna Robotics, USA; Bob Iannucci is with Google, USA.

Design Methodology for Robust, Distributed
Time-Sensitive Applications

Digital Object Identifier: 10.1109/IOTM.001.2300048

ACCEPTED FROM OPEN CALL

Authorized licensed use limited to: Arizona State University. Downloaded on December 02,2024 at 22:11:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • January 2024 105

perhaps we need to go back and re-consider the
validity of the assumption of separating the time
part of this system from the control part.

This article proposes the design and architec-
ture of an explicit-time distributed system to sup-
port robust execution of distributed time-sensitive
applications. An explicit-time system consists of
three parts:
1. Explicit-time State Estimation and Control

Algorithms
2. Explicit-time Sensors and Actuators
3. Backup-Routine-based Robust Execution.

Explicit-Time State Estimation
State estimation is at the heart of most
Cyber-Physical Systems (CPS). Kalman filter is
a state estimator that is widely used for sensor
fusion, Simultaneous Localization and Mapping
(SLAM), as well as signal processing. The goal of
the state estimation problem is to determine the
state of the system — which may or may not be
directly observable — using a system model and
inaccurate measurements of the system. The vanil-
la versions of the state estimation algorithms, like
the Kalman filter, Luenberger observer, and Parti-
cle filter assume that all the measured values are
captured simultaneously at the same moment and
that the computation and communication times
are negligible. When the sampling period of sen-
sors is not the same (e.g., an IMU works at 100
Hz but GPS works at 10 Hz) multi-rate state esti-
mation algorithms [1] are used. Such approaches
still assume that the sensor readings are perfectly
synchronized and therefore, the actual capture
time of each sample can be ignored. However,
for large-scale, distributed CPS, where sensing,
actuation and computing may be happening on
different nodes that are connected by communi-
cation protocols that may have high and highly
variable latencies, time-agnostic state estimation
algorithms will not be accurate. Imagine the sce-
nario where multiple AVs are broadcasting their
positional information and performing a joint or
distributed state estimation. The packets from a
vehicle may be delayed by even seconds, and
given the fast dynamics of the system (in the
context of the amount of delay), time-unaware
state estimation can become inaccurate. Explic-
it-time state estimation takes in the timestamps
at which the measured values were sensed as
well as the inaccuracies in the captured time
and value to estimate the state of the system at
an explicit time in the future.

We explain our idea of the design of an explic-
it-time state estimation algorithm based on the
popular Kalman filter algorithm. A unique aspect
of our proposed approach is that while existing
methods only consider the uncertainty in the
measured values (due to sensor noise, ADC res-
olution, etc.), we will consider the uncertainty in
the measured values as well as the uncertainty in
the time those measurements were captured at,
which is depicted in Fig. 1. In our model, each
sensor reading is a quadruple <z, ez, t, et> com-
prising of the measured value (z), the error in the
value ez, the time of measurement, or the cap-
tured timestamp (t) and the error in the captured
timestamp (et). It should be noted that the mea-
surement times may be inaccurate due to several
reasons including the internal clock quality, syn-

chronization source, protocol, and the synchroni-
zation frequency of the clock.

We propose to model time explicitly as a part
of the system state i.e., X = [x1; x2;...; xn;t]. Figure 2
shows that since we have made time as a part of
the state of the system, i.e., X = [x1; x2; ...; xn;t], the
covariance matrix P will have one more row and
column to represent the covariance of time with
respect to the states. In a distributed system, the
measured values from the different parts of the
system may end up being captured at different
times. Previous approaches wait for all the mea-
surements from the different parts of the system
to arrive before they can update the system state.
In our approach, we perform the state estimation
for each measured value as it arrives. The idea is
to repeatedly update the state of the system to
the time of the considered measurement value.

When a new measurement [zk, tk] is received,
the discretized system model (f) — how the system
state evolves with time — is re-computed based on
Dt = tk – tk–1. Similarly, the derivative of the sys-
tem model F is also recomputed. Then, the pre-
dicted system state X and its covariance matrix P
are updated based on F and F. Next, the prediction
error (~y) is computed and the Kalman gain (K) is
calculated using updated (Rk). Rk is the expected
covariance matrix of the measurement noise. Since
each measurement has uncertainty in the captured
value and time, (Rk) can be updated based on the
reported uncertainty of the measured values (ez)
and time (et). This way, if a measurement is coming
from a node with an inaccurate clock, the update
step takes into account the inaccuracy in the time
(et). Finally, the state of the system (including the
time at which the state is estimated) (X̂) and its
covariance P are updated based on the prediction
error (~y) and the Kalman gain (K). This process is
repeated at the arrival of every new measurement
in the order of their timestamps.

The foremost advantage of explicit-time state
estimation is that it severs the false conflation
between the time at which the measurement was
taken and the time at which the measurement
arrives at the estimator and the state is updated.
And this results in accurate state estimation. We
implemented a simple version of an explicit-time
Kalman filter to estimate the position and orien-
tation of a vehicle in 2 dimensions by sensing its
position from a GPS (Global Positioning System)
sensor at 2 Hz and its heading from an IMU (Iner-
tial Measurement Unit) at 100 Hz. The inaccuracy
in GPS values is about ±10%, and in the IMU val-
ues, about ±5%, and the inaccuracy in both the

The foremost advan-
tage of explicit-time
state estimation is
that it severs the
false conflation

between the time at
which the measure-
ment was taken and

the time at which
the measurement

arrives at the estima-
tor and the state is

updated.

