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A Software-Only Solution to Use
Scratch Pads for Stack Data

Aviral Shrivastava, Arun Kannan, and Jongeun Lee

Abstract—A dynamic scratch pad memory (SPM) management
scheme for program stack data with the objective of processor
power reduction is presented. Basic technique does not need
the SPM size at compile time, does not mandate any hardware
changes, does not need profile information, and seamlessly inte-
grates support for recursive functions. Stack frames are managed
using a software SPM manager, integrated into the application
binary, and shows average energy savings of 32 % along with a per-
formance improvement of 13%, on benchmarks from MiBench.
SPM management can be further optimized and made pointer
safe, by knowing the SPM size.

Index Terms—Cache, compilers, embedded systems, scratch
pad memory (SPM), static analysis.

1. INTRODUCTION

OWER and temperature issues have been at the crux of the
inevitable transition to multicores. Increasing power and
temperature of processors had started to very significantly affect
the performance, and multicores provided the only road ahead
to still improve peak performance without much increase in
the power consumption. While okay for few-core architectures,
cache coherency protocols do not scale with the number of
cores on a chip. Consequently, modern many-core processors
are being designed with a distributed memory model, in which
there is no hardware mechanism for memory virtualization.
For example, the experimental Intel 80-core processor [21],
network processors, like the Intel IXP1200 [17], and the IBM
Cell processor that is used in the Sony Playstation 3 [18] feature
local memories in each core. The data transfers between the
main memory and the core have to be explicitly specified in the
application by the programmer or by the compiler. Such mem-
ories are called scratch pad memories (SPMs) by the compiler
community. Another equally important reason for using SPMs
instead of caches is to avoid the very significant power overhead
of the hardware memory management in caches [1], [3].
We observe that 10%-90%, averaging to 64.29%, of all ac-
cesses in multimedia applications [15] are to stack variables. In
order to maximize the power gains by using SPM, it is essential
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to map data objects that are most frequently referenced onto the
SPM. However, it is not always possible and difficult at other
times to predict the data access patterns at compile time. Stack
data are one such unpredictable data. Not only is the amount
of stack data required by the application nondeterminable at
compile time, the function call pattern is often data dependent,
and cannot be determined at compile time. Early techniques
proposed static data mapping of stack variables onto SPM [9],
[10]. However, in static mapping techniques, the data mapping
does not change with time, hence static mapping techniques are
unable to exploit the dynamically changing data access pattern
of program.

Consequently, dynamic mapping techniques were proposed.
However, most dynamic mapping techniques are profile based
[4], [6], [8], [10]. The use of profile limits their scope of appli-
cation not only because of the difficulty in obtaining reasonable
profiles but also due to high space and time requirements
to generate a profile. Techniques that do not require profile
information are preferred; however, there are only a few profile-
independent dynamic mapping techniques for SPM. One of
them [5] uses static analysis to minimize data transfers between
SPM and external memory, but they concentrate on only array
data structures and increase reuse in SPM using source trans-
formations. This approach, although effective, works well only
in well-structured kernels of code. Work in [2], [6], [7] requires
hardware support, which, in turn, reduces its applicability.

In this paper, we propose a complete software solution for
dynamic management of SPM without requiring profile infor-
mation. Unlike previous approaches, except for [2], [11], our
solution does not require the SPM size until run-time, thus
giving the advantage of binary compatibility. Our approach
to map stack data on the SPM is to manage the active stack
frames in a circular fashion. The application is enhanced with
a software SPM manager (SPMM) at compile time. When the
SPM is filled and unable to accommodate the stack frame
for a new function call, a software manager makes space by
evicting the oldest frame at the beginning of the SPM to off-chip
memory. We achieve an average of 32% reduction in energy
with this technique with an average performance improvement
of 13%.

