
INVITED: A Testbed to Verify the Timing Behavior
of Cyber-Physical Systems

Aviral Shrivastava1, Mohammadreza Mehrabian1, Mohammad Khayatian1

Patricia Derler2, Hugo Andrade2, Kevin Stanton3,
Ya-Shian Li-Baboud4, Edward Griffor4, Marc Weiss5, and John Eidson6

1 Arizona State University, 2 National Instruments, 3 Intel, 4 NIST, 5 Qulsar, 6 UC Berkeley

ABSTRACT
Time is a foundational aspect of Cyber-Physical Systems (CPS).
Correct time and timing of system events are critical to optimized
responsiveness to the environment, in terms of timeliness, accuracy,
and precision in the knowledge, measurement, prediction, and
control of CPS behavior. However, both the specification and
verification of timing requirements of the CPS are typically done
in an ad-hoc manner. While feasible, the system can become
costly and difficult to analyze and maintain, and the process of
implementing and verifying correct timing behavior can be error-
prone. Towards the development of a verification testbed for testing
timing behavior in tools and platforms with explicit time support,
this paper first describes a way to express the various kinds of timing
constraints in distributed CPS. Then, we outline the design and
initial implementation of a distributed testbed to verify the timing
of a distributed CPS analytically through a systematic framework.
Finally, we illustrate the use of the verified timing testbed on two
distributed CPS case studies.

1. INTRODUCTION
Intelligent software-based control systems are enabling an increas-

ingly connected and automated world with smart devices, smart
healthcare, smart transportation, smart buildings, smart grid, smart
defense, etc. Software adds considerable flexibility to hardware
devices since arbitrarily complex control algorithms can be imple-
mented in software. The integration of computational algorithms
with distributed physical platforms is referred to as Cyber-Physical
Systems (CPS). Many CPS are safety-critical and hard real-time.
Hard real-time means that correct system behavior depends not only
on the logical “functionality” of the computation, but also on the
“timing” of the computation, sensing, and actuation, with deadlines
that may have no or little tolerance for uncertainty. As an example,
electric power system is a distributed CPS that has critical timing
requirements since a power outage will affect sensitive infrastruc-
tures like transportation, industry, communication, water supply, etc.
Some of the required timing constraints in power system include
traveling wave fault detection and location that needs 100 to 500
nanoseconds time accuracy, line differential relays that need 10
to 20 microseconds time accuracy and anti-islanding that needs
sub-microsecond time accuracy [1].
Traditionally, timing requirements for CPS are either an af-

terthought once the main functions are met – for soft real-time
or hard real-time systems–, they are designed with costly customized
hardware platforms (such as Application-Specific Integrated Cir-
cuits (ASICs) or Field Programmable Gate Arrays (FPGAs)) and
operating systems (including but not limited to real-time operating
systems). This is because modern computing systems are built for

average performance or power consumption at the cost of timing
predictability. This happens at multiple levels of abstractions in
the computer design. At the hardware-level, microarchitectural
structures like processor caches lead to variability in execution times,
but they are indispensable in improving the average performance of
the application. In operating systems with unbounded preemptions,
shared resources, the Interrupt Service Routines significantly de-
grade the ability to estimate the execution time of tasks executing in
an arbitrary environment, but they are the most flexible and scalable
means to implement I/O in modern processors. Consequently, and
most importantly, programming languages have no notion of time.
Common programming languages like C/C++/Java/Python etc. do
not allow the programmer to specify any timing behavior of the
application[2]. For example, in C, it is not possible to specify
that a certain instruction should execute at a certain time, or that
a loop body must be executed exactly every 10 ms. All this must
be implemented through operating system calls, and therefore, the
timing of the system depends on the hardware-software platform,
and the behavior of other executing tasks on the computing system.
This makes it difficult to guarantee any timing property with platform
customization.
Irrespective of the implementation of the CPS, there is always a

