This paper is a preprint of a paper accepted by IET and is subject to Institution of Engineering
and Technology Copyright. When the final version is published, the copy of record will be available
at IET Digital Library.

Automatic Management of Software Programmable Memories in
Manycore Architectures

Aviral Shrivastava'”, Nikil Dutt?, Jian Cai', Majid Shoushtari?, Bryan Donyanavard?, Hossein
Tajik?

!Arizona State University
2University of California, Irvine
* Aviral.Shrivastava@asu.edu

Abstract: Software Programmable Memories, or SPMs, are raw on-chip memories that are not
implicitly managed by the processor hardware, but explicitly by software. For example, while
caches fetch data from memories automatically and maintain coherence with other caches, SPMs
explicitly manage data movement between memories and other SPMs through software instruc-
tions. SPMs make the design of on-chip memories simpler, more scalable, and power efficient,
but also place additional burden for programming of SPM-based processors. Traditionally, SPMs
have been utilized in embedded systems, especially multimedia and gaming systems, but recently
research on SPM-based systems has seen increased interest as a means to solve the memory scal-
ing challenges of manycore architectures. This article presents an overview of the state of the
art in SPM management techniques in manycore processors, summarizes some recent research on
SPM-based systems, and outlines future research directions in this field.

1. Introduction

Caching as a concept has been highly successful in various aspects of computer system design.
Examples of cache memory abound in contemporary designs: a disk buffer cache is a small amount
of buffer memory present on a hard drive to speed up the access to the disk; a web cache provides
a mechanism for temporary storage of web documents to improve user experience; a DNS cache
stores queried results for a period of time in the domain name system to make DNS lookup faster;
P2P caching is a technique to reduce bandwidth costs for content on peer-to-peer networks; and
database caching is a mechanism used to cache database content in multi-tier applications.
Perhaps the earliest use of cache memory was in processor design, where caching in various
forms (e.g. data caching, instruction caching, page table caching) was exploited for improving
performance by reducing accesses to slower off-chip memories. Caches store frequently accessed
data in a memory close to the processor to make the memory accesses faster and consume less
power. Traditionally, caches in the processor have been implemented in hardware. Here the move-
ment of the data between caches and main memory (i.e., caching) is performed automatically by
hardware—with the software oblivious to the caching mechanisms. Caching in computer architec-
ture is typically implemented in hardware to reduce latency because each cache access is typically
in the timing critical path of instruction execution. Another advantage of hardware caching is that
programmers can develop software without worrying about caching since it is handled automat-
ically in hardware. Furthermore, in order to bridge the increasing latency of memory accesses,

2

O—O—0O—<
>) N o
2
(]
S| | & —O—0O—<
2| 12l —(O—0O——C
= (TH)
=| |2
a NN
—(O—O—C0O—CO

Fig. 1. A Software programmable Memory Manycore (SMM) architecture has multiple cores, each
core with a Software Programmable Memory (SPM). The data transfers between the SPMs and the
main memory of the system takes place through Direct Memory Access (DMA) instructions that
must be explicitly specified in the software.

multiple levels of caching (organized as a cache hierarchy) became popular in processor architec-
tures.

However, as we scale to manycore systems, it becomes increasingly challenging to scale the
corresponding cache-based memory hierarchies[1, 2, 3]. One important reason is because the
overhead of coherence logic increases rapidly with the number of cores. Some processors have
already tried to alleviate this problem by removing hardware cache coherence from processors
either partially or completely, e.g. Intel SCC [4], Kalray MPPA-256 [5]. In these architectures,
the coherence—whenever needed by the application/system—must be implemented in software.
However in these systems, caching—without coherence—is still implemented in hardware. The
fact that hardware caching in manycore architectures becomes power-hungry due to the complex-
ity of caching logic is another challenge hardware implemented caches are facing in scaling to
manycore architectures.

An alternative mechanism is to deploy software caching mechanisms for smart data manage-
ment, using the raw memories in the processor. Here the data movement between the close-to-
processor memory and the main memory has to be done explicitly in software, typically done
through the use of Direct Memory Access (DMA) instructions. We refer to such architectures as
Software programmable Memory Manycore architectures (SMM), and the raw memories in such
processors as Software Programmable Memories (SPM). Figure 1 shows an example of a typical
SMM architecture.

SPMs offer many advantages over caches. When application designers have deep understand-
ing of the data requirements of their applications—especially in embedded systems—the use of
SPMs allows developers to exploit application semantics effectively to achieve efficient execution.
SPMs offer many other advantages over caches. The first is power efficiency by eliminating the
hardware overhead of traditional caching. The second is predictability, a critical factor for real-
time systems. It is hard to estimate the worst-case execution time (WCET) of software executing
in cached architectures, since cache replacement policies executing in hardware result in unpre-
dictable execution times for cache hits and misses. On the other hand, SPMs allow predictable
estimation of WCET since all memory accesses are explicitly controlled in software. Third, there
is potential for performance improvement by orchestrating the management of data transfers ex-

Tag
AT Data Array Data Array
Tag Comparators, || Address Address
MUXes Decoder Decoder
(a) Hardware Controlled Cache (b) Software Programmable Memory

Fig. 2. Difference between (a) Cache and (b) SPM—the hardware view: SPM is raw memory
without the hardware mechanism to manage it (as is present in caches).

plicitly in software. Other potential benefits include the ability to explicitly manage data accesses
for thermal and wearout constraints, particularly for emerging memory technologies, e.g. non-
volatile memories (NVM). While there is a large body of work on using SPMs for guaranteeing
WCET (e.g. for real-time applications), this article focuses on the use of SPMs for efficiency,
such as in improving average-case performance, reducing power consumption, managing thermal
constraints, mitigating the effects of aging, etc.

Early efforts in programming SPM-based architectures required application developers to insert
data management instructions manually. However, with the increasing complexity of embedded
software [6], as well as the diversity of the underlying architectures, automated techniques are
required to understand the application and insert data management instructions automatically. Au-
tomatic insertion of data management instructions can be achieved statically (by programmers
or the compiler), or dynamically (through runtime systems that execute additional instructions to
achieve the desired effect).

In the following we first describe SPMs and compare them with caches (Section 2). We then
provide a comprehensive overview of SPM management for many-core architectures, including
recent and ongoing research on this topic (Section 3). We conclude in Section 4 with some notes
on future work.

2. What is an SPM? or SPMs vs. Caches

A Software Programmable Memory (SPM) refers to the internal data and instruction memory array
incorporated into a processor or System on Chip (SoC) architecture and controlled by software (the
application itself, compiler, operating system, or a combination of them), e.g. scratchpad memory
in the IBM Cell processor [7], TCM in ARM processors [8], or configurable memories in TI DSP
processors [9]. SPM is attached to the processor in much the same way as the L1 cache. However,
SPM is raw memory, in the sense that it only contains decoding and column access logic, without
the complex circuitry required to achieve hardware control of replacement policies, and managing
coherence (tag directory, tag look-up circuitry, etc.). As Figure 2 shows, while a cache stores
both the data and its address, an SPM only stores data, avoiding the extra lookup circuitry. As
a result, SPMs use less area yet consume significantly less power than caches (for the same data
capacity) [10].

Functionally SPMs are similar to caches, in that they allow for fast access to frequently used

4

p
Load and store CPU CPU Load and store
instructions request instructions transfer
9 data from/to cache data from/to SPM
- 4 . .
If the data is not in the DMAc;nStrl;L:Ctlon
cache, it is brought into moves data between
the cache from the Cache SPM memory and SPM

_memory automatically

DMA

Memory Memory

Fig. 3. Difference between Cache and SPM—the software view: the data movement to and from
the cache is performed automatically in hardware, in SPM-based systems, it must be present in the
software in the form of data movement instructions.

data, but with lower power and latency. However, replacing caches with SPMs comes with its
own set of challenges, as in Figure 3. Using caches is automatic; if desired data is not present in
the cache, hardware mechanisms are built to bring the requested data into the cache, potentially
preventing the necessity of a repeated operation if the data is reused. However, SPM contains
no such hardware mechanism to automatically bring the data that is requested to the SPM. It
must be brought in explicitly through memory transfer instructions that trigger DMA transfers.
Furthermore, once data brought in, it must be accessed using its new address in the SPM, and not
the original address in the main memory.