Although effective, the SPM management overhead can be
significant in some cases due to the SPMM calls around each
function invocation. We use static analysis to reduce these
calls by grouping them. This optimization reduces the software
overhead and achieves an average energy reduction of 37%
with an average performance improvement of 18%; however,
it needs to know the SPM size at compile time. In addition,
there can be problems in applications that have pointer-to-stack
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Function | Stack Frame
@ Name |Size (bytes)
@ F1 28
@ F2 40
@ F3 60
F4 54

Fig. 1. Sample program call graph.
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Fig. 2. Stack state for sample program before and after eviction. (a) Stack
before eviction. (b) Stack after eviction.

variables of a different function frame. We further propose an
extension to the circular stack management scheme that ensures
correctness of execution. Our efficient pointer management
scheme only incurs slight energy and performance overhead.

II. CIRCULAR STACK MANAGEMENT
A. Active Stack Management

Our focus is to keep the active stack data on the SPM.
In order to keep the book-keeping overhead to a minimum,
we consider stack data at the granularity of function stack
frames. At first, this may seem too coarse, but we demonstrate
significant power-performance savings even at this level.

We will consider a small sample program to explain our
technique. Let us consider an SPM of size 128 B. Fig. 1 shows
the call graph of the program and the stack frame sizes for
all the functions. Assuming an upward growing (in address)
stack, the stack state after the call to F3 is shown in Fig. 2(a). It
can be seen that in this example, the stack space requirement of
our toy program is much larger than the available SPM size.
In order to make room for the stack frame for function F4,
we evict the oldest frame(s) in the SPM to the SDRAM. The
evicted frames are kept in stack order in a designated SDRAM
location. Fig. 2(b) shows the state of stack after eviction of the
older frames. Similarly, on the return path, when F3 returns, the
evicted frames, i.e., F1 and F2, need to be brought back from
SDRAM into the SPM at their previous location. The move-
ment of data between the SDRAM and SPM is performed in
software. Future implementations will incorporate the transfer
by means of direct memory access.

The decision to remove the oldest frame is facilitated by
the natural growth order of call stack. We could evict only
the number of bytes required to accommodate the new frame.
However, then we have to keep track of all such partial frames.
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It can also happen that there is insufficient space at the bottom
to accommodate a new frame. In such an event, one would
think of allocating the frame partially in the remaining space
at the bottom and place the rest from the top of SPM. However,
this is not possible as the stack management is done at run-
time whereas the code has already resolved references to the
stack objects with respect to the frame pointer at compile time.
Thus, we choose to perform eviction at frame level and keep the
management overhead to a minimum.

B. Software SPMM

Our technique is pure-software and hence, the management
of stack is performed by a software SPMM. The key functions
of SPMM can be summarized as follows.

1) Check for available stack space before a function call.

2) Maintain the exact map of all stack frames residing in
SPM/SDRAM.

3) Keep track of the oldest frame in SPM at all times.

4) Transfer frames to/from the SPM to SDRAM.

The SPMM needs a few important data structures to perform
its functions. Some of these structures are populated by the
compiler by static analysis whereas others are used by the
manager to maintain run-time state.

1) Function Table—The function table, as the name sug-
gests, holds statically generated information for each
function in the application. For each function, the table
holds the function’s stack frame size and some metadata
required for the pointer extension. This is discussed in
more detail in Section IV.

2) SPM State List—This structure is populated and man-
aged at run-time by the SPMM. It is the list of all the ac-
tive stack frames currently residing in the SPM/SDRAM.
For each node in the “SPM State List,” we maintain the
function Id, its start address in SPM, and linear address.
The “Start Address” is nothing but an address in the
range of the SPM and multiple active frames can have
overlapping addresses due to circular management. “Lin-
ear Address,” on the other hand, is the start address of
frame assuming an infinite SPM size. Thus, the addresses
of different active stack frames never overlap. This field
is used in pointer extension discussed in Section IV.
Another important piece of information is the number of
“Evicted Bytes.” A nonzero value in this field indicates
that the function before this node is present in SDRAM.
Thus, before returning to that function, SPMM needs to
fetch this frame from SDRAM to SPM.

The SPMM is implemented as a highly optimized library to
be linked with the application. The library provides three basic
Application Programming Interface functions (APIs) to carry
out manager functions. They are briefly described as follows.

