
Time in Cyber-Physical Systems
Aviral Shrivastava∗, Patricia Derler†, Ya-Shian Li Baboud‡, Kevin Stanton§

Mohammad Khayatian∗, Hugo A. Andrade†, Marc Weiss‡, John Eidson¶, Sundeep Chandhoke†
∗Arizona State University, †National Instruments, §Intel Corporation

‡National Institute of Standards and Technology, ¶University of California, Berkeley

Abstract—Many modern cyber-physical systems (CPS), es-
pecially industrial automation systems, require the actions of
multiple computational systems to be performed at much higher
rates and more tightly synchronized than is possible with ad
hoc designs. Time is the common entity that computing and
physical systems in CPS share, and correct interfacing of that is
essential to flawless functionality of a CPS. Fundamental research
is needed on ways to synchronize clocks of computing systems
to a high degree, and on design methods that enable building
blocks of CPS to perform actions at specified times. To realize
the potential of CPS in the coming decades, suitable ways to
specify distributed CPS applications are needed, including their
timing requirements, ways to specify the timing of the CPS
components (e.g. sensors, actuators, computing platform), timing
analysis to determine if the application design is possible using
the components, confident top-down design methodologies that
can ensure that the system meets its timing requirements, and
ways and methodologies to test and verify that the system meets
the timing requirements. Furthermore, strategies for securing
timing need to be carefully considered at every CPS design stage
and not simply added on. This paper exposes these challenges of
CPS development, points out limitations of previous approaches,
and provides some research directions towards solving these
challenges.

I. INTRODUCTION

Next-generation cyber-physical systems (CPS) need to pro-
vide seamless coordination of the cyber (software and hard-
ware) components for enabling autonomous, self-organizing
applications that are dynamically responsive to system de-
mands. The Internet of Things (IoT) surrounds us with sen-
sors, computing, communication and control components to
provide capabilities of translating real-time measurements into
actionable intelligence for unparalleled awareness, coordina-
tion, interaction and efficiency. The notion of efficiency is
often equated with time and timeliness. Timely detection of
anomalies in a system, maximizing the use of energy at times
where tariffs are lowest, or locating a victim in a disaster
are just a few examples of the need for time awareness in
CPS for coordinating potentially ad hoc sources of information
and providing timely actionable intelligence to optimize the
outcome.

‡Official contribution of the National Institute of Standards and Technology;
not subject to copyright in the United States. Disclaimer: Certain commercial
entities, equipment, or materials are identified in this document in order to
describe the experimental design or to illustrate concepts. Such identification
is not intended to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the
purpose.

One example of a complex, spatially expansive, and de-
centralized CPS is the power system. Achieving the green
imperative entails efficient management of intermittent energy
sources (wind and solar), storage (batteries), and loads (electric
vehicles). The reliance on variable generation sources requires
a responsive, flexible, adaptive, local, and fast management
model [1]. Enabling the Smart Grid, as in other complex
heterogeneous CPS systems, requires systems that are time
synchronized and time aware. The accuracy of the timing and
the timeliness of the data directly impact the accuracy of the
measurement results [2], [3], [4].

A proper design methodology is needed in order to design
robust, coordinated and time-sensitive CPS that meet the reli-
ability and resiliency demands, and remain stable to transient
disturbances and recover from faults in real-time [5]. Figure 1
shows the parts of the problem, and outlines the steps to
developing such a methodology.

platform
independentApplication

Requirements:
functional, timing, ...

Application Model:
algorithms, timing

specifications

Platform:
CPS Nodes
(consisting

of computing
elements, sensors,
actuators, network

accessors),
network

components

Platform
Model:

characterization
of platform

timing
specifications

Design and Implementation

Test framework:
Does the implementation satisfy the application requirements?

III

V

IV

IV

VI

VII

Figure 1: CPS Design Process: from capturing application
requirements to testing

The first step towards confident design is to specify the
timing requirements of the CPS application, and the timing
specifications of the CPS components. Adequate consideration
also needs to be given at this stage to the extent to which
timing services need to be secured. These requirements and
specifications can derive the rest of the system design, analysis
and testing. Timing requirements of CPS (section III) vary
widely depending on application, from requiring no synchro-
nization between the CPS nodes to the CPS nodes performing
the same action at the same moment to within microsecond or
even sub-microsecond level accuracy. Achieving the timing

requirements in complex, ad hoc systems requires explicit
timing specifications of the CPS components (section IV), i.e.,
the components that the CPS is built of, e.g., sensors, actuators,
computing platform, network. While the timing specifications
of sensors and actuators are more clearly defined and easier to
specify, the timing specifications of the computing platforms
are much more complex and difficult to analyze and specify.
Given satisfiability of the application’s timing requirements,
we need a time-aware design methodology (section VI) that
can map the CPS application onto the platform in such a way
that all the timing requirements of the application will be met.
This may require synchronization among the subsets of CPS
nodes, and making sure that each CPS node is able to perform
its tasks in a timely manner. However, even after a confident
design, there is a need to design tests that can determine if
all the timing requirements are being met (section VII). Since
exhaustive testing may be infeasible, it will be important to
design systems which provide some monotonic properties with
respect to time, so that the test space can be reduced.

II. THE TIMING CHALLENGE IN CPS

One of the key challenges in designing distributed CPS is
establishing a common notion of time between the physical
world where time is continuous and the computational system,
where time is incremented in discrete units. In order to
achieve tight orchestration of system components to meet
time-sensitive application demands, the CPS needs a common
physical time scale, most commonly achieved by clock syn-
chronization, and a means to specify temporal behavior.

Clock synchronization can improve distributed algorithms
by replacing communication with local computation [6]. Clock
synchronization is critical for data fusion as embedded systems
provide distributed measurements to monitor and react to
physical behavior. The challenge in clock synchronization over
a large spatial expanse lies first in the ability to account for the
delay in transmitted clock signals, and second in the ability
for components to reliably receive timing data and be resilient
to loss of a timing source.

Beyond sensing, a CPS involves computing and actuating
in control loops. Computing and communication processes
must be achieved within time limits and control commands
are typically time-sensitive and require time-aware networks
for transmitting them with bounded latencies. With current
computers and networks that are not time aware, it is difficult
to achieve bounded latencies for complex distributed CPS.

Another critical aspect is the ability to specify the temporal
behavior of the CPS. The intelligence behind the CPS lies in
the ability to make timely updates of system models to enable
sufficient dynamic understanding in order to predict behavior
and take action. In power systems, for example, the amount
of power generated from a renewable source or the amount of
demand on loads can vary on a relatively fast time scale [2].
Verifiable semantics are needed to describe temporal ordering,
frequency, latency, and simultaneity in order to coordinate all
the components of the system and achieve the application
goals.