FIGURE 1. Time-agnostic state estimation approaches
only consider the inaccuracy in the measurement
values (left). Explicit-time state estimation will
consider the errors in the measurement values
as well as the error in the time at which the
measurement was captured.

and value to estimate the state of the system
at an explicit time in the future.

Figure 1. Time-agnostic state estimation approaches
only consider the inaccuracy in the measurement val-
ues (left). Explicit-time state estimation will consider
the errors in the measurement values as well as
the error in the time at which the measurement was
captured.

We explain our idea of the design of an
explicit-time state estimation algorithm based on
the popular Kalman filter algorithm. A unique
aspect of our proposed approach is that while
existing methods only consider the uncertainty in
the measured values (due to sensor noise, ADC
resolution, etc.), we will consider the uncertainty
in the measured values as well as the uncertainty
in the time those measurements were captured at,
which is depicted in Figure 1. In our model, each
sensor reading is a quadruple < z, ez, t, et >
comprising of the measured value (z), the error
in the value ez , the time of measurement, or
the captured timestamp (t) and the error in the
captured timestamp (et). It should be noted that
the measurement times may be inaccurate due
to several reasons including the internal clock
quality, synchronization source, protocol, and the
synchronization frequency of the clock.

We propose to model time explicitly as a part
of the system state i.e., X = [x1;x2; ...;xn; t].
Figure 2 shows that since we have made time
as a part of the state of the system, i.e., X =
[x1;x2; ...;xn; t], the covariance matrix P will
have one more row and column to represent the
covariance of time with respect to the states. In a
distributed system, the measured values from the
different parts of the system may end up being
captured at different times. Previous approaches
wait for all the measurements from the different
parts of the system to arrive before they can
update the system state. In our approach, we
perform the state estimation for each measured
value as it arrives. The idea is to repeatedly

update the state of the system to the time of the
considered measurement value.

When a new measurement [zk, tk] is received,
the discretized system model (f) – how the
system state evolves with time – is re-computed
based on ∆t = tk−tk−1. Similarly, the derivative
of the system model F is also recomputed. Then,
the predicted system state X and its covariance
matrix P are updated based on f and F . Next,
the prediction error (ỹ) is computed and the
Kalman gain (K) is calculated using updated
(Rk). Rk is the expected covariance matrix of the
measurement noise. Since each measurement has
uncertainty in the captured value and time, (Rk)
can be updated based on the reported uncertainty
of the measured values (ez) and time (et). This
way, if a measurement is coming from a node
with an inaccurate clock, the update step takes
into account the inaccuracy in the time (et).
Finally, the state of the system (including the time
at which the state is estimated) (X̂) and its covari-
ance P are updated based on the prediction error
(ỹ) and the Kalman gain (K). This process is
repeated at the arrival of every new measurement
in the order of their timestamps.

The foremost advantage of explicit-time state
estimation is that it severs the false conflation
between the time at which the measurement was
taken and the time at which the measurement
arrives at the estimator and the state is updated.
And this results in accurate state estimation. We
implemented a simple version of an explicit-
time Kalman filter to estimate the position
and orientation of a vehicle in 2 dimensions
by sensing its position from a GPS (Global
Positioning System) sensor at 2 Hz and its
heading from an IMU (Inertial Measurement
Unit) at 100 Hz. The inaccuracy in GPS values
is about ±10%, and in the IMU values, about
±5%, and the inaccuracy in both the timestamps
is less than ±0.1s. Figure 3 shows that the
explicit-time Kalman filter (orange) can estimate
the vehicle position (blue) much better than the
traditional implementation (yellow). Just like the
Kalman filer, other state estimation algorithms,
including the Particle filter, Luenberger observer,
and different flavors of the Kalman filter such
as EKF, UKF, etc. can also be made explicit-time.

EXPLICIT-TIME CONTROL ALGORITHMS

May/June 3

Authorized licensed use limited to: Arizona State University. Downloaded on December 02,2024 at 22:11:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • January 2024106

timestamps is less than ±0.1s. Figure 3 shows that
the explicit-time Kalman filter (orange) can esti-
mate the vehicle position (blue) much better than
the traditional implementation (yellow). Just like
the Kalman filer, other state estimation algorithms,
including the Particle filter, Luenberger observer,
and different flavors of the Kalman filter such as
EKF, UKF, etc. can also be made explicit-time.

Explicit-Time Control Algorithms
Since delays have a more dramatic effect on the
quality of control algorithms, more research has
been done on the stability of control systems with
sensor-to-actuator delay [2]. Hierarchical archi-
tectures such as Distributed Control Systems
(DCS) and Supervisory Control and Data Acqui-
sition (SCADA) are commonly used in the indus-
try where the fast control loops are implemented
locally and only the supervisory control inputs
(such as a reference set point) are affected by
network delay. When the delay is constant and
known, control algorithms like Smith predictor [3],
Model Predictive Control (MPC), and delay com-
pensated Proportional–Integral–Derivative (PID)
control can be used to compensate for the delay
and provide high-performance control. Howev-
er, for distributed CPS with variable delays, these
approaches are unable to provide good-quality
control. Figure 4 shows the response time of a
Smith predictor when the delay is assumed to be
500 ms but actually it varies randomly between
[100, 500] ms. The reference input is a step func-
tion changing from 10 to 9 at t = 0.5s. The orange
curve shows that the Smith predictor control
algorithm cannot properly track the desired refer-
ence. There is some work on developing control

algorithms for systems with variable time delay
[4]. However, the controller design and stability
analysis of such systems becomes very complex
and results in a conservative design. This is mainly
because the stability proof should be provided for
all the allowed values of time delays.