1) spmm_init()—This API function is used to initialize the
SPMM structures and generally inserted in the “main”
function of the application. This is also the place where
the SPMM can query a system register to obtain the SPM
size on the target.
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<asm switch to mgr stack>
spmm_check_in(F2);
<asm switch to prog stack>
F2();

<asm switch to mgr stack>
spmm_check_out(F2);
<asm switch to prog stack>

Fig. 3. Library calls inserted in application.

2) spmm_check_in()—This API function is used to notify
a function call invocation to the SPMM. The SPMM uses
the function Id to look up the frame size in the “Function
Table.” It uses inline assembly statements to read current
values of processor registers S P and registers containing
function arguments. After estimating the space available
for the next function call, the SPMM may evict certain
number of frames to SDRAM in order to accommodate
the new frame. This manager call needs to be inserted
before a user function call in the application.

3) spmm_check_out()—This API function is inserted after
each user function call in the application. It essentially
updates the SPM State List to indicate successful re-
turn from a user function. At the same time, it inspects
the “Evicted Bytes” field and may fetch frames from
SDRAM before returning.

Since the SPMM queries for the SPM size at run-time, this
gives us the advantage of working with an unknown SPM size
at compile time making our software portable and binary com-
patible. The application can thus be supported by the SPMM on
any SPM size without the need for recompilation. The SPMM
library calls are inserted by the compiler in pairs, before and
after each function call, as shown in Fig. 3.

The SPMM call to spmm_check_in() is necessary to check if
there is space available for F2 and handle a possible overflow
required to accommodate it. When F2 returns, it is necessary for
the SPMM to verify that the call returns to a valid stack frame.
For example, if we consider the SPM state shown in Fig. 2(b),
if F3 simply returns, the stack pointer will point to corrupt
data. Thus, a check is made inside the spmm_check_out() to
detect this situation and fetch the old stack frames from external
memory.

The SPMM functions need stack space for their own exe-
cution. This is allocated in a reserved area of the SPM. The
manager is carefully implemented without using any standard
library calls to ensure minimal stack space overhead. Assembly
code is inserted, as shown in Fig. 3, to switch the stack pointer
between the “prog” and “mgr” stack areas between these calls.

III. SPMM CALL CONSOLIDATION

The previous section describes the core functionality of the
SPMM in maintaining the active stack of an application on
SPM. The SPMM data are mapped permanently to a reserved
portion of the SPM to reduce performance overhead. Even
so, using the circular management of stack may lead to a
performance overhead due to the extra manager library calls
before and after each user function call, as shown in Fig. 3.
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}

Original Program SPM call optimized Program

Fig. 4. Program before and after call consolidation.

However, there are opportunities to reduce these overheads by
examining the call and control flow of the application.

A. Call Reduction Opportunities

SPMM technique requires an SPMM call pair to be inserted
around each function call. In order to reduce the SPM manage-
ment overhead, we aim to reduce the total number of manager
calls by consolidating them for a group of functions. There are
at least three situations in which the SPM management call can
be consolidated. If two functions will be called sequentially,
then the SPM management for both the functions can be done in
one call. However, the manager must request space equal to the
sum of stack sizes of the two functions. For example, in Fig. 4,
functions F'3 and F'4 are called in sequence. SPMM calls can
be consolidated by performing only one SPMM call before F'3
request space for maximum of stack sizes of functions F'3 and
F'4. Another consolidation opportunity is when two functions
are called in a nested fashion. For example, in Fig. 4, function
F'4 always calls function F'6. Separate SPMM calls for the two
functions can be consolidated into one call, before F'4, by a
manager call to request space equal to the sum of the stack sizes
of F'4 and F'6. Loops in the program also give an opportunity to
avoid repeated manager calls. Since F3 and F4 are executed in
a loop, it is possible to make the manager call outside the loop
construct. The final optimized version of the instrumented code
is shown on the right side in Fig. 4.