Timing constraints are often implicit in the design of
embedded systems [7]. Existing methods include costly cus-
tomized solutions where correct timing behavior is achieved,
through trial and error and only on a specific computing
and communication platform. The disconnect between timing
requirements and system specifications makes it difficult to
achieve consistency and correctness in the temporal behavior
of a CPS across heterogeneous platforms. For example, a CPS
can be comprised of a network of CPS nodes or embedded
systems, each interacting with the physical plant to measure,
analyze, and control it over a network. Heterogeneous CPS
nodes include sensing, computing, communicating, and actu-
ating platforms capable of self-discovery and self-organization
to determine how to most effectively monitor, detect, respond,
repair, and recover. Explicit design of applications that can
satisfy temporal requirements can only be feasible if each CPS
node in the system, including the communication network, are
time aware.

Temporal logic languages provide the syntax and semantics
to enable formal manipulations to prove a timing require-
ment is satisfiable given a particular system model. However,
in practice, formal logic can be a challenge to understand
and difficult to apply. Achieving tight timing requirements
typically require custom built designs specific to a single
platform. The challenge is to be able to specify the temporal
behavior in a high-level language and be able to readily
port to other distributed embedded platforms, where tests can
be automatically generated from the specifications and the
compiler can synthesize the software specifications, operating
system demands and the hardware capabilities to determine
the schedulability of the application requirements [8].

Research is ongoing to develop semantics and frameworks
for high-level abstraction of temporal behavior between ap-
plication and platform models [9]. One of the key challenges
is reducing the gap between the simplifying assumptions in
the abstractions and the actual timing properties of the plat-
form [10]. CPS design is a multidisciplinary effort and timing
typically affects more than just one discipline, where inconsis-
tencies can arise between application developers and platform
architects/engineers. Design contracts provide a means to
specify and negotiate timing constraints between components
(in literature also referred to as horizontal contracts [11]) as
well as across design disciplines (see vertical contracts [11]
and design contracts for timing in CPS [7]). Without a high-
level abstraction of timing constraints, it is difficult to test
if the requirements on temporal behavior can be achieved.
The primary challenges in the ability to design and verify
correct temporal behavior in CPS are: (1) to realize the explicit
specification of temporal constraints in a CPS by the designers,
(2) to provide feedback during the design and implementation
phases, and (3) to reliably ensure temporal correctness of
application behavior on distributed platforms.

III. TIMING REQUIREMENTS OF CPS APPLICATIONS

Timing requirements in CPS can be categorized as follows:

Frequency constraints. Physical phenomena (e.g. weather,
electrical arcing, particle behavior, physiological response) and
human behavior can be difficult to predict and can vary over
time. Sensors need to be able to sample at a sufficient rate.
Based on the Nyquist Theorem, the sampling rate must be
at least twice the maximum frequency, or twice the highest
analog frequency component to be able to capture rapid,
transient events. Frequency constraints are necessary to ensure
sampling requirements are met. In addition, an embedded
system typically has sampling frequency requirements which
allow the capture of rapid transients or the assessment of the
progression and stability of the system. Application frequency
constraints are typically implemented with interrupt-based task
scheduling. Other frequency constraints are related to coor-
dinating behavior, such as multiplexing signals from remote
sources. This is generally solved with frequency locked-loops.
Chronological constraints. Information from heterogeneous
sources in distributed systems where precision and time scales
vary must be merged unambiguously such that all observers
agree on the sequence of events. Semantics enabling a con-
sistent chronological constraint are necessary for establishing
this sequence of events. By providing the semantics to estab-
lish a chronological order, information about a component or
event can be characterized as a past, present or future, and all
observers of the component can agree on the chronological
relationship between events. Typical chronological constraints
require a monotonically increasing and continuous, common
time scale with sufficient accuracy. Providing semantic order-
ing also determines causality.
Simultaneity constraints. These constraints are needed to
ensure that two events occur at the same time to all observers
in the system [12]. Enabling measurement and control systems
to be triggered at the same time allows coordination, detection
and localization of an event of interest. The understanding
of natural synchrony can facilitate the ability to understand,
model, and replicate the parameters and processes of achieving
synchronous behavior of an ad hoc group of components in
the engineered CPS [13]. CPS components may be required to
act in synchrony. In computer science, concurrency requires
processes to run simultaneously. In power systems, fault loca-
tion applications require measurements that occur as closely
to each other as possible [14]. In particle physics experiments,
clock synchronization is required to ensure all detectors can be
triggered simultaneously to collect data at specific instants in
time [15]. The higher the precision, the lower the uncertainty
of distributed measurement.
Latency constraints. In time-sensitive applications, sensor
information and knowledge computed from the sensors is valid
for only a specific temporal interval before it must be acted
upon, resulting in bounded or fixed latency constraints on
communication and computation. Timeliness, or the temporal
limits of the application to communicate information or exe-
cute an action can be described through latency constraints.
Programmers define a function sequentially from its input
to its output. A function’s output at time t relies on input
from before time t. Temporal dependency requirements on the

input arriving before time t via the communication network is
needed to ensure the measurement point would be temporally
valid for the function. Ensuring the predictability of an ap-
plication’s execution time also requires bounded latencies on
the response time of the program and the reaction time of its
environment [16]. Latency can be viewed as both a bounded
requirement, such as deadlines, or a means to derive critical
information, such as time and location. Traveling wave fault
detection and fault location requires precise synchronization
to locate a fault within a certain distance.
Temporal assurance constraints. General trust disciplines
relating to CPS include security, resilience, safety, reliability,
and privacy, with relative importance dependent on application
domain. Secure timing is vital to the proper functioning of the
CPS and must be specified at the requirements stage for the
system. Security of a timing signal requires security of both the
physical timing signal and the data associated with the signal.
Security of the data in a timing signal needs to be verified
for source (authentication traceability) as well as integrity.
Similarly, the application dependent upon synchronized time
signal needs to know both that the physical signal came from
the correct source, and that the transmission delay has not been
tampered with. The dependence on Global Navigation Satellite
Systems (GNSS) for timing services means that designers
need to be aware of its vulnerabilities which can compromise
availability and integrity. Strategies to counteract jamming-
both unintentional and intentional, and spoofing need to be
deployed.

