
INVITED: Software Approaches for In-time Resilience
Aviral Shrivastava

Arizona State University
Aviral.Shrivastava@asu.edu

Moslem Didehban
Cadence Design Systems
Moslem@cadence.com

ABSTRACT
Advances in semiconductor technology have enabled unprece-
dented growth in safety-critical applications. However, due to un-
abated scaling, the unreliability of the underlying hardware is only
getting worse. For a lot of applications, just recovering from errors
is not enough – the latency between the occurrence of the fault
to it’s detection and recovery from the fault, i.e., in-time error re-
silience is of vital importance. This is especially true for real-time
applications, where the timing of application events is a crucial
part of the correctness of application. While software techniques
for resilience are highly desirable since they can be flexibly applied,
but achieving reliable, in-time software resilience is still an elu-
sive goal. A new class of recent techniques have started to tackle
this problem. This paper presents a succinct overview of existing
software resilience techniques from the point-of-view of in-time
resilience, and points out future challenges.

1 MOTIVATION
The unprecedented growth of software controlled systems has
significantly increased the scope and the number of safety/mission
critical applications – applications with unacceptable consequences
of failure. Transient and permanent hardware faults pose a serious
hardware reliability challenge for safety critical applications. While
permanent faults or hard errors (e.g. stack at one/zero) have a
lasting impact on microprocessor functionality, transient faults
or soft errors (e.g. radiation-induced bit flip errors) do not cause
any permanent damage to hardware and only tweak the value
of some signal(s) or bit(s) impermanently. Although all hardware
malfunctions will not lead to harm/loss, but even a small error
can lead to catastrophic failures. It is predicted that overall system
failure rate caused by hardware faults will continue to grow mainly
due to ever-increasing level of integration (more transistors per
core, more cores per chip and more chips per system)[1, 8, 12].

In many of the safety-critical applications, the time of applica-
tion events is a crucial aspect of the correctness of execution. In
such systems – that are commonly referred to as Cyber-Physical
Systems (CPS) – in-time resilience is of vital importance. By in-time
resilience, we imply that the time from the occurrence of a fault to
the time that it is detected and recovered from, is minimized.

The prevalent assumption is that hardware and low-level er-
ror resilience solutions (e.g., the ARM Cortex-A76AE a Dual-core

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3323487

lock-step microprocessor) are more apt for achieving in-time, ef-
fective and efficient protection from hard and soft errors. This is
because hardware techniques can trap most of the faults, they de-
tect them fairly quickly, and the recovery is also pretty fast – just
flush the pipeline, and start fetching again. At first, it may seem
that such strategies incurs area overhead while software-level so-
lutions (i.e executing computations twice on time and check the
result) accompany considerable performance degradation. But in
a multi-threading and multi-core world, area and space are essen-
tially equivalent. So, n cores each with half performance (due to
software redundancy) is same as n/2 cores (dual lock-stepped cores)
with full performance. Furthermore, the throughput of a typical
high-performance microprocessor is typically significantly more
than a dual-core lock-stepped microprocessor.

While achieving resilience at lower level of design stack, i.e.
circuit, microarchitectural and architectural level seems straight-
forward, such protection is rigid and cannot be customized based
on high-level application requirements. Software solutions, on the
other hand, can adjust their protection level based on application
requirements and therefore achieve smart protection. Software-
level resilience solutions can potentially provide resilience required
for such applications without slowing down the execution of their
performance-hungry portion or restricting their portability. This is
especially useful for mixed criticality (in terms of error resilience)
setup. As a result, this paper, we consider only software approaches
for in-time resilience.

Since faults actually occur on hardware circuit and their impacts
propagate to the software state, the scope of protection of a software
resilience scheme is defined as a set of hardware components that
the resilience transformation can prevent application failures due
to faults on such components. Some techniques have a restricted
scope-of-protection and they only protect one hardware compo-
nents (i.e. register file or cache) and leave the rest components
unprotected. In this work we focus on in-time software resilience
schemes that their protection scope encompasses whole micropro-
cessor core components excluding caches and memory hierarchy
in their protection scope. The reason is that such components have
already protected by error detection and correction codes in most
modern microprocessors.

