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This article is an extended version of CODES+ISSS 2004 paper titled, “Operation Tables for Scheduling in

the presence of Partial Bypassing”. This article extends the earlier work in several ways. It better motivates for

the need of Operation Tables. It more formally and completely describes the algorithms to use Operation Tables

for pipeline hazard detection. It presents more experimental results, and demonstrates the need and usefulness of

Operation Tables by varying the bypasses in a processor.

I. ABSTRACT

Register bypassing is a widely used feature in modern processors to eliminate certain data hazards.

Although complete bypassing is ideal for performance, it has significant impact on the cycle time, area,

and power consumption of the processor. Owing to the strict design constraints on the performance, cost

and the power consumption of embedded processor systems, architects seek a compromise between the

design parameters by implementing partial bypassing in processors. However, partial bypassing in processors

presents challenges for compilation. Traditional data hazard detection and/or avoidance techniques used in

retargetable compilers that assume a constant value of operation latency, break down in the presence of

partial bypassing. In this article, we present the concept of Operation Tables that can be used to accurately

detect data hazards, even in the presence of incomplete bypassing. Operation Tables integrate the detection

of all kinds of pipeline hazards in a unified framework, and can therefore be easily deployed in a compiler

to generate better schedules. Our experimental results on the popular Intel XScale embedded processor

running embedded applications from the MiBench suite, demonstrate that accurate pipeline hazard detection

by Operation Tables can result in up to 20% performance improvement over the best performing GCC

generated code. Finally we demonstrate the usefulness of Operation Tables over various bypass configurations

of the Intel XScale.
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II. INTRODUCTION

Bypasses, or forwarding paths are simple yet powerful and widely used feature in modern processors to eliminate

some data hazards [1]. With Bypasses, additional datapaths and control logic are added to the processor so that the

result of an operation is available for subsequent dependent operations even before it is written in the register file.

However, this benefit of bypassing is accompanied by significant impact on the wiring area on the chip, possibly

widening the pitch of the execution-unit datapaths. Datapaths including the bypasses often are timing critical and

cause pressure on cycle time, especially the single cycle paths. The delay of bypass logic can be significant for wide

issue machines. Due to extensive bypassing very wide multiplexors or buses with several drivers may be needed.

Apart from the delay, bypass paths increase the power consumption of the processor. Thus complete bypassing

may have a significant impact in terms of area, cycle time, and power consumption of the processor [2]. Partial

bypassing presents a trade-off between the performance, power and cost of a processor. Partial bypassing is therefore

an especially valuable technique for application specific embedded processors.

Embedded systems are characterized by strict multi-dimensional design constraints, including severe constraints

on time-to-market. Short time-to-market makes it imperative to reuse design parts both in hardware and software.

Design reuse in compilers, which is one of the most important, time consuming and costly software in an embedded

processor system, is facilitated primarily by the means of a retargetable compiler technology. A retargetable compiler,

as opposed to a normal compiler, also takes the processor description, as an input parameter. However partial

bypassing poses challenges for good quality code generation by retargetable compilers. A good compiler should

not only be able to use the bypasses present in the processor, but also avoid the penalty of the bypasses missing

in the processor. Although ad-hoc scheduling rules, like ”instruction patterns” can be used to generate code for

a processor with a given bypass configuration, a more formal and extensible technique is needed for retargetable

compilers. The key enabler for this is the ability to accurately detect pipeline hazards. A pipeline hazard detection

mechanism is a fundamental capability used in most retargetable scheduling algorithms. Traditional retargetable

compilers use the information about the structure of the processor to detect and avoid resource hazards [3], and

use constant operation latency of each operation to detect and avoid data hazards [4]. For each operation o, the

operation latency is defined as a positive integer ol ∈ I+, such that if any data-dependent operation is issued more

than ol cycles after issuing o, then there will be no data hazards.

For processors that have no bypassing, or have complete bypassing, the operation latency is a well defined constant.

However, for a partially bypassed processor, the operation latency cannot be specified by a constant. In fact the

operation latency of an operation depends on the two dependent operations, the dependent operand, the structure of

the pipeline and also on the presence/absence of the bypasses. Thus traditional retargetable pipeline hazard detection
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techniques, that assume a constant operation latency break down in the presence of partial bypassing. There are no

existing retargetable pipeline hazard detection techniques for a partially bypassed processor.

In the absence of retargetable pipeline hazard detection mechanisms, it is possible to perform conservative

scheduling by using existing techniques. This can be done by using operation latencies obtained by assuming that

no bypasses are present. Although conservative scheduling will result in a legitimate schedule even for statically-

scheduled processors, it fails to exploit the bypasses present in the processor. The other option is to perform optimistic

scheduling using operation latencies obtained by assuming that all bypasses are present. Optimistic scheduling may

result in illegitimate schedules for statically scheduled (VLIW) processors, but it is able to use the bypasses present

in the processor. However, it incurs penalty due to the missing bypasses in the processor. In fact, it can be shown

that pipeline hazard detection using any constant value of operation latency is sub-optimal. Therefore an accurate

and retargetable pipeline hazard detection mechanism is needed.

Adding or removing bypasses in a processor is architecture independent (does not affect the instruction set).

As a result bypasses in a processor can be changed while still keeping the processor backward compatible. Thus,

tuning the bypass configuration is a lucrative option even while developing the next generation of the processor.

With incomplete bypassing becoming popular in modern embedded processors, developing retargetable compilers

is needed to generate good quality code for them. Bypass-sensitive retargetable code generation therefore not only

enables quick and easy adaptation of the compiler to minor changes in the design, but is of paramount importance

for rapid and automated design space exploration of processors with partial bypasses.

We solve the problem of retargetable pipeline hazard detection using Operation Tables (OTs). An OT is a mapping

between the operands of an operation to the resources and the registers of the processor. An OT captures which

processor resources an operation uses in each cycle of it’s execution. It can therefore be used to detect resource

hazards in a given schedule. An OT also captures the read/write/bypassing of processor registers and can therefore

be used to detect data hazards in a given schedule. Thus OTs are able to accurately detect all pipeline hazards in

an integrated manner. Most existing scheduling algorithms can leverage our integrated and accurate pipeline hazard

detection mechanism to generate better schedules.