B. Manager Call Consolidation

Now that we have identified the circumstances in which
optimization is possible, we outline an algorithm which will
systematically insert the manager calls only where absolutely
necessary. We use global call control flow graph (GCCFG)
[25] to perform this analysis. We explore the GCCFG in a
depth-first fashion (done by the routine Consolidate shown in
Algorithm 1). Starting from the leaf functions, we check to
see if any of the aforementioned optimizations are possible and
if so, fill the requestSize field. It must be noted that each call
instance of the same function may be optimized differently de-
pending upon its parent and siblings, i.e., the call path traversed.
However, the optimization inside a particular function will be
performed once, when the graph first explores the function and
will remain unchanged thereafter.
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TABLE 1
GCCFG REQUEST SI1ZE FIELD

[ Value of requestSize |
=0

Action |
Insert manager call
before this node
using frameSize value
(applies only to F-nodes)
Insert manager call
before this node
using requestSize value
Do not insert manager call

Once the GCCFG exploration is complete, the requestSize
field of each node indicates the action to be taken as given in
Table L.

We can now insert the appropriate manager calls by explor-
ing each of the GCCFG nodes for the requestSize field. The
exploration always starts at the F-node representing the “main”
function of the application. The algorithm for the manager call
consolidation follows.

Algorithm 1 Consolidate (V)

1: for all children, V; € children(Vy) do
2: Consolidate(V;)

3: end for

4: Classify(V;)

Algorithm 2 Classify (V})

1: ComputeStackReq(Vy)

2: if nodeType (V) is L-Node then
3: Find parent F-node V), for V

4: if (condition)t then

5: requestSize(Vy) = stackReq

6: for all F/L-Nodes, V; € children(V}) do
7: requestSize(V;) = —1

&: end for

9: end if

10: else if nodeType (V) is F-Node then

11: if (condition)t then

12: requestSize(Vy) = frameSize(V;) + stackReq
13: for all F/L-Nodes, V; e children(Vy) do
14: requestSize(V;) = —1

15: end for

16: end if

17: end if

TCheck to see if there is enough space for the children
function(s) either before or after the parent function in SPM.

Algorithm 3 ComputeStackReq (V)
1: stackReq = 0

2: for all F/L-Nodes, V; € V¢ do

3: if recursive(V;) is TRUE then

4: stackReq = SPMSize

5 break

6: end if

7: if requestSize(V;) > 0 then
8: size = requestSize(V;)

9: else

10: size = frameSize(V;)
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11: end if
12: stackReq = max{stackReq, size}
13: end for

14: if stackReq = O then
15: stackReq = SPMSize
16: end if

The routine “ComputeStackReq” in Algorithm 3 computes
the maximum stack space required by children of a node. This
routine also detects recursion and marks a flag in the GCCFG
node. This information is used by the routine “Classify” in
Algorithm 2 to check if the given size of SPM can hold
both, the node and its children’s stack in the available space.
The conditional statement in step 4 and step 11 of “Classify”
checks to see if there is enough space either before or after the
parent function. This is important as any optimization should
not end up requiring eviction of its immediate parent’s stack
frame.

To understand this, let us go back to the sample program in
Fig. 4. Consider that there are a few statements between F3 and
F4 which access F1’s stack frame. Now, if the consolidation of
manager calls to F3 and F4 lead to eviction of the stack frame of
F1, the program will access corrupt stack data when executing
the statements between F3 and F4. This does not happen in
the unoptimized case, as we call the manager immediately
after returning from F3. Here, if the stack frame of F1 was
evicted, the manager would fetch it from external memory
before proceeding ahead.

In the event that the maximum program stack requirement is
less than the SPM size, the algorithm would suggest insertion
of only one consolidated manager call at the “main” function.
Thus, for such cases, the SPMM overhead is at its minimum.
Since this analysis is carried out at compile time, it is not
possible to optimize for recursive functions as the depth of
recursion may vary with program input. We therefore leave the
recursive functions unoptimized.

This optimization is implemented as a compiler pass which
scans the source files to generate the GCCFG. Once the
GCCFG is generated, for a given SPM size, the manager call
consolidation algorithm is applied to insert the SPMM calls.
The compiler then generates the Function Table for the appli-
cation which is embedded into the binary. The Function Table
generated here has entries for each function as well as entries
for certain consolidated blocks (loops, groups of functions).

It is also important to note that the target SPM size is
required at compile time to perform this optimization. Thus, the
application programmer has a choice to optimize if he knows
the system SPM size. If not, the programmer can always fall
back on the base method described in Section II.