Ideally what we would like is to see software approaches that
can provide in-time, effective and efficient resilience from hard and
soft errors. Table 1 captures the most important related works in
this domain. We organize the works into two categories: i) soft
error protection schemes, and, ii) soft and hard errors protection
solutions. Each of these categories is further subdivided into error
detection schemes, and error recovery schemes. For each technique,
we present its salient features and their limitations.

https://doi.org/10.1145/3316781.3323487

Techniques Description Vulnerabilities

So
ft Erro

r R
e

silie
n

ce

Error
Detection

(ED)

SWIFT[12],
Shoestring[6]

• Duplicate arithmetic and logical operations
• Check for errors in register operands of memory
and control flow operations
• Signature-based control-flow checking (only [12])

- Errors affecting memory operations
- Valid-to-valid memory address change (only [6])

- Wrong-direction control flow errors
- Short jump errors

nZDC[4 , 5]
• Duplicate arithmetic and logical operations
• Post store/CF error detection

- Errors on address part of silent stores
- Short jump errors

Error
Recovery

(ER)

SWIFTR[11],
ELZAR[9]

• Triplicate arithmetic and logical operations
• Voting between register operands of memory and
control flow operations for ER

- Errors affecting memory operations
- Wrong-direction control flow errors
- Short jump errors
- Unwanted memory write errors
- Opcode-change errors (only[9])

NEMESIS[3]
• Triplicate arithmetic and logical operations
• Post store/CF error detection
• On-demand voting for ER

- Unwanted memory write errors
- Short jump errors

Encore[7]
• Utilize read-only segments of code for efficient
checkpoint/re-execution

- Wrong address memory writes errors
- Unwanted memory write errors
- Wrong-direction control flow errors
- Short jump errors

InCheck[2]
• Efficient and safe register file preservation
• Post store/CF error detection
• Memory and register file restoration for ER

- Errors on address part of silent stores
- Unwanted memory write errors

So
ft an

d
 H

ard
 Erro

r
R

e
silien

ce

Error
Detection

(ED)

SRMT[16]
• Duplicate application main thread
• Send the source operands of memory operations
from one thread to another for ED

- Errors affecting memory operations
- Unwanted memory write errors

Expert[14]
• Duplicate application main thread
• Main thread updates the memory the other loads
values from memory and check them for ED

- Errors on address part of silent stores

Error
Recovery

(ER)
Fisher[15]

• Triplicate application main thread
• Main thread updates the memory and the
redundant threads perform disturbed ED
• Thread state migration for ER

- Errors on address part of silent stores
- Unwanted memory write errors

Figure 1: State of the art software level in-time resilience schemes.

2 IN-TIME SOFT ERROR RESILIENCE
An essential part of in-time error resilience is in-time error de-
tection. Error detection can be implemented at different levels of
granularity including, fine-grained (e.g. instruction level replica-
tion) and coarse-grained (e.g. thread level replication). The most
basic coarse-grain scheme is program-level redundancy which in
an application is executed two times and the redundant final results
are used for error detection. Not only such solution cannot be used
in the case of interactive or long-running applications, but they
also cannot provide in-time error resilience which we define as the
ability of a resilience solution for fast error detection/correction.

2.1 In-time Soft Error Detection Techniques
All existing fine-grained error detection schemes duplicate low-
level assembly instructions and check the results of redundant in-
structions for soft error detection. The difference is in the type/number
of replicated instructions and the position/number of checking op-
erations. SWIFT[11] transformation duplicates the arithmetic and

logical instructions of the program and inserts checking operations
right before the execution of memory and control-flow instructions.
SWIFT only executes one instance of memory and control flow op-
erations and therefore if any soft error directly affect the execution
of such instructions, the error remains undetected. For instance,
transient faults hitting memory address generation unit while pro-
cessing a load/store operations lead to access to an arbitrary mem-
ory location lead to failure in a the execution of a SWIFT-protected
program. Similarly, errors directly affecting compare instructions
register pointers in fetch or decode stage of pipeline can lead to an
undetected wrong-direction control-flow errors i.e. a taken branch
alters to not-taken or vice versa. Lastly, SWIFT transformation is
vulnerable against short jumps errors and errors which cause pro-
gram execution skips over the same number of main and redundant
instructions within a basic block remain unnoticed.