While there are some challenges in using SPMs instead of caches, the promise is that execution
on SPM-based systems can be more efficient. Caches are a one-size-fits-all approach. They have
one way of managing data, regardless of how the data is actually accessed. Whether some data is
accessed randomly, or is accessed in a first-in-first-out manner, on a cache-based system, it will
always be accessed in the manner implemented in hardware. On the other hand, SPM-based sys-
tems allow more efficient management of data by exploiting application semantics and knowledge
of data access patterns, thereby enabling customization of data movement across the memory hi-
erarchy. For example, stack data in SPMs can be managed on stack-frame level instead of cache
blocks, since whenever a function call happens, all the data within the stack frame will be needed
during the execution of the function most of the time. By loading all the data in a stack frame at
once, we can reduce the overhead for checking if the requested cache blocks during the execution
of the function are already in the SPM. More importantly, by analyzing application data access pat-
terns, we can achieve further efficiency. If we know multiple stack frames of function calls along
some path in the call graph can be held in the SPM at the same time, we can bring all these stack
frames from the main memory into the SPM at once, instead of fetching each of them separately.
By doing so, we can reduce number of memory transfers, and eliminate status checking of stack
frames between these calls.

Timeline of static and dynamic SPM techniques

Dynamic techniques ® oo0o0000O0OOOS O
Static techniques ° eee oo
1995 2000 2005 2010 2015 2020

Year of publication

Fig. 4. The trend of SPM management research is shifting from static to dynamic techniques.

3. SPM Management for Modern Manycore Architectures

Existing processors with SPMs mostly leave the management of data to compiler or programmers,
e.g. TI DSP processors [9], or some ARM-based processors [8]. While the IBM cell processor [7]
manages code in the SPM by dividing the SPM space into regions and overlaying all the functions
(in a program) to these regions so that application code that cannot fit into the available SPM space
can be run by loading a function into its region right before it is called, it does not manage stack,
heap or global data. Therefore, we focus on academic research efforts of SPM management in this
paper.

The work on enabling efficient execution of tasks on an SPM-based manycore architecture
(example illustrated in Figure 1), can be divided into three categories: i) techniques to manage the
data of one task per core (each core has one SPM), ii) techniques to partition one SPM among the
multiple tasks running on one core, and iii) techniques to distribute the data of multiple tasks on
the multiple cores thus multiple SPMs of the system.

3.1. Running One Task on Each core

Research on SPMs started with techniques to manage data of one task per core with one SPM. As
is clear from Figure 4, the earliest techniques to do this were static techniques [11, 12, 13, 14, 15,
16, 17] — implying that the placement of data on the SPM is fixed during runtime, meaning that
the locations of data can not be changed during execution. Static SPM management techniques
attempt to identify parts of data that maximally benefit the runtime performance of applications
(e.g. most frequently used data) upon their placement in SPM.

One of the very useful properties of static techniques to manage data on SPM is the determinism
in execution that it provides. There is no data miss in SPM based systems. The data is either in the
SPM or in main memory, and its locations are known at compile-time. Due to the predictability
in execution time, a lot of research has focused on static approaches to manage the SPM for real-
time systems to minimize the upper bound of the WCET of applications. Mapping techniques that
target WCET reduction statically allocate data to SPM in order to increase the predictability of
execution in SPM-based systems [18, 19, 20, 21, 22, 23, 24]. These approaches utilize expensive
optimization algorithms for code analysis, which are not amenable to average-case execution time
optimization.

Static approaches did not take into consideration dynamic program behavior and therefore were

not able to fully exploit the benefits of SPM for general purpose computing. To solve this prob-
lem, as shown in Figure 4, research efforts began investigating dynamic SPM management tech-
niques. Dynamic approaches allow the movement of data at runtime so they can swap in the more
frequently accessed data and swap out less-used data over time to achieve greater performance
optimization. [25] proposed an approach for managing global and stack variables. It divides the
execution of applications into regions (an interval between any two consecutive program points
chosen by its proposed approach), brings the most profitable data from the main memory to SPM,
and evicts some of the resident data based on a profile-driven cost model. [26] proposes a similar
approach to [25] for heap management that employs profiling to divide execution of applications
into regions and places variables with high frequency-per-byte accesses in SPM. The novelty of
this work is that it always allocates a fixed number of objects in the SPM and leaves the other ob-
jects in the main memory, enhancing applicability even when the size of objects is unknown. [27]
targets array data management. It divides a SPM into pseudo registers and applies an existing reg-
ister allocation algorithm to allocate frequently accessed arrays into the SPM that it detects using
profiling. [28] uses profiling information and loop transformation techniques (such as tiling) to im-
prove data locality in loop nests with array accesses, and maps array sections to different levels in
the memory hierarchy. [29] shows the benefits of exploiting hybrid memory subsystems consisting
of SRAM and NVM SPMs. It proposes a dynamic data management algorithm which places the
most-written data in SRAM and the most-read data in NVM in order to realize the full potential
of the hybrid SPM. The proposed approach automatically moves data at runtime using informa-
tion from profiling to determine data allocation and movement. Some approaches are proposed
specifically for processors with both caches and SPMs. [30] partitions scalar and arrayed variables
into off-chip DRAM and on-chip SPM to minimize the execution time of embedded applications.
[31] introduced dedicated hardware to speedup memory transfers between the SPM and the main
memory, as well as a programming interface for runtime SPM management. [32] proposed a code
placement technique that divides and maps code into cacheable and non-cacheable (i.e. SPM and
DRAM) memory regions to minimize energy consumption. Data with low temporal locality is also
placed in the non-cacheable regions.

As a special kind of data, code is essential for running any programs, and its management has
also been studied for SPMs. One strategy divides the SPM into regions, and deploys code overlays
to dynamically use these regions. Here the tasks of code management are to 1) determine the
best mapping between objects and regions, and ii) minimize memory transfers given the mapping.
[33] creates procedures for loops, and uses profiling to identify the functions with the highest
access frequency—its corresponding number of dynamic instructions executed—and maps these
functions into the SPM regions. [34] identifies functions and frequently executed basic blocks
(known by profiling) which are laid out in memory contiguously as memory objects or overlays,
and uses a first-fit heuristic to map these memory objects into the SPM regions. Both [33] and [34]
assume a given division of the SPM into memory regions. [35] determines function mappings to
SPM at compile-time for embedded systems in order to reduce energy consumption.

The techniques discussed in the last paragraph can be considered as compiler-based techniques,
since the changes are done in the applications, e.g. inserting the DMA instructions. The prob-
lem of SPM management can also be solved at the operating-system level as well, through page
table management. [36] assumes a horizontal memory architecture with a combination of SPM
and cache for instructions. The authors try to identify candidate page clusters of instructions for
mapping to SPM using a postprocessing step. They support demand paging of these instructions
at runtime, and propose a memory manager to track and prefetch frequently executed instruction

Fig. 5. The general flow of a compiler-based SPM management on manycore processors.

pages. [37] proposes a slightly modified version of the same approach, in which all information
is extracted from a post-processing step, amending the binary to handle demand paging of desig-
nated instruction pages at runtime into a subset of SPM space in lieu of an MMU. [38] explores
the opposite scenario, providing an SPM-hidden solution for runtime SPM mapping of multitask
workloads that are dynamically created (i.e. unpredictable).

