Compiler-in-the-Loop ADL-driven
Early Architectural Exploration”

Aviral Shrivastavat Nikil Duttt

aviral@ics.uci.edu dutt@ics.uci.edu

Center for Embedded Computer Systemst

School of Information and Computer Science

University of California, Irvine, CA 92697

ABSTRACT

Processor architects today critically need software tools that
accurately track architectural changes made during explo-
ration, and provide fast and quantitative feedback for each
design point. Indeed, Design Space Exzploration (DSE) with-
out the compiler-in-the-loop (CIL) can be meaningless. To
effectively explore the processor-memory-coprocessor design
space, a system architect critically needs a compiler that can
exploit the advantages of micro architectural features, hide
memory latency and effectively use the coprocessor. This
paper presents a CIL framework for processor architecture
DSE. The framework is developed around EXPRESSION,
an Architecture Description Language (ADL) that captures
the functionality and structure of the processor at a high
level. A software toolkit comprising an optimizing compiler,
an instruction-set simulator and a cycle-accurate simulator
are parameterized from the ADL, allowing for early esti-
mation of performance, power and code size. System de-
signers can modify the ADL to reflect architectural changes;
for each change, the applications are re-evaluated using the
architecture-sensitive compiler and the cycle-accurate simu-
lator and feedback on performance as well as power is pro-
vided. Furthermore, the ADL can be used as a golden ref-
erence model for the ensuing phases of design and analy-
sis. This paper demonstrates the need and usefulness of CIL
DSE methodology for the exploration of register bypasses in
the Intel XScale architecture.

1. INTRODUCTION

Modern Embedded Systems have strict multi-dimensional
constraints, including power, performance and cost. As a
result of ever-changing demands, microprocessors with in-
creasing programmable content are gaining market share.
Designing such processors require customizing the processor
to meet all the constraints in chorus, which in turn necessi-
ates exploring several architectural modifications and study-
ing their impact on the design parameters including design-
time. Design Space Exploration (DSE) is therefore a very
important phase in embedded processor design methodolo-
gies. Furtherm, increasing design complexity and decreasing
time-to-market are pushing this exploration phase early in

*This work was partially funded by grants from Intel Corpo-
ration, UC Micro(03-028), and SRC contract 2003-HJ-1111

Alex Nicolaut Eugene Earliet

nicolau@ics.uci.edu eugene.earlie@intel.com

Strategic CAD Labst
Intel Corporation,
Hudson, MA, 01749

the design process. Indeed, there is an undeniable need for
automated and early DSE methodologies.

Previously software for such programmable embedded sys-
tems was hand-coded in assembly languages. However in-
creasing software content in newer designs and shrinking
time-to-market has resulted in migration to high-level lan-
guage based software development environments. Thus a
compiler - that can exercise novel microarchitectural fea-
tures - becomes an essential part of the design flow. In-
deed, DSE without the compiler-in-the-loop (CIL) can be
meaningless. For example, a modification to the pipeline or
adding a coprocessor is of no use unless the compiler exer-
cises code to exploit such features. Furthermore, a smart
compiler can obviate the need of some costly architectural
features. e.g, a compiler can aggressively hide memory la-
tencies based on the organization and types of memories em-
ployed by the programmable architecture, and thus render
unnecessary, costly prefetching techniques. To effectively
explore the processor-memory-coprocessor design space, a
system architect therefore critically needs a compiler that
can exploit the advantages of micro architectural features,
hide memory latency and effectively use the coprocessor.

A key requirement for CIL DSE is that the compiler should
be able adapt itself to the architectural variations. Tradi-
tionally such compilers are labeled as “retargetable com-
pilers”, which can be adapted to generate code for differ-
ent target processors with significant reuse of the compiler
source code. Many years of research on the topic of re-
targetable compilers has led to new approaches that em-
ploy Architecture Description Languages (ADL) to define
the machine model, including the processor, memory and
coprocessing engines. The ADL can then be used to gen-
erate/parameterize entire software toolkits (typically com-
prising a compiler, simulator, debugger and associated soft-
ware development utilities). Furthermore, such ADLs can be
used to perform effective DSE of novel architectural and mi-
croarchitectural features. Although a number of ADL based
DSE methodologies have been proposed, most of them do
not have a CIL, which we believe is critical for developing
modern programmable embedded systems. Furthermore,
there is a lack of compiler technology that can generate good
quality code which exploits novel microarchitectural features
present in many emerging embedded processors.