Constraints on the assurance strategies include the time it
takes to detect the timing anomaly (detection latency), the time
the system can synchronize to a sufficient precision without
a traceable time source (holdover), and the time it takes for
the system to converge once a traceable source is available
(recovery time).

IV. TIMING SPECIFICATIONS OF CPS PLATFORM

The CPS platform is comprised of hardware components
(sensors, actuators, computing and communication systems)
and systems software (operating systems and device drivers),
where the platform timing specifications can be characterized
to enable the compiler tools to determine whether the appli-
cation model’s timing requirements can be satisfied.

Timing specifications of the CPS node’s clock are critical
to understanding the accuracy of the measurements and other
outputs derived from the clock. Errors in the clock signal or
significant performance degradation can rapidly induce faulty
measurements. Clock fault detection methodologies such as a
Dynamic Allan Variance (DAVAR) [17] rely on an accurate
characterization of the clock.

A clock can be characterized by its absolute time (local
clock accuracy to a traceable reference), relative time (local
clock offset from peers), drift, stability (often characterized by
the Allan Variance (AVAR) or Allan Deviation (ADEV), which
computes the frequency instability given a specified period),
and maximum time interval error (MTIE), with respect to the
system reference and resolution of the local clock.

Hardware and systems software, including the operating
system and device drivers must have a means to communi-
cate the input and output time intervals. Depending on the
mechanism for enforcing input to output intervals, temporal
specifications can be categorized as the maximum latency
if using a time-triggered mechanism such as Giotto [18] or
an event-triggered one like PTIDES [19]. In addition, the
accuracy of the latency measurement should be considered
if the CPS node itself determines the timing.

In analog control, the combination of the cyber timing and
IO latencies determine the loop phase characteristics and delay
as well as response times, performance, stability, etc.

A CPS comprises input and output devices as well as
computation platforms and communication networks which all
have specific timing constraints. A common time specifications
for digital inputs is a bounded time interval between two
consecutive events that reflects recovery time of transducer
and detection circuit. For periodic digital inputs, temporal
specifications includes period, period accuracy and phase
which are related to the nature of events generator or time-
triggered sampling rate of application. It is also important to
note the uncertainty variables, including sampling jitter. For
sporadic signals, statistics attributed to the number of events in
a given time interval including mean, maximum, and minimum
should be considered. This reflects the capacity of the input
mechanism to handle a bursty sequence of events. Transient
delay or the time interval between actual occurrence of the
event and when the information signaling the event is available
to the cyber portion of a CPS reflects latency specification.
For analog inputs, temporal constraints include bandwidth of
transducer, resolution of analog to digital converter (ADC),
conversion time and sampling period of ADC.

For digital output devices, temporal specifications include
minimum time between two consecutive actions which reflects
recovery time of actuator as well as signal generation circuit.
Similar to input devices, for periodic actions, period, period
accuracy, and phase of actuation should be considered which
are related to the nature of an events generator or the time-
triggered sampling rate of a hold circuit. If action is sporadic,
the maximum number of events in a given time interval
matters. Burst capability reflects the capacity of the output
mechanism to handle a burst sequence of events. Another
useful specification is Output latency or the time interval be-
tween actual occurrence of the event and when the information
signaling the event is executed by the cyber portion of a CPS.
For analog output devices, time constraints include frequency
response, Digital to Analog Converter (DAC) resolution, DAC
conversion time, DAC hold type and rate. For both input and
output devices, time sensitive components require specification
of precision and accuracy of occurrence time.

The timing of a computing platform is most complex, and
depends on both, hardware and software aspects. Hardware
specifications include CPU instructions per cycle, worst-case
memory latency and bandwidth, bus latency and bandwidth,
memory size, cache size, cache associativity and replacement
policies. Software specifications that affect system timing

are composed of operating system configuration, multi-thread
scheduling mechanism, file access method, driver configura-
tion, and virtualization. Parameters like minimum inter-arrival
time and worst-case execution time of interrupts can affect
the interrupt latency of the platform. The minimum required
time between input to output computations can point to the
time required for other application threads, garbage collection,
initialization, etc. For periodic computations, bounded period,
period accuracy and computation cycle can reflect the compu-
tation engine capacity. Similarly, for sporadic computations,
maximum number of computations in a given interval can be
categorized as timing specification. Specification of sporadic
computation reflects the capacity of the computation mecha-
nism to handle a burst of computations. Finally, computation
latency specifies the time interval between when the input in-
formation is available to the cyber portion of a CPS and when
the needed information is delivered to the output mechanism.

Network delays are an aggregation of propagation, seri-
alization, queuing and processing delays and are influenced
by the bandwidth, traffic patterns, routing policies, and time
awareness of the nodes. Network temporal constraints are
based on the delays tolerated including round-trip delay, worst
case delay time out, and packet delay variation (PDV). The
round-trip delay specifies the communication delay to and
from two CPS nodes. Some applications require a maximum
time on delay, or a message will time out. Time outs can lead
to a data being lost or invalid. Lastly, the non-determinism
of the delay or the tolerance of the CPS application to PDV
needs to be specified. PDV statistics calculated over a specified
period can include minimum, maximum, mean and ratio of
maximum to minimum.

V. TIMING SPECIFICATION IN LANGUAGES

Typically, the first step in the design of the cyber part
of a CPS is the definition of the functional model of the
application which entails algorithm development. In many tra-
ditional development processes, the next step is to implement
these algorithms on hardware and then test and tweak them
until the timing is “just right”. This leads to brittle designs
and unintended emergent behavior when composing different
components or systems. We argue that instead, the next step
must be the development of a model that contains functional as
well as timing specifications. Such a model contains the same
algorithms, and in addition, timing specifications in places
where it matters; i.e. places which are observable from the
outside. These places are the inputs from the environment
(sensors) and the outputs to the environment (actuators). The
time when inputs are read and when outputs are written is
crucial to the overall behavior of the CPS, since changes in
the timing can lead to changes in the overall system behavior.

At this point the model is still platform independent, and
we assume execution is instantaneous; i.e. execution time is
zero. As a result, the behavior of the model is deterministic
with respect to value and time. This allows to specify the
timing behavior using separate nodes, and that makes the
timing analysis independent of the functionality and easier.

A correct implementation of this model must exhibit the
same value and timing behavior as the platform independent
model. This is further explained in section VI on correct-by-
construction methodologies. In order to evaluate whether the
model can be implemented on a given platform, an in-depth
characterization of the timing behavior of the platform must be
performed. Properties such as execution time, communication
time, scheduling overhead and network latency must be com-
puted and bounds as well as jitter have to be determined. The
model is then enhanced with platform dependent constraints.

