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Abstract

Varying partial bypassing in pipelined processors is an
effective way to make performance, area and energy trade-
offs in embedded processors. However, performance eval-
uation of partial bypassing in processors has been inaccu-
rate, largely due to the absence of bypass-sensitive retar-
getable compilation techniques. Furthermore no existing
partial bypass exploration framework estimates the power
and cost overhead of partial bypassing. In this paper we
present PBExplore: A framework for Compiler-in-the-Loop
exploration of partial bypassing in processors. PBExplore
accurately evaluates the performance of a partially by-
passed processor using a generic bypass-sensitive compi-
lation technique. It synthesizes the bypass control logic and
estimates the area and energy overhead of each bypass con-
figuration. PBExplore is thus able to effectively perform
multi-dimensional exploration of the partial bypass design
space. We present experimental results on the Intel XScale
architecture on MiBench benchmarks and demonstrate the
need, utility and exploration capabilities of PBExplore.

1 Introduction

Register bypasses or forwarding paths improve the per-
formance of a processor by eliminating certain data hazards
in pipelined processors [9, 12]. With bypasses, additional
datapaths and control logic are added to the processor so
that the result of an operation is available for subsequent
dependent operations even before it is written to the register
file. However, extensive bypassing implies that very wide
multiplexors or buses with several drivers may be needed.
Paths including the bypasses often are timing critical and
cause pressure on cycle time (especially the single cycle
paths). The delay of the bypass logic can be significant
for wide issue machines[2]. Thus the performance benefits
of bypassing may be accompanied by significant increase

in the cycle time, chip area, energy consumption, wiring
congestion, and overall design complexity. Recent research
thus advocates the use of partial bypassing in processors[1].
It has been shown that in a design with extensive bypasses,
several bypasses have low utilization, and thus can be re-
moved, thereby reducing the power/cost/area of the design
without significantly affecting the performance[6]. More-
over, the bypassing in a processor can be changed in most
cases without affecting the instruction set of the processor.
Exploring bypasses is therefore a valuable technique for de-
signing application specific embedded processors.

Traditionally the decision of which bypasses to
add/remove is based on the designer’s intuition and/or
simulation-only exploration. The traditional method of ex-
ploring partial bypasses i.e. simulation-only exploration is
performed by measuring the performance of the same com-
piled code (binary) on processor models with different by-
pass configurations. The configuration with the best perfor-
mance is chosen. However, once a bypass configuration is
chosen, a “production compiler” is developed for the cho-
sen bypass configuration. Although it takes a lot of time and
effort to develop the production compiler, finally it is able
to exploit the bypasses present in the processor. It has been
shown that tuning the compiler for the bypass configuration
has significant impact on the performance of a partially by-
passed processor [13]. This implies that the performance
estimation done by the simulation-only exploration incurrs
significant errors. Furthermore in a simulation-only explo-
ration, since the code that executes on the processor may
not be the correct representative of the code that will be fi-
nally executed on the processor, it leads to inaccurarcies in
other estimates e.g. power. There is thus a crucial need of a
bypass-sensitive compiler-in-the-loop exploration of partial
bypassing in embedded processors.

Embedded systems, which are characterized by multi-
dimensional design constraints including power, perfor-
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mance and cost, critically require an exploration frame-
work which is able to accurately evaluate the performance,
area and energy of each design alternative and thus perform
meaningful multi-dimensional trade-offs.

In this paper we present PBExplore: A Compiler-in-
the-Loop Framework to explore Partial Bypassing in pro-
cessors. PBExplore evaluates the performance of a by-
pass configuration by generating code for the processor
with given bypass configuration and simulates the gener-
ated code on cycle accurate simulator of the processor with
the same bypass configuration. PBExplore also synthesizes
the bypass control logic and evaluates the area and energy
overhead of the bypass configuration. Thus PBExplore is
able to effectively perform meaningful multi-dimensional
(performance-area-power) trade-offs among bypass config-
urations. This makes PBExplore a valuable assist for de-
signers of programmable embedded systems.

2 Related Work

Bypassing has been popular since it was first described
in the IBM Stretch[3]. The impact of bypassing on the area,
cost, power, and overall chip complexity has been exam-
ined in detail, consequently suggesting the use of partial
bypassing[5, 1, 7]. Code generation techniques for par-
tially bypassed processors and framework to customize the
bypasses therein, have been proposed[4, 6]. However, the
compilation techniques and the frameworks are for VLIW
processors only, furthermore, they employ crude cost esti-
mates, and no energy estimates at all. Thus existing frame-
works are unable to perform a multi-dimensional explo-
ration of processors with partial bypassing, which is very
important for embedded processors.