need to verify the timing behavior. Particularly for safety-critical
CPS, testing whether the implementation meets all of its timing
requirements is important. The heterogeneity of CPS components
and the diverse design environments, particularly make the testing of
a CPS a difficult challenge. Since a universal standard methodology
has not been introduced yet, time testing of CPS is typically done in
an ad-hoc manner. Even though the methods and equipment used
for analyzing/testing the timing of CPS may be quite sophisticated
(typically oscilloscopes and signal/frequency analyzers), the testing
methodology is often custom and lacks standardization, which
can make tests difficult to reproduce or to have confidence in the
verification process. Difficulties arise when verifying the temporal
behavior for a signal with high-frequency components, or when
capturing the exact occurrence time of an event (a signal value
crossing a threshold at a single point in time) on a dynamically
changing signal [3]. For digital signals, rise time can affect the event
time. Rise time indicates how fast the signal value changes from
0 to 1, and noise in the power supply or even signal cross-talk can
affect the rise time. For physical signals, such as electrical signals,
the length of the measurement cable can affect the impedance
and therefore the timing of events on the signal. Discretization
rate and precision also affect the timing of an event. Additional
challenges arise in geographically distributed CPS. How can we
ascertain the timing of synchronous measurements on geographically
distributed components? How do we combine and make sense of
data measured with different monitoring equipment, each with its

own clock, precision, and latency properties? Although possible,
ad-hoc and customized testing approaches quickly become very
complicated, error-prone to formally specify, analyze and verify.

This paper is an effort towards standardizing the process of testing
the timing properties of CPS. The ultimate objective of the testbed
is that if the timing specifications can be expressed formally as a
small number of primitives, then it would be possible to generate
canonical timing tests for each primitive. Such canonical tests
would guide modular system design. Larger, more complex CPS
can organize and assemble the canonical test components. The first
step (in section 2) is to express/specify the timing requirements of
a CPS. To that end, we formulate and organize the different timing
constraints that apply to distributed CPS. The timing constraints
are applied on events coming on signals that can be specified as
singleton or repeating events. Singleton one refers to an event that
is appeared in testing duration just once in contrast with repetitive
events that there is not any limitation for the count of event occurrence.
Among singleton events, there may be latency, simultaneity, and
chronological requirements, while for repeating events, there may be
frequency, phase, sporadic, and burst constraints. Next (in section
3), we outline a design of a testbed that can be used to test the
CPS to check if all the timing constraints are being met or not in
a systematic and correct manner to enable correct-by-construction
(CbC) synthesis of the testbed. The testbed – like the distributed
CPS it is trying to test – is also a distributed CPS, with each node
(of the testbed) monitoring the required signals from the CPS node.
Hardware timestamping and PTP synchronization of the clocks
among the CPS components provides observations at the same
timescale through vast geographies, without losing accuracy with
time. We also discuss the key timing parameters of the testbed that
will affect the time testing capability. The next section (section 4)
discusses the specifications that must be met by the testbed, such that
the testbed can validate the timing constraints. Finally, in section 5
we apply the CbC timing testbed to verify the timing constraints of
two example distributed CPS.

2. TIMING REQUIREMENTS OF (DISTRIB-
UTED) CPS

In distributed systems, timing requirements often require all
network nodes to have a common concept of time in order to establish
the basis for comparison. All timing constraints are defined in terms
of time interval between events. An event is defined by a tuple
< s, v, d >, which refers to the occurrence time when the signal s
crosses the voltage threshold v in the direction d = {rising, f alling}.
Time can be expressed as absolute (Coordinated Universal Time
(UTC), Temps Atomique International (TAI)) or relative (s, ms), and
depending on system sensitivity and inherent safety, business, or
legal concerns, traceability would require a degree of accuracy from
absolute time (e.g. milliseconds accuracy for safety issues in car).
In order to define and analyze timing requirements, a formal means
of expressing the constraints is needed. The following paragraphs
describe the types of constraints we have considered in this work.

Latency Constraint (LC) describes the requirements on the time
interval between two events. Latency constraints come in three types:
minimum latency constraint (LCm), maximum latency constraint
(LCM) and exact latency constraint (LCE) with an uncertainty
tolerance of ε . A minimum latency constraint l between two events
e1 and e2 can be expressed as LCm(e1, e2, l, ε). LCm(e1, e2, l, ε)
states that, given that the occurrence time of event e1 is t1, and the
occurrence time of event e2 is t2, the minimum latency constraint
is met if t2 − t1 ≥ l − ε . Similarly the maximum latency constraint
LCM(e1, e2, l, ε) is met, if t2 − t1 ≤ l + ε , and the exact latency