In this article we propose the concept of Operation Tables. We explain how Operation Tables can be used to detect

all pipeline hazards even in the presence of partial bypassing in the processor. We perform several experiments on

the popular embedded processor, the Intel XScale, running embedded applications from the MiBench suite. Our

experimental results show that scheduling techniques based on Operation Table based pipeline hazard detection

can achieve up to 20% performance improvements. Further, we demonstrate the usefulness and applicability of our

Operation Table based pipeline hazard detection mechanism by varying the bypasses in the Intel XScale.

III. RELATED WORK

Bypassing was first described in the IBM Stretch [5]. Modern processors heavily use bypasses to avoid data

hazards and thereby improve performance. Cohn et. al [6] showed that partial bypassing helps reduce cost with

negligible reduction in the performance on the iWarp VLIW processor. Abnous et. al [7], [8] analyzed partial



IEEE TRANSACTIONS ON VLSI SYSTEMS, VOL. 1, NO. 11, DECEMBER 2005 4

bypassing between VLIW functional units in their 4-integer-unit VIPER processor. They argued that the bypassing

cost is minor as compared to the performance benefits achieved in RISC processors, but that complete bypassing

is too costly in VLIW processors.

Ahuja et al. [2] discuss the performance and cost trade-off of register bypasses in a RISC-like processor. They

manually performed bypass sensitive compilation (operation reordering) on a few benchmarks, and presented results

with a relatively coarse cache model. Buss et al. [9] reduce inter-cluster copy operations by placing operand chains

into the same cluster and assigning FUs to clusters such that the inter-cluster communication is minimized. The

work closest to ours is by Fan et al. [10], in which they describe their bypass customization framework based

on bypass sensitive compilation. They focus on VLIW processors and propose an FU-assignment technique to

make better use of partial bypasses. However they do not perform instruction reordering. In contrast we propose a

bypass-sensitive instruction-reordering technique that is applicable for a wide range of processors.

The concept of Operation Tables (OTs) proposed in this paper is similar to Reservation Tables (RTs). Reservation

Tables (RTs) [11] or Finite State Automata [12], [13] (generated from Reservation Tables) are used to detect resource

hazards in retargetable compiler frameworks [14], [15], [16], [3]. RTs model the structure of the processor including

the pipeline of the processor and the flow of operations in the pipeline. RTs can thus be used to model resource

hazards in a given schedule. However RTs do not model data in the schedule and are thus unable to detect data

hazards. Operation Tables, model both the resources and the register information of operations so that both data

and resource hazards can be effectively captured.

The rest of the paper is organized as follows: Section IV uses an example to explain why traditional pipeline

hazard detection mechanism breaks down in a partially bypassed processor; thus motivating for the need of Operation

Tables. Section V develops a processor pipeline and operation model. Section VI the uses these definitions to develop

the concept of Operation Tables. Section VII then describe our virtual register file based technique to describe the

processor bypasses in a succinct manner. Section VIII explains how Operation Tables can be used to accurately

detect all kinds of pipeline hazards, even in the presence of partial bypassing. Section IX explains the hazard

detection on a small schedule of instructions. Section X then details how our Operation Table based pipeline hazard

detection mechanism can be used in most existing scheduling algorithms to accurately detect pipeline hazards. We

modify the simple list scheduling algorithm to use our Operation Table based pipeline hazard detection mechanism.

Section XI divides our experiments into two parts. First we show that even a very simple scheduling algorithm

using Operation Tables can be used to generate good code over various benchmarks. In the second part we show

that our technique remains useful across various bypass configurations. We summarize and discuss some of our

future work in Section XII.

IV. MOTIVATION

Consider the three flavors of bypassing in a simple 5-stage pipeline shown in Figure 1, Figure 2 and Figure 3.

In all these pipelines we assume that the write in the register file takes place at the end of the cycle. Thus, if the

same register is read and written in a cycle, the old value is read.
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Consider the execution of an ADD operation in these pipelines. In absence of any hazards, if the ADD operation

is in F pipeline stage in cycle i, then it will be in OR pipeline stage in cycle i + 2. At this time it needs to read

the two source registers. The ADD operation will then write back the destination register in cycle i + 4, when it

reaches the WB pipeline stage. The result of the ADD operation can be read from the register file in and after cycle

i + 5.

pipeline path
data path

F D OR EX WB

RF

Fig. 1. A 5-stage processor pipeline with no bypassing

The pipeline in Figure 1 does not have any bypasses. There is only one way to read operands, i.e., from RF.

Thus, the operation latency of ADD is 3 cycles. Any dependent operation should be scheduled at-least 3 cycles

after ADD to avoid any data hazard.

pipeline path
data path

F OR EX WB

RF

D

Fig. 2. A 5-stage processor pipeline with complete bypassing

Figure 2 contains bypasses from both EX pipeline stage and WB pipeline stage to both the operands of OR

pipeline stage. This is an example of complete bypassing. For completely bypassed pipeline, the operation latency

of ADD is 1 cycle. A data dependent operation scheduled 1 or 2 cycles after ADD can read the result of ADD

from the bypass, while a data dependent operation scheduled 3 or more cycles after ADD can read the result from

RF. The effect complete bypassing is to reduce the operation latency, resulting in performance improvement. But in

either case (in the case of no bypassing, or complete bypassing), the operation latency can be accurately described

by a single value.

The pipeline in Figure 3 contains bypass only from EX pipeline stage to both the operands of OR pipeline stage.

There is no bypass from WB pipeline stage. This is an example of partial bypassing. In the pipeline with partial

bypassing, scheduling a data dependent operation 1 cycle after ADD will not result in a data hazard, because the

result of ADD can be read from EX pipeline stage via the bypass. However if the data dependent operation is
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pipeline path
data path

D ORF WB

RF

EX

Fig. 3. A 5-stage processor pipeline with partial bypassing

scheduled 2 cycles after scheduling ADD, there is no way to read the result of ADD. There is a data hazard.

But again, if the data dependent operation is scheduled 3 or more cycles after ADD, then the result of the ADD

operation can be read from the RF. Thus the data hazard can be avoided by scheduling the data dependent operation

of ADD, 1 cycle after scheduling the ADD operation, or 3 or more cycles after scheduling the ADD operation.

In this case we specify the operation latency of ADD as 1, 3. In general, the operation latency of an operation

in a partially bypassed processor cannot be specified by a single value. It is a list of numbers, which indicate the

schedule-distance between the operation and the data-dependent operation to avoid any pipeline hazard. If the data

dependent operation is scheduled at any other schedule-distance, then there will be a pipeline hazard and a possible

loss in performance.