In this paper we demonstrate the need and usefulness of

ADL-driven early CIL DSE on modern embedded proces-
sors. We explore the performance and power impact of vary-
ing the register bypasses in the Intel XScale processor. How-
ever in the case, when only some of the bypasses are present
(partial bypassing), traditional compilers cannot generate
optimal code for them. Therefore first we developed a novel
scheduling algorithm for a partially bypassed processor. We
then show that traditional exploration, that does not use
CIL results in significantly inaccurate evaluation of bypass
configurations, which can eventually lead to sub-optimal de-
sign decisions.

2. EXPRESSION BASED CIL DSE

EXPRESSION is an Architecture Description Language
(ADL) that captures the functionality and structure of the
architecture at a higher level, focused primarily to facili-
tate the development of a architecture-sensitive retargetable

compiler, that will be used for CIL DSE.
l
Simulator

Figure 1: EXPRESSION based CIL DSE

Microar chitecural
Changes

FU Latencies

Pipelining, Bypasses

Coprocessors

Communication

Memory/Cache

EXPRESSION
ADL

This project uses the EXPRESSION ADL[5] to describe
the processor architecture and the memory subsystem of a

programmable processor system. The EXPRESS, architecture-

sensitive compiler [6, 9] and the SIMPRESS instruction set
simulator and cycle-accurate simulator [8] are parameterized
from the system description in EXPRESSION. The applica-
tion is compiled using the optimizing compiler EXPRESS,
executed on the cycle-accurate, word-true simulator SIM-
PRESS to get the power, performance, utilization, static and
dynamic code size, and other statistics in a report. Figure 1
shows our EXPRESSION-driven CIL DSE framework.

3. PARTIAL BYPASSING

Register bypasses or forwarding paths improve the perfor-
mance of a processor by eliminating certain data hazards,
but are accompanied with a significant increase in the cycle
time, chip area, energy consumption, wiring congestion, and
overall design complexity [2]. Recent research therefore ad-
vocates the use of partial bypassing in processors[l]. It has
been shown that in a design with extensive bypasses, sev-
eral bypasses have low utilization, and thus can be removed,
thereby reducing the power, cost, area of the design with-
out significantly affecting the performance[3]. Exploring the
bypasses is therefore a valuable technique for designing ap-
plication specific embedded processors. Moreover, the by-
passing in a processor can be changed in most cases without
affecting the instruction set of the processor.

Traditionally the decision of which bypasses to add /remove
is based on the designer’s intuition and/or Simulation-Only
(SO) exploration. The traditional method of exploring par-
tial bypasses i.e. SO exploration is performed by measur-
ing the performance of the same compiled code (binary) on
processor models with different bypass configurations. The
configuration with the best performance is chosen. How-
ever, once a bypass configuration is chosen, a “production
compiler” is developed for the chosen bypass configuration.
Although it takes a lot of time and effort to develop the pro-
duction compiler, finally it is able to exploit the bypasses
present in the processor. It has been shown that tuning the
compiler for the bypass configuration has significant impact
on the performance of a partially bypassed processor [9].
This implies that the performance estimation done by the
SO exploration incurrs significant errors. Furthermore in a
SO exploration, since the code that executes on the proces-
sor may not be the correct representative of the code that
will be finally executed on the processor, it leads to inaccu-
rarcies in other estimates e.g. power. Thus there is a crucial
need of a bypass-sensitive Compiler-In-the-Loop exploration
of partial bypassing in embedded processors.