constraint LCE(e1, e2, l, ε) is met, if t2 − t1 = l ± ε . Latency
constraints are the most basic temporal requirements used in CPS
applications. Note that the latency constraint may also be specified
for two events in different nodes of a distributed CPS. For instance, if
the maximum latency constraint is 5ms and and e1 and e2 happened
at t1 = 2.1s and t2 = 7.3s respectively, then in the case of ε = 0.2ms
the constraint is met since 7.3 − 2.1 ≤ 5 + 0.2 in contrast with
ε = 0.1ms, the constraint is not met.
Simultaneity Constraint specifies the requirement that two

events happen at the same instant of time within a window of
acceptable tolerance. A simultaneity constraint between two events
e1 and e2 is expressed as SC(e1, e2, ε). Given the occurrence time
of event e1 is t1, and the occurrence time of event e2 is t2, the simul-
taneity constraint is met if |t2 − t1 | < ε . The simultaneity constraint
differs from the exact latency constraint (with the parameter l = 0)
since the order of events e1 and e2 does not matter for simultaneity.
Similar to latency constraint, events e1 and e2 can be specified for
events that occur in individual nodes of a distributed CPS. Similarly,
simultaneity constraint can be specified for more than two events.
In that case, all events must happen within a tolerance window of
time ε so as to be interpreted as simultaneous. For instance, the
simultaneous image capturing application discussed in section 3
has a simultaneity constraint on capture time of multiple distributed
cameras with ε = 100µs.

Chronological Constraint describes the order or precedence of
events. A chronological constraint between two events e1 and e2 can
be expressed as CC(e1, e2, ε). Given the occurrence time of event
e1 is t1 and, the occurrence time of event e2 is t2, the chronological
constraint is met if t2 > t1 + ε .

FrequencyConstraint expresses a requirement on the occurrence
frequency of an event. A frequency constraint for an event e1 can be
expressed as FC(e1, f , ε). Given repeating events ek occurs at tk for
k ∈ N , frequency constraint is met if ∀k, (tk+1− tk) = 1

f ±ε . Similar
to the latency requirement, the frequency constraint has three types,
minimum frequency constraint, maximum frequency constraint and
exact frequency constraint that requires the time interval between
every two consecutive events ek and ek+1 to be less than, greater
than, or equal to f ± ε . For example, if the desired frequency is
60Hz and the tolerance is 0.01Hz, then for all frequencies between
59.99 and 61.01Hz, the requirement is met.

Phase Constraint describes the lag between two periodic events
with the same frequency. A phase constraint between two periodic
events e1 and e2 is expressed as PC(e1, e2, p, ε). Given that a
periodic event e1 occurs at tk instants for k ∈ N and another
periodic event e2 with the same period occurs at t

′
k
instants for

k ∈ N , the maximum phase constraint PCM(e1, e2, p, ε) is met if
the maximum phase difference |tk − t

′
k
| ≤ p ± ε . The minimum

phase constraint PCm(e1, e2, p, ε) is met if the minimum phase
difference |tk − t

′
k
| ≥ p± ε . Finally the exact phase difference is met

if PCE(e1, e2, p, ε) is met if the phase difference |tk − t
′
k
| = p ± ε .

Sporadic constraint expresses temporal requirements on those
events that are repeating but are not necessarily periodic, so the
length of the time interval between these events varies. Let ∆tmin

and ∆tmax denote the min and max of those lengths. Recall that
the time interval between events are bounded by the minimum
and maximum latencies. A minimum sporadic constraint on e1
is expressed as SCm(e1,∆tmin, ε) and is met if the the latency
constraint LCm(e1, e2,∆tmin, ε) is met for all e2. Similarly, a
maximum sporadic constraint SCM(e1,∆tmax, ε) is met on an event
e1 if the latency constraint LCM(e1, e2,∆tmax, ε) is met for all e2.
Burst constraint describes the occurrence of an event in a spec-

ified time interval. A burst constraint for an event e1 is expressed
as BC(e1, n, d,m, ε). If an event e1 occurs at tk instants for k ∈ N .

The burst constraint is met if n occurrences of event e1 happen in a
time interval with duration d and there should be a recovery time
m without any occurrence of e1. For example, BC(e1, 3, 10, 5ms) is
interpreted as a burst constraint on event e1 that should occur only 3
times in a 10s interval and should not happen for 5ms after the third
occurrence.