Techniques after SWIFT mainly try to improve the SWIFT per-
formance overhead by scarifying error detection capability. For
instance, Shoestring[6] eliminates the need of instruction duplica-
tion for the chain of address computation instructions assuming

2

load r1 [r3]

add r1, r1, r2

store r1→[r3]

load r1 [r3]

load r11 [r13]

add r1, r1, r2

add r11, r11, r12

store r1→[r3]

load r1 [r13]

If (r1 != r11) Error

Figure 2: A read-modify-write code (left) and its correspond-
ing nZDC transformation (right).

errors affecting them most probably cause a user-visible errors like
segmentation faults. However, such transformation fails to detect
the manifestation of errors which change the effective address of a
memory (or the branch) operation to another valid address.

Prioritizing error detection capability over performance over-
head, nZDC [4, 5] improves the error coverage of SWIFT trans-
formation. The main contribution of nZDC is in protecting the in-
structions that were not duplicated by SWIFT-like schemes. nZDC
introduces the idea of post critical instruction error checking. For
example, to protect the store instruction, nZDCproposes a checking-
load strategy as shown in figure2. Each memory write operation in
a nZDC-protected program is followed by a memory read instruc-
tion from same memory location. Then error checking operations
verify if the execution of store instruction has completed correctly.
nZDC transformation also duplicates compare instructions, pre-
serves their results in dedicated registers, and utilizes them for error
detection purposes. nZDC micro-architectural level fault injection
experiments on hardware components shows that eliminating mem-
ory and compare operation vulnerabilities significantly improves
error resilience.

2.2 In-time Soft Error Detection+Recovery
Techniques

Detection of faults is only half the story, and restarting (which is
typically assumed when no recovery solution is provided) is not
a solution for in-time error resilience. The goal of error recovery
solutions is to detect and correct/mask the impact of errors from
application output. For in-time error resilience, the most obvious
recovery solution is forward-recovery-based. Forward error recov-
ery solutions triplicate computations and perform majority voting
operations to mask the impact of errors. SWIFTR[10] is a straight-
forward error recovery solution which triplicates arithmetic and
logical computations and executes majority voting operations right
before memory and control flow operations. More recent forward
recovery solutions (like ELZAR[9]) utilizes vector and SIMD opera-
tions to hide the latency of triplicated instructions.

Nemesis[3] investigates the overall protection offered by simple
forward recovery solutions. It claims that applications protected
by such solutions encounter significantly more failures that their
error detection predecessors due to three main facts: i) increased
number of unprotected memory operations due to high register
pressure, ii) substantial and frequent vulnerability window between
software voting operations and the execution of memory or control
flow operations, iii) wrong correction for already-propagated-to-
memory errors. Note that ELZAR transformation is also vulnerable
against all errors which may alter the opcode of a SIMD operations

because in such situations all three redundant copies gets erroneous
in the exact same way. Nemesis transformation improves SWIFTR
shortcomings by performing on demand voting only after detecting
a mismatch between the results of two versions of computations.
Nemesis transformation skips over the execution of silent store
instructions and therefore does not suffer from any silent store
vulnerability.

It is more challenging to achieve in-time resilience using backward-
recovery-based solutions. However, backward-recovery solutions
may be preferred, since they require less resources. Backward recov-
ery solutions only require executing two copies of the instructions,
while forward recovery solutions require the execution of three
copies of instructions. Backward recovery approaches create check-
points – program architectural and memory state – and revert the
application execution back to the last checkpoint in case of error.
Main challenge here lies in making efficient (in terms of storage
and performance) and error free checkpoints. Clearly preserving
the whole program state incur significant storage and cost over-
head which is not acceptable in most cases. To reduce the cost of
checkpointing, EnCore[7] solution privileges the concept of idem-
potent region of codes – program regions that if program execution
jumps back from any point of execution inside such regions to
their beginning, program always produces correct results. In other
words, idempotent region of codes are the region without conflict-
ing read and write operations. Encore backward error recovery
technique does not create explicit checkpoints and simply keeps
track of idempotent regions of code and if error is detected inside
of such regions, EnCore redirects the execution to the beginning of
the idempotent region. Encore is based on the assumption of the
existence of a perfect error detection scheme capable of detecting
errors for the computation inside an idempotent region of code be-
fore they propagate to the outside of such regions. Even in that case,
EnCore fails to provide recovery in several cases like control-flow
errors, errors affecting address part of memory write operations
and errors affecting non-idempotent region of codes.