The research efforts mentioned so far, offer only a somehow incomplete solution to the ap-
plication data management problem of one task on one SPM, e.g. only manage code, stack or
global variables. Also these techniques suffer from several limitations, e.g. do not support point-
ers, recursive functions, etc. These limitations dramatically reduce the programmability of the
target architectures. Finally, some of these approaches are only applicable to a specific memory
hierarchy, e.g. with both SPMs and caches presented. More importantly, none of these tech-
niques consider communication between different tasks, which makes these techniques applicable
to uni-processors only. In the rest of Section 3.1, we will study some of the newer work done in
this research area that offer a complete solution to enable efficient execution of a task. The work
also covers the topic of inter-task communication, which fits perfectly into SPM management on
multi-/many-core processors.

Figure 5 shows the general flow of compiler-based SPM management approaches. Such an ap-
proach takes a regular program written for cache-based processors as input, together with library
files that define runtime management functions, and performs analyses to generate the executable
that can be run on SPM-based systems. Compiler-based SPM management mainly focuses on solv-
ing two problems—the management of private data for a single task on each core, and management
of shared data between communicating tasks.

3.1.1. Stack Data Management: A call stack is a stack data structure that stores informa-
tion about the active functions of a program, and is one of the most often accessed memory seg-
ments. The accesses to stack account for about 64% of the overall memory accesses in multimedia
applications[39]. High-frequency accesses to the stack segment makes the design of stack data
management critical for the runtime performance of applications in SMM architectures.

[40] and [41] first proposed a runtime stack data management scheme called Circular Stack
Management (CSM) which operates at the level of function frames. The basic idea is to move a
function frame from the main memory to the SPM when control flow goes to the corresponding
function call, and evict stack frames that are not immediately used if there is not enough space.
CSM views the stack space in SPM as a queue, and brings in stack frames in a First-In-First-Out
manner. Figure 6 shows an example of how CSM works. In this example, there is a lack of stack
space in the SPM at the function call from F/ to F2, so CSM finds the oldest stack frame of main

8

. Stack Frame
@ Function .
Size

main 64KB

o F1 192KB

F2 64KB

o Available SPM Size = 256 KB
SPM SP Mem SP
F2 > main p-—----- >l main

F1
SPM

Main Memory

Fig. 6. Introduction to the Circular Stack Management scheme (CSM). Given the SPM size and
stack frame sizes, when F1 calls F2 function, the stack frames of main will be evicted to make
space, following the FIFO rule of a queue. On the return of F1, the stack frames of main will be
brought back in order.

function and evicts it. Now that there is enough space after the eviction, CSM stops evicting more
frames and brings in the stack frame of F2. When control flows returns from F2, F'] is in the SPM,
therefore no management is required. However, after the execution of F1, the stack frame of main
has to be brought back from the main memory to the SPM.

While CSM is functionally correct, it introduces significant runtime overhead. [42] proposed
a heuristic called Smart Stack Data Management (SSDM) to cut down the overhead of managing
stack frames. The proposed approach takes in a call graph where each (function) node is annotated
with its stack frame size, and models the problem of identifying the function calls that require
stack frame management as placing cuts on the edges corresponding to these calls. For example,
in the case of Figure 6, SSDM will place a cut on the edge corresponding the function call from
F1 to F2, since when F2 is called, the runtime stack manager has to manage the stack space in
SPM to accommodate the stack frame of F2. SSDM initially places a cut on each edge, and then
goes through the call graph and merges edges along paths, with the constraints that the size of
nodes between any two consecutive cuts along any path should not exceed the size of the stack
segment in the SPM. This approach seeks placing no more than necessary cuts, and successfully
reduces the overhead related to transferring stack frames between the SPM and the main memory.
Figure 7 illustrates the difference of applying CSM and SSDM on the same call graph. For the same
program, SSDM places significantly fewer cuts—in other words, less management—and therefore
has much superior runtime performance for stack management. In particular, CSM can be viewed
as an extreme case of SSDM which places a cut on every function call. Experimental results show
that SSDM, even with the extra instruction overhead can outperform hardware caching.

(a) Cuts placed by CSM when (b) Cuts placed by SSDM when
SPM size is 128 KB SPM size is 128 KB

Fig. 7. Comparison of management functions insertion by the Circular Stack Management (CSM)
scheme and the Smart Stack Data Management (SSDM) scheme. While CSM conservatively places
a cut on every function call, SSDM goes through the call graph and realizes some cuts are not
necessary as SPM has enough space, e.g. between F0 and F1, or between F2 and F3.

3.1.2. Heap Data Management: The existence of heap segment provides a way to dynamically
allocate portions of memory to programs on demand, and free it for reuse when no longer needed.
This is critical to any manycore system where more than a single process might be active at any
time.

[43] first introduced the semi-automatic heap data management (SHDM) scheme for SPM-
based multicore architectures. The work implements a runtime heap manager that transparently
manages data transfers of heap objects between the SPM and the main memory. It acts like a fully
associative software cache in SPM. When the runtime manager receives any request for allocating
a heap object, it allocates space in the main memory, and returns the address of the allocated space
which will be subsequently used to uniquely identify the heap object. The manager then checks
and evicts existing heap objects from the SPM to the main memory based on Least Recently Used
(LRU) policy if necessary, to make sure there will be enough space for the newly allocated object
in the SPM. To access the heap object, the manager translates the main memory address to the
SPM address, since it knows both. Finally, upon the reception of the request to deallocate this
object, it simply frees the allocated main memory space. The runtime heap manager in SHDM is
implemented as an API, and users are required to manually insert these API functions.

[44] proposes a fully-automatic heap data management (FHDM) scheme. This compiler-based
heap-management approach is totally automated—users are not required to do anything more than
compiling the applications, and the compiler will transform the applications properly. Proposed
as an efficient enhancement to the SHDM approach, FHDM deploys a set-associative software
cache with low associativity instead of a fully associative software cache. The new data structure
saves the expensive table lookup at every heap access, and instead only compares the tags of the
requested memory address with the blocks within the same set. In particular, tag comparison can

10

Function Code Size

main 128KB

o _ F1 128KB

F2 128KB
Available SPM Size = 256 KB

l——

 CEEE—

merge regions {F1},{ F2} main

—— F1, F2
main

> Inefficient mapping
F1

F2

N ——

>~

main, F1

merge regions {main},{ F1} F2
Efficient mapping

Fig. 8. The general steps CMSM takes. The dashed line indicates F2 is called in a loop at F1.
CMSM initially places each function in a separate region, and merge regions main and F1 to the
same region to accommodate the SPM space. Function F1 and F2 are placed separately to avoid
thrashing as the loop executes.

be done in parallel if the architecture supports SIMD instructions, which is not uncommon in
modern manycore processors. To further cut down the software overhead, FHDM uses a simple
round-robin policy (to decide the victim to save software overhead), instead of the more expensive
LRU used in SHDM. FHDM also builds a victim buffer as an optional performance improvement.
A subtle yet important benefit of FHDM is the fixed size of the data structure used for manage-
ment. In both the SHDM and FHDM scheme, the data structure used to implement the software
cache always resides in the SPM. In SHDM, the size of the data structure is proportional to the
number of heap objects, so itself needs to be managed if it becomes large. On the other hand,
in FHDM, once the number of sets, associativity, and the size of each data block are decided by
the users, the size of the data structure is determined and unchanged during the execution. This
guarantees constant SPM memory space usage and therefore will not cause memory overflow.

3.1.3. Code Management: On desktops or clusters with general purpose processing units, the
system loads the program into the main memory and then executes it. Virtual memory enables a
processor to load instructions on demand so that it can execute large programs that can not fit in
the main memory. Such a memory management technique is critical to SPM management, which
usually deals with limited SPM capacity. Traditionally, memory virtualization requires hardware
support in the form of a memory management unit (MMU) to translate virtual memory to physical
memory. Typically MMUs are not deployed in SPM-based manycore architectures to simplify the
hardware and save power and thus this work has to be done in software.