4. BYPASSSENSITIVE COMPILER

The goal of a bypass-sensitive compiler is to generate code
such that operations use the bypasses present to exchange
values and do not suffer from hazards due to missing by-
passes. Consider the simple 5-stage processor pipeline as
shown in Figure 2. The Operand Read (OR) pipeline stage
is shown in detail to describe incomplete bypassing. There
is a bypass from the Ezecute (EX) pipeline stage to the sec-
ond operand in the OR. For modeling purposes we cluster
all the bypasses to an operand into a virtual Bypass Register
File (BRF). All the bypasses to the operand write into its
bypass register file, and it is read while reading the operand.
The bypass from EX to the first operand is modeled using
connections C4, C5 and BRF. In the processor pipeline in
Figure 2, the first operand can be read from the Register File
(RF) only, while the second operand can also be the result of
the operation in EX. In this pipeline, if an operation in OR
needs the result of the operation in EX as the first operand,
there will be a pipeline hazard, while if it needs to read it as
the second operand, there will be no hazard. Thus a bypass-
sensitive retargetable compiler needs to be cognizant of the
processor pipeline and the bypasses present/absent.

|:> pipeline path
__ . datapath RF J e
ci c2 BRF
Cs
c4|

F T D [OR [EX CWB

Figure 2: Example Processor Pipeline

Operation Tables (OTs) succintly capture the processor
pipeline and the bypasses present and enable the compiler to
generate code sympathetic to the bypass configuration. Like
RTs (reservation Tables), OTs describe the resources that an
operation may use in each cycle of its execution. In addition
OTs describe when an operation reads/writes/bypasses its
operands, and operand itself (register identifier). OTs also

describe the resources that are available to read/write/bypass
the operands.

The OT for a simple instruction, ADD R1 R2 R3 of a
the processor pipeline in Figure 2 is shown in Table 1. The
ADD operation utilizes resource Fetch (F) pipeline stage in
the first cycle and Decode (D) pipeline stage in the second
cycle. In the third cycle, it reads two operands R2 and R3.
The first operand R2, may be read only from the Register
File RF via connection C1, while the second operand, R2
can be read from the RF via connection C2, or from the
BRF via connection C5. In the fourth cycle, add operation
is executed and the result R1 is bypassed to BRF via con-
nection C4. In the fifth and final cycle R1 is written back to
RF via connection C3. OTs of operations in a given sched-
ule can be combined to discover all the pipeline hazards.
Table 2 shows how OTs can be used to detect data hazard
between two simple dependent instructions:

ADD R1 R2 R3

SUB R5 R1 R4

on the pipeline shown in Figure 2. The OT-based compiler
has to maintain the state of the machine in terms of busy
resources and available registers in each register file for each
cycle. This bookkeeping allows the detection of data hazards
(e.g. when a required register is not present in a reachable
register file), and resource hazards (e.g. a required resource
is busy). Table 2 shows that after scheduling the first op-
eration (ADD), register R1 is not available in RF in cycle
4. Register scoreboarding makes destination of a issued in-
struction unavialble in the register file until it is written back
to to avoid a WAW hazards. The next operation (SUB) can
read R1, its first operand only from RF (due to absence
of a bypass from EX pipeline stage to the first operand of
RF). Thus there is a data hazard in cycle 4. The data haz-
ard is cleared in the next cycle (cycle 5), when R1 becomes
available via RF.

Operation Table of ADD R1 R2 R3
1F
2D
3 OR
ReadOperands
R2
Cl1, RF
R3
C2, RF
C5, BRF
DestOperands
R1, RF
4 EX
WriteOperands
R1
C4, BRF
5 WB
WriteOperands
R1
C3, RF

Table 1: Operation Table of ADD R1 R2 R3

Thus OTs can be used to detect all the pipeline hazards in
a given schedule, even in the presence of partial bypassing.
This ability of accurate hazard detection can be used to re-
order operations and generate bypass sensitive code. In an
exploration framework we are interested in estimating the
performance potential of a bypass configuration. Therefore,
we look at all possible orderings of operations in a basic

Cycle Busy Resources 'RF | BRF
ADD R1 R2 R3 SUB R5 R1 R4
1 F -
2 D F -
3 OR C1 C2 D -
4 EX C4 Data Hazard | r1 | RrR1
5 WB C3 OR C1 C2 -
6 EX C4 R5 R5
7 WB C3 -

Table 2: Hazard detection using OT's

block, and pick up the one with best performance. Since this
scheme is exponential, we impose a limit on the number of
operation orderings (10, 000) that we try. This bound leaves
the compile-time (few mins) negligible as compared to cycle
accurate simulation time (few hours).