Thus due to incomplete bypassing, the operation latency of ADD cannot be accurately specified using just one

value. Unlike previous approaches that use a single value, in this paper we show how OTs can be used to accurately

pipeline hazards in the presence of such multi-valued operation latencies. The operation latency in the presence of

incomplete bypasses is very much linked to the structure of the pipeline and the presence and absence of bypasses,

and the path operation takes in the pipeline. Operation Tables define a binding between an operation and the

resources it may use and registers it will read/write/bypass in each cycle of it’s execution. Using a resource and

register model of a processor, OTs can be used to model both the data and resource hazards.

V. PROCESSOR MODEL

In this section, we define the processor and operation model. We will then define Operation Table for operations

on this processor model.

A. Pipeline Model

A pipelined processor can be divided into pipeline units by the pipeline registers. The processor pipeline can be

represented as a Directed Acyclic Graph (DAG) of the pipeline units, u i ∈ U which represent the nodes of the

DAG, and a directed edge (ui, uj) represents that operations may flow from unit u i to unit uj . There is a unique

”source node”, u0, to which there are no incoming edges. This unit generates operations. Further, some nodes are

”sink nodes”, which do not have any outgoing edges. These nodes represent writeback units. In the pipeline shown
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C1 C2 C3 C4

C5

p1

p3 p4

p5

p6 p7

p9

p8

p2

LS

XWB

LWB

RF

F D OR

EX

Fig. 4. Example Pipeline

in Figure 4, F is the source unit and XWB and LWB are the writeback units. The operations flow along the block

arrows.

B. Operation Model

Each operation oi ∈ O supported by the processor is defined using an opcode o i.opcode and a list of source

and destination operands, oi.sourceOperands and oi.destOperands. The opcode defines the path of the operation

in the processor pipeline. Each source or destination operand, operand is defined by a 3-tuple, <arg, rf, rn>,

where arg is the argument of the operand, rf is the register file it belongs to, (or IMM for immediate operands),

and rn is the register number (or immediate value for immediate operands). The operand argument describes how

to read/write the operand. Thus the operation, ADD R1 R2 5, has opcode ADD, and has one destination operand

and two source operands. The destination operand is represented by <D1, RF, 1>. The first source operand is

represented as <S1, RF, 2>, and the third as <S2, IMM, 5>.

C. Pipeline Path of Operation

The pipeline path of an operation o i is the ordered list of units that an operation flows through, starting from the

unique source unit u0, to at least one of the writeback units. Each unit u i ∈ U contains a list of operations that

it supports, ui.opcodes. The add operation, ADD R1 R2 5 has opcode ADD, and the pipeline units F, D, OR, EX

and XWB have the ADD operation in the list of opcodes they support.

D. Register File

We define a register file as a group of registers that share the read/write circuitry. A processor may have multiple

register files. The processor in Figure 4 has a register file named RF.

E. Ports in Register File

A register file contains read ports and write ports to enable reading and writing of registers from and to the

register file. Register operands can be read from a register file rf via read ports, rf.readPorts, and can be written
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Operation Table Definition

OperationTable := { otCycle }
otCycle := unit ros wos bos dos

ros := ReadOperands { operand }
wos := WriteOperands { operand }
bos := BypassOperands { operand }
dos := DestOperands { regNo }
operand := regNo { path }
path := port regConn port regFile

TABLE I

OPERATION TABLE DEFINITION

in rf via write ports, rf.writePorts. Register operands can be transferred via ports through register connections.

The register file RF in the processor in Figure 4, has two read ports (p6 and p7) and two write ports (p8 and p9).

F. Ports in Pipeline Units

A pipeline unit, ui can read register source operands via its read ports, u i.readPorts, write result operands

via its write ports, ui.writePorts, and bypass results via its bypass ports, ui.bypassPorts. Each port in a unit is

associated with an argument arg, which defines the operands that it can transfer. For example a readPort of a

unit with argument S1 can only read operands of argument S1. In the processor in Figure 4, pipeline unit OR has

2 read ports, p1 and p2 with arguments, S1 and S2 respectively. The units, XWB and LWB have write ports p4 and

p5 respectively with arguments D1, and D2 respectively while EX has a bypass port p3 with argument D1.

G. Register Connection

A register connection rc facilitates register transfer from a source port rc.srcPort to destination port rc.destPort.

In the processor diagram in Figure 4, the pipeline unit OR can read two register source operands, first from the

register file RF (via connection C1), and second from RF (via connection C2) as well as from EX (via connection

C5). The register connection C5 denotes a bypass.

H. Register Transfer Path

Register transfers can happen from a register file to a unit (register read), from a unit to a register file (a writeback

operation), and even between units (register bypass). The register transfers in our processor are modeled explicitly

via ports. A register transfer path is the list of all the resources used in a register transfer, i.e., the source port, the

register connection, the destination port, and the destination register file or unit.
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VI. OPERATION TABLE

An Operation Table (OT) describes the execution of an operation in the processor. Table I describes the grammar

and structure OTs. An OT is a DAG of OTCycles, each OTcycle describes what happens in each execution cycle,

while the directed edges between OTCycles represent the time-order of OTCycles. Each OTCycle describes the

unit in which the operation is, and the operands it is reading ros, writing wos and bypassing bos in the execution

cycle. The destination operands dos are used to indicate the destination registers, and are required to model the

dynamic scheduling algorithms in the processor. Each operand that is transferred (i.e., read, written, or bypassed)

is defined in terms of the register number, regNo, and all the possible paths to transfer it. A path is descibed in

terms of the ports, register connections and the register file involved in the transfer of the operand.

Operation Table of ADD R1 R2 R3

1 F

2 D

3 OR

ReadOperands

R2

p1, C1, p6, RF

R3

p2, C2, p7, RF

p2, C5, p3, EX

DestOperands

R1, RF

4 EX

BypassOperands

R1

p3, C5, p2, OR

5 WB

WriteOperands

R1

p4, C3, p8, RF

TABLE II

OPERATION TABLE OF ADD R1 R2 R3

Table II shows the OT of the add operation, ADD R1 R2 R3 on the partially bypassed pipeline shown in Figure 4.