A software code management technique typically divides the available SPM space into regions,
and maps different functions into these regions [45]. Each function is mapped to exactly one
region. At runtime, any function being called must be loaded to the region it is mapped to, and

11

later moved out to make space for calls to other functions that are going to be mapped to the
same region. When the control flow returns, the runtime library will check if the caller function is
available in SPM, and brings it back if it is not present in SPM.

Mapping conflicting functions (e.g. two functions when one function calls the other one fre-
quently) to the same region of SPM would considerably degrade the performance of the applica-
tion. The quality of mapping is decided by the way we estimate the cost of management overhead.
We want to have a mapping that will minimize such overhead.

The previous models of code management cost are calculated statically—they do not correctly
account for the interference caused by mapping a function into a region. The interference indicates
the overhead related to the replacement of each other when two functions are mapped to the same
region during execution, analogous to conflict misses in cache. This is measured by the total size of
memory transfers introduced. Code mapping for Software Managed Manycores (CMSM) [45] first
takes into consideration the interference to other functions every time it maps a function to a region
while modeling the cost, by adjusting the cost function to reflect the interference dynamically
while the mapping algorithm runs. It also exploits control flow information such as execution
paths and branches. Overall, it improves the accuracy of the cost estimation and greatly reduces
the management overhead.

CMSM starts by mapping each function to a separate region, and then greedily finds two regions
that incur the maximum reduction on the management overhead after merging, until the sum of the
remaining regions can fit into the available SPM space. Figure 8 illustrates CMSM using a simple
example. Assume the available SPM space is 256 KB and there are three functions—main, F1
and F2—in the program whose code sizes are all 128 KB. Function main calls function F/, which
further calls function F2 in a loop (indicated by the dashed line). Initially each function is placed
in a separate region. Since the sizes of the three regions is larger than the available SPM, CMSM
tries to merge regions. If the region {F1} and {F2} are merged, then every time FI calls F2 or F2
returns to F1, they need to replace the other function currently in the region, yielding an inefficient
mapping. On the other hand, if function F/ and F2 are mapped into separate regions, then no
conflicts due to competition for the same region will happen during the execution of these two
functions. Therefore, CMSM will get two new regions with '/ and F2 being placed separately, i.e.
{main, F1} and {F2}. Now that the new regions (both are 128 KB) can fit into the SPM (256 KB),
CMSM will stop at this point. More detailed examples and the underlying algorithm can be found
in [45]. Experimental results demonstrate that even with the extra instructions, CMSM can deliver
better performance than instruction caches.

3.1.4. Management of Inter-task Communication: Multiple tasks running on manycore pro-
cessors may need to communicate for some use cases of manycore processors. For example, a
large workload can be broken into smaller subproblems and distributed into multiple tasks so each
task can solve a subset of the problem in parallel to yield the outcome more efficiently. In such
an environment, it is sometimes unavoidable to have shared data, e.g. multiple cores may need
to read and write to the same memory locations for communication. Any modifications to such
shared memory have to be propagated to the other cores that subsequently access the same lo-
cations. In the presence of hardware cache coherence, the problem is automatically solved—the
hardware logic will make sure the modification is publicized. However as mentioned earlier, cache
coherence has been removed from recent multicore processors to simplify the hardware design and
save power as well as area [4, 9, 5, 7]. Therefore, the consistency of the shared data has to be done
by software.

12

PO P1 P2
[} — —
£ accalire
4-, [
relggse)
cquiire
rel¢gdse

acquiire

| rel¢gdse

acqulire

Fig. 9. The general flow of the proposed byte-grain coherence management. Each core records its
writes to shared memory locations, which is passed down to the subsequent cores that access the
same memory locations.

Designing an efficient coherence management is important for the overall system performance,
as otherwise a poorly designed coherence management scheme may incur overwhelming commu-
nication and computation overheads that may exceed the gains from parallel computing. Tradi-
tional coherence designs for multiprocessor systems typically employ coarse-grain management
granularity (e.g. page). Such techniques usually sacrifice computation for communication, which
makes lots of sense in traditional multiprocessors with computationally powerful processors yet
much slower inter-processor commutation [46]. However, in modern manycore processors, the
computing power of each core is relatively weak compared to traditional processors, while the
communication speed is much higher [47]. Therefore, these design choices must be reviewed and
techniques modified for multi-/many-core processors.

A byte-grain coherence management technique [48] can be used for managing shared data in
SPM-based manycore processors. Figure 9 shows the general flow of the approach. Each writing
core first requests the access to shared memory locations. After obtaining the permission, the core
starts to write to the shared memory locations exclusively, and record the modification. When the
core is finished, the subsequent core takes over and reads the record of writes, and applies the
change accordingly. To track the exact information of writes, a write notice [49] is maintained.
Instead of recording the values related to the write, it records the description of the write, e.g.
location, size. Write notices decide the granularity of coherence management: in a page-grain
coherence management, a write notice records which page is modified, while in the byte-grain
approach, a write notice records the starting address and the size of the write.

The main advantage of a byte-grain technique is the resulting savings in computation. To avoid
false sharing caused by multiple writers simultaneously writing to the same page, a page-grain
technique creates a duplicate of the page of interest, and then compares the duplicate with the
modified copies sent back by the writers to extract and apply the differences. It is not hard to
imagine that such comparisons will be computationally expensive. On the other hand, byte-grain

13

Timeline of single-core and multi-core SPM techniques

Multi-core works e eooeoeo0e o
Single-core works ° FENNE N NN BN
1995 2000 2005 2010 2015 2020

Year of publication

Fig. 10. The trend of SPM management research is shifting from single-core processors to multi-
/many-core processors.

management is able to avoid such comparisons completely. Instead of maintaining coherence
of a shared page, the byte-grain coherence management maintains the coherence of each write
to shared data—e.g. a memory object, or a data member of a class instance in object-oriented
languages—which zeros out the chance of false sharing.

3.2. Running Multiple Tasks On Each Core

Several research efforts have considered a different scenario where multiple tasks are simultane-
ously running on a single-core architecture and sharing a single physical SPM. [50] proposes a
compile-time analysis approach to support concurrent execution of tasks sharing the same SPM
resource. It assumes all working sets are known at compile time. To avoid the overhead of flushing
the whole content of the SPM during context switches, it uses an integer linear programming for-
mulation to find the best placement of data objects that minimizes the overlaps of the data object
placement between subsequent context switches. [51] provides a high-level programming interface
for SPM and DMA which can be used by the programmer for heap management. At runtime, a
dynamic memory manager responds to memory space requests and maps data to the physical SPM
as long as there is space. [52] integrates a scratchpad memory manager into the operating system.
In this work, after defining memory objects, a profit value is assigned to them by profiling the
access patterns. At runtime, different heuristics and methods are used to change the SPM content
after any context switch with the goal of having high SPM utilization for the set of currently active
tasks. [53] proposed three different strategies to allocate SPM space for instructions—a spatial
method that allocates each task its private space in the SPM; a temporal method that allows each
task to use the entire SPM during its time slice; a hybrid method that combines the previous two
methods.

3.3. Running Multiple Tasks on Multiple Cores

With the adoption of multi-/many-core platforms, the focus of SPM management research has
shifted from single-core to manycore processors (Figure 10). As a result, a slew of adaptive ap-
proaches have been proposed to make allocation decisions at runtime for multi-core architectures
with multiple tasks sharing and contending for SPM space. [54] specifies an ILP formulation that
integrates task scheduling with SPM partitioning and allocation at compile time to produce both
a schedule and static data allocation that optimize performance by profiling the set of tasks. [55]

14

1500000 | 4

Memory Accesses

2 e 3 i

canneal Memory Access Pattern ferret Memory Access Pattern
8000000
| 6000000
1000000 ‘ ‘ ‘
Time Time
Fig. 11. Number of memory accesses measured periodically for the execution of the canneal and
ferret benchmarks.