InCheck[2] solution is a stand-alone fine-grained backward re-
covery technique which can accomplish in-time resilience with
high level of error coverage. InCheck creates light-weighted and
error free program architectural state checkpoints in the beginning
of each program basic block and utilizes nZDC post-store error
detection strategy. To make the overhead of application memory
checkpointing acceptable, InCheck introduces the concept of single
memory location checkpointing which materializes by inserting a
memory backup read operation before the execution of each mem-
ory write operation. In the case of error, InCheck reverts the state
of program to the beginning of basic block only if correct recovery
is possible. Incheck vulnerabilities includes short-jumps errors and
errors affecting address of a silent stores.

3 IN-TIME SOFT AND HARD ERROR
RESILIENCE

Although instruction-level error resilience can provide flexible and
effective error resilience, since they execute replicated computa-
tions on same hardware components they are unable to protect the
execution against permanent hardware faults. To achieve protec-
tion against both transient and permanent faults by software level

3

transformations two main strategies exist: diverse computations
and thread-level redundancy on a multicore microprocessor. Since
the execution overhead of diverse computations is significantly
more than thread-level redundancy schemes and they accomplish
lower error coverage, we explore thread-level redundancy based
solutions.

Note that the main presumption of thread-level redundancy for
transient and permanent error resilience is that redundant threads
can be executed on different cores of a multicore microprocessor.
Such solutions privilege inherent hardware redundancy of multi-
core microprocessors, execute redundant computations on phys-
ically separate cores and check for the errors by comparing the
results of redundant threads.

3.1 In-time Soft and Hard Error Detection
Techniques

Expert[13] transformation is the sate-of-the-art thread-level scheme
for hardware fault detection. It creates a redundant thread (called
checker thread) for each application main thread and executes them
in parallel on different cores. The execution of main and checker
threads are mostly identical and they are required to be serialized
for error detection on each memory write operation. Expert uses
memory synchronization operations to guarantee that main-thread
always executes store operations first and waits for checker thread
to verify the results of write operations. Checker thread reads the
recently updated memory locations and checks the data presented
in the memory against the results of its own computation and raises
error detection flag in the case of mismatch.

In Expert transformation checker thread never writes to the
memory unless for synchronization purposes. Note that errors af-
fecting the execution of checker-thread mainly remain inside the
checker core and if propagate to the synchronization write opera-
tions can cause deadlock not SDC. Similar to nZDC and InCheck,
Expert also in not capable of protecting computations against errors
affecting the address of silent store instructions.

3.2 In-time Soft and Hard Error
Detection+Recovery Techniques

FISHER[14] targets detection and recovery from both soft and hard
error. FISHER executes three redundant threads on different cores
and performs distributed and intertwined error detection and voting
operations between redundant threads to provide error resilience
and eliminate single-point-of-failures. Only one thread (named
main thread) writes into the memory and both redundant threads
independently verify the results of the main thread store operation
by reading the store memory. Based on the results of these checks,
FISHER transformation identify the erroneous core and perform
thread state migration to revert the impact of error from computa-
tions. For instance, if both redundant checks fail, Fisher concludes
that the core running main-thread is faulty and copy the state of
one of redundant threads to the main thread. In addition, to make
sure that the is disappeared (not permanent), FISHER double checks
for errors in the computations after each error detection and recov-
ery. FISHER transformation inherent silent store vulnerability from
EXPERT and unwanted memory write errors from fine-grained soft
error recovery solutions.