In the absence of any hazards, the add operation executes in 5 cycles, therefore the OT of the add operation contains

5 otCycles. In the first cycle of its execution, the add operation needs the F pipeline stage, and in the second cycle

it needs D pipeline stage. In the third cycle, the add operation occupies OR pipeline stage and needs to read its

source operands R2 and R3. All the paths to read each readOperand are listed. The first readOperand, R2 can

be read only from the RF via connection C1. There are two possible paths to read the second operand. First is

from RF via ports p7 and p2 and connection C2. The second path is from Ex via ports p3 and p2 and connection
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C5. Since the sources are read in this cycle, the destOperands are listed. In the fourth cycle the add operation is

executed and needs EX pipeline stage. The result of the operation R1 is bypassed via connection C5. It can be read

as the second operand of the operation occupying the OR unit. WB pipeline stage is needed in the fifth cycle. In

the otCycle the result of the add operation R1 is written back to RF via connection C3.

VII. BYPASS REGISTER FILE

A. Size of Operation Table

The OT of an operation lists all the paths to read/write/bypass each operand. In the presence of bypasses, there

may be multiple ways to read an operand, and as a result, the OT may be large.

Consider a linear pipeline, with l pipeline stages. Suppose an operation has s source operands and d destination

operands. Further suppose that k pipeline stages can generate bypasses, and that the bypass value is available for

each operand.

In this case, the OT of the operation will have l lines, one for each pipeline stage. The operand read stage also

specifies ReadOperands. Other than 1 line to write “ReadOperands”, we need s lines for each operand. Further

there are k+1 paths to read each operand (from 1 register file, and from k bypasses). Thus 1+s+s×(K+1) lines

to specify the source operands. In addition we also need 2 lines to specify the “DestOperands”, and the destination

operand itself. Therefore, 1+s+s∗(k+1)+2 extra lines are required to specify the operand read stage. Thereafter

each pipeline stage that generates a bypass needs 3 lines to specify the “BypassOperands”, register number and the

path to bypass the operand. Thus 3k lines are needed to specify the bypassing of results. Finally we need another 3

lines to specify writing the result to the register file. The length of OT is l +(1+ s+ s× (k +1)+2)+3× (k+1).

In short, length(OT ) ∝ s× k.

Thus, the size of the OT will be large in long, extensively bypassed processors. Such large description of makes

specifying OTs error-prone. To reduce the complexity of specification, we have developed the concept of Bypass

Register File (BRF).

B. Bypass Register File

A Bypass Register File (BRF) is a virtual register file for each operand that can accept values from bypasses. All

the bypasses that can transfer the result to an operand, will now write into the BRF associated with the operand.

The operand needs to only read from the normal register files or the BRF. Thus there are only two ways to read an

operand. The semantics of BRF differ from a regular register file in the sense that the register values are valid for

only one cycle. Only one BRF is needed for each operand that can accept values from the bypasses. This greatly

reduces the complexity and redundancy in the specification of OTs.

Figure 5 shows the processor pipeline model with Bypass Register File abstraction. All the bypasses to port p2

of unit OR write into the BRF , and the second operand that has to be read via port p2, can now be read either

from the register file RF via connection C2, or from BRF via connection C6.



IEEE TRANSACTIONS ON VLSI SYSTEMS, VOL. 1, NO. 11, DECEMBER 2005 11

C2C1 C3 C4

C5

p1

p3 p4

p5

p6 p7

p9

p8

p2

p11
p10

C6

OR

EX

LS

XWB

LWB

RF

BRF

F D

Fig. 5. Example Pipeline with BRF

Operation Table of ADD R1 R2 R3

1 F

2 D

3 OR

ReadOperands

R2

p1, C1, p6, RF

R3

p2, C2, p7, RF

p2, C6, p11, BRF

DestOperands

R1, RF

4 EX

BypassOperands

R1

p3, C5, p10, BRF

5 WB

WriteOperands

R1

p4, C3, p8, RF

TABLE III

OPERATION TABLE OF ADD R1 R2 R3

Table III shows the OT of the operation ADD R1 R2 R3 using the BRF abstraction. The only difference is

that the EX unit now bypasses the result to the BRF though ports p3, and p10, and connection C5, and that the

second operand in OR is read via the register file RF or via the BRF .

C. Size of OTs with BRF

In the presence of BRFs, the size of the operand read stage of pipeline will decrease. Now there are only 2 ways

to read each operand, one from the register file, and one from the BRF. Thus we just need 3 lines to specify each
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operand (register number, and the two paths). Therefore only 1+3s lines are required to specify the read operands.

Summarizing, length(OT ) = l + (1 + 3s + 2) + 3× (k + 1). Thus length(OT ) ∝ s + k.

Thus BRFs are able to asymptotically decrease the size of OTs.

VIII. HAZARD DETECTION USING OPERATION TABLES

Operation Tables can be used to detect pipeline hazards in a processor, for a given schedule of instructions.

Hazard detection using OTs requires that the state of the machine (processor) be maintained to reflect the current

schedule. The state of the machine is defined in Table IV. A machineState is a ordered list (square brackets) of

macCycle. Each macCycle denotes the state of the machine resources (whether they are busy or free), and the

registers in the register files (whether they are available for read, or not). The state of the Bypass Register File also

a part of the macCycle.

Machine State

machineState := [macCycle]

macCycle := Resources, RF, BRF

TABLE IV

MACHINE STATE

The function DetectHazard described in Figure 6 is the main pipeline hazard detection function. It detects both

the data and resource hazards if the operation op is scheduled at time t in a given machineState. The function

DetectHazard tries to schedule each otCycle of the operation in the machine states starting from time t. It reports

a hazard if there is a hazard in scheduling any otCycle in the corresponding macCycle.

bool DetectHazard(machineState, Operation op, Time t)
01: for (i = 0; i < op.OT.length; i + +)
02: if (DetectCycleHazard(machineState[t + i], op.OT [i]))
03: return TRUE
04: endIf
05: endFor
06: return FALSE

Fig. 6. Detect Hazard when an operation is scheduled

The function DetectCycleHazard, described in Figure 7 detects a hazard when an otCycle is scheduled in

a macCycle. The function reports a hazard if a resource that is required in the otCycle is not present in the

macCycle. A hazard is reported if any readOperand cannot be read (lines 04-07), or writeOperand cannot be

written (lines 08-12). To avoid WAW (Write After Write), a hazard is reported when a destOperand is not present

in the Register File (lines 13-18).
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bool DetectCycleHazard(macCycle, otCycle)
/* resource hazard */
01: if (otCycle.Resources �⊂ macCycle.Resources)
02: return TRUE

/* all sources can be read*/
03: foreach (ro ∈ otcycle.ReadOperands)
04: if (AvailRP (ro.Register, ro.Paths, macCycle) == φ))
05: return TRUE
06: endIf
07: endFor

/* all dests can be written */
08: foreach (wo ∈ otcycle.WriteOperands)
09: if (AvailWP (wo.Register, wo.Paths, macCycle) == φ))
10: return TRUE
11: endIf
12: endFor

/* dest is not available */
13: foreach (do ∈ otcycle.DestOperands)
14: regF ile = do.RegisterF ile
15: if (do.Register �∈ macCycle.regF ile)
16: return TRUE
17: endIf
18: endFor

/* no hazard */
19: return FALSE

Fig. 7. Detecting Hazards when a cycle of Operation Table is scheduled

The function AvailRP in Figure 8 tells whether the register reg can be read via any paths in the macCycle.