Memory Accesses

generates SPM allocation of arrays using static analysis at compile time for a fixed set of tasks
executing on a MPSoC sharing distributed SPMs in order to both improve performance and min-
imize energy consumption in embedded systems. Similarly, [56] defines an OpenMP extension
and compiler optimization to allocate parts of data arrays to distributed SPM for parallel programs
executing on an MPSoC. They improve performance by locating data near the processing elements
that access it most frequently. [57] proposes algorithms that use profiling information to produce
SPM mappings in order to minimize the worst case response time of a multitasking workload shar-
ing SPM. [58] outline another integrated approach to task scheduling and SPM allocation, but only
using static analysis. [59] profiles a fixed set of multimedia applications with varying inputs and
passes this information to a runtime routine. The runtime routine monitors the application behav-
ior and attempts to match it to one of the known profiles, and maps data to SPM accordingly to
reduce energy consumption. [60] defines a framework that allows programmers to guide runtime
decisions for allocating heap data to SPM in order to reduce energy consumption. [61] and [62]
both propose hybrid memory hierarchies (i.e. caches + SPM) that support globally addressable and
coherent address spaces.

3.3.1. Virtualization Strategies for SPMs in Manycores: SPM virtualization aims to design
effective memory hierarchies for modern manycore platforms, and provide applications with the
convenience of a transparently managed address space, while simultaneously using developers’
guidance to mitigate the complexity of managing shared memory, as well as utilizing the non-
uniform characteristics of the underlying hardware. These techniques are designed to wisely al-
locate SPM space among tasks in the multitasking environment, which manifest their complexity
in the number of tasks that are concurrently executing and the variety in their resource utiliza-
tion, especially with memories—utilization of data memory can vary not only between tasks in a
workload, but also within a single task over the course of its execution (Figure 11).

When software-programmable on-chip memory is contained in an additional layer of virtual-
ization, application developers can specify when and what data to store near the core executing
its instructions without knowing the intimate details of the underlying memory architecture. The
runtime software (as part of the operating system) can map the data to any physical location on-
or off-chip. Additional address translations to this intermediate virtualization layer must be stored
to enable accesses to the data in the address space. This can be done with a translation table that
maps virtual addresses of the task executing on the core to intermediate physical addresses (IPA),
which is essentially a physical address in on-chip SPM space.

In the SPM hierarchy outlined Figure 12, the Runtime Memory Manager can account for un-

15

Threads

0s Process Memory SPM
Management Tt Management Manager
Platform S
[R] [R]-
CPU CPU
MMU MMU
SPM SPM :
R] (R
CPU CPU
MMU MMU
SPM SPM

Fig. 12. Example architecture with data SPMs controlled by a Runtime Memory Manager that
monitors running tasks and performs SPM data mapping.

predictable workloads and support oversubscription of SPM space. Additionally, we can expose
characteristics of the memory banks to the runtime manager to further inform mapping decisions.

3.3.2. SPM Virtualization in Bus-based Manycores: [63] introduced the concept of vir-
tual SPMs (vSPMs) that allows programmers to assume access to the entire on-chip memory
space through virtualized address spaces. Each thread can therefore assume it has access to a
dedicated contiguous memory (Figure 13 (b)) without considering interference from competing
threads(Figure 13 (a)). A virtualization layer is responsible for determining what data is placed
on-chip and what data is placed off-chip.

This layer can be implemented as a piece of software running at the operating system level as
a kernel module (SoftSPMVisor) or as a hardware IP block (HardSPMVisor) acting like an ar-
biter that serves requests from its masters (processing cores) to the on-chip distributed SPMs. The
SoftSPM Visor has the advantage of being flexible, portable (across various hardware configura-
tions), and requires no extra hardware. However, it comes at the cost of higher power/performance
overheads than the HardSPM Visor.

SPMVisor requires the programmer and/or compiler to define the priority of the data blocks.
Moreover, specifying task-level priorities can help the allocation engine make runtime decisions
for efficient on-chip resource utilization when many tasks contend for the limited physical SPM
space.

SPMVisor provides programmers with APIs they can use to create vSPMs on-demand and
delete them when they are no longer needed. Task-level priorities are also passed to the virtualiza-
tion layer through the APIs. The virtualization layer receives all the vSPM creation requests from
all threads, and based on the specified priorities, decides which will be mapped to on-chip SPM

16

O A
i)
L IK SPM
: (K|
4k-1 ¢
SPM ak A
1K
(a) Tasks compete for physical SPM space PEM
I 8k-1
=
Darker c.olor Main
means higher
priority block Memory
vSPM2 vSPM1
nGB- 1y
(b) Tasks see their own virtual SPM space (c) Block-based priority-driven SPM

allocation in SPMVisor

Fig. 13. Virtualizing SPMs in SPMVisor approach

and which will stay off-chip due to limited on-chip memory capacity.

In order to support the ability to virtualize more vSPMs than there are physical SPMs, [63]
defines the notion of Protected Evict Memory (PEM) space. Since SPM space is very precious,
SPMVisor utilizes block-based priorities in order to determine exactly what data should be copied
to the on-chip memory. Other vSPMs will be mapped to the PEM in off-chip memory (Figure 13
(c)). A sample priority mechanism would be data utilization given by the ratio: (# of accesses to
a block / cost of bringing the block to on-chip SPM). The utilization metric determines the impact
of mapping a given block to SPM/PEM memory space on the energy consumption of the memory
subsystem and the performance of the thread accessing that block. It is more beneficial to place
blocks with high utilization (darker blocks in Figure 13 (c)) in the SPM space as this would yield
better energy efficiency and performance.

Various policies can be defined for the SPMVisor that specify how to use priorities and make
allocation decisions: first-fit, or fairness (e.g. Round Robin). Of course, the more complex the
back-end allocation mechanism, the higher the overheads introduced into the system. More details
can be found in [63].

Experimental results show that SPMVisor reduces execution time by 71% on average and re-
duces the on-chip memory power consumption by 79% on average.

[64] extends the idea of SPMVisor and presents a Variability-aware Memory Virtualization
(VaMV) approach that allows programmers to exploit memory variability in order to reduce power
consumption through memory virtualization, without exposing the underlying variability to the
programmers. VaMV considers two types of SPM memories: 1) Normal SRAM and 2) Voltage-
scaled SRAM including side-effects (e.g. process variations, higher access latency, etc.). The
device signatures are available to VaMV Visor through sensing. VaMV Visor uses the device signa-

17

tures and prioritizes the memory resources according to their characteristics (e.g. power consump-
tion), and selectively maps data to the best-fitting memory resource based on the defined policy
(e.g. high-utilization data to low-power physical memory). The same approach can be applied
to variability affected DRAM banks for off-chip memory as well. VaMV is capable of reducing
dynamic power consumption by 63% on average while reducing total execution time by an average
of 34% by exploiting both kinds of variabilities.

SPMVisor does not account for the different characteristics of the hybrid memory technologies
consisting of SRAMs combined with emerging NVMs. HaVOC [65] extends the idea of SPM Visor
and introduces the concept of virtual NVMs (vNVMs), which behave similarly to vSPMs, meaning
that the runtime environment transparently allows each thread to manage its own set of vVNVMs
through a set of minimalistic APIs. Programmers (through annotations) and compilers (through
static analysis) can then specify hybrid memory-aware mapping policies for their data/instruction
blocks at compile-time. Each policy attempts to map data to virtual SPMs/NVMs. The HaVOC
runtime system enforces these policies and decides how to best utilize the underlying memory re-
sources in order to optimize SPM energy consumption. [65] also introduces a new metric called
data volatility to facilitate simpler definition of mapping policies. Data volatility is defined as
the write frequency of a piece of data over its accumulated lifetime. This metric is useful when
deciding whether data is worth (cost effective) being mapped onto NVM. Highly volatile data im-
plies that at some point the cost of keeping that data in NVM during its entire lifetime might be
greater than leaving it in main memory. As a result, when two competing threads request NVM
space, the estimated cost function (e.g. energy savings) will be used to prioritize allocation of
on-chip space, while volatility can be used as a tie breaker and prediction metric of cost fluctu-
ation. HaVOC is able to reduce execution time and energy by 60.8% and 74.7% respectively on
a chip-multiprocessor with hybrid NVM/SPMs compared to traditional multitasking based SPM
allocation policies.