5. EXPERIMENTS

To demonstrate the need, usefulness and capabilities of
PBExplore, we perform several experiments on the Intel XS-
cale[7] architecture on benchmarks from MiBench[4] suite.

5.1 Simulation-Only versus CIL Exploration

In the XScale pipeline model, we vary whether a pipeline
stage bypasses its result or not. If a pipeline stage bypasses,
all the operands can read the result. There are 27 = 128
possible bypass configurations. Figure 3(a) plots the run-
time (in execution cycles) of the bitcount benchmark for all
these configurations using simulation-only (SO) (dark dia-
monds), and CIL (light squares) exploration. We make two
important observations from this graph. The first is that all
the execution cycles evaluated by the CIL exploration is less
than the execution cycles evaluated by the SO exploration.
This implies that the bypass-sensitive compiler is able to
take advantage of each bypass configuration, and is gener-
ating good quality code. The second observation is that the
difference in the execution cycles for a bypass configuration
can be up to 10%, implying that the performance evaluation
by SO exploration can be up to 10% inaccurate.

We now zoom into this graph and show that SO explo-
ration and CIL exploration result in different trends, and
may lead to different design decisions. Figure 3(b) is a
zoom-in of Figure 3(a) and shows the explorations when
only the bypasses in the integer are varied, while the rest
are present. To bring out the difference in trends, the by-
pass configurations in this graph are sorted in the order of
execution cycles as evaluated by SO exploration. Figure 3(b)
shows that as per the SO approach, all configurations with
bypasses from two stages in the X-pipeline are similar, i.e.
the execution cycles for configurations <X2 X1>, <XWB
X1> and <XWB X2> are similar. However, our bypass-
sensitive compiler is able to exploit the configuration <X2
X1> better than other configurations with two X-bypasses.

5.2 Performance-Area-Energy Exploration

To demonstrate that PBExplore can effectively perform a
multi-dimensional exploration, we vary the bypasses only for
the first operand. We synthesize and measure the area and
energy consumption of the bypass control logic. There would
be 27 = 128 bypass configurations. Figure 4 (a) and (b)
shows the performance-area and performance-energy trade-
offs of various bypass configurations computed using PBEx-

1250000 [———————1(a) Bypass Explorations (bitcount) *SO
* * * mCIL

>

1200000 { -
1 >

1150000 u

1100000 4

1050000 *

1000000 4

950000

Execution Cycles

900000 -
850000

800000 T T T

0 32
Bypass Source Configurations

Execution Cycles

1200000 1————————1(b) X Bypass Exploration (bitcount)

1150000 -

gso
aociL

1100000 1

1050000 -

1000000 -

950000 1—

900000 -

N e

850000 T T T

Figure 3: Simulation-only vs. Compiler-in-the-Loop Exploration

105% 74{ Performance Area Trad e—uffi

100% &

o
£
2 95%
< *
13 * LR PS4
% | * *
E 90% ““: RS s, . .
3 85% A M».s@‘oo 2 YIRS
2 CAR AR OIS ¥ S A SR CI
5 80% 1 *e
§75% 5" N v %+ % o e &
S 70% | * * * o0 ' 4
g
L % .