A register can be read by a path if the register is present in the RegFile (line 04) and all the resources required

to read the register from the RegFile are available (line 03). A register can be read if it can be read by any path

(line 01, 05). Similarly, the function AvailWP indicates if the register reg can be written via any of the paths in

the macCycle. The register can be written in the RegFile in cycle macCycle (line 13) if all the resources in any

path (line 10) are available in the macCycle (line 12).

The function DetectHazard is thus able to tell, if there is a hazard in scheduling an operation in certain cycle,

given the state of the machine. For this to function correctly, the state of the machine needs to be maintained. The

function AddOperation in Figure 9 updates the machine state after scheduling operation op in cycle t. It finds

the earliest macCycle to schedule each otCycle without a hazard (lines 03-04), and then updates the macCycle.

Each machineState is updated by scheduling an otCycle by the function AddCycle (line 06).

The function AddCycle in Figure 10 updates a macCycle by scheduling an otCycle in it. A macCycle is

updated by removing all the Resources required in otCycle from the Resources in macCycle (line 01). All the
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path AvailRP(reg, paths, macCycle)
01: foreach (path ∈ paths)
02: regF ile = path.RegisterF ile
03: if (path.Resources ⊂ macCycle.Resources)
04: if (reg ∈ macCycle.regF ile)
05: return path
06: endIf
07: endIf
08: endFor
09: return φ

path AvailWP(reg, paths, macCycle)
10: foreach (path ∈ paths)
11: regF ile = path.RegisterF ile
12: if (path.Resources ⊂ macCycle.Resources)
13: return path
14: endIf
15: endFor
16: return φ

Fig. 8. Finding the available read and write path

void AddOperation(machineState, op, t)
01: j = t
02: for (i = 0; i < op.OT.length; i + +)
03: while (DetectHazard(machineState[j], op.OT [i])
04: j + +
05: endWhile
06: AddCycle(machineState[j], op.OT [i])
07: endFor

Fig. 9. Update the state of the machine

required resources for the operand reads (lines 02-05) and writes (lines 06-11) are also marked as busy. If there are

DestOperands, RemRegFromRegFile removes the Register from RF in the later cycles (lines 12-15). The

function AddRegToRegF ile, adds the WriteOperands to RF in the later cycles (line 10).

In the next sections we show that the DetectHazard function, and the AddOperation function can be used to

detect all the pipeline hazards using Operation Tables. Thereafter we discuss how these fundamental functions can

be used to improve most existing standard scheduling algorithms.

IX. ILLUSTRATIVE EXAMPLE

Consider scheduling the sequence of three operations in the pipeline in Figure 5.

MUL R1 R2 R3 (R1← R2×R3)

ADD R4 R2 R3 (R4← R2 + R3)

SUB R5 R4 R2 (R5← R4−R2)
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void AddCycle(macCycle, opcycle)
/* make the resources busy */
01: macCycle.Resources− = macCycle.Resources

/* mark the resources used in read as busy */
02: foreach (ro ∈ otcycle.ReadOperands)
03: path = AvailRP (ro.Register, ro.Paths, macCycle)
04: macCycle.Resources− = path.Resources
05: endFor

/* mark the resources used in write as busy */
06: foreach (wo ∈ otcycle.WriteOperands)
07: reg = wo.Register
08: path = AvailWP (wo.Register, wo.Paths, macCycle)
09: macCycle.Resources− = path.Resources
10: AddRegToRegF ile(reg, path.RegisterF ile, j)
11: endFor

/* remove the dest register */
12: foreach (do ∈ otcycle.DestOperands)
13: reg = do.Register
14: regF ile = do.RegisterF ile
15: RemRegToRegF ile(reg, regF ile, j)
16: endFor

Fig. 10. Update a machine cycle

The OTs of ADD and SUB are similar, except for the register indices. The MUL operation uses the same

resources but spends two cycles in the EX pipeline stage. An operation bypasses the results only after the execution

has finished. Thus a valid bypass from EX pipeline stage will be generated only in the second cycle of execution

of MUL.

Since MUL occupies the EX pipeline stage for two cycles, a resource hazard should be detected between the

MUL and ADD operation. SUB requires the result of ADD operation as the first operand, for which there is no

bypass, so there should be a data hazard. We illustrate the detection of hazards by scheduling these three operations

in-order. Initially We assume that all the resources are free and that all the registers are available in the RF. There

is no hazard when MUL is scheduled in the first cycle. Table V shows the machineState after MUL is scheduled

by AddOperation.

If we try to schedule ADD in the next cycle, DetectHazard detects a resource hazard. There is a resource hazard

when the fourth otCycle of ADD is tried in the fifth macCycle. The resource EX is not free in the macCycle.

Table VI shows the machineState after scheduling ADD in the second cycle using AddOperation.

Now in the existing schedule in Table VI, if we try to schedule SUB in the third cycle, there is a data conflict.

The third otCycle of SUB cannot read R4 from RF. AvailRP returns φ because even though the connection C1 is
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Cycle Busy Resources !RF BRF
MUL R1 R2 R3 ADD R4 R2 R3 SUB R5 R4 R2

1 F - -
2 D - -
3 OR, p1, C1, p6, p2, C2, p7 - -
4 EX R1 -
5 EX, p3, C4, p10 R1 R1
6 WB, p4, C3, p8 R1 -
7 - -
8 - -
9 - -

10 - -
11 - -

TABLE V

SCHEDULE AFTER SCHEDULING MUL R1 R2 R3

Cycle Busy Resources !RF BRF
MUL R1 R2 R3 ADD R4 R2 R3 SUB R5 R4 R2

1 F - -
2 D F - -
3 OR, p1, C1, p6, p2, C2, p7 D - -
4 EX OR, p1, C1, p6, p2, C2, p7 R1 -
5 EX, p3, C4, p10 Resource Hazard R1, R4 R1
6 WB, p4, C3, p8 EX, p3, C4, p10 R1, R4 R4
7 WB, p4, C3, p8 R4 -
8 - -
9 - -

10 - -
11 - -

TABLE VI

SCHEDULE AFTER SCHEDULING ADD R4 R4 R3

free, R4 is not present in RF. The data hazard is resolved in the eighth cycle of machineState. Table VII shows

machineState after SUB is scheduled in the third cycle using AddOperation.