3.3.3. SPM Virtualization in Large-Scale Manycores: The concept of storage clouds has
been previously explored for data centers.[66] has adapted a similar concept to propose a possible
solution (called SPMCloud) for managing software programmable memories in scalable manycore
platforms. In the SPMCloud scheme, each task can access memories from a distributed mem-
ory subsystem through virtualization. On-demand allocation of virtual memories, introduced in
SPMVisor, is adapted to manycore platforms and enhanced by priority-driven allocation of the
software-programmable memory space.

SPMCloud uses a hierarchical approach to divide the entire platform into multiple regions.
Two different enterprise-network-inspired configurations for SPMs are proposed: (1) embedded
Network Attached Storage (eNAS), which provides a single standalone reliable on-chip memory
subsystem for each region; and (2) embedded Storage Area Network (eSAN), which distributes
memories to every single node of the region.

SPMCloud introduces a conceptual way of managing memory in manycore platforms. Ex-
perimental results on Mediabench/CHStone benchmarks show that by using SPMCloud’s fully
distributed memory subsystem, 48% energy savings and 70% latency reduction can be achieved
on average over state-of-the-art NoC memory techniques.

SPMPool builds on this concept in order to demonstrate a detailed solution for dynamic man-
agement of SPM-based manycore platforms. In manycore platforms, cores are often under-utilized,
as are the intra-core private on-chip memories. Furthermore, concurrently executing tasks exhibit
high variability of memory intensity during their execution, which makes on-chip memory re-

18

Application 1 Application 2 Application 3 eee (Applicationn

Application| |Application Runtime Manager SPMPool Memory
Mapper Scheduler Managemer

~

Core : MMU
------ ! [Transl.
:,.‘. SPM E Table
Seceee-- Interconnect Congfol

/

SPMPool
| Architectural Assists

Fig. 14. System-level view of SPMPool

sources more valuable for some tasks than others. Limiting tasks to their local memory can often
result in poor resource utilization.

To address these issues, [67] proposes SPMPool, which dynamically shares SPM resources
between concurrently running tasks. Sharing is feasible through virtualization: each task has a
private virtual address space and a runtime manager maps virtual addresses to physical on-chip
memories by exploiting underutilized memory resources and adapting to the memory needs of
workloads.

Figure 14 shows a system level view of SPMPool that consists of three components:

1) Pools of SPMs: in a tiled many core platform equipped with NoC, tasks inside a pool can
share SPMs based on their dynamic memory requirements.

2) SPMPool Memory Manager: The SPMPool runtime memory manager is in charge of deter-
mining the data placement for the entire set of tasks running concurrently. The tasks are assumed
to be profiled beforehand and all of the virtual memory pages that are accessed throughout the
execution of that task are tagged with a weight metric. This weight metric is meant to represent the
priority of each virtual page. The more a virtual page is accessed, the higher the calculated weight
metric will be and hence the priority of that page during SPM allocation.

The memory manager is triggered anytime a new task enters the system or a task finishes its
execution. Following the trigger, it updates its internal bookkeeping list of live memory pages as

19

Tile O Tile 1

Core 0 A_MMU Core1 | MMU
- ; Transl. i | Transl.
SPM i Table SPM E Table

On-Chip
Interconnect

A

Interconnect Control Interconnect Control

Fig. 15. Remote SPM access in SPMPool

well as their priorities. This list along with the task-to-core mappings can then be used to update the
data placement. However, it is infeasible to find the optimal data placement at runtime due to time
and memory constraints. To alleviate that, [67] proposes heuristics to find a near-optimal placement
in a reasonable amount of time. The general intuition behind all of the presented heuristics is to
keep the highest weighted pages on-chip and close to the core where they are accessed from.

3) SPMPool Architectural Assists: SPMPool enables tasks to address and access remote SPMs,
as well as store information about the physical location of their data. Each tile has an augmented
translation table that contains virtual memory to physical memory mapping information for any
of the task’s pages that are stored on-chip (Figure 15). If an entry for the page exists in the TLB,
a local or remote SPM access is initiated. If a task’s page is not in its local translation table,
the memory access defaults to a standard main memory access. The MMU on each tile contains
hardware to handle direct SPM access requests to and from remote tiles. Figure 15 illustrates a
sample remote SPM access by an executing task.

For workloads with varying inter-application memory-intensity and configurations ranging from
16 to 256 cores, SPMPool can achieve up to 76% reduction in memory access latency compared
to the approach that limits executing cores to use their local SPMs.

4. Conclusions and Future Work

Software Programmable Memories (SPMs) are those that—in contrast to caches—have to be ex-
plicitly controlled by the software through data movement instructions. Owing the simpler, power-
efficient design, and promise of high scalability, these memories are being considered for modern
manycore architectures. Since the SPMs have to be explicitly controlled in software, two kinds
of capabilties must be added in the software: 1) manage the data of a task on a single SPM, and
ii) partition the data of multiple tasks on the multiple SPMs of the manycore system. This article
surveyed a sampling of previous work on using SPMs in this context, and also discussed some new
research developments in this direction. While the earlier work on managing task data on SPM
proposed static techniques (where the mapping of the data on the SPM does not change), later
work researched dynamic techniques that could further improve system performance by changing
the data that is mapped to the SPM at runtime. Many early efforts suffered from limitations such
as the inability to handle applications with pointers, and recursion. We outlined new techniques
enabling efficient execution of any task on an SPM based core, that manage all task components
(stack, heap, global and code) comprehensively, which also provide support for inter-task com-
munication. With regard to the sharing of multiple SPMs in a many-core many-task environment,
early research focused on the sharing of one SPM by multiple tasks executing on a core. Tech-

20

niques were then developed to spread the heap data among globally addressed SPM space. Recent
research has attempted to solve the data distribution problem for multiple tasks executing on multi-
ple cores, managing data on multiple SPMs through SPM virtualization. These runtime techniques
are typically managed by a runtime monitor that operates at the higher level between applications
and the operating system, where this monitor manages the space on the SPMs, and even promotes
oversubscription.

While there is a lot of ongoing work aiming to highlight feasibility and advantages of an SPM
based manycore system, much more is needed to demonstrate the feasibility and advantages of
executing the entire software stack—including the system software—on a many-core SPM based
architecture. Equally important are techniques that address the multi-dimensional constraints faced
by emerging embedded systems: power, energy, resilience, aging, etc. The emergence of newer
memory technologies and interconnection schemes provide both opportunities as well as chal-
lenges for the efficient design of SPM-based architectures. Finally, research needs to address the
holistic combination of cache and SPM based manycore architectures, so that applications can
seamlessly benefit from the inherent benefits of hardware caching as well as software-managed
SPMs in an adaptive manner.

This work was partially supported by the NSF Variability Expedition award CCF-1029783, CCF
1055094 (CAREER), and CNS 1525855, and CCF-0916652. We would also like to acknowledge
Dr. Ke Bai, and Dr. Luis Angel D. Bathen for their contributions.

5. References

[1] M. A. Heinrich, “The Performance and Scalability of Distributed Shared-memory Cache
Coherence Protocols,” Ph.D. dissertation, Stanford University, Stanford, CA, USA, 1999,
aAl9924431.

[2] D. Abts, S. Scott, and D. J. Lilja, “So Many States, So Little Time: Verifying Memory Coher-
ence in the Cray X1,” in Proceedings of the International Parallel and Distributed Processing
Symposium, 2003.

[3] T. Li and L. K. John, “ADir_pNB: A Cost-Effective Way to Implement Full Map Directory-
Based Cache Coherence Protocols,” IEEE Trans. Comput., vol. 50, no. 9, pp. 921-934, Sep.
2001.