3. DISTRIBUTED TESTBED TO EVALUATE
TIMING BEHAVIOR OF (DISTRIBUTED)
CPS

A systematic approach to test and verify the timing behavior of
a distributed system is to monitor signals and events of the System
Under Test (SUT) and timestamp events with a common testbed
timebase within the specified precision and accuracy such that the
required timing constraints over a distributed system can be properly
verified. Figure 1 shows the structure of our distributed testbed. Just
like the CPS under test, the testbed itself is also a distributed CPS.
Each node of the CPS is monitored by a DAQ (Data Acquisition)
platform – a programmable test and measurement device with analog
and digital inputs and outputs. Each testbed node has two major
components: i) Data Acquisition (DAQ) platform and ii) Operating
System (OS). The DAQ platform of each node monitors the signals
and timestamps the events of interest using a time-synchronized
internal clock. The signals that should be monitored must be made
observable by design – this is an aspect of Design For Testability
(DFT). Each test and measurement node is synchronized to a local
clock reference – a Global Navigation Satellite System (GNSS)
traceable reference time source for example – and distributed using
the Precision Time Protocol (PTP). The event timestamps are sent
to the OS, which in turn, sends them all the workstations data, that
loads them into a database. The database of time-stamped events
enables automated analysis to determine if the timing constraints of
the distributed CPS are met or not. Whether a testbed can validate a
timing constraints or not, depends on the design parameters of the
testbed. The most important design parameters of the distributed
testbed that affect the errors in the timingmeasurements are described
below.

Analog to Digital Converter (ADC) parameters The testbed
monitors all signals by sampling them because they should be
digitalized to use in cyber side. This is done by Analog to Digital
Converters (ADCs) on the probes. The sampling rate of an ADC,
fs , is expressed as samples per second, or Hertz (Hz). In order
to be able to monitor a signal correctly, the sampling rate must
be sufficiently high to capture the fastest observable dynamics of
interest in the signal. Suppose we intend to find out the time at which
a signal rises above 3.4V. Figure 2 shows this signal, monitored
with two different sampling rates. On the left with sampling rate of
fs = 1kHz, the threshold crossing time of the signal is detected as
t = 1ms. However, on the right, with sampling rate of fs = 0.5kHz,
the threshold crossing time of the signal is detected as t = 2ms.

Since an ADC converts the voltage signal into digitized sampled
events, the accuracy of measurement is also limited by the number
of bits used to express the sampled value, nbitsADC, and the voltage
range of the ADC, VRADC. An n-bit ADC can represent 2n values. A
12-bit ADC that measures the range of 0V to 5V has steps of ≈ 1mV .
The precision of theADC is defined in terms of resolution of theADC,
or VADC can be calculated as: VADC =

VRADC
2nbitsADC

. The resolution of
the ADC can affect the time at which the monitoring device detects
an event on a signal. Figure 3 illustrates the conversion of an analog
signal to digital samples with various resolutions, VRADC of 5V.
If the user wants to detect the time when a signal rises above 4V,
then in the left diagram, with nbitsADC = 12, the time at which the

threshold crossing is detected is t = 3ms, while in the right diagram,
with nbitsADC = 11, the time at which the threshold crossing is
detected is t = 4ms.
Wiring a signal to a DAQ device adds a load to the CPS circuit

under test, which causes a change in the shape of the monitored
signal. For pure resistive loads, this change is a simple voltage drop
while for general loads, the shape of the monitored signal is changed
based on the equivalent resistance and reactance of the measuring
device (including capacitance effect of the cables) and the SUT. As
a result, based on the rate of change in the value of the signal, the
measurements of the signal may be delayed or its amplitude may be
attenuated.
Input impedance, Zin, is defined as the CPS equivalent circuit

from the terminal connected to the testbed. The test andmeasurement
device must have a sufficiently high input impedance to minimize
perturbation of the measurement process on the signal.
Figure 4.b shows the monitored signal perturbed by the loading

effect of wiring the measurement device to the SUT. The threshold
detection time of the original signal is before the threshold detection
time of the monitored signal.