IV. EXTENSION FOR POINTER SUPPORT

The stack management technique described in Section II
manages the active portion of application stack on SPM. Cor-
rectness can be a concern with SPMM in presence of pointers,
since the stack data are managed in a circular fashion and stack
frames change their locations during execution. This may cause
certain pointers to stack data to become invalid.
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TABLE II
STACK FRAME SIZES FOR THE SAMPLE POINTER PROGRAM

[ Function | Frame Size(Bytes) |
main 40
ptrRecursion 28

int main(void) {
intk=8;
intvarl =-1,var2 =-2;
int *ptrvar2 = &var2;
int **p_ptrVar2 = &ptrVar2;

ptrRecursion(k,&varl,p_ptrVar2);
printf(“%d %d”,var1, var2);
}

void ptrRecursion(int k, int *ptrVari, int **p_ptrVar2) {

if (k==1)
*ptrVarl = 1000;
**p_ptrVar2 = 2000;
return;
}
ptrRecursion(--k,ptrVari,p_ptrVar2);
}

Fig. 5. Sample pointer program.

A. Pointer Problem

In order to succinctly explain the problem, we construct a toy
program which is recursive in nature. However, the extension
proposed will also work with nonrecursive programs. Table II
gives the stack frame sizes of the functions in the sample
program. Let the SPM size be 256 B.

In Fig. 5, the value of the variable k in the function main
decides the level of recursion, i.e., the stack depth. Pointers to
local variables of main, viz., varl and var2, are passed to the
function ptrRecursion. The pointer to var2 in the third argu-
ment is passed as a two-level pointer reference, whereas that of
varl in the second argument is a single-level pointer reference.
At the tail of the recursion, the values of local variables varl
and var2 are changed through their respective pointers inside
ptrRecursion. This example uses the common programming
practice of using pointers to local variables and reading/writing
to them in other functions. Essentially, the function stack for
the active function accesses data in other stack frames in its
call path.

Given the stack frame sizes in Table II and the SPM size
of 256 B, the stack depth is depth = framesize(main) + k *
framesize(ptr Recursion). In this example, for k =7, the
value of depth = 236 B and will not cause a stack overflow.
However, if k =8, the depth value is greater than 256 B
and will try to overflow the SPM stack. The SPMM will
accommodate the new stack frame by evicting the oldest frame
in the SPM (i.e., main), as shown in Fig. 6. The new frame,
i.e., ptrRecursion with k = 1 receives the address of varl and
ptrVar2 of main in its arguments. However, the SPMM has
already moved the stack frame of main to SDRAM. In this
case, any writes/reads using the pointer arguments will cause a
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Fig. 6. Stack state of the sample pointer program.

corruption of stack or incorrect operation of the program. This
is shown by the dotted lines in Fig. 6.

B. Pointer Resolution

Our technique is for the management of stack data, and
hence, we consider all the pointer variables pointing to stack
data. We need to analyze the source code to detect these point-
ers. The extension proposed in this section has a few restrictions
and is unable to handle all possible cases of programmatically
using stack values by pointers. The extension comprises of two
components.

1) Compile-time analysis to detect function signatures
(function prototypes).
2) Run-time analysis to resolve pointer-to-stack addresses.

1) Compile-Time Component: Since we assume that the
pointers-to-stack data originate and propagate only through
function arguments, it is essential to know all the function
signatures of the application. We obtain this information by
parsing this information from the abstract syntax tree of the
application. For each function, we record the type of each
argument and add this information to the SPMM Function Table
data structure described in Section II-B. The following section
describes the run-time component which uses this function
signature information.

2) Run-Time Component: The run-time component is ac-
tivated as part of the SPMM library calls themselves. The
function of this component is to validate all pointer arguments
in the function signature. We use the SPM State List structure
of the SPMM for this validation. The SPM State List described
in Section II-B holds vital information about the current call
path executing in the program. For this discussion, the “owner
frame” is the frame to which the pointed-to-data of a pointer
belongs. The validation is comprised of three simple steps.