[4] Intel Lab, “The SCC Programmer’s Guide,” http://www.intel.com, Mar 2014.

[5] B. D. de Dinechin, P. G. de Massas, G. Lager, C. Léger, B. Orgogozo, J. Reybert, and
T. Strudel, “A distributed run-time environment for the kalray mppa-256 integrated many-
core processor,” Procedia Computer Science, 2013.

[6] C. Ebert and C. Jones, “Embedded Software: Facts, Figures, and Future,” Computer, vol. 42,
no. 4, pp. 42-52, April 2009.

[7] B. Flachs, S. Asano, S. H.Dhong, H. Hofstee, G. Gervais, R. Kim, T. Le, P. Liu, J. Leenstra,
J. Liberty, B. Michael, H.-J. Oh, S. Mueller, O. Takahashi, A. Hatakeyama, Y. Watanabe,
N. Yano, D. Brokenshire, M. Peyravian, V. To, and E. Iwata, “The microarchitecture of the

synergistic processor for a cell processor,” Solid-State Circuits, IEEE Journal of, vol. 41,
no. 1, pp. 63-70, Jan 2006.

21

[8] ARM, “ARMI1176JZF-S Technical Reference Manual,” http://infocenter.arm.com/, Jul 2004.

[9] Texas Instrument, “TMS320C6678 Multicore Fixed and Floating-Point Digital Signal Pro-
cessor (Rev. E),” http://www.ti.com, Jan 2012.

[10] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel, “Scratchpad Memory:
Design Alternative for Cache on-chip Memory in Embedded Systems,” in Proc. of CODES,
2002.

[11] P. R. Panda, N. D. Dutt, and A. Nicolau, “Efficient Utilization of Scratch-Pad Memory in
Embedded Processor Applications,” in Proceedings of the 1997 European Conference on
Design and Test, ser. EDTC "97. IEEE Computer Society, 1997, pp. 7—.

[12] J. Sjodin and C. von Platen, “Storage Allocation for Embedded Processors,” in Proceedings

of the International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, 2001.

[13] O. Avissar, R. Barua, and D. Stewart, “Heterogeneous memory management for embedded
systems,” in Proceedings of the International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, 2001.

[14] ——, “An Optimal Memory Allocation Scheme for Scratch-pad-based Embedded Systems,”
Trans. on Embedded Computing Sys., vol. 1, no. 1, pp. 6-26, 2002.

[15] N. Nguyen, A. Dominguez, and R. Barua, “Memory Allocation for Embedded Systems with
a Compile-time-unknown Scratch-pad Size,” in Proceedings of the International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems, 2005, pp. 115-125.

[16] M. Verma, S. Steinke, and P. Marwedel, “Data Partitioning for Maximal Scratchpad Usage,”
in Proceedings of the Asia and South Pacific Design Automation Conference, 2003.

[17] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel, “Assigning Program and Data Objects to
Scratchpad for Energy Reduction,” in Proceedings of the Design, Automation Test in Europe
Conference Exhibition, 2002, p. 409.

[18] I. Puaut and C. Pais, “Scratchpad Memories vs Locked Caches in Hard Real-time Systems:
A Quantitative Comparison,” in Proceedings of the Design, Automation Test in Europe Con-
ference, 2007.

[19] H. Wu, J. Xue, and S. Parameswaran, “Optimal WCET-aware Code Selection for Scratchpad
Memory,” in Proceedings of the 10th ACM International Conference on Embedded Software,
2010.

[20] Y. Kim, D. Broman, J. Cai, and A. Shrivastava, “WCET-Aware Dynamic Code Management
on Scratchpads for Software-Managed Multicores,” in In proceedings of the 20th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS), 2014.

[21] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen, “WCET Centric Data Allocation
to Scratchpad Memory,” in Proceedings of the 26th IEEE International Real-Time Systems
Symposium, 2005.

22

[22] Q. Wan, H. Wu, and J. Xue, “WCET-aware Data Selection and Allocation for Scratchpad
Memory,” in Proceedings of the 13th ACM SIGPLAN/SIGBED International Conference on
Languages, Compilers, Tools and Theory for Embedded Systems, 2012.

[23] J.-F. Deverge and 1. Puaut, “WCET-Directed Dynamic Scratchpad Memory Allocation of
Data,” in Proceedings of the 19th Euromicro Conference on Real-Time Systems, 2007.

[24] P. Marwedel, L. Wehmeyer, M. Verma, S. Steinke, and U. Helmig, “Fast, Predictable and
Low Energy Memory References Through Architecture-aware Compilation,” in Proceedings
of the Asia and South Pacific Design Automation Conference, 2004.

[25] S. Udayakumaran and R. Barua, “Compiler-decided Dynamic Memory Allocation for
Scratch-pad Based Embedded Systems,” in Proceedings of the International Conference on
Compilers, Architecture and Synthesis for Embedded Systems, 2003.

[26] A.Dominguez, S. Udayakumaran, and R. Barua, “Heap Data Allocation to Scratch-pad Mem-
ory in Embedded Systems,” J. Embedded Comput., vol. 1, no. 4, pp. 521-540, 2005.

[27] L. Li, L. Gao, and J. Xue, “Memory Coloring: A Compiler Approach for Scratchpad Memory
Management,” in Proc. of PACT, 2005.

[28] M. T. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I. Kadayif, and A. Parikh,
“Dynamic Management of Scratch-Pad Memory Space,” in Proceedings of the Design Au-
tomation Conference, 2001, pp. 690-695.

[29] J. Hu, C. Xue, Q. Zhuge, W.-C. Tseng, and E.-M. Sha, “Towards Energy Efficient Hybrid
On-chip Scratch Pad Memory with Non-volatile Memory,” in Proceedings of the Design,
Automation Test in Europe Conference Exhibition, 2011.

[30] P. Panda, N. D. Dutt, and A. Nicolau, “On-chip vs. Off-chip Memory: the Data Partitioning
Problem in Embedded Processor-based Systems,” pp. 682—704, 2000.

[31] F. Poletti, P. Marchal, D. Atienza, L. Benini, F. Catthoor, and J. M. Mendias, “An Integrated
Hardware/Software Approach for Run-time Scratchpad Management,” in Proceedings of the
Design Automation Conference, 2004.

[32] Y. Ishitobi, T. Ishihara, and H. Yasuura, “Code and data placement for embedded processors
with scratchpad and cache memories,” Signal Processing Systems, vol. 60, no. 2, pp. 211-224,
2010.

[33] S. Udayakumaran, A. Dominguez, and R. Barua, “Dynamic Allocation for Scratch-pad Mem-
ory Using Compile-time Decisions,” ACM TECS, vol. 5, no. 2, pp. 472-511, 2006.

[34] M. Verma and P. Marwedel, “Overlay Techniques for Scratchpad Memories in Low Power
Embedded Processors,” IEEE Trans. Very Large Scale Integr. Syst., vol. 14, no. 8, pp. 802—
815, Aug. 2006.

[35] A.Pabalkar, A. Shrivastava, A. Kannan, and J. Lee, “Sdrm: Simultaneous determination of re-
gions and function-to-region mapping for scratchpad memories,” in High Performance Com-
puting - HiPC 2008, ser. Lecture Notes in Computer Science, P. Sadayappan, M. Parashar,
R. Badrinath, and V. Prasanna, Eds., 2008, vol. 5374, pp. 569-582.

23

[36] B. Egger, J. Lee, and H. Shin, “Dynamic Scratchpad Memory Management for Code in
Portable Systems with an MMU,” ACM Trans. Embed. Comput. Syst., vol. 7, no. 2, pp. 11:1-
11:38, Jan. 2008.

[37] B. Egger, S. Kim, C. Jang, J. Lee, S. L. Min, and H. Shin, “Scratchpad Memory Manage-
ment Techniques for Code in Embedded Systems Without an MMU,” IEEE Trans. Comput.,
vol. 59, no. 8, pp. 1047-1062, 2010.