Clock Fractional Frequency Offset A clock’s fractional fre-
quency offset is defined as fclock =

finst− f0
f0

, where finst is the
instantaneous clock frequency, and f0 is the nominal clock fre-
quency. Thus, this is the unitless instantaneous fractional offset
from the nominal frequency of an oscillator [4]. Environmental
conditions such as voltage and temperature variations or mechanical
vibrations, can affect the rate at which an oscillator runs. Typically,
the fractional frequency offset of a clock, fclock, is expressed in Parts
Per Million (PPM), indicating the maximum amount of error in one
million time units. Thus, the time error after an elapsed time telapsed
due to a fractional frequency offset of fclock is telapsed × fclock. For
instance, a clock with 5 PPM error, has 5µs error after 1 second, an
error of about 0.5 s after a day, or about 2.5 minutes after a year.
Since all clocks deviate from each other, distributed clocks must

be synchronized to a reference to have an agreement on time and
have a unique and time notion. Synchronization protocols match the
clock of a device to a reference clock. However, no synchronization
protocol is perfect, and there is a synchronization error tsync , that
depends on several factors, including the number of bits used to
represent the time, when the time stamping is done (e.g., in the
hardware or in software), network jitter, network asymmetries delays,
etc. [5]. The Network Time Protocol or NTP [6] can usually keep
time synchronized to within tens of milliseconds over the public
Internet (tsync ≈ 10ms). The Precision Time Protocol, PTP [7], can
provide time synchronization over a LAN with sub-microsecond
accuracy. PTP with the White Rabbit[8] extension used for the
CERN Large Hadron Collider, can synchronize to sub-nanosecond
accuracy. For CPS distributed over a wide area with high precision
and accuracy needs, GNSS (Global Navigation Satellite Systems)
can provide 100ns accuracy.

Another important parameter is the rate of synchronization, rsync,
which is the number of times per second (e.g.in units of Hz) that
synchronization is performed. Every time we perform synchroniza-
tion, the time offsets are within tsync of each other. But from thereon,
until the next synchronization, the clock times will move apart at the
rate of fclock, if the local clock uses the protocol to adjust its time
but not its frequency. The worst-case clock offset, εwcco, while the
system clock is synchronized via the time synchronization protocol
in steady-state and while all other environmental conditions are
stable, can be calculated as: εwcco = tsync +

fclock
rsync

. Note that the units
are in time, since fclock is unitless and the reciprocal of rsync is in
units of time.

𝑃𝑙𝑎𝑛𝑡1

Monitoring
Timestamping

Clock

Data Acquisition

OS

Testbed 1

Communication

Synchronization

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟1 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑛

Clock Reference

Database

Testing &
Analysis

Communication

Results

Workstation

𝑃𝑙𝑎𝑛𝑡𝑛

Monitoring
Timestamping

Clock

Data Acquisition

OS

Testbed K

Communication

Synchronization

Data Communication Channel

Synchronization Channel

Testbed System

CPS/SUT

Figure 1: Time testing structure diagram. There are k distributed testbed nodes that communicate using a network link. All nodes
are synchronized with a clock reference to have the same notion of time. There exists a database logging the time-stamped events
from the distributed test and measurement system for further analysis.

0 1 2 3 4 5

𝑓𝑠 = 1 𝐾𝐻𝑧 𝑓𝑠 = 0.5 𝐾𝐻𝑧

0 2 4Time(ms) Time(ms)

Threshold

Voltage(mV) Voltage(mV)

3.4V

Figure 2: A digitized analog signal at two different sampling
rates. Given a threshold of 3.4V, the threshold crossing time is
detected at different times depending on the sampling rate.

1

2

3

4

5

2

5

3

1

3 2 4

12-bit ADC 11-bit ADC

Threshold

Voltage(mV) Voltage(mV)

Time(ms) Time(ms)

3.4V

Figure 3: An analog signal sampled using two ADCs that have
the same range (0V to 5V) and different resolutions. a) a 12-bit
ADC is used. b) a 11-bit ADC is used. Threshold crossing time
in the left figure is t1, which is different in the right figure for
the same signal.