Timing specifications must be intuitive and natural, without
cluttering the model with unnecessary complexity. Timing
specification can be part of the language such as Giotto [18] or
PTIDES [19], annotations on existing languages, or separate
from the model, for example by using logic such as STL
(signal temporal logic) [20].

In Giotto, a system is described as a set of tasks where every
task has a logical execution time (LET). The start and end of
the LET are mapped to real, physical time. Inputs are read in
the beginning, outputs are written in the end. When the task
executes does not matter as long as it is some time during the
LET. As a result, input-output (I/O) is done at well-defined,
statically determined times related to task executions and the
latency between inputs and outputs is described by the logical
execution times on the path. In a Giotto system, not only the
inputs and outputs to and from the physical system are defined
but also the communication between tasks.

The PTIDES Model of Computation (MoC) extends the
discrete event MoC with a notion of physical time in addition
to the logical time which is used to order events. Physical and
logical time is carefully related only where necessary: at the
IO. Since all inputs are event-triggered, the timing of those
is not configured in a PTIDES model. The latency between
inputs and outputs is well defined via explicit delays on causal
paths, thus the timing of outputs with respect to inputs is well
defined.

The STL logic deals with properties related to the order of
discrete events and the temporal distance between them, where
“events” correspond to changes in the satisfaction of some
predicate (e.g., threshold crossing) over the real variables.
Reading inputs and writing outputs are events that can be
related in logic formulas.

Figure 2a shows a simple functional model comprising of
three nodes: the input I that receives inputs from the envi-
ronment and does some simple processing such as filtering,
and the output O that actuates after some processing, and a
computation C that consumes inputs from I and produces val-
ues for O. Figure 2b exemplifies Giotto timing specifications
where every task is associated with a logical execution time
(LET). PTIDES timing specifications are shown in Figure 2c,
where a delay d is added between I and O to describe the time
delay on this path. Whether this delay is added between I and
C or C and O or split up and added in multiple places does
not matter but can lead to some confusion for the developer.

A generalization of these timing specifications for an ar-
bitrary MoC is shown in Figure 2d. Here, the timing of the

input side effect, the exact time of the interaction with the
environment, as well as the timing of the output side effect
is configured. These timing configurations can be static, for
example, periodic, or dynamic, if IO is read or written upon
occurrence of observable events. The latency specification is
performed on a causal path. Note that it is not always necessary
and may even be redundant to specify the timing of inputs,
outputs and the latency on the path. These timing specifications
interfere with the MoC in that they add constraints on when
certain nodes (most importantly IO nodes) can or have to
execute.

I C O

(a) Functional Model

I

LET = 2

C

LET = 5

O

LET = 3

(b) Giotto

I C d O

(c) PTIDES

I C O

input timing output timing

latency

(d) General

Figure 2: Timing specifications are absent in pure functional
models (a) and are implemented as describe execution time
bounds on every task in Giotto (b) or bounds on causal paths
in PTIDES (c). In general timing specifications are necessary
for IO timing and path latencies (d)

VI. TIME AWARE CPS DESIGN AND IMPLEMENTATION

In general, the computing system in a CPS is distributed,
with each computing site referred to as a CPS node. A CPS
node performs computations and interacts with a part of the
plant via sensors and actuators and communicates with other
CPS nodes via a network. In order to derive meaning out of
the sensing information, and to correctly control a plant – as
outlined in section III – a variety of timing and synchronization
requirements must be met:

A. Accurate synchronization among CPS nodes

The first requirement of implementing a time aware design
is acquiring clock synchronization over a CPS network. The
synchronization requirements for the CPS may vary dra-
matically, depending on the application. The synchronization
requirements of CPS nodes may vary in time, space, and the
level of synchronization. Space refers to the fact that only a
subset of the nodes may need to be synchronized, time refers
to the fact that this subset may change with time, and level of
synchronization refers to whether we want second -accurate
synchronizations, or millisecond level, or microsecond level.
Furthermore, the synchronization requirement may be local
(among the CPS nodes), or against a pre-defined (say UTC)
reference. Some of the common synchronization methods that
are used in distributed CPS are NTP, PTP and GNSS.
NTP or Network Time Protocol (NTP) is one of the old-
est synchronization protocols that is used widely over the

Internet [21]. NTP uses a 64 bit time-stamp encapsulation
for packets and it cancels transmission delays using a two-
way synchronization protocol with clients requesting time
from a server. While NTP is useful for wired/wireless CPS
nodes networked through the public internet, it has low syn-
chronization accuracy due to asymmetries and PDV between
the forward and reverse network delays and unknown or
random delays between packet departure time stamps and
actual times of departure. It also looses accuracy along the
chain of synchronization. So, if CPS node B synchronizes with
CPS node A, and then CPS node C synchronizes with CPS
node B, then the CPS node C will accrue the inaccuracy of
B’s synchronization. Therefore, when using NTP, typically all
the CPS nodes must synchronize to a node that serves as a
dedicated timer server for everyone else.
GNSS uses a time reference for its navigation solution. Since a
GNSS receiver uses time-based triangulation of RF signals, it’s
able to maintain highly accurate time and hence an accurate
synchronization reference among CPS nodes. The best part is
that all the CPS nodes can achieve independent synchroniza-
tion to UTC, however, GNSS signals are extremely weak, and
therefore have limited coverage for indoor applications and
are subject to both intentional and unintentional interference,
especially in the urban environment.
PTP: PTP operates using bi-directional time transfer based on
a master/slave architecture. PTP can be more accurate than
NTP because it provides standard mechanisms for eliminating
various sources of time errors, however support must be in
place both in the end nodes and in the network elements [22],
[23]. Although PTP can deliver highly accurate timing, asym-
metric forward and reverse path delays over legacy networks
is a major concern, as all synchronization protocols rely on
round-trip delay time to compute one-way delay.

CPS that require sub-nanosecond accuracy can employ,
White Rabbit, a technology originally developed in CERN.
White Rabbit is based on layer 1 Ethernet physical synchro-
nization and phase control of clocks directly communicating
over highly symmetric fiber optic cables. This technique
greatly reduces the noise floor. A calibration procedure is used
to eliminate asymmetry introduced in the physical layer.

B. Accurate timing within a CPS node

The second important requirement of time aware construc-
tion is achieving accurate timing within a node; i.e. inputs must
be read and outputs written at or withing the times specified
and the computations be completed in time to satisfy IO timing
and latency requirements.