1) We first find the owner frame for that pointer argument
value. The SPM State List stores the starting address for
each frame and also knows the size of all the frames in the
current call graph path. Since it is possible that multiple
frames in the SPM State List may contain this address,

Authorized licensed use limited to: Arizona State University. Downloaded on February 23,2010 at 11:02:29 EST from IEEE Xplore. Restrictions apply.



1724

SPM State List

main H ptrRecursion(k=8) H ptrRecursion(k=7) I ------------------- ptrRecursion(k=1)
A

'
f \ 1
1 \ 1
i \ 1 \
] \ [} \ ! '
1 \ '
1 v [}
t 1
i 1
|
'
!
!
i
i
|
'

Id = ‘main’
startAddress = 0
evictedBytes =0

Id = ‘ptrRecursion’
startAddress = 40
evictedBytes = 40

Id = ‘ptrRecursion’
startAddress = 0
evictedBytes = 0

Fig. 7. State list in the SPM.

we scan the list in the reverse direction (i.e., latest node
to oldest node).

2) Once the owner frame is found, we need to check if
it is present in SPM/SDRAM. This can be achieved by
inspecting the “Evicted Bytes” field of the next frame. If
this field is greater than zero, it indicates that the frame is
currently residing in SDRAM. If “Evicted Bytes” is zero,
it implies that the function resides in SPM and the pointer
is still valid causing no further action to be taken.

3) The last step is to compute the new address and is
necessary if the owner frame was detected to have moved
to SDRAM. The evicted frames are stored in stack order
in SDRAM in a linear fashion. The “Linear Address”
field in the SPM State List gives the start address of a
frame assuming an infinite SPM starting from address 0.
We can now simply add the “Linear Address” value to the
SDRAM eviction area base address to locate the owner
frame in SDRAM. Now, it is possible to find the new
address of the pointer since the offset within the frame
remains unchanged.

For the correct execution of application in Fig. 5, it is
necessary for stack data references shown by the dotted line
in Fig. 6 be redirected to the location shown by the dashed
line. This implies that the SPMM should change the value of
the pointer argument that is to be passed on to the Function
ptr Recursion.

Let us assume the address values of the local variables
of main as address(varl) = 20, address(var2) =24 and
address(ptrVar2) = 28. The SPMM is called (spmm_
check_in) before the function call to ptrRecursion(k = 1).
Due to insufficient space, the SPMM evicts main, causing
the local variables of main to now reside at an SDRAM
location changing their addresses to address(varl) = 4020,
address(var2) = 4024 and  address(ptrVar2) = 4028.
However, the pointer argument values for Function
ptrRecursion(k = 1) still hold the old addresses. This
is the point where the SPMM call has to update these
values before letting Function ptrRecursion(k = 1) start its
execution.

We use the SPM State List structure described in Section II-B
to achieve this. The SPM State List holds the entire list of
functions in the active call path traversed, as shown in Fig. 7.
We also need to query the Function Table to get the list of
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pointer arguments to be inspected. For each pointer argument
in the function ptr Recursion, we perform three simple steps.

1) We first want to find the owning frame for that pointed-to-
data. Since, we store the starting address for each frame
and also know the size of the frame, this is achievable by
simply scanning the list. In the example above, the owner
frame is main.

2) We need to check the current location of main, i.e., if it
is present in SPM/SDRAM. This can be achieved by in-
specting the “Evicted Bytes” field of the next frame, i.e.,
ptrRecursion(k = 7). If this field is greater than zero,
it indicates that main is currently residing in SDRAM.
If “Evicted Bytes” is zero, it implies that the function
resides in SPM and we do not need to update the address.

3) The last step is to compute the new address. The evicted
frames are stored in stack order in SDRAM in a linear
fashion. The “Linear Address” field in the SPM State List
gives the start address of a frame assuming an infinite
SPM starting from address 0. We can now simply add
the “Linear Address” value to the SDRAM eviction area
base address to locate main in SDRAM. Once found, we
can find the new address of the local variables varl and

ptrVar2 and var2.