Thus Operation Tables can be used to accurately detect both data and resource conflicts, even in the presence of

incomplete bypassing.

X. INTEGRATING OTS IN A SCHEDULER

Detection of pipeline hazards is a fundamental problem in scheduling. Our OT-based approach generates accurate

hazard detection information, allowing any traditional scheduling algorithm to perform better. For the sake of

illustration, we demonstrate how to modify a simple list scheduling algorithm to use Operation Tables. We believe

OTs can similarly be integrated into other scheduling formulations. The scheduling problem is to schedule the

vertices of a data dependence graph G = (V, E), where each vertex corresponds to an operation, and there is an

edge between vi and vj if vj uses the result of vi. Vertex v0 and vn are the unique start and end vertices. The

function parents(v) gives a list of all the parents of v.

Figure 11 maintains three sets of vertices, U , the unscheduled vertices, F , the frontier vertices or the vertices

that are ready to be scheduled, and S, the vertices that have been scheduled (line 01). We initialize the algorithm by

scheduling the vertex start vertex v0. Therefore, U = V −v0, F = φ, and S = v0. The schedule time for each vertex
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Cycle Busy Resources !RF BRF
MUL R1 R2 R3 ADD R4 R2 R3 SUB R5 R4 R2

1 F - -
2 D F - -
3 OR, p1, C1, p6, p2, C2, p7 D F - -
4 EX OR, p1, C1, p6, p2, C2, p7 D R1 -
5 EX, p3, C4, p10 Resource Hazard Data Hazard R1, R4 R1
6 WB, p4, C3, p8 EX, p3, C4, p10 Data Hazard R1, R4 R4
7 WB, p4, C3, p8 Data Hazard R4 -
8 OR, p1, C1, p6, p2, C2, p7 R5 -
9 EX, p3, C4, p10 R5 R5
10 WB, p4, C3, p8 R5 -
11 - -

TABLE VII

SCHEDULE AFTER SCHEDULING SUB R5 R4 R2

is initialized to 0 (schedT ime[v] = 0, ∀v ∈ V ) (lines 02-04). For scheduling, the frontier set of unscheduled vertices

is computed in each step. All unscheduled vertices (v ∈ U ) whose parents have been scheduled (parents(v) ⊂ S)

belong to the frontier set. (line 06) The vertices in the frontier set are sorted by some priority function (line 07), and

the vertex with the least cost is picked for scheduling (line 08). The minimum schedule time for v is the maximum

of the schedule time plus the latency of each parent vertex p (line 09). The vertex v is then scheduled in the first

cycle, when it does not cause a hazard (lines 10-13). Different implementations of list scheduling mainly differ in

the priority function for the frontier set.

ListSchedule(V)
01: U = V − v0; F = φ; S = v0

/* initialize */
02: foreach (v ∈ V )
03: schedT ime[v] = 0
04: endFor

/* list schedule */
05: while (U �= φ)
06: F = {v|v ∈ U, parents(v) ⊂ S}
07: F.sort() /* some priority function */
08: v = F.pop()
09: t = MAX(schedT ime(p) + p.OL), p ∈ parents(v)
10: while (DetectHazard(v, t))
11: t + +
12: endWhile
13: schedT ime[v] = t
14: endWhile

Fig. 11. Original List Scheduling Algorithm

However in the presence of partial bypassing, the operation latency of an operation is not sufficient to avoid all the

data hazards; Operation Tables are needed. The traditional list scheduling algorithm can be very easily modified to
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make use of the DetectHazard and AddOperation functions to schedule using Operation Tables. Figure 12 shows

the same list scheduling algorithm that uses Operation Tables for pipeline hazard detection. The only modification

required is to change the DetectHazard function (line 09) and the AddOperation function (line 12). Our new

Operation Table based DetectHazard function defined in Figure 6 is used. The AddOperation function is needed

to update the machineState that is a input parameter in the DetectHazard function.

ListScheduleUsingOTs(V)
01: U = V − v0; F = φ; S = v0

/* initialize */
02: foreach (v ∈ V )
03: schedT ime[v] = 0
04: endFor

/* list schedule */
05: while (U �= φ)
05: F = {v|v ∈ U, parents(v) ⊂ S}
06: F.sort() /* some priority function */
07: v = F.pop()
08: t = MAX(schedT ime(p)), p ∈ parents(v)
09: while (DetectHazard(machineState, v.OT, t))
10: t + +
11: endWhile
12: AddOperation(machineState, v.OT, t)
13: schedT ime[v] = t
14: endWhile

Fig. 12. List Scheduling algorithm using Operation Tables

Thus we have demonstrated the integration of the Operation Table based pipeline hazard detection mechanism

into the standard list scheduling algorithm. Pipeline hazard detection being a very important and distinct part in

most scheduling algorithms enables easy swapping by our more accurate OT-based technique. Thus most existing

scheduling algorithms should be able to leverage the accurate pipeline hazard detection mechanism to generate

better schedules.

XI. EXPERIMENTS

To demonstrate the need and efficacy of Operation Tables, we perform experiments on the popular embedded

processor, the Intel XScale [17], employed in wireless and hand-held devices. The Intel XScale provides high

code density, high performance and low power, all at the same time. Figure 13 shows the 7-stage out-of-order

superpipeline of XScale. XScale implements dynamic scheduling using register scoreboarding, and has a partially

bypassed pipeline. We present experimental results on the benchmarks from MiBench [18] suite, which are the

representative of typical embedded applications. To estimate the performance of compiled code we have developed

a cycle-accurate simulator of the Intel XScale processor pipeline. Our simulator structurally models the Intel XScale



IEEE TRANSACTIONS ON VLSI SYSTEMS, VOL. 1, NO. 11, DECEMBER 2005 19

Fig. 13. 7-stage pipeline of XScale

pipeline and its performance measurements have been validated against the 80200 evaluation board [19]. The

performance measurement of our cycle-accurate simulator is accurate to within 7% of the evaluation board. This

accuracy is good enough to perform processor pipeline experiments with reasonable fidelity.