In Explicit-time control algorithm the actuation
can be scheduled to be applied at a certain spe-
cific time. The explicit-time control algorithm can
benefit from the knowledge of actuation time, and
achieve better performance. Additionally, the con-
troller design and safety proofs of the explicit-time
control algorithms can be simplified, if the upper
bound on the sensing-to-actuation latency can be
fixed to a constant.

We explain explicit-time control algorithms using
the Smith predictor. Consider a system as depicted
in Fig. 5. G(s) is the plant and C(s) is the controller.
The sensor delay and actuator delay are d1 and
d2, respectively. Figure 5 shows our modifications
to the Smith predictor to make it explicit-time. In
explicit-time Smith predictor, the controller sets the
actuation time and therefore, is aware of the sens-
ing-to-actuation delay (d1 + d2 = tA – tS) and can
compensate for it. The error signal (e) is generated
based on the predicted output (ŷ) and the refer-
ence signal (xr). If the model mismatch (Dm = G(s)
– Ĝ(s)) is small, the signal ym cancels the delayed
output (y) and with a proper controller, the output
can accurately track the reference input.

The time-aware nature of explicit-time Control-
ler will allow it to naturally adapt to the inherently
variable computation and communication delays
of distributed systems. The blue curve in Fig. 4
shows the output response of our approach, and
it is clear that our approach can follow the refer-
ence much better. If the actuation time is set to
be later than the worst-case delivery time to the
actuator, then the sensing-to-actuation delay can
be made constant and that makes the control-
ler design and stability analysis much simpler as
compared to existing approaches. This is mainly
because tighter bounds can be considered for the
Lyapunov functions to show that its derivative is
negative-definite.

Explicit-Time Sensors, Actuators, and Networks
Ignoring the sensing, computation, networking,
and actuation times in DCS can cause perfor-
mance degradation [5]. As a reference, [6] dis-
cusses the network impact on the performance
of DCS. Our proposed explicit-time architecture
requires the sensors to provide a timestamp along
with the value they sense, and actuators have a

FIGURE 3. Explicit-time Kalman filter can more accurately estimate the state of the
system compared to traditional Time-agnostic Kalman filter(Orange).

Figure 2. Outline of the Explicit-time Kalman filter. Parts highlighted in red show the proposed modifica-
tions/extensions.

Figure 3. Explicit-time Kalman filter can more accu-
rately estimate the state of the system compared to
traditional Time-agnostic Kalman filter(Orange).

Figure 4. The Smith predictor (Orange) is not able
to track the reference when the delay is variable.
However, Explict-time Smith Predictor can track it
pretty accurately (blue).

Since delays have a more dramatic effect on
the quality of control algorithms, more research
has been done on the stability of control sys-
tems with sensor-to-actuator delay [2]. Hierar-
chical architectures such as Distributed Control
Systems (DCS) and Supervisory Control and
Data Acquisition (SCADA) are commonly used
in the industry where the fast control loops
are implemented locally and only the super-
visory control inputs (such as a reference set

point) are affected by network delay. When
the delay is constant and known, control algo-
rithms like Smith predictor [3], Model Predic-
tive Control (MPC), and delay compensated Pro-
portional–Integral–Derivative (PID) control can
be used to compensate for the delay and pro-
vide high-performance control. However, for dis-
tributed CPS with variable delays, these ap-
proaches are unable to provide good-quality con-
trol. Figure 4 shows the response time of a
Smith predictor when the delay is assumed to be
500 ms but actually it varies randomly between
[100, 500] ms. The reference input is a step
function changing from 10 to 9 at t = 0.5s. The
orange curve shows that the Smith predictor con-
trol algorithm cannot properly track the desired
reference. There is some work on developing
control algorithms for systems with variable time
delay [4]. However, the controller design and
stability analysis of such systems becomes very
complex and results in a conservative design. This
is mainly because the stability proof should be
provided for all the allowed values of time delays.

Figure 5. Explicit-time Smith Predictor can compen-
sate for the sensing-to-actuation delay since it ex-
plicitly knows the sensing time and determines the
actuation time. The modifications are highlighted in
red.

4 IEEE Internet of Things Magazine

FIGURE 2. Outline of the Explicit-time Kalman filter. Parts highlighted in red show the proposed modifications/
extensions.

Figure 2. Outline of the Explicit-time Kalman filter. Parts highlighted in red show the proposed modifica-
tions/extensions.

Figure 3. Explicit-time Kalman filter can more accu-
rately estimate the state of the system compared to
traditional Time-agnostic Kalman filter(Orange).

Figure 4. The Smith predictor (Orange) is not able
to track the reference when the delay is variable.
However, Explict-time Smith Predictor can track it
pretty accurately (blue).

Since delays have a more dramatic effect on
the quality of control algorithms, more research
has been done on the stability of control sys-
tems with sensor-to-actuator delay [2]. Hierar-
chical architectures such as Distributed Control
Systems (DCS) and Supervisory Control and
Data Acquisition (SCADA) are commonly used
in the industry where the fast control loops
are implemented locally and only the super-
visory control inputs (such as a reference set

point) are affected by network delay. When
the delay is constant and known, control algo-
rithms like Smith predictor [3], Model Predic-
tive Control (MPC), and delay compensated Pro-
portional–Integral–Derivative (PID) control can
be used to compensate for the delay and pro-
vide high-performance control. However, for dis-
tributed CPS with variable delays, these ap-
proaches are unable to provide good-quality con-
trol. Figure 4 shows the response time of a
Smith predictor when the delay is assumed to be
500 ms but actually it varies randomly between
[100, 500] ms. The reference input is a step
function changing from 10 to 9 at t = 0.5s. The
orange curve shows that the Smith predictor con-
trol algorithm cannot properly track the desired
reference. There is some work on developing
control algorithms for systems with variable time
delay [4]. However, the controller design and
stability analysis of such systems becomes very
complex and results in a conservative design. This
is mainly because the stability proof should be
provided for all the allowed values of time delays.