CPS designs typically use interrupt or polling to achieve
temporal specifications. In polling-based techniques, sensing
or actuating triggers are performed in a loop to sense/actuate
at a fixed cadence. However, when polling multiple parameters
in a loop, the loop must be carefully crafted to meet the
required sensing frequencies. To do that, especially with
ranging devices whose response latency varies depending on
the environment (e.g., the distance of the objects), ensuring
that all the sensing frequencies are correctly met becomes an

Latch

Synchronized Clock

trigger in time stamped
event

(a) Input devices

Latch

Synchronized Clock

Comparator
trigger out

Queue

time stamped
event

(b) Output devices

Figure 3: Time aware architecture - (a) time stamp value is
captured by clock and locked in the registers and (b) time
stamp value of outgoing trigger is read from queue, locked in
the registers and generated when clock is equal to time stamp.

art. Even if it is possible to design such a loop, any change in
the code (software), or the devices used, completely changes
the timing, and the whole analysis needs to be done all over
again. In interrupt-based programming, a timer interrupt is set
to trigger when a counter achieves a predetermined value. In
the case of a system with multiple interrupts, priorities for
interrupts are defined. An interrupt with higher priority can
delay lower priority interrupts and cause a longer time interval
than desired. Careful selection of priorities is required to meet
the desired timing requirements. And even if possible, such
design are typically brittle such that even small changes of
software or hardware can result in completely different (and
incorrect) behavior.

In an effort to make programming of CPS a science (rather
than an art), and reduce the brittleness of the application
timing, we advocate the use of correct-by-construction design
methodologies that guarantee the satisfaction of high level
functional and timing specifications by the low level im-
plementation. An important aspect of correct-by-construction
design methodologies is to use time aware architectures [24].
Time aware architectures can record the exact moment of
sensing, and can perform on-time actuation. When an event
is detected in the physical layer, the event is time stamped
with the current physical time in the hardware. Note that this
physical time stamp may be translated to the global time base
by the CPS. Figure 3a depicts a time aware architecture for in-
coming events. Since the time stamping of the incoming events
is done in the hardware, the exact time of the event occurrence
is preserved, and it not dependent on other hardware delays or
the software schedule. Similarly, when the computation of an
output is finished, it can be placed in the output queue together
with the exact physical time when the actuation should happen.
This time stamped value is then latched to be compared with
the physical clock. When the clock time matches the latched
time stamp, the actuator is executed (see Figure 3b).

Time aware architectures transform the problem of deter-
ministic execution time, to the problem of worst case execution
time analysis. This is because as long as the computation for
the actuation finishes before the time stamp [25], the actuation
event will happen at the right time. The actual execution time
is not important since it does not influence the application
behavior, but the execution time must fit within well defined

sensing and actuation schedules. In order to guarantee this
property, the worst case execution time (WCET) of the com-
putations on a given platform must be determined [26].

WCET analysis is inherently difficult as to some extent,
in the chase for performance, computer architectures have
developed to improve the average case performance of the
processor, while trading off the time-predictability of the
processor. The memory cache hierarchy is an excellent case
in point. While caches improve the average case performance
of applications by orders of magnitude, and therefore have
become one of the basic pillars of modern computer architec-
ture, they severely degrade the predictability of the execution
time of a load/store operation. The time of the execution of a
load or store operation can now vary by orders of magnitude,
depending on where the data is found. While a lot of research
has been done to estimate the WCET of tasks on a cache-based
processors [26], but the techniques are hard to implement,
provide very pessimistic WCET estimates, and work on only
very simple programs, and have been developed mostly for
instruction caches. It becomes even worse when multiple tasks
are executing simultaneously on shared caches. We believe that
the only way to obtain usable WCET estimations for complex
large programs, we will need time-predictable architectures.
The PRET machine [27] is one promising approach towards
building architectures whose timing will be more predictable,
but without losing the average-case performance. The two
main features of PRET architectures are thread interleaving,
so as to remove the pipeline effects on the execution time [28],
and to use scratchpad memories, so as to achieve predictable
execution time of load and store instructions [29]. It is easier
to achieve tight estimation of execution time on scratchpad
based processors, since in scratchpad based processors, the
movement of data between the scratchpad and lower levels of
memory has to be done explicitly in the program. The program
must bring the data required into the scratchpad before it is
needed. In fact every load/store instruction actually “hits” in
the scratchpad (otherwise the execution would go wrong!).
As a result, the timing analysis needs to be done for the
programmer or compiler inserted data movement instructions,
which is easier than the analysis of the data movement initiated
by the hardware. Since scratchpad memories are just like
caches, except that the movement of data is controlled by
software (instead of hardware), equivalent performance can
be expected pending only smart management of data. Recent
compiler research on scratchpad memory based processors
have shown that compilers can automatically manage code
and data of applications very efficiently and can outperform
caches [30], [31]. Further SPM can be partitioned among the
multiple applications running simultaneously, so that they do
not interfere with each other, and the execution time of each
one of them remains predictable.

C. Managing latency in networks

The third necessity of time aware designs is to manage
the latency of communication. Time aware designs must
enable correct timing in networks, in particular, the latency

and synchronization requirements of the application must be
satisfied.

In CPS, to achieve overall application performance and
system stability, latency must typically be bounded, and in
some cases also deterministic and small. Interfering best-effort
traffic typically is the cause of PDV. In legacy LANs, one
might consider elimination of interfering traffic, but doing so
would be counter to the goal of the convergence of time-
sensitive and best-effort traffic on the same network. These
delay variations in the network not only make meeting the
latency requirements difficult, but also pose challenges to
correct synchronization. For example, most telecommunication
networks are used continually at some level, and those levels
continually change. In order to minimize the difference in the
upstream and downstream PDV, all telecommunication PTP
devices carefully select a tiny portion of the PTP packets for
synchronization. This issue is not just in telecommunication –
any Ethernet system with shared best effort and time sensitive
traffic has the same problems [32]. Latency has the same
problem with interference as synchronization packets, and
many of the packets with latency requirements cannot be
eliminated, as they are control words.