A. Across Benchmarks

OT-based
Compiler

Executable Executable

Application

GCC -O3

simulator
Cycle-accurate

simulator
Cycle-accurate

(gccCycles - otCycles)*100/gccCycles

gccCycles otCycles

performance improvement

Fig. 14. Experimental Setup

First we present experimental results to show the performance improvements achieved by using OT-based

bypass-sensitive compilation. Figure 14 shows the experimental setup for these experiments. We first compile

the applications using GCC cross compiler for XScale. The benchmarks were compiled using the -O3 option to

optimize for performance. We then simulate the compiled code on our XScale cycle accurate simulator and measure

the number of execution cycles (gccCycles).

We read the executable and generate the control flow graph and other data dependency data structures. We

perform OT-based scheduling on each basic block of the program, and generate the executable again. Our within-

basic block scheduling algorithm is very simple. We enumerate all the possible schedules and consider only the first
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1000 schedules. The instructions are re-ordered to match with the best performing schedule and the new executable

is generated. We simulate the new executable on the same XScale cycle accurate simulator and measure the number

of execution cycles (otCycles). The percentage performance improvement is computed as gccCycles−otCycles
gccCycles ×100.

We perform exhaustive scheduling within the basic blocks. Exhaustive scheduling must have exponential time

complexity, but data dependencies limit the number of possible schedules. As a result the OT-based rescheduling

time for all the benchmarks is below 1 minute.

Performance Improvement

0

5

10

15

20

25

Basicmath

Bitc
ount

Qsort

Susan.smoothing

Susan.corners

Susan.edges

Dijk
stra

Benchmarks

Fig. 15. Experimental Results

Figure 15 plots the percentage performance improvement over various benchmarks. The graph shows that our

code generation scheme can generate up to 20% better performing code than the best performing code generated

by GCC. susan.corners is an image processing algorithm that finds the corners in a given image. Our compiler

was able to detect data conflicts in two innermost loops of the corner detection algorithm, and was able to find a

schedule that avoided the conflict. In the bitcount benchmark, the scheduling could not find a better schedule than

GCC in the frequently executed loops. It could find at least one instance of data hazard (undetected by GCC) in

some other loop, and was able to avoid it, but since the loop was not among the most frequently executed loop

the performance difference was not significant. In the qsort benchmark, although our detection hazard could detect

some sub-optimal schedules, it was not possible to avoid them by re-ordering alone. We surmise that if OT-based

hazard detection technique is implemented as a first-class technique in the main compiler flow, much better results

can be achieved. Another reason that reduces the effectiveness of our schedule is due to the variation of latencies

of operations, especially the memory latencies. OT-based compiler generates a precise schedule for a given flow of

instructions in the pipeline and their latencies. Any variation in the latencies disturbs the quality of the schedule

generated. In the benchmark susan.edges, the high rate of cache misses disturbed the generated schedule so much

that very little improvement was achieved. Although the benefits achieved by a scheduler using OTs may be small,

it is always beneficial. In fact for our set of benchmarks, OT-based compiler on an average generates 8% better
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performing schedule than the best performing schedule generated by GCC.

B. Across Bypass Configurations

Now we evaluate the usefulness of our OT-based compilation technique for various bypass configurations of the

Intel XScale. The XScale pipeline as shown in Figure 13 has three execution pipelines, the X pipeline (units X1, X2,

and XWB), the D pipeline (units D2 and DWB), and M pipeline (units M1, M2 and MWB). For our experiments

we assume that all pipeline units after RF (Register Fetch) can generate bypass values to all the processor operands

in RF . Thus there can be 7 sources of bypasses, i.e., X1, X2, XWB, M2, MWB, D2 and DWB pipeline stages.

Since no computation finishes before or in the pipeline units M1 and D1, there is no bypass connection from these

units. XScale supports reading of 3 distinct processor operands, all in the RF stage. Thus there can be 7× 3 = 21

different bypasses in XScale leading to 221 bypass configurations.

Clearly, it is not possible to explore the entire search space of bypass configurations in a reasonable amount of

time. In this section we restrict the design space by only varying whether a pipeline unit generates a bypass or not.

If a pipeline stage bypasses, then the bypass-value is available to all the operands to read. This constraint restrains

the bypass space to 27 = 128 configurations. The configurations can be represented by (encoded into) a 7-bit binary

number. Each bit in the encoding indicates whether there are bypass connections from the corresponding pipeline

unit in the ordered tuple < DWB D2, MWB, M2, XWB, X2, X1 > . Thus bypass configuration 0, or (0000000) 2

represents a configuration in which there are no bypasses in the machine. Configuration 127 or (1111111) 2 represents

a fully bypassed XScale. Similarly configuration (1000101)2 or 69, represents a configuration in which only bypasses

from DWB, XWB and X1 are present. All the other bypasses are absent.

Bypass
Configuration

Application

GCC -O3

Executable

simulator
Cycle-accurate

OT-based
Compiler

Executable

simulator
Cycle-accurate

gccCycles otCycles

Fig. 16. Experimental Setup

Figure 16 shows our setup for this set of experiments. The exploration framework is driven by a bypass

configuration file. All the bypasses in the machine are listed in the bypass configuration file. A bypass is defined

by a pair of identifiers, the pipeline unit that generates the bypass, and the source operand which uses the value of

the bypass. The bypass-insensitive exploration (BIE) of bypasses is performed by executing the code compiled by

GCC on the cycle accurate simulator with the given bypass configuration. The bypass-sensitive exploration (BSE)
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is performed by re-compiling the executable for the given bypass configuration and measuring it’s performance on

the cycle accurate simulator. This exploration is performed for each bypass configuration over all the benchmarks.
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Fig. 17. All Bypass Explorations on bitcount

Figure 17 plots the execution cycles of the bitcount benchmark over various bypass configurations. The dark

diamonds in the graph represent the execution cycles of the benchmark as evaluated by the GCC-based exploration.

The light squares in the graph represent the execution cycles of the benchmark as evaluated by our bypass-

sensitive exploration. The leftmost pair of points represent the performance of the code when there are no bypasses

(configuration 0), and the rightmost configuration is a fully-bypassed XScale (configuration 127).

The main observation to be made from this graph is that ALL the light squares are below their corresponding

dark diamonds. This implies that code generated by the OT-based compiler performs better than the best-performing

code generated by GCC. This implies that a bypass-sensitive compiler is able to exploit the available bypasses and

generate good quality code for each bypass configuration.