60% T T T T T

100% 105% 110% 115% 120% 125%

Execution cycles compared to full bypassing

130%

Energy compared to full

B A 2 2 ‘" ' A
YW s K)(\Na)(NS)(\N3$ B MRS
Bypass Configuration
105% ’4{ Performance Energy Trade-uff}
100% ¢
> *e
. o4
95% 4 &oe &% .
03 *
o E3 o AAURS LIRS e 3 o
S 90% I S Sod * s
= oo & % ¢ -
2 e * o % oo * ® o
© * g0 oo . o * *
2 85% 1 o
2 Y MR
o * o
2 A (3 . ¢ o o
80% 4 . * LR <
.
75%
.
70% T T T T T

100% 105% 110% 115% 120% 125% 130%

Execution cycles compared to full bypassing

Figure 4: Power-Area-Energy trade-offs using PBExplore

plore. The performance, area and energy consumption are
shown relative to that of a fully bypassed processor. The in-
teresting pareto-optimal design points 1 and 2 are marked in
both the graphs. Design point 1 represents the bypass con-
figuration when MWB and XWB do not bypass to the first
operand. This bypass configuration, uses 18% less area than
full bypassing and consumes 14% less energy than full by-
passing, while suffering only 2% performance penalty. Simi-
larly design point 2 represents the bypass configuration when
only D2 and X2 bypass to the first operand. This configura-
tion uses 25% less area and consumes 16% less power than
fully bypassed processor, while losing only 6% on perfor-
mance. These configurations represent cheaper (in area and
energy consumption) design alternatives, at the cost of min-
imal performance degradation. These are exactly the kind
of trade-offs that an embedded processor designers would
need to evaluate when customizing bypasses.

6. SUMMARY

Programmable processors are becoming very popular to
meet the ever-changing demands of embedded systems. The
multi-dimensional design constraints require automated de-
sign space exploration (DSE) very early in the design phase.
Effective exploration on programmable embedded proces-
sors can be performed only by using an architecture-sensitive
compiler-in-the-loop (CIL). In this paper we present an EX-
PRESSION driven CIL DSE framework, to meaningfully
perform exploration on an embedded processor by vary-
ing register bypasses. However existing code generation
techniques break down in the presence of partial bypassing.
Therefore, we first develop a novel compilation technique to
generate code for partially bypassed processor. Our exper-
iments on the Intel XScale processor pipeline and bench-

marks from MiBench suite show that without a CIL, ex-
ploration can be erroneous and lead to sub-optimal design
decisions.

7. REFERENCES

[1] A. Abnous and N. Bagerzadeh. Pipelining and bypassing in a
vliw processor. In IEEE trans. on Parallel and Distributed
Systems, 1995.

P. Ahuja, D. W. Clark, and A. Rogers. The performance impact
of incomplete bypassing in processor pipelines. In Proc. of
Symposium on Microarchitecture MICRO-28, 1995.

K. Fan, N. Clark, M. Chu, K. V. Manjunath R. Ravindran,
M. Smelyanskiy, and S. Mahlke. Systematic register bypass
customization for application-specific processors. In Proc. of
IEEE Intl. Conf. on ASSAP, 2003.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,

T. Mudge, and R. B. Brown. Mibench: A free, commercially
representative embedded benchmark suite. In IEEE Workshop
in workload characterization, 2001.

A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and

A. Nicolau. EXPRESSION: A language for architecture
exploration through compiler/simulator retargetability. In
Proceedings of Design Automation and Test in Europe, 1999.
A. Halambi, A. Shrivastava, N. Dutt, and A. Nicolau. A
customizable compiler framework for embedded systems. In
SCOPES, 2001.

Intel Corporation,
http://www.intel.com/design/intelxscale/273473.htm. Intel
XScale(R) Core Developer’s Manual.

A. Khare, N. Savoiu, A. Halambi, P. Grun, N. Dutt, and

A. Nicolau. V-sat: A visual specification and analysis tool for
system-on-chip exploration. In EUROMICRO Conference,
pages 196-203, 1999.

A. Shrivastava, E. Earlie, N. Dutt, and A. Nicolau. Operation
tables for scheduling in the presence of incomplete bypassing. In
CODES+1ISSS ’04: Proceedings of the 2nd IEEE/ACM/IFIP
international conference on Hardware/software codesign and
system synthesis, pages 194-199, New York, NY, USA, 2004.
ACM Press.