4. TESTBED CAPABILITY ANALYSIS
In order to determine whether timing behavior is verifiable by a

given testbed, it is important to understand the sources of timing
measurement uncertainty, described as ε in the timing constraint
specification.
Consider a distributed CPS, with an exact latency constraint

LCE(e1, e2, l, ε) for events e1 and e2, where e1 occurs on signal s1
and e2 on s2 respectively. These events are detected at different
nodes of the CPS. The latency constraint states that, given t1 as
the occurrence of e1, the time at which e2 occurs should be equal
to t1 + l ± ε . The testbed must capture the time at which an event
occurs. However, the measured time will be erroneous. This can
due to the several factors, including the sampling frequency fs , the
ADC resolution VADC, and the clock error, εwcco.

Consider an event described by the tuple 〈s1, vt, rising〉, marking

Time(ms)
0 1 2 3 4 5

Voltage(mv)

a)

0

5

0 1 2 3 4 5

2mv

Voltage(mv)

0.25

Time(ms)

5

0

-5

b)

3.7mv

0 1 2 3 4 5

1mv

Voltage(mv)

0.6

Time(ms)

5

0

-5

c)

4.8

Figure 4: a) Voltage drop on a DC signal connected to a resistive
load. b) Voltage drop and shift on an AC signal connected to a
load that has both reactive and resistive components. c) Change
in the shape of an arbitrary signal due to the loading effect.

the threshold vt crossing of signal s1 on a rising edge. Since the
ADC output is a multiple of the supported resolution, the testbed
may not be able to detect the exact point of the threshold crossing.
Thus, the threshold value must be mapped to the nearest upper bound
of the value. Since all sampled data are collected at known points in
time (integer multiples of 1

fs
), a threshold crossing is detected with

a maximum error εADC =
1
fs
. Figure 5 illustrates the worst-case

error 1
fs

in an example.
Since all samples are timestamped using the local clock of the

measurement system, clock synchronization error (εwcco) must
be taken into account. Thus, the maximum time error between
the actual event occurrence and the detected event occurrence is
the sum of the ADC error and the clock synchronization error:
εtotal ≤ εwcco + εADC.

Since there will be at most εtotal error in both the measurements of
e1 and e2, then the testbed can confidently verify whether the exact
latency constraint is being met or not. Other types of constraints
(e.g. simultaneity, frequency, phase, etc.) are also expressed with a
temporal error tolerance and one can similarly reason and verify the
temporal behavior.

5. CASE STUDIES
This section presents two case studies to showcase how a time

testing framework is used to verify the timing behavior of distributed
systems.

5.1 Simultaneous Image Capturing

Collected samples Original signal

V𝐴𝐷𝐶

1

𝑓𝑠

𝑉𝑇ℎ

𝑡𝐴 𝑡𝐷
Error

Figure 5: Worst-case error between actual occurrence time and
detection time for an ADC with sampling frequency fs and
fixed threshold detection based on an integer multiple of the
ADC resolution

3D image reconstruction based on multiple 2D images taken
from different angles of a scene has application in many fields,
including entertainment, military (geometric information extraction),
autonomous driving, and sports (e.g., football match analysis). In
3D view reconstruction, the image processing algorithm detects and
matches points in all pairs of images and then calculate the spatial
position of the point based on cameras position and triangulation
[9]. By computing the geometric position of all points, a 3D view
of the scene is reconstructed. When capturing and processing
a moving object in real time, exposure times, frame rates, and
computation latencies must be precise and within a small error
in order to achieve a successful reconstruction[10]. Since the
motion of the object causes blur in the image, a short exposure
time is desired. Depending on the object’s color, size, shape, speed,
distance from the camera, camera properties like resolution, exposure
time, and the type of the algorithm used for detection, requires a
degree of simultaneity between capture events on the respective
cameras. Since there is no specific formula that accounts for the all
parameters of camera, object and algorithm, we arbitrarily select a
time to trigger the cameras. We took 100µs as the maximum delay
between capture time of two cameras. We interpreted this timing
requirement as a simultaneity constraint between trigger signals
of cameras with maximum acceptable tolerance of ε = 100µs or
SC(cameraTrigger1, cameraTrigger2, 100µs).

We implemented the 3D view reconstruction application by taking
a picture of a moving soccer ball using two cameras. We used the
ArduCAM ESP8266 UNO boards which include a 2MP CMOS
camera for image capturing, a built-in ESP8266 Module for wireless
communication and some digital I/O. We utilized a rechargeable
3.7V 700mAh Li-Po battery as the power supply. A web-server is
used to send the capture command to both cameras. Upon capturing,
each ArduCAM board generates a trigger signal on one of the digital
input/output (I/O) pins. This signal is used to show the delay between
capture time instances between two cameras. Figure 6 shows the
ArduCAM boards (towards the bottom) taking pictures of a rolling
soccer ball and the testing platforms.