C. Difference in Trends

Not only bypass-sensitive compilation can generate better code for any given bypass configuration, it can use

some bypass configurations better than others. As a result BIE and BSE will attach different relative importance to

the bypasses.

Figure 18 shows a zoom-in into the Figure 17. This graph only shows the performance estimation for the first

32 configurations (0-31). Figure 19 zooms further into Figure 18. This graph plots only the first 8 configurations,

(0-7). All the M-bypasses, and D-bypasses are absent in these configurations. Only the X-bypasses are varied in

this graph. To bring out the difference in trends, the configurations are sorted in the decreasing order of gccCycles.

“If you can have only 2 X-bypasses, then which ones should you have?” The answer to this question is different

when evaluated by BIE and BSE. BIE evaluates all the three configurations to be equally good, while the BSE

concludes that the bypass configuration < X1 X2 > is superior. As a result of the difference in trends, the relative

evaluation of bypasses can be erroneous by BIE; establishing the need of BSE exploration, while deciding on which

bypasses to keep in the processor.
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Fig. 18. All Bypass Explorations on bitcount
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Fig. 19. All Bypass Explorations on bitcount

Similar trends of the effectiveness of our OT-based compiler can be seen in other benchmarks also. Figure 20

shows the results of bypass configuration exploration on qsort application.

Thus OT-based compilers are not only able to generate good code across benchmarks, but also across different

bypass configurations. Further, BIE can lead to incorrect design decisions, and therefore BSE is neccessary. Operation

Tables provide the neccessary technology to perform BSE.

XII. SUMMARY

Although register bypassing increases performance by eliminating certain data hazards, it has significant impact

on the wiring area, cost, power and complexity of the processor. As a result, designers are implementing partial

bypassing in modern embedded processors. In the presence of partial bypassing, the operation latency is no longer

a constant. Therefore traditional pipeline hazard detection mechanisms that use constant operation latency break

down in the presence of partial bypassing.

In this article we presented the concept of Operation Tables. Operation Table is a mapping between an operation

and the processor resources and registers. Operation Tables can be used to accurately detect all the pipeline hazards
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Fig. 20. All Bypass Explorations on qsort

even in a partially bypassed processor. In this article we have shown that our accurate pipeline hazard detection

mechanism is generic and can be used in most existing scheduling algorithms. Our experiments on MiBench and

the Intel XScale show that OT-based pipeline hazard detection mechanism can be used to achieve up to 20%

performance improvements over the best performing code generated by GCC. Further, we have demonstrated the

show usefulness and effectiveness of our technique over various bypass configurations.

The decision of adding/removing bypasses is now done either manually, or by using a simulation-only exploration.

Simulation-only exploration is performed by executing the same binary on processor models with varying bypass

configurations. However since the application is not recompiled, this leads to an error in the evaluation of the

effectiveness of the bypass configuration. Thus a Compiler-in-the-Loop exploration of the partial bypass design

space is needed. We are currently developing an automated framework for such exploration.

REFERENCES

[1] P. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, 1990.
[2] P. Ahuja, D. W. Clark, and A. Rogers, “The performance impact of incomplete bypassing in processor pipelines,” in Proc. of Symposium

on Microarchitecture MICRO-28, 1995.
[3] P. Grun, A. Halambi, N. Dutt, and A. Nicolau, “RTGEN: An algorithm for automatic generation of reservation tables from architectural

descriptions,” in ISSS, 1999.
[4] S. Muchnick, Advanced Compiler Design and Implementation, 1998.
[5] E. Bloch, “The engineering design of the stretch computer,” in Proc. of Eastern Joint Computer Conference, 1959, pp. 48–59.
[6] R. Cohn, T. Gross, M. Lam, and P. Tseng, “Architecture and compiler tradeoffs for a long instruction word microprocessor,” in Proc. of

ASPLOS, 1989.
[7] A. Abnous and N. Bagerzadeh, “Pipelining and bypassing in a vliw processor,” in IEEE trans. on Parallel and Distributed Systems, 1995.
[8] J. Gray, A. Naylor, A. Abnous, and N. Bagherzadheh, “Viper: A vliw integer microprocessor,” in IEEE Journal of Solid State Circuits,

1993, pp. 1377–1383.
[9] M. Buss, R. Azavedo, P. Centoducatte, and G. Araujo, “Tailoring pipeline bypassing and functional unit mapping for application in clustered

vliw architectures,” in Proc. of CASES, 2001.
[10] K. Fan, N. Clark, M. Chu, K. V. Manjunath R. Ravindran, M. Smelyanskiy, and S. Mahlke, “Systematic register bypass customization

for application-specific processors,” in Proc. of IEEE Intl. Conf. on ASSAP, 2003.
[11] E. S. Davidson, “The design and control of pipelined function generators,” Int. IEEE Conf. on Systems Networks and Computers, pp.

19–21, 1971.
[12] T. Muller, “Employing finite automata for resource scheduling,” in Proc. of Symposium on Microarchitecture MICRO-27, 1993.
[13] T. A. Proebsting and C. W. Fraser, “Detecting pipeline structural hazards quickly,” in Proc. of ACM SIGPLAN-SIGACT Symp. on PLDI,

1994.
[14] P. G. Lowney, S. M. Freudenberger, . T. J. Karzes, W. D. Lichtenstein, . R. P. Nix, J. S. O’Donnell, and . J. C. Ruttenberg, “The Multiflow

Trace Scheduling compiler,” The Journal of Supercomputing”, vol. 7, no. 1-2, pp. 51–142, 1993.
[15] The Trimaran Compiler Infrastructure for Instruction Level Parallelism, The Trimaran Consortium.
[16] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau, “EXPRESSION: A language for architecture exploration through

compiler/simulator retargetability,” in Proceedings of Design Automation and Test in Europe, 1999.



IEEE TRANSACTIONS ON VLSI SYSTEMS, VOL. 1, NO. 11, DECEMBER 2005 25

[17] Intel XScale(R) Core Developer’s Manual, Intel Corporation, http://www.intel.com/design/intelxscale/273473.htm.
[18] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown, “Mibench: A free, commercially representative

embedded benchmark suite,” in IEEE Workshop in workload characterization, 2001.
[19] Intel 80200 Processor based on Intel XScale Microarchitecture, Intel Corporation, http://www.intel.com/design/iio/manuals/273411.htm.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