Figure 5. Explicit-time Smith Predictor can compen-
sate for the sensing-to-actuation delay since it ex-
plicitly knows the sensing time and determines the
actuation time. The modifications are highlighted in
red.

4 IEEE Internet of Things Magazine

Authorized licensed use limited to: Arizona State University. Downloaded on December 02,2024 at 22:11:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • January 2024 107

mechanism to deliver the actuation at the sched-
uled timestamp (within the specified tolerance).

Currently, only a few sensors have such capa-
bility. For example, the Velodyne VLS-128 LIDAR
has a GPS inside the LIDAR to provide timestamps
with the point cloud readings. We are not aware of
actuators that are capable of scheduled actuation.
Depending on the design and modifyability of the
sensors and actuators, they can be made explic-
it-time to varying levels of timing accuracy.

Some sensors and actuators have a micropro-
cessor and therefore an internal clock inside them,
and their firmware is modifiable. Either their clocks
are already synchronized to an external clock
source, e.g., Global Positioning System (GPS). If
not, they can be made to synchronize with the
clock of the CPS node that it is connected to. For
actuators, the firmware of the actuators can be
modified so that they set up an internal interrupt
to fire at the desired actuation time to perform
the actuation. Some other sensors and actuators
have an internal processor/microcontroller, but
their firmware cannot be modified. Most existing
sensors and actuators fall into this category. The
best way to capture the sensing time in these kinds
of sensors is to capture the timestamp at the CPS
node the sensor is connected to. The best way to
control the actuation time on these kinds of actu-
ators is to manage the timing and actuation from
the CPS node that the actuator is connected to.
The driver software for the actuator can be mod-
ified so that actuation commands can be sent to
the actuator on time. Finally, many analog sensors
and actuators have a simple structure and do not
even have an internal processor. These sensors
and actuators are usually directly connected to
the pins of a CPS node. The value sensing is done
through the ADC (Analog to digital converter), and
the actuation is done through PWM (Pulse Width
Modulation). For these sensors and actuators, the
sensing/actuation time should be controlled by the
CPS node directly.

As mentioned in the previous section, the con-
troller computes an actuation value to be deliv-
ered by the actuator at the specified timestamp.
Since the timestamp should be set to a later time
to account for computation and actuation times
and more importantly network delay, the control-
ler’s performance may be low for a regular net-
work. Time-Sensitive Network (TSN) [7], on the
other hand, provides deterministic delays through
traffic shaping. As a result, the controller will set
the actuation timestamps as tight as possible to
achieve higher performances. Although (Network
TIme Protocol) NTP is widely used for clock syn-
chronization, components of a TSN use Precision
Time Protocol (PTP) [8] to achieve sub-microsec-
onds clock synchronization.

Backup Routine-Based Robust Execution
Failure of timing constraints is an unavoidable
concern in the design of time-sensitive systems,
and different solutions have been suggested at
various levels of CPS design abstraction. At the
runtime level, Medhat et al. proposed to moni-
tor the end-to-end timing constraints [9], and on
failure, the event can be logged, the user can
be warned about the event, or the program just
terminated. At the task scheduling level, various
approaches for budget replenishment have been

proposed where the scheduler decides to abort
(kill the task for the current iteration and not gen-
erate an output), ignore (continue and eventual-
ly generate the output), or queue (which is the
default when timing failures are not considered)
an overrun execution. A more complicated way
to handle timing failure is to continuously adjust
the period of tasks based on the best-case and
worst-case delays that have been observed till
the current moment. However, providing safe-
ty guarantees for such approaches is hard and
a rare long execution time can make the design
very conservative. In the control systems domain,
researchers have developed adaptive control
approaches that work for variable time-delay sys-
tems by updating the parameters of the control-
ler. However, the controller design and stability
analysis of such controllers does not account for
the exceeded time delays and timing failure.

The main idea of Backup Routine-based execu-
tion is to design a CPS such that it will meet the
timing constraints “most of the time,” but if the
timing constraint is not going to be met, a “backup
routine”will be fired up in time to keep the system
in a safe state [10]. This approach does result in
a conservative design that is developed based on
the worst-case timing and at the same time guar-
antees safety by relying on a fail-safe backup rou-
tine that is triggered on time. Since the designed
system may switch between “normal”and “back-
up”modes, system safety and stability should be
verified similar to switched and hybrid systems.

FIGURE 4. The Smith predictor (Orange) is not able to track the reference when
the delay is variable. However, Explict-time Smith Predictor can track it pretty
accurately (blue).

Figure 2. Outline of the Explicit-time Kalman filter. Parts highlighted in red show the proposed modifica-
tions/extensions.

Figure 3. Explicit-time Kalman filter can more accu-
rately estimate the state of the system compared to
traditional Time-agnostic Kalman filter(Orange).

Figure 4. The Smith predictor (Orange) is not able
to track the reference when the delay is variable.
However, Explict-time Smith Predictor can track it
pretty accurately (blue).