4 UNSOLVED CHALLENGES
In this work we reviewed the recent practices in the domain of
software level in-time resilience for both transient and permanent
errors. There are common vulnerabilities in each group of existing
software-level in-time resilience. State of the art soft error detection
solutions (e.g. SWIFT, Shoestring and nZDC) suffer from short jump
errors and errors affecting the address of a silent store operation.
In the later case, a write to a random memory location will get
executed, however, since the store is silent the checking-load in-
struction receives the expected value from the memory and error
remains undetected. For instance, if in snippet code shown in Fig-
ure2, r2 register holds the value of Zero, the add instruction will
not change the value of r1 register and the store instruction writes
an unmodified value back onto the memory. Therefore, even if store
address gets faulty, the value of that checking-load instruction re-
ceives from the memory matches the value of r11 register and no
mismatch will be detected. All the forward and backward error
recovery solutions suffer from unwanted-memory write errors. For
instance, if due to a hardware fault, the opcode of an instruction
changes to store, a random write to memory gets committed. When
the impact of such error manifests itself as a discrepancy in one
of the following voting or error checking operation, the impact
of error can get reverted from operands (or the results of) critical
instruction but not from the memory. In fact, there is no way for
existing solutions to even realize if the execution has experienced
an unwanted-write error.

REFERENCES
[1] Shekhar Borkar. 2005. Designing reliable systems from unreliable components:

the challenges of transistor variability and degradation. MICRO (2005).
[2] Moslem Didehban et al. 2017. InCheck: An in-application recovery scheme for

soft errors. In DAC. IEEE.
[3] Moslem Didehban et al. 2017. NEMESIS: A software approach for computing in

presence of soft errors. In ICCAD. IEEE.
[4] Moslem Didehban and Aviral Shrivastava. 2016. nZDC: a compiler technique

for near Zero Silent data Corruption. In Proceedings of the 53rd Annual Design
Automation Conference. ACM, 48.

[5] Moslem Didehban and Aviral Shrivastava. 2018. A Compiler Technique for
Processor-Wide Protection From Soft Errors in Multithreaded Environments.
IEEE Transactions on Reliability 67, 1 (2018), 249–263.

[6] Shuguang Feng et al. 2010. Shoestring: probabilistic soft error reliability on the
cheap. In SIGARCH Computer Architecture News, Vol. 38. ACM.

[7] Shuguang Feng et al. 2011. Encore: low-cost, fine-grained transient fault recovery.
In Proceedings of International Symposium on Microarchitecture. ACM.

[8] Jörg Henkel, Lars Bauer, Nikil Dutt, Puneet Gupta, Sani Nassif, Muhammad
Shafique, Mehdi Tahoori, and Norbert Wehn. 2013. Reliable on-chip systems in
the nano-era: Lessons learnt and future trends. In Proceedings of the 50th Annual
Design Automation Conference. ACM, 99.

[9] Dmitrii Kuvaiskii, Oleskii Oleksenko, Pramod Bhatotia, Pascal Felber, and Christof
Fetzer. 2016. Elzar: Triple modular redundancy using intel avx (practical experi-
ence report). In 2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 646–653.

[10] George Reis et al. 2007. Automatic instruction-level software-only recovery. IEEE
micro 27 (2007).

[11] George A Reis et al. 2005. Software-controlled fault tolerance. TACO 2 (2005).
[12] Muhammad Shafique, Siddharth Garg, Jörg Henkel, and Diana Marculescu. 2014.

The EDA challenges in the dark silicon era: Temperature, reliability, and variabil-
ity perspectives. In Proceedings of the 51st Annual Design Automation Conference.
ACM, 1–6.

[13] Hwisoo So et al. 2018. EXPERT: Effective and flexible error protection by re-
dundant multithreading. In Design, Automation & Test in Europe Conference &
Exhibition. IEEE, 533–538.

[14] Hwisoo So et al. 2019. A software-level Redundant MultiThreading for Soft/Hard
Error Detection and Recovery. In Design, Automation & Test in Europe Conference
& Exhibition. IEEE.

4

	Abstract
	1 Motivation
	2 In-time Soft Error Resilience
	2.1 In-time Soft Error Detection Techniques
	2.2 In-time Soft Error Detection+Recovery Techniques

	3 In-time Soft and Hard Error Resilience
	3.1 In-time Soft and Hard Error Detection Techniques
	3.2 In-time Soft and Hard Error Detection+Recovery Techniques

	4 Unsolved challenges
	References