After finding the new address, the SPMM modifies the
argument values passed to the function ptr Recursion(k = 1).
An important aspect of this method is that the pointers need to
be updated only once. In the sample program shown in Fig. 5, if
k > 8, then too, the pointers are updated when the pointed-to-
data changes its address. However, the pointers do not need to
be updated for every subsequent frame, since the new argument
values are being propagated after the update.

C. Assumptions and Limitations

It is important to note that we are concerned with only
pointers to stack data. All other pointers in the application
(pointers to heap data, pointers to global data) are not a problem
since the SPMM never touches those data. Our extension works
under the following assumptions.

1) Functions will access data from other stack frames only
through use of direct pointers passed as arguments to it.
For single-level pointers like the second argument (int *
ptrVarl) of ptrRecursion, this will suffice. However,
for multilevel pointers like the third argument (int x
xp_ptrVar2), SPMM needs to update the address at each
level of dereference.

2) The source language is strongly typed (no type-casting).
We cannot detect pointers if they are disguised as other
types when passed in function arguments.

3) Pointers to stack data are not passed within other
structures.

The assumptions given above may seem too restrictive when
applied to programs written in C, but actually, they conform
well with good programming practices.
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TABLE 1II
BENCHMARKS
\ Name | Stack Depth(Bytes) | SPM Size(Bytes) |
Dijkstra 424 256
Blowfish-Encryption 12440 8192
Rijndael-Encryption 796 1024
Blowfish-Decryption 11984 8192
Rijndael-Decryption 812 1024
SHA 2240 2048
JPEG 10570 8192
Susan-Smoothing 14380 12288
Susan-Corners 14124 12288
Susan-Edges 14960 12288

V. EXPERIMENTS
A. Experimental Setup

To demonstrate the applicability and usefulness of our
scheme, we perform our experiments on an ARMVSTE in-
struction set architecture [12] modeled using cycle-accurate
SimpleScalar simulator [16]. The static analysis algorithm is
implemented as a pass during the compilation using the Gnu C
Compiler ported for ARM. We use the MiBench suite [15] of
embedded applications to demonstrate the effectiveness of our
technique. Table III shows the maximum stack depth and SPM
size used for different benchmarks.

B. Energy Models

We use the CACTI tool [13] for the SPM energy model
with 0.13x technology. For an SPM of size 1k, the energy per
read (Egpar/rp) and write (Egpp/wr) access are 0.33 and
0.13 nJ, respectively. It should be noted that the per access
energy increases with SPM size. The external memory energy
model is for a 64-MB Samsung K4X51163PC SDRAM [14].
The energy per read burst(Espr,rp) for the SDRAM is
3.3 nJ, whereas a write burst(Egpr/wr) is 1.69 nl. The
following equations are used to calculate energy consumed:

Erorar=Espyu-roraL+Espr-ToTAL
Espyv-rorar= (Nrp*Espar/rp)+(Nwr*Espyywr)
Espr-rorar=(Nspr-rp*Espr/RD)
+(Nspr-wr*Espr/wr)-

C. Results and Analysis

We evaluate the effectiveness of the circular stack manage-
ment technique and the consolidation algorithm by comparing
the energy consumption and performance improvement for the
following.

1) Baseline System with only 1K cache.

2) SPMM System with 1K cache and an SPM. SPM man-

aged using SPMM described in Section II.

3) GCCFG System with 1K cache and an SPM. SPMM
with call consolidation described in Section III.

4) SPMM-Pointer System with 1K cache and an SPM.
SPM managed using circular stack management and
pointer extension described in Section I'V.

In the baseline setup, all the accesses go through the cache. In
the rest of the setups, only the stack accesses go through the
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SPM, and rest all go through the 1k cache. The SPM sizes are
chosen such that they are at least as much as the largest function
stack frame in the benchmark. Fig. 8 shows the normalized
energy reduction obtained for the benchmarks.

The average reduction in energy using SPMM against the
Baseline is 32% with a maximum energy reduction of 49% for
the SHA benchmark. The dynamic profiling-based technique
in [8] focuses on mapping recursive stack data to SPM and
achieves an average reduction in energy of 31.1%. It should
be noted that the authors suggest taking multiple profiles and
averaging them in order to reduce profile dependence. In con-
trast, we achieve 32% energy savings by simply managing the
entire stack from SPM seamlessly for recursive and nonrecur-
sive functions without the time-consuming profiling process. In
addition, our solution does not require the SPM size until run-
time making it binary compatible.