Many CPS are being designed for larger systems, some
using public networks. On these systems, the time-sensitive
traffic still has timing requirements, but it is merged with best-
effort traffic. A CPS time domain is a logical group of comput-
ing nodes and bridges/routers which form a network with its
own time master. To manage and configure a large CPS time
domain, we suggest that one of the nodes should be configured
to be the CPS Network Manager (CNM). This CNM is a
software entity responsible for configuration and management
of all CPS nodes in the CPS domain and interface with the
network on their behalf. Time-sensitive data transfer occurs
over one or more time-sensitive streams in the CPS domain.
Each time-sensitive stream is transmitted by a single CPS node
(the talker), and received by one or more CPS nodes (listeners).
The CNM gathers time-sensitive stream requirements from all
CPS nodes in its domain, and communicates with network
entities to ensure that those stream requirements are met by
the network. When the network is ready for time-sensitive
data transfer, the CNM communicates stream transmission
and reception information back to the CPS nodes (talkers
and listeners). For example, the CNM tells each talker the
scheduled time to transmit data for its stream. The functions
of a CNM vary depending on the size of the system. A small
CPS may not need a CNM, while a large system may have
a distributed CNM, as is done for SDN. When dealing with
multiple time domains as well as time masters, for example in
a System of Systems, multiple CNMs may need to coordinate.

A Centralized Network Controller (CNC) is responsible
for configuring the bridges/routers to meet the time-sensitive
stream requirements. The CNM is responsible for users of
the network (CPS nodes), and the CNC is responsible for the
network itself. Figure 4 shows the configuration model for a
CPS network.

It should also be noted that the functions of the CNM

CPS End Stations CPS End Stations

Data

Data

Bridges
Network

Centralized Network
Management (CNC)

Network
Management

Protocol

Network
Configuration
 and
 Scheduling

CPS Network
Manager (CNM)

User/Network
Protocol

CPS End Station
configuration and
scheduling

Figure 4: The CNM gathers requirements from nodes, or end
stations, and determines schedules. It transmits these to the
nodes, and passes the network schedules to the CNC, which
configures the network nodes.

and CNC are being standardized in IEEE 802.1Qcc [33]
as the Centralized User Configuration (CUC) and the Cen-
tralized Network Configuration (CNC). In addition, there is
considerable activity in the IEEE 802.1 and other standards
communities on enhancing standard networking to allow for
implementation of the model suggested above by the IEEE
802.1 TSN TG “Time-Sensitive Networking Task Group”.
Other TSN enhancements to Ethernet networking include
automatic duplication of packets for redundancy, Ethernet
frame preemption, policing of misbehaving transmitters, a PTP
Profile to propagate synchronized time and enable hardware
time-stamping with redundancy and PDV-mitigation, an en-
hanced stream reservation protocol, network schedule config-
uration, and time aware frame transmission [34]. Depending
on the clock synchronization protocol, additional network
specifications on routing and selection of network components
can be made, such as PTP aware clocks instead of ordinary
switches. A means to mitigate PDV is the use of time aware
network nodes such as PTP aware transparent clocks (TCs) and
boundary clocks (BCs). They enable computation of packet
delay based on residence times at each network node.

D. Virtualizing time without losing accuracy

In general, a CPS node may be shared among several CPS
applications. For example, in a smart city, a sensor on the street
may be used for different purposes by different sets of people.
They can all define their CPS, and recruit the CPS nodes to
implement their functionality. In such a scenario, we will want
to isolate the execution environment of one CPS application
from others so as to provide security and even robustness
from malicious actors. Virtualizing the CPS node is the most
promising way going forward since it plays a significant role in
hosting/managing distributed CPS. However, how can virtual
machines get access to the desired clock source?

Every application potentially has a different understanding
of the current time. These different clock domains must be
comprehended within a VM without implementing multiple
physical counters in the CPU. A scalable solution employs a
single, free-running hardware counter in the CPU as well as a

set of coefficients that represent the current linear relationship
between the local CPU counter and the various PTP clocks.
Any offset applied to the CPU counter per VM must be known
by the VM and applied each time the CPU counter is read.
A linear model, y = mx + c is used to convert local CPU
counter to remote PTP time, where y is (or was) the time at
the remote clock source corresponding to the time at the given
CPU counter value x. The coefficients m and c are computed
by periodically capturing simultaneously both the CPU counter
and the relevant PTP time, which typically exists within the
Ethernet or Wi-Fi device.

The requirements of scalable clock virtualization are fast
multiplication and addition, immediate software access to a
stable CPU counter, and precise estimation of m and c. Given
m and c for every PTP clock, software can convert a CPU
time to any PTP clock and vice versa. When PTP is used in
a virtualized environment, it is necessary to propagate event
message time stamps to each guest OS that is running PTP, and
to construct the appropriate residence time as though coming
from a TC between the virtual network interfaces of the VMs.
Figure 5 shows a schematic of such a system, with multiple
virtual machines (VM) where PTP time is propagated through
a virtual switch that includes TC functionality between the
VMs.

VM PTP

VSwitch PTP TC

Hypervisor TS

VMPTP...

NIC

Figure 5: Virtualization of multiple PTP clocks for VMs -
VSwitch implements PTP transparent clock to allow VMs
individually interact with PTP hardware clocks

VII. TESTING THE TIMING

In order to test and validate that the final implementation
satisfies the original application requirements, we propose a
configurable timing testbed.

This testbed framework is complementary to tools such as
simulators and emulators, as this is testing a physical realiza-
tion of the application and its environment. All of these tools
help improve the developers understanding of the proposed
solution. The re-configurable testbed architecture is illustrated
in Figure 6. It consists of the deployment target timed CPS
nodes (A, B, C, D) and associated timed communication fabric
for deployment of the cyber part of the application, a physical
or hardware-in-the-loop (HIL)-based physics module, as well
as physics monitoring and control target, where the generated
test is deployed. All of these elements together form a closed
system, i.e. a system where all the inputs are controlled and
all the outputs are observed and measured in a well defined
super-system. There are other support components, such as a
supervisor interface that help coordinate the deployment of the
application and the test, as well as a remote operator interface.

Every CPS node consists of a system stack with custom
hardware at the bottom, interacting with the external physical
world (to be measured or controlled) and the communication
fabric. This layer is typically a combination of an FPGA,
DACs, ADCs, communication physical layer (PHYs), in-
put/output (I/O) etc., with standard computer interfaces to the
operating system of the microprocessor. The designer creates
either manually or by a correct-by-construction methodology
code running on the microprocessor and a closely connected
or integrated re-configurable fabric, which, in conjunction with
the underlying hardware, realizes the functional and timing
specifications of the CPS.

Physics Monitoring and Control

Internet

Test
Bed
Site

User
Site

Custom HW:
I/O, PHY, Clock, Logic

Microprocessor HW:
I/O, timers

Microprocessor:
Operating system

Microprocessor:
CPS Code Physics

Local Test Bed Management
Interface to Remote Users

Communication and Physics Monitor
and Device Configuration

Interface to Remote Test Bed
User Interface, Design and Configuration Tools

A B C D

Communication Fabric: (Ethernet, wireless, ...)