5.2 Power grid generator synchronization
An important and large-scale CPS is power distribution system.

The future of the power grid will rely on distributed power generation
using renewable energy resources [11]. So, generated power by the
distributed resources should match in order to avoid short circuit. In
such a system, a pair of generators connected to the same grid should
generate a sinusoidal signal with frequency, f = 60Hz, with 0.1%
tolerance[12]. Besides, the phase between two generator shouldn’t

Figure 6: Two ArduCAM taking simultaneous images of a mov-
ing soccer ball. The shutter signal of the two cameras are
monitored by two cRIO NI-9067 that are synchronized by PTP
over Ethernet.

be greater than 10 degree. So, timing constraint for this case study
are a frequency constraint on both sinusoidal signals and a phase
constraint between them. One can write the frequency constraint
as FC(eMaster, 60, 0.06) where acceptable tolerance for period, T , is

1
60+0.06 < T < 1

60−0.06 (16.65ms < T < 16.68ms) so the tolerance
error window is about 33µs. For the second requirement, the phase
between the signals should be at least ±10° . So, the phase constraint
can be described by PCE(eMaster, eSlave, 0, 463µs). Acceptable
tolerance for this requirement is ε = 463µs because a complete
revolution (360°) is done in 16.67ms (1

60Hz = 16.67ms).
We implemented an experimental setup with two DC motors to

represent two small generators. We installed two dials marked from
0° to 360° on the shaft of each motor. A hole was drilled in each
dial at 0° and an optical detector is installed on the dial to detect
when the angle is 0° (Figure 7). Two Arduino Mega2560 boards
are utilized to control the speed of the motor using Pulse Width
Modulation. Arduino boards are synchronized with each other using
two wireless modules (NRF24L01+, 2.4GHz). First motor sends its
data to the second motor and the second motor controls its speed as
to match its phase with the first motor.

Figure 7: Two motors are controlled by two Arduino Mega
2560 boards that are synchronized, and the phase constraint is
tested by two distributed NI-cRIO (9067 and 9035). The testing
accuracy is checked by an oscilloscope.

6. TIME TESTING USING THE TESTBED
In order to test and verify the timing constraints of the experimen-

tal setups, testbed timing specifications (synchronization accuracy,

ADC sampling rate, ADC resolution, etc.) must exceed the CPS spec-
ifications as mentioned in section 4. We used two NI-cRIO (NI-9067
and NI-9035) platforms for testbed measurement and control which
include on board FPGA with 40MHz clock frequency and 5ppm
clock drift. FPGA clocks are synchronized using NI-TimeSync[13]
that supports IEEE1588. Sampling rate of the data acquisition
module is 20kHz and it utilizes a 12-bit ADC. Measurement devices
are connected via the dedicated Ethernet network. Implementation
of the IEEE 802.1AS profile of IEEE 1588/PTP (part of IEEE 802.1
Time Sensitive Networking (TSN) standards) uses hardware times-
tamping and compensation both in network elements and endpoints
to minimize time synchronization errors. TSN generally provides
both synchronization and also small and deterministic packet latency
between testbed devices.
The clock drift of the measurement nodes is 5ppm, where each

node synchronizes every second via PTP with a precision of 100ns
to the grandmaster. The worst-case clock time offset of each cRIO
is 5µs

1s + 100ns = 5.1µs. Since the voltage range of digital module
is from 0V to 5V and it uses a 12-bit ADC, the ADC resolution
VADC can be calculated as 5−0

212 ≈ 1mV . For image capturing case
study, the sum of εwcco and εADC is less than the required accuracy
of 100µs. Output impedance of the ArduCAM boards is 470Ω
and input impedance of the cRIO is 1MΩ. Therefore, the loading
effect is very small and the testbed is suitable to verify the timing
constraints. In the power grid case study, required accuracy is
33µs for frequency constraint and 463µs for phase constraint. The
testbed has sufficient precision to verify the phase constraint since
the sum of εwcco and εADC is less than the required accuracy. Each
of the two optical sensors (Omron EE-SX970-C1) has at maximum
25mΩ output impedance and each of the two cRIOs has 1MΩ input
impedance parallel with a 50pF capacitor.