Since delays have a more dramatic effect on
the quality of control algorithms, more research
has been done on the stability of control sys-
tems with sensor-to-actuator delay [2]. Hierar-
chical architectures such as Distributed Control
Systems (DCS) and Supervisory Control and
Data Acquisition (SCADA) are commonly used
in the industry where the fast control loops
are implemented locally and only the super-
visory control inputs (such as a reference set

point) are affected by network delay. When
the delay is constant and known, control algo-
rithms like Smith predictor [3], Model Predic-
tive Control (MPC), and delay compensated Pro-
portional–Integral–Derivative (PID) control can
be used to compensate for the delay and pro-
vide high-performance control. However, for dis-
tributed CPS with variable delays, these ap-
proaches are unable to provide good-quality con-
trol. Figure 4 shows the response time of a
Smith predictor when the delay is assumed to be
500 ms but actually it varies randomly between
[100, 500] ms. The reference input is a step
function changing from 10 to 9 at t = 0.5s. The
orange curve shows that the Smith predictor con-
trol algorithm cannot properly track the desired
reference. There is some work on developing
control algorithms for systems with variable time
delay [4]. However, the controller design and
stability analysis of such systems becomes very
complex and results in a conservative design. This
is mainly because the stability proof should be
provided for all the allowed values of time delays.

Figure 5. Explicit-time Smith Predictor can compen-
sate for the sensing-to-actuation delay since it ex-
plicitly knows the sensing time and determines the
actuation time. The modifications are highlighted in
red.

4 IEEE Internet of Things Magazine

FIGURE 5. Explicit-time Smith Predictor can compensate for the sensing-to-actuation
delay since it explicitly knows the sensing time and determines the actuation time.
The modifications are highlighted in red

Figure 2. Outline of the Explicit-time Kalman filter. Parts highlighted in red show the proposed modifica-
tions/extensions.

Figure 3. Explicit-time Kalman filter can more accu-
rately estimate the state of the system compared to
traditional Time-agnostic Kalman filter(Orange).

Figure 4. The Smith predictor (Orange) is not able
to track the reference when the delay is variable.
However, Explict-time Smith Predictor can track it
pretty accurately (blue).

Since delays have a more dramatic effect on
the quality of control algorithms, more research
has been done on the stability of control sys-
tems with sensor-to-actuator delay [2]. Hierar-
chical architectures such as Distributed Control
Systems (DCS) and Supervisory Control and
Data Acquisition (SCADA) are commonly used
in the industry where the fast control loops
are implemented locally and only the super-
visory control inputs (such as a reference set

point) are affected by network delay. When
the delay is constant and known, control algo-
rithms like Smith predictor [3], Model Predic-
tive Control (MPC), and delay compensated Pro-
portional–Integral–Derivative (PID) control can
be used to compensate for the delay and pro-
vide high-performance control. However, for dis-
tributed CPS with variable delays, these ap-
proaches are unable to provide good-quality con-
trol. Figure 4 shows the response time of a
Smith predictor when the delay is assumed to be
500 ms but actually it varies randomly between
[100, 500] ms. The reference input is a step
function changing from 10 to 9 at t = 0.5s. The
orange curve shows that the Smith predictor con-
trol algorithm cannot properly track the desired
reference. There is some work on developing
control algorithms for systems with variable time
delay [4]. However, the controller design and
stability analysis of such systems becomes very
complex and results in a conservative design. This
is mainly because the stability proof should be
provided for all the allowed values of time delays.

Figure 5. Explicit-time Smith Predictor can compen-
sate for the sensing-to-actuation delay since it ex-
plicitly knows the sensing time and determines the
actuation time. The modifications are highlighted in
red.

4 IEEE Internet of Things Magazine

Authorized licensed use limited to: Arizona State University. Downloaded on December 02,2024 at 22:11:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • January 2024108

One of the most important safety-critical tim-
ing constraints in an AV is that the delay from the
sensing (using cameras, LiDAR, or RADAR) to
applying the brake (if needed) should be less than
a maximum value. If this timing constraint is not
going to be met, a simple backup routine is to
apply the “brake”before the deadline expires. This
early execution of the backup routine — before
the deadline expires — will in some cases result in
false positives — i.e., executing the backup routine
even though the timing constraint was actually
going to be met. However, even with that, the
backup routine mechanism will ensure system
safety, and therefore convert a safety requirement
(meeting the timing constraint) into an optimi-
zation metric — The safety of the system now
actually depends on making sure that the backup
routine completes in time. This can be achieved
since the backup routine can be really small, fast,
and local, and it can even be permanently cached
so as to make its execution really fast. This way
executing the backup routine will only require a
small fraction of the original deadline, and there-
by reduce the rate of false-positive fi rings of the
backup routine. It should be noted that the AV
will stop if its velocity is less than 2 m/s.