While the SPMM _check_in and SPMM _check_out functions
are relatively large, about 667 lines of assembly code, and
176 lines, respectively, for each invocation, only about 74 and
35 lines are executed. It should be noted that we have not
aggressively optimized the SPMM functions for code size or
performance. In addition, while the number of SPMM calls may
be as small as 6 for susan_smoothing and as high as 60 364 for
dijkstra, only 266 in dijkstra and 4 calls in susan_smoothing
actually cause data transfers of 0zcd80 and 0z460 B,
respectively.

We further improve upon our results by reducing the SPMM
calls using the consolidation algorithm. While this optimization
needs to know the SPM size at compile time, we observe
a further average energy reduction of 5%. The SHA bench-
mark contains many nested function calls within loop struc-
tures making it a good candidate for optimization using our
consolidation algorithm. It should be noted that the GCCFG
consolidation reduces only the SPMM call overheads while the
data movement between SPM and SDRAM in case of overflows
remains constant. Call consolidation causes evictions to occur
in bigger chunks. This happens so because the manager may
allocate and deallocate stack space for groups of functions
rather than individual functions. The SPMM function table is
accessed from SDRAM whereas only a limited set of manager
data objects are kept in SPM. This is done to keep a minimal
space overhead in SPM. The overhead of the SPMM is well
compensated for by the reduction in total number of SDRAM
accesses.

The performance trends shown in Fig. 9 are normalized with
the Baseline case. It is important to note that the performance
obtained using the Baseline system is 16x better than a system
without any on-chip memory. In case of processors which
only have an SPM and no cache, our technique is extremely
beneficial for performance as well as power.

We observe an average performance improvement of 13% for
SPMM technique with a maximum improvement of 34% for
Blowfish-Decryption. It is interesting to note that the hardware-
assisted circular stack management in [2] achieves a similar per-
formance improvement. However, our solution does not require
any hardware support and can be ported to any architecture
using SPM. We observed performance degradation up to 6%
in the SHA and JPEG benchmarks. However, the manager call
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consolidation algorithm completely eliminates this degrada-
tion and results in further average performance improvement
of 5%.

While almost all benchmarks use pointers, the first seven
benchmarks execute correctly when the SPM size is chosen
to be larger than the largest function stack. However, the
last three do not. Pointer extension is necessary for all the
benchmarks to be sure about the correctness of execution,
but is unavoidable for the last three benchmarks. We observe
an average energy reduction of 29.6% with SPMM-Pointer.
The reduced energy savings by 3.3% as compared to SPMM
can be attributed to the extra instructions executed to validate
pointers in the program during the SPMM calls. It is no surprise
that we also see reduced performance improvement from 13%
for SPMM to 10% for SPMM-Pointer. However, as pointed
out before, a programmer can now run his application with
pointers even when he does not have the liberty to choose the
SPM size.

VI. CONCLUSION

A simple, yet effective, dynamic circular stack management
scheme which does not require system SPM size at compile
time was proposed. The static analysis method to reduce the
software overhead achieved average energy reduction of 37%
with an average performance improvement of 18%. The stack
management demonstrated is not restricted to cache-less ar-
chitectures and can also be used in general-purpose systems
and scales well with application size. We also demonstrated
that if we can know the SPM size at the compile time, the
overheads of SPM management can be further reduced by call
consolidation. Furthermore, we also proposed pointer extension
for applications in which access to stack variables of other
functions can happen through pointers. To work seamlessly
with interrupts, either interrupts should not use SPM or save
and restore the SPM. Same is the case for multithreading.
The overhead of save and restore of SPM will be small in
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comparison to the software multithreading overhead since we
envision the SPM size to be small.

Future work is needed in two main directions: 1) more
sophisticated pointer analysis to further reduce programming
restrictions and 2) break a function stack into multiple stacks to
avoid the minimum SPM size constraint.
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