Figure 6: Testbed Platform Architecture, which provides a
framework to help validate that an implementation satisfies
the original application requirements

The testbed physics enables testing of time sensitive designs
applied to realistic CPS applications and comparing it with
alternative designs. The selection of components should be
simple at first but at a minimum, should provide devices suit-
able for analog, digital and frequency dependent applications.
Examples might include one or more of the following.

• Two small laboratory bench size motor-generator sets,
mock transmission lines, capability to measure wave-
form properties like phase, and capability to con-
nect/disconnect from a load. This could be used to mimic
power system applications such as synchronizing two
generators prior to connecting to a load.

• A digital pattern generator and capturing device to allow
testing of stimulus response applications with sporadic or
patterned signals.

• Two or more vibration sensors, perhaps mounted on the
motor-generator to allow testing of machine condition and
monitoring applications.

• The physics can be implemented in a Hardware-in-the-
Loop (HIL) simulation, in which a powerful computer is
simulating a real-time model of the physical plant.

The testbed monitoring capabilities depend on the specifics
of the testbed physics. The monitoring generates a variety
of time series data sets which can be fused together from
local or remote locations. Ideally, the physics and monitoring
is designed together and in many cases can be implemented
using standard, small scale laboratory equipment available
from several manufacturers. In some cases, this equipment can
be synchronized to the PTP time scale to simplify comparison
of ground truth monitoring with the results obtained from
the CPS nodes. If the physics is simulated via HIL, physics
monitoring is integrated into the model and connected directly
to the rest of the system. Since the testbed is heavily depen-
dent on the application requirements, we are exploring the
automatic generation of parts of the testbed application from
the requirements. We believe this can be done in a correct-
by-construction way by using a platform model of the testbed
hardware and, if possible, a model of the physics.

In addition to the application specification, it is useful to
specify testbench information so a user can provide input
stimuli at given times that are correlated to output responses
at given times, and the testbed can be generated to check the
validity of implemented testbenches. The input sequence is not
necessarily limited to specific data, instead, it can be enhanced
by pseudo-random sequences as well, with corresponding
responses computed as per the functional specification. Similar
work has been proposed as part of the Accellera’s Portable
Stimulus Working Group 1 for the digital IC design area.

The testbed facilitates the exploration of methodologies for
re-using design information from design specifications, all the
way to validation and production. It is important to use non-
intrusive techniques for observations and measurements such
that the behavior of the System under Test remains unchanged.
A distributed testbed can bring together a community of multi-
disciplinary experts to enable exploration and validation of
time aware interfaces, correct-by-design methodologies, and
measurement capabilities to a representative CPS architec-
ture [35].

VIII. SUMMARY

The ability to reliably propagate a common physical time
scale along with interfacing multiple time scales among ob-
served physical dynamics and across platforms is crucial to
correct and efficient functionality of complex, distributed CPS.
This paper exposed the challenges in specifying the timing
requirements of CPS, and the timing specifications of the
CPS components. It further elaborated on the challenges in
achieving synchronization among the CPS nodes, and the
challenges in making CPS nodes perform actions at desired
moments of time, managing delays in the networks, and
virtualizing time without losing accuracy. The paper included a
discussion on currently evolving formalisms, technologies and
standards in realizing the vision of time aware CPS design and
implementation. Finally, we presented a configurable testbed
that can characterize and verify the temporal behavior of

1http://accellera.org/news/newsletters/2016-may

http://accellera.org/news/newsletters/2016-may

complex, distributed CPS based on correct-by-design method-
ologies and time aware platforms.

ACKNOWLEDGMENTS

The authors would like to thank the NIST colleagues, Dr.
Dhananjay Anand, Dr. Edward Griffor, Dr. Judah Levine, and
John Messina, the NIST CPS Program for their support, the
National Instruments colleagues Dr. Kaushik Ravindran and
Dr. Arkadeb Ghosal, Dr. Hugh Melvin from National Univer-
sity of Ireland, Galway, and Mohammadreza Mehrabian from
Arizona State University. This work was partially supported
by funding from National Science Foundation grants CNS
1525855, and NIST grant 60NANB15D322.

REFERENCES

[1] S. M. Amin and B. F. Wollenberg, “Toward A Smart Grid: Power
Delivery for The 21st Century,” IEEE power and energy magazine,
vol. 3, no. 5, pp. 34–41, 2005.

[2] A. v. Meier and R. Arghandeh, “Every Moment Counts: Synchrophasors
for Distribution Networks with Variable Resources,” arXiv preprint
arXiv:1408.1736, 2014.

[3] Y. H. Tang, G. N. Stenbakken, and A. Goldstein, “Calibration of Phasor
Measurement Unit at NIST,” IEEE Transactions on Instrumentation and
Measurement, vol. 62, no. 6, pp. 1417–1422, 2013.

[4] J. Amelot, D. Anand, T. Nelson, G. Stenbakken, Y. S. Li-Baboud, and
J. Moyne, “Towards Timely Intelligence in the Power Grid,” in 44th
Annual PTTI Meeting, 2012.

[5] A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, “Spontaneous
Synchrony in Power-Grid Networks,” Nature Physics, vol. 9, no. 3, pp.
191–197, 2013.

[6] B. Liskov, “Practical Uses of Synchronized Clocks in Distributed
Systems,” Distributed Computing, vol. 6, no. 4, pp. 211–219, 1993.

[7] M. Toerngren, S. Tripakis, P. Derler, and E. A. Lee, “Design Con-
tracts for Cyber-Physical Systems: Making Timing Assumptions Ex-
plicit,” EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2012-191, 2012.

[8] P. Derler, J. C. Eidson, S. Goose, E. A. Lee, S. Matic, and M. Zimmer,
“Using Ptides and Synchronized Clocks to Design Distributed Systems
with Deterministic System Wide Timing,” in 2013 IEEE International
Symposium on Precision Clock Synchronization for Measurement, Con-
trol and Communication (ISPCS) Proceedings. IEEE, 2013, pp. 41–46.

[9] B. Kim, L. Feng, O. Sokolsky, and I. Lee, “Platform-Specific Code
Generation from Platform-Independent Timed Models,” in Real-Time
Systems Symposium, 2015 IEEE. IEEE, 2015, pp. 75–86.

[10] K. Altisen and S. Tripakis, “Implementation of Timed Automata: An
Issue of Semantics or Modeling?” in International Conference on Formal
Modeling and Analysis of Timed Systems. Springer, 2005, pp. 273–288.