As mentioned, the main advantage of the
backup routine-based execution mechanism is
that it makes the original timing constraint a per-
formance issue and not a correctness issue. The
correctness is dependent on the timely execution
of the backup routines. This fl exibility gives system
designers freedom to explore various methods for
continuously adapt the system execution to opti-
mize system performance while ensuring safety,
e.g., operating the system at lower performance
when timing constraints are met with a small
margin or violated, and then shift back towards
operating at a higher performance point when
timing constraints are met with large margins.
Consider an AV (Autonomous Vehicle) that can
safely operate at 16 m/s. This requires the sens-
ing-to-actuation latency to be less than 200 ms.
Figure 6 shows the relationship between the max-
imum velocity of an AV and its sensing-to-actua-
tion delay requirement. The red area (top right)
shows unsafe operating points and the green area

(bottom left) shows the safe operating points. The
AV was supposed to drive at 16 m/s and suppose
a timing failure happens. The backup routine can
then reduce the maximum velocity of the AV by
20% and adjust the sensing-to-actuation timing
requirement to 12.8 m/s. After the execution
of the backup routine, the delay requirement
is relaxed, and the AV can still safely operate,
albeit at a lower performance level. If the delay
becomes greater than 600 ms, another backup
routine can be executed, reducing the maxi-
mum speed of AV to 10.2 m/s, and setting the
sensor-to-actuator timing requirement to be less
than 950 ms. When the end-to-end delay returns
back to normal (200 ms), the AV can re-adjust its
operating point and drive at its nominal velocity
(16 m/s). If the delay is beyond the acceptable
tolerance of the AV (1.6 s), the fail-safe backup
routine (applying full brake) can be executed.

This backup routine-based execution mech-
anism can become the central point for tack-
ling several robustness issues of the CPS. This is
because a lot of other system failures also show
up as timing failures. For example, if a sensor
goes bad and stops working, then that manifests
itself as a timing failure at the controller that is
supposed to use the sensed value. Diagnosis and
recovery (startup of a backup sensor) in such sce-
narios can be done as a part of backup routines.

futurE rEsEArch dIrEctIons
Control-theoretic Aspects: Just like the

Smith predictor, explicit-time versions of MPC,
delay-compensated PID, state feedback control,
etc. can be developed. Their stability can be
proved using Lyapunov-Krasovskii and Lyapun-
ov-Razumikhin methods. In these approaches, a
positive defi nite energy (Lyapunov) function can
be considered and with the help of time-invariant
functions, it should be possible to show that the
derivative of this function is negative defi nite.

Technological Realizability: One challenge
related to the proposed Kalman filter is a deter-
mination of covariance matrices (Rk and Qk).
Researchers have proposed techniques to over-
come this challenge [11]. Another challenge asso-
ciated with the explicit-time Kalman filter is that
more computation is needed since the algorithm
computes the inverse of the matrix S with every
received measurement. However, the good news
is that the computation overhead is not too much
since the sensor model h and its derivative are
sparse (they only consider one measurement at
a time) matrices and there is scope for further
reducing the computation overhead. In addition,
the state estimation for samples that end up being
captured at times that are very close to each
other can be performed in the same iteration.
As another challenge, it may not be possible to
determine strict ordering among the measure-
ments since the timestamps of the sensed values
can be inaccurate (e.g., due to the limits of clock
synchronization). Those measurements may be
good candidates to club together for a single-shot
update. As a suggestion, the sensitivity of the
sensed values can be used as a metric to deter-
mine how much we can delay the update for a
sensed value or combine its update with the later
ones, or just drop them. In networked systems,
it is even possible that the sensed values may

FIGURE 6. Backup routine-based execution method enables CPS designers to
optimize system performance while meeting the safety requirements. As sensor-to-
actuation delay increases, the system can adapt itself and reduce the maximum or
reference velocity (black vertical arrows), and when it is met again, the system can
go back to operating at a higher maximum velocity (blue vertical arrows).

Safe Operating
Zone

Unsafe
Operating

Zone

Delay (s)

R
ef

er
en

ce
 V

el
oc

ity
 (m

/s
)

Timing Failure:
Looser

Deadline

Recovery:
Increase Ref

Velocity

Timing Failure:
Decrease Ref

Velocity

Recovery:
Tighter

Deadline

Nominal
Operating Point

Figure 6. Backup routine-based execution method
enables CPS designers to optimize system perfor-
mance while meeting the safety requirements. As
sensor-to-actuation delay increases, the system can
adapt itself and reduce the maximum or reference
velocity (black vertical arrows), and when it is met
again, the system can go back to operating at a higher
maximum velocity (blue vertical arrows).

between the maximum velocity of an AV and its
sensing-to-actuation delay requirement. The red
area (top right) shows unsafe operating points
and the green area (bottom left) shows the safe
operating points. The AV was supposed to drive
at 16 m/s and suppose a timing failure happens.
The backup routine can then reduce the maximum
velocity of the AV by 20% and adjust the sensing-
to-actuation timing requirement to 12.8 m/s. After
the execution of the backup routine, the delay
requirement is relaxed, and the AV can still safely
operate, albeit at a lower performance level. If
the delay becomes greater than 600 ms, another
backup routine can be executed, reducing the
maximum speed of AV to 10.2 m/s, and setting
the sensor-to-actuator timing requirement to be
less than 950 ms. When the end-to-end delay
returns back to normal (200 ms), the AV can re-
adjust its operating point and drive at its nominal
velocity (16 m/s). If the delay is beyond the
acceptable tolerance of the AV (1.6 s), the fail-
safe backup routine (applying full brake) can be
executed.

This backup routine-based execution
mechanism can become the central point
for tackling several robustness issues of the CPS.
This is because a lot of other system failures
also show up as timing failures. For example,
if a sensor goes bad and stops working, then
that manifests itself as a timing failure at the

controller that is supposed to use the sensed
value. Diagnosis and recovery (startup of a
backup sensor) in such scenarios can be done as
a part of backup routines.