7. CONCLUSION
While correct timing behavior plays an important, sometimes

critical, role in many Cyber-Physical Systems, both the expression
of the timing constraints and their testing are often done in an ad-hoc
manner for soft real-time systems and a complex and costly process
for hard real-time systems. In an effort to explore an expressive,
consistent formalism for the timing specification and time verification
procedure, we outlined common temporal constraints that appear in
CPS, and the design of our distributed testbed to verify the timing of
a given CPS. Each node of our testbed monitors the required signals
and captures the events on the signals using hardware timestamping.
The nodes of the testbed are synchronized through a reference
clock over PTP to within microsecond accuracy. We analyze the
relationship between the specifications of the testbed to the timing
requirements of the CPS to figure out if the testbed can confidently
validate the timing constraints by measurements. The effectiveness
of the testbed is tested on two distributed CPS, a synchronized
camera system, and a generator synchronization application.
In future efforts, we envision the use and abstraction of the

temporal constraint specification to enable formal analysis and
automation of system verification. Future work will include a
more comprehensive analysis of the timing constraints as well as
development of improved timing measurement capabilities based on
clock synchronization to a traceable reference and the availability of
TSN devices.

Acknowledgments
The authors would like to thank the NIST colleagues, Dr. Spencer
Breiner and Martin Burns for the technical reviews. This work was
partially funded by the NSF grant CNS 1525855, and NIST grant

70NANB16H305.
Disclaimer: Certain commercial entities, equipment, or materials

are identified in this document in order to describe the experimental
design or to illustrate concepts. Such identification is not intended
to imply recommendation or endorsement by the National Institute
of Standards and Technology or the institutions of the other authors,
nor is it intended to imply that the entities, materials, or equipment
are necessarily the best available for the purpose.

References
[1] “IEEE/NIST Timing challenges in the Smart Grid Workshop

2017.” http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.1500-08.pdf. [Online; Jan 2017 NIST].

[2] E. A. Lee, “Cyber Physical Systems: Design Challenges,” in
ISORC, 2008.

[3] A. Shrivastava et al., “Time in Cyber-Physical Systems,” in
Proc. of CODES+ISSS, 2016.

[4] “NISTTime and Frequency fromA toZGlossary.” https://www.
nist.gov/time-and-frequency-services/d. [Online; Accessed:
2017-03-21].

[5] J. C. Eidson and K. B. Stanton, “Timing in Cyber-Physical
Systems: The Last Inch Problem,” in Precision Clock Syn-
chronization for Measurement, Control, and Communication
(ISPCS), 2015 IEEE International Symposium on, pp. 19–24,
IEEE, 2015.

[6] D. L. Mills, “RFC 1305: Network Time Protocol (Version 3)
Specification,” Implementation and Analysis, 1992.

[7] “IEEE Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems,” IEEE Std
1588-2008 (Revision of IEEE Std 1588-2002), pp. 1–269, July
2008.

[8] M. Lipiński, T. Włostowski, J. Serrano, and P. Alvarez, “White
Rabbit: A PTP Application for Robust Sub-nanosecond Syn-
chronization,” in ISPCS, pp. 25–30, IEEE, 2011.

[9] S. Paris, Extraction of Three-dimensional Information from
Images–Application to Computer Graphics. PhD thesis, Uni-
versité Joseph-Fourier-Grenoble I, 2004.

[10] M. K. Fard, M. Yazdi, and M. MasnadiShirazi, “A Block
Matching Based Method for Moving Object Detection in
Active Camera,” in IKT, IEEE, 2013.

[11] N. Mohan and T. M. Undeland, Power Electronics: Converters,
Applications, and Design. John Wiley & Sons, 2007.

[12] North American Electric Reliability Council, “Fre-
quency Excursions.” http://www.nerc.com/pa/RAPA/PA/
Pages/FrequencyExcursions.aspx. [Online; accessed 17-March-
2017].

[13] “NI Time Sync, Version 1.1.” http://www.ni.com/pdf/manuals/
373185a.pdf. [Online; 2010 National Instruments Corpora-
tion].