[11] A. Sangiovanni-vincentelli, W. Damm, and R. Passerone, “Taming
Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems,”
European Journal of Control, 2012.

[12] E. A. Lee, “The Past, Present and Future of Cyber-Physical Systems: A
Focus on Models,” Sensors, vol. 15, no. 3, pp. 4837–4869, 2015.

[13] O. Simeone, U. Spagnolini, Y. Bar-Ness, and S. H. Strogatz, “Distributed
Synchronization in Wireless Networks,” IEEE Signal Processing Mag-
azine, vol. 25, no. 5, pp. 81–97, 2008.

[14] M. R. Mosavi and A. Tabatabaei, “Traveling-Wave Fault Location Tech-
niques in Power System Based on Wavelet Analysis and Neural Network
Using GPS Timing,” Wireless Personal Communications, vol. 86, no. 2,
pp. 835–850, 2016.

[15] C. Collaboration et al., “Fine Synchronization of The CMS MUON
Drift-Tube Local Trigger Using Cosmic Rays,” Journal of Instrumenta-
tion, vol. 5, no. 03, p. T03004, 2010.

[16] D. Pilaud, N. Halbwachs, and J. Plaice, “LUSTRE: A Declarative
Language for Programming Synchronous Systems,” in Proceedings
of the 14th Annual ACM Symposium on Principles of Programming
Languages (14th POPL 1987). ACM, New York, NY, vol. 178, 1987, p.
188.

[17] E. Nunzi, L. Galleani, P. Tavella, and P. Carbone, “Detection of
Anomalies in The Behavior of Atomic Clocks,” IEEE Transactions on
Instrumentation and Measurement, vol. 56, no. 2, pp. 523–528, 2007.

[18] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A Time-
Triggered Language for Embedded Programming,” Proceedings of IEEE,
vol. 91, no. 1, pp. 84–99, 2003.

[19] J. Zou, S. Matic, E. A. Lee, T. H. Feng, and P. Derler, “Execution
Strategies for Ptides, A Programming Model for Distributed Embedded
Systems,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS). San Francisco, CA: IEEE, 2009.

[20] O. Maler and D. Nickovic, “Monitoring Temporal Properties of Contin-
uous Signals,” in In: Proceedings of FORMATS-FTRTFT. Volume 3253
of LNCS. Springer, 2004, pp. 152–166.

[21] D. L. Mills, “Internet Time Synchronization: The Network Time Proto-
col,” IEEE Transactions on communications, vol. 39, no. 10, pp. 1482–
1493, 1991.

[22] K. Lee, J. C. Eidson, H. Weibel, and D. Mohl, “IEEE-1588 Standard for
a Precision Clock Synchronization Protocol for Networked Measurement
and Control Systems,” in Conference on IEEE, vol. 1588, 2005, p. 2.

[23] J. C. Eidson, Measurement, Control, and Communication using IEEE
1588. Springer Science & Business Media, 2006.

[24] J. Eidson and K. Stanton, “Timing in Cyber-Physical Systems: The Last
Inch Problem,” in Precision Clock Synchronization for Measurement,
Control, and Communication (ISPCS). IEEE, October 2015, pp. 19–
24.

[25] J. Zou, S. Matic, E. A. Lee, T. H. Feng, and P. Derler, “Execution
Strategies for PTIDES, A Programming Model for Distributed Embed-
ded Systems,” in Real-Time and Embedded Technology and Applications
Symposium, 2009. RTAS 2009. 15th IEEE. IEEE, 2009, pp. 77–86.

[26] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The Worst-Case
Execution-Time Problem ;Overview of Methods and Survey of Tools,”
ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, pp. 36:1–36:53, May
2008.

[27] S. A. Edwards and E. A. Lee, “The Case for the Precision Timed
(PRET) Machine,” in Proceedings of the 44th annual conference on
Design automation. SESSION: Wild and crazy ideas (WACI), June
2007, pp. 264 – 265.

[28] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee, “FlexPRET: A
Processor Platform for Mixed-Criticality Systems,” in Proceedings of
the 20th IEEE Real-Time and Embedded Technology and Application
Symposium (RTAS), April 2014.

[29] Y. Kim, D. Broman, J. Cai, and A. Shrivastaval, “WCET-Aware Dynamic
Code Management on Scratchpads for Software-Managed Multicores,”
in 2014 IEEE 19th Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS). IEEE, 2014, pp. 179–188.

[30] J. Lu, K. Bai, and A. Shrivastava, “SSDM: Smart Stack Data Manage-
ment for Software Managed Multicores (SMMs),” in Proceedings of the
50th Annual Design Automation Conference. ACM, 2013, p. 149.

[31] K. Bai, J. Lu, A. Shrivastava, and B. Holton, “CMSM: An Efficient
and Effective Code Management for Software Managed Multicores,”
in Hardware/Software Codesign and System Synthesis (CODES+ ISSS),
2013 International Conference on. IEEE, 2013, pp. 1–9.

[32] NIST Public Working Group. (2015, September) Timing Framework
for Cyber-Physical Systems, Technical Annex. [Online]. Available:
https://pages.nist.gov/cpspwg/

[33] IEEE. (2016, June) 802.1Qcc - Stream Reservation Protocol (SRP).
[Online]. Available: http://www.ieee802.org/1/pages/802.1cc.html

[34] IEEE. (2016, July) I. 802.1,Time-Sensitive Networking Task Group.
[Online]. Available: http://www.ieee802.org/1/pages/tsn.html

[35] H. A. Andrade, P. Derler, J. C. Eidson, Y. S. Li-Baboud, A. Shrivastava,
K. Stanton, and M. Weiss, “Towards a Reconfigurable Distributed
Testbed to Enable Advanced Research and Development of Timing
and Synchronization in Cyber-Physical Systems,” in 2015 International
Conference on ReConFigurable Computing and FPGAs (ReConFig),
Dec 2015, pp. 1–6.

https://pages.nist.gov/cpspwg/
http://www.ieee802.org/1/pages/802.1cc.html
http://www.ieee802.org/1/pages/tsn.html

	Introduction
	The timing challenge in CPS
	Timing Requirements of CPS Applications
	Timing Specifications of CPS Platform
	Timing Specification in Languages
	Time Aware CPS Design and Implementation
	Accurate synchronization among CPS nodes
	Accurate timing within a CPS node
	Managing latency in networks
	Virtualizing time without losing accuracy

	Testing the Timing
	Summary
	References