FUTURE RESEARCH DIRECTIONS Control-
theoretic Aspects: Just like the Smith
predictor, explicit-time versions of MPC, delay-
compensated PID, state feedback control, etc. can
be developed. Their stability can be proved using
Lyapunov-Krasovskii and Lyapunov-Razumikhin
methods. In these approaches, a positive definite
energy (Lyapunov) function can be considered
and with the help of time-invariant functions, it
should be possible to show that the derivative of
this function is negative definite.

Technological Realizability: One challenge
related to the proposed Kalman filter is a deter-
mination of covariance matrices (Rk and Qk).
Researchers have proposed techniques to over-
come this challenge [11]. Another challenge asso-
ciated with the explicit-time Kalman filter is that
more computation is needed since the algorithm
computes the inverse of the matrix S with every
received measurement. However, the good news
is that the computation overhead is not too much
since the sensor model h and its derivative are
sparse (they only consider one measurement at
a time) matrices and there is scope for further
reducing the computation overhead. In addition,
the state estimation for samples that end up being
captured at times that are very close to each
other can be performed in the same iteration. As
another challenge, it may not be possible to de-
termine strict ordering among the measurements
since the timestamps of the sensed values can
be inaccurate (e.g., due to the limits of clock
synchronization). Those measurements may be
good candidates to club together for a single-
shot update. As a suggestion, the sensitivity of
the sensed values can be used as a metric to
determine how much we can delay the update
for a sensed value or combine its update with
the later ones, or just drop them. In networked
systems, it is even possible that the sensed values
may arrive at the compute node in a different
order than the one in which the measurements
were taken. Clearly, we will need a buffer in
front of the compute node to store and reorder

May/June 7

Authorized licensed use limited to: Arizona State University. Downloaded on December 02,2024 at 22:11:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • January 2024 109

arrive at the compute node in a different order
than the one in which the measurements were
taken. Clearly, we will need a buffer in front of
the compute node to store and reorder the mea-
surement values. However, if that is not possible
(for example because one packet was delayed a
lot), several solutions are possible, including, just
ignoring the incoming value if it is within a small
margin of the expected value at its timestamp.
If the measurement is coming too late, then roll-
back to a previous state, and then recompute
from there is a possibility. It may be possible to
develop analytical solutions to apply the effects of
the late-coming value without doing the rollback
— if that happens often.

Platform-related Constraints: An important
issue in non-explicit-time sensors and actuators is
that there is always a bias in the captured time-
stamp (i.e., the captured timestamp is always
late), and in the actuation time (i.e., the actuation
time is always later than the time when the sys-
tem node applied the actuation) that is not com-
pensated for. This is because of the intervening
microcontroller inside the sensor or actuator that
takes a non-zero time to provide the sensed value
or perform the actuation. Research is needed to
develop ways to estimate these systematic biases
and compensate for them. The good news is that
this systematic bias should have low variation and
therefore it should be possible to estimate it using
existing time delay estimation methods [12].

Timely execution of backup routines: The most
straightforward approach to execute the backup
routine at the right time will be to set up a timer
at the start event of the timing constraint and fire
it at the right time (before the deadline of the tim-
ing constraint) so that the system safety can be
ensured. However, one challenge associated with
using timers for firing up the backup routines is that
many platforms have a limited number of hardware
timers while an application may have multiple tim-
ing constraints. To address this issue, the concept
of virtual timers can be used to accommodate
multiple timing constraints using a single hardware
timer. A virtual timer is basically the combination of
a hardware timer and a software queue of backup
routines in sorted order by their firing times. The
timer always verifies and fires the backup routine
at the head of the queue, and removes them after
that. In case of repeating timing constraints, the
backup routine just moves to the back of the queue
at its right place (by firing time). Since the firing of
backup routines on time is safety-critical, they can
be pre-cached and will have a high priority for exe-
cution. They can also be executed on a separate
and dedicated processor so that the WCET of the
backup routines can be computed more accurate-
ly. Also, although rarely, there can be cases when
multiple timing constraints fail at the same time or
are very close to each other so that the execution
of the corresponding backup routines overlap each
other. In such cases, the maximum block time for
a backup routine — by other backup routines —
should be taken into account which can be done
by assigning a priority value to each backup routine
and performing an analysis similar to the WCRT
(Worst Case Response Time) analysis [13].

Determining safe backup routines: Given
a backup routine and a “firing time,” it should
be possible to test/check if the backup routine

can keep the system in a safe state by modeling
the physics of the system with differential equa-
tions and software using a state machine. From
a high-level perspective, the software part of the
proposed architecture operates in two modes:
1. Normal operation, where no timing viola-

tions happen
2. Backup mode when a timing failure hap-

pens. In the CPS domain, such systems are
commonly modeled as switched systems and
more commonly hybrid systems

A few tools such as Breach [14] and Flow* [15]
can determine the set of the state that a hybrid
system may reach in the future and verify if it
reaches a set of unsafe states.

Security: Networked systems are prone to
cyber attacks such as spoofing and Denial of Ser-
vice (DoS). An attacker can change the sensed
timestamp or commanded actuation timestamp or
prevent the actuator from receiving the actuation
command and timestamp. As a result, sensors,
computation nodes, and actuators should have
a mechanism to encode/decode the data that
is sent over the network and be able to detect
spoofed packets. In addition, spoofing can hap-
pen if the components of the system (e.g. Phase
Measurement Unit or PMU) synchronize its clock
via GPS. However, GPS with a precise internal
clock can detect considerable GPS spoofing and
have deterministic time accuracy.