[38] B. Egger, J. Lee, and H. Shin, “Scratchpad Memory Management in a Multitasking Envi-
ronment,” in Proceedings of the 8th ACM International Conference on Embedded Software,
2008.

[39] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown,
“MiBench: A Free, Commercially Representative Embedded Benchmark Suite,” in Proceed-
ings of the IEEE International Workshop on Workload Characterization, 2001.

[40] A. Kannan, A. Shrivastava, A. Pabalkar, and J. Lee, “A Software Solution for Dynamic Stack
Management on Scratchpad Memory,” in Proceedings of the Conference on Asia and South
Pacific Design Automation, 2009, pp. 612-617.

[41] K. Bai, A. Shrivastava, and S. Kudchadker, “Stack Data Management for Limited Local Mem-
ory (LLM) Multi-core Processors,” in Proceedings of the International Conference on Appli-
cation Specific Systems, Architectures and Processors (ASAP), 2011, pp. 231-234.

[42] J. Lu, K. Bai, and A. Shrivastava, “SSDM: Smart Stack Data Management for Software
Managed Multicores (SMMs),” in Proceedings of the 50th Design Automation Conference
(DAC), 2013.

[43] K. Bai and A. Shrivastava, “Heap data management for limited local memory (Ilm) multi-
core processors,” in Proceedings of the 23th international symposium on System Synthesis
(CODES+I1SSS). New York, NY, USA: ACM Press, 2010, pp. 317-326, iSBN.

[44] ——, “Automatic and Efficient Heap Data Management for Limited Local Memory Multi-
core Architectures,” in Proceedings of the International Conference on Design Automation
and Test in Europe, 2013.

[45] K. Bai, J. Lu, A. Shrivastava, and B. Holton, “Cmsm: An efficient and effective code man-
agement for software managed multicores,” in Proceedings of the international symposium
on Hardware/Software Codesign and System Synthesis (CODES+I1SSS), 2013.

[46] AMD, “HPC Processor Comparison,” July 2012. [Online]. Available: http://sites.amd.com/
us/Documents/49747D_HPC_Processor_Comparison_v3_July2012.pdf

[47] IBM Technical Library, “Cell Broadband Engine Architecture and its First Implementation.”
[Online]. Available: http://www.ibm.com/developerworks/power/library/pa-cellpert/

[48] J. Cai and A. Shrivastava, “Software Coherence Management on Non-coherent Cache Multi-
cores,” in 2016 29th International Conference on VLSI Design and 2016 15th International
Conference on Embedded Systems (VLSID), Jan 2016, pp. 397-402.

[49] P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy Release Consistency for Software Dis-
tributed Shared Memory,” in Proceedings of the 19th Annual International Symposium on
Computer Architecture, 1992.

24

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

L. Gauthier, T. Ishihara, H. Takase, H. Tomiyama, and H. Takada, “Minimizing Inter-task
Interferences in Scratch-pad Memory Usage for Reducing the Energy Consumption of Multi-

task Systems,” in Proceedings of the International Conference on Compilers, Architectures
and Synthesis for Embedded Systems, 2010.

P. Francesco, P. Marchal, D. Atienza, L. Benini, F. Catthoor, and J. M. Mendias, “An Inte-
grated Hardware/Software Approach for Run-time Scratchpad Management,” in Proceedings
of the 41st Annual Design Automation Conference, 2004.

R. Pyka, C. FaB3bach, M. Verma, H. Falk, and P. Marwedel, “Operating System Integrated En-
ergy Aware Scratchpad Allocation Strategies for Multiprocess Applications,” in Proceeding-
sof the 10th International Workshop on Software &Amp; Compilers for Embedded Systems,
2007.

H. Takase, H. Tomiyama, and H. Takada, “Partitioning and Allocation of Scratch-pad Mem-
ory for Priority-based Preemptive Multi-task Systems,” in Proceedings of the Design, Au-
tomation Test in Europe Conference Exhibition, 2010.

V. Suhendra, C. Raghavan, and T. Mitra, “Integrated Scratchpad Memory Optimization and
Task Scheduling for MPSoC Architectures,” in Proceedings of the International Conference
on Compilers, Architecture and Synthesis for Embedded Systems, 2006.

D. Cho, S. Pasricha, 1. Issenin, N. Dutt, Y. Paek, and S. Ko, “Compiler Driven Data Lay-
out Optimization for Regular/Irregular Array Access Patterns,” in Proceedings of the ACM
SIGPLAN-SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems,
2008.

A. Marongiu and L. Benini, “An OpenMP Compiler for Efficient Use of Distributed Scratch-
pad Memory in MPSoCs,” Computers, IEEE Transactions on, vol. 61, no. 2, pp. 222-236,
2012.

V. Suhendra, A. Roychoudhury, and T. Mitra, “Scratchpad Allocation for Concurrent Em-
bedded Software,” ACM Trans. Program. Lang. Syst., vol. 32, no. 4, pp. 13:1-13:47, Apr.
2010.

L. Zhang, M. Qiu, W.-C. Tseng, and E.-M. Sha, “Variable Partitioning and Scheduling for
MPSoC with Virtually Shared Scratch Pad Memory,” Journal of Signal Processing Systems,
vol. 58, no. 2, pp. 247-265, 2010.

D. Cho, S. Pasricha, 1. Issenin, N. Dutt, M. Ahn, and Y. Paek, “Adaptive Scratch Pad Mem-
ory Management for Dynamic Behavior of Multimedia Applications,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 4, pp. 554-567,
20009.

N. Deng, W. Ji, J. Li, and Q. Zuo, “A Semi-automatic Scratchpad Memory Management
Framework for CMP,” in Proceedings of the 9th International Conference on Advanced Par-
allel Processing Technologies, 2011.

L. Alvarez, L. Vilanova, M. Moreto, M. Casas, M. Gonzalez, X. Martorell, N. Navarro,
E. Ayguadé, and M. Valero, “Coherence Protocol for Transparent Management of Scratchpad
Memories in Shared Memory Manycore Architectures,” in Proceedings of the 42nd Annual
International Symposium on Computer Architecture, 2015.

25

[62] R. Komuravelli, M. D. Sinclair, J. Alsop, M. Huzaifa, M. Kotsifakou, P. Srivastava, S. V.
Adve, and V. S. Adve, “Stash: Have Your Scratchpad and Cache It Too,” in Proceedings of
the 42nd Annual International Symposium on Computer Architecture, 2015.

[63] L. A. D. Bathen, N. D. Dutt, D. Shin, and S.-S. Lim, “SPMVisor: Dynamic Scratchpad Mem-
ory Virtualization for Secure, Low Power, and High Performance Distributed On-chip Mem-
ories,” in Proceedings of the Seventh IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis, 2011.

[64] L. A. D. Bathen, N. D. Dutt, A. Nicolau, and P. Gupta, “VaMV: Variability-aware Memory
Virtualization,” in Proceedings of the Conference on Design, Automation and Test in Europe,

2012.

[65] L. Bathen and N. Dutt, “HaVOC: A hybrid memory-aware virtualization layer for on-
chip distributed ScratchPad and Non-Volatile Memories,” in Proceedings of the 49th
ACM/EDAC/IEEE Design Automation Conference, 2012.

[66] L. A. D. Bathen and N. D. Dutt, “SPMCloud: Towards the Single-Chip Embedded ScratchPad
Memory-Based Storage Cloud,” ACM Trans. Des. Autom. Electron. Syst., vol. 19, no. 3, pp.
22:1-22:45, Jun. 2014.

[67] H. Tajik, B. Donyanavard, J. Jahn, J. Henkel, and N. Dutt, “SPMPool: Runtime
SPM Management for Embedded Many-Cores,” Center for Embedded Computer Systems,
University of California, Irvine, Tech. Rep. CECS TR 14-08, July 2014. [Online]. Available:
http://cecs.uci.edu/files/2014/07/CECS-TR-14-08.pdf

26