PBExplore uses a generic retargetable bypass-sensitive
compilation technique proposed in [13] to accurately eval-
uate the performance of each bypass configuration. PBEx-
plore automatically synthesizes the bypass control logic to
estimate the area and energy overhead of the bypass config-
urations. PBExplore is thus able to effectively and mean-
ingfully perform multi-dimensional exploration of proces-
sors with partial bypassing.

The rest of the paper is organized as follows:
In Section 3 we describe our partial bypass exploration
framework. Section 3.1 describes bypass-sensitive compi-
lation using Operation Tables. Section 3.2 discusses the is-
sues in the design of a bypass-sensitive cycle accurate sim-
ulator. Section 3.3 describes the design of a generic by-
pass control logic and briefs on our area and energy over-
head estimations. Section 4 we show that simulation-only
exploration and our compiler-in-the-Loop exploration, dif-
fer significantly and that they may lead to different design
decisions. We then perform experiments to show that PB-
Explore can effectively perform a multi-dimensional explo-
ration of partial byassing. We conclude in Section 5.
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Figure 1. PBExplore: A Compiler-in-the-Loop
Framework for Partial Bypass Exploration

3 PBExplore

PBExplore is driven by bypass configuration as shown
in Figure 1. All the bypasses present in the processor are
descibed in the bypass configuration. A bypass is defined
in terms of the pipeline stage where it is generated, and the
operand that can use it. The application is compiled us-
ing a bypass-sensitive compiler that is parameterized on the
bypass configuration. The generated executable is then sim-
ulated on a cycle accurate simulator that is parametrized on
the same bypass configuration. The cycle accurate simula-
tor reports the runtime (in cycles) for the application. The
bypass configuration is used to synthesize the bypass con-
trol logic and estimate the area overhead of bypasses. A
Power simulator uses the synthesized bypass control logic,
and the input stimuli in each cycle (generated by the cy-
cle accurate simulator) to estimate the energy consumed by
the bypass control logic for the execution of the applica-
tion. Thus PBExplore is able to make an accurate estima-
tion of performance (cycles of execution), area and energy
consumption overhead for each bypass configuration. We
now describe the different components of PBExplore.

3.1 Bypass Sensitive Compiler

The goal of a bypass-sensitive compiler is to generate
code such that operations use the bypasses present to ex-
change values and do not suffer from hazards due to missing
bypasses. Consider the simple 5-stage processor pipeline as
shown in Figure 2. The Operand Read (OR) pipeline stage
is shown in detail to describe incomplete bypassing. There
is a bypass from the Execute (EX) pipeline stage to the sec-
ond operand in the OR. For modeling purposes we cluster
all the bypasses to an operand into a virtual Bypass Regis-
ter File (BRF). All the bypasses to the operand write into its
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Figure 2. Example Processor Pipeline

bypass register file, and it is read while reading the operand.
The bypass from EX to the first operand is modeled using
connections C4, C5 and BRF. In the processor pipeline in
Figure 2, the first operand can be read from the Register File
(RF) only, while the second operand can also be the result of
the operation in EX. In this pipeline, if an operation in OR
needs the result of the operation in EX as the first operand,
there will be a pipeline hazard, while if it needs to read it as
the second operand, there will be no hazard. Thus a bypass-
sensitive retargetable compiler needs to be cognizant of the
processor pipeline and the bypasses present/absent.

Operation Tables (OTs) succintly capture the proces-
sor pipeline and the bypasses present and enable the com-
piler to generate code sympathetic to the bypass configu-
ration. Like RTs (reservation Tables), OTs describe the
resources that an operation may use in each cycle of its
execution. In addition OTs describe when an operation
reads/writes/bypasses its operands, and operand itself (reg-
ister identifier). OTs also describe the resources that are
available to read/write/bypass the operands.

The OT for a simple instruction, ADD R1 R2 R3 of a
the processor pipeline in Figure 2 is shown in Table 1. The
ADD operation utilizes resource Fetch (F) pipeline stage in
the first cycle and Decode (D) pipeline stage in the second
cycle. In the third cycle, it reads two operands R2 and R3.
The first operand R2, may be read only from the Register
File RF via connection C1, while the second operand, R2
can be read from the RF via connection C2, or