Conclusion
In this vision article, we study the challenges of
meeting timing constraints in complex, large-scale,
and distributed time-sensitive applications. We
propose a set of standards to build explicit-time
sensors and actuators as a prerequisite to perform
explicit-time state estimation and closed-loop con-
trol. Our explicit-time state estimation and control
algorithms can tolerate large and variable delays
while achieving high performance. Finally, we
introduce an integrated fail-safe mechanism that
kicks in when timing constraints are not met. Our
fail-safe mechanism ensures the safety of the sys-
tem when timing failures happen.

Acknowledgement
This material is based upon work supported by
the National Science Foundation under Grants
No. 1646235 and 1645578.

References
[1] Y. Liang, T. Chen, and Q. Pan, “Multirate Optimal State Esti-

mation,” Int’l. J. Control, vol. 82, no. 11, 2009, pp. 2059–76.
[2] E. Fridman, “Tutorial on Lyapunov-Based Methods for

Time-Delay Systems,” European Journal of Control, vol. 20,
no. 6, 2014, pp. 271–83.

[3] C.-L. Lai and P.-L. Hsu, “Design the Remote Control System
with the Time-Delay Estimator and the Adaptive Smith Pre-
dictor,” IEEE Trans. Industrial Informatics, vol. 6, no. 1, 2009,
pp. 73–80.

[4] W. Zhang et al., “A Double Disturbance Observer Design
for Compensation of Unknown Time Delay in A Wireless
Motion Control System,” IEEE Trans. Control Systems Tech-
nology, vol. 26, no. 2, 2017, pp. 675–83.

[5] J. K. Yook, D. M. Tilbury, and N. R. Soparkar, “A Design
Methodology for Distributed Control Systems to Optimize
Performance in the Presence of Time Delays,” Proc. 2000
American Control Conf. ACC (IEEE Cat. No. 00CH36334),
vol. 3, 2000, pp. 1959–64.

[6] F.-L. Lian, J. Moyne, and D. Tilbury, “Network design consid-
eration for Distributed Control Systems,” IEEE Trans. Control
Systems Technology, vol. 10, no. 2, 2002, pp. 297–307.

[7] N. Finn, “Introduction to Time-Sensitive Networking,” IEEE
Commun. Standards Mag., vol. 2, no. 2, 2018, pp. 22–28.

The most straight-
forward approach to
execute the backup
routine at the right

time will be to set up
a timer at the start
event of the timing
constraint and fire
it at the right time

(before the deadline
of the timing con-
straint) so that the

system safety can be
ensured.

Authorized licensed use limited to: Arizona State University. Downloaded on December 02,2024 at 22:11:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • January 2024110

[8] J. Kannisto et al., “Software and Hardware Prototypes of
the ieee 1588 Precision Time Protocol on Wireless LAN,”
2005 14th IEEE Wksp. Local & Metropolitan Area Networks,
2005, pp. 6.

[9] R. Medhat et al., “Runtime Monitoring of Cyber-Physical Sys-
tems Under Timing and Memory Constraints,” ACM Trans.
Embedded Computing Systems (TECS), vol. 14, no. 4, 2015,
pp. 1–29.

[10] M. Khayatian et al., “Plan B-Design Methodology for
Cyber-Physical Systems Robust to Timing Failures,” ACM
Trans. Cyber-Physical Systems, 2022.

[11] Y. Huang et al., “A Novel Adaptive Kalman Filter with Inac-
curate process and Measurement Noise Covariance Matri-
ces,” IEEE Trans. Automatic Control, vol. 63, no. 2, 2017,
pp. 594–601.

[12] L. Chunmao and X. Jian, “Adaptive Delay Estimation and
Control of Networked Control Systems,” 2006 Int’l. Symp.
Communications and Information Technologies, 2006, pp.
707–10.

[13] R. J Bril, J. J. Lukkien, and W. F. J. Verhaegh, “Worst-Case
Response Time Analysis of Real-Time Tasks Under Fixed-Pri-
ority Scheduling with Deferred Preemption Revisited,” 19th
Euromicro Conf. Real-Time Systems (ECRTS’07), 2007, pp.
269–79.

[14] A. Donzé, “Breach, A Toolbox for Verification and Param-

eter Synthesis of Hybrid Systems,” Int’l. Conf. Computer
Aided Verification, Springer, 2010, pp. 167–70.

[15] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An
Analyzer for Non-Linear Hybrid Systems,” Int’l. Conf. Com-
puter Aided Verification, Springer, 2013, pp. 258–63.

Biographies
Aviral Shrivastava is a full Professor in the School of Com-
puting and AI at Arizona State University, where he established
and heads the Make Programming Simple Lab (https://labs.
engineering.asu.edu/mps-lab/). He completed his Ph.D. in
Information and Computer Science and from the University of
California, Irvine, and bachelor’s in Computer Science and Engi-
neering from IIT Delhi.

Mohammad Khayatian is a Senior Robotics Software Engineer
at Vecna Robotics, working on autonomous mobile robots for
wearhouses. He received his Ph.D. in Computer Engineering
from the Arizona State University and his M.Sc. and B.Sc. in
Electrical Engineering — Control Systems from Shiraz University.

Bob Iannucci is a Distinguished Engineer at Google. Before this
he was a Distinguished Service Professor at Carnegie Mellon
University, and Senior VP and CTO at Nokia. He recieved his
Ph.D. from MIT in Electrical Engineering and Computer Science.

Authorized licensed use limited to: Arizona State University. Downloaded on December 02,2024 at 22:11:48 UTC from IEEE Xplore. Restrictions apply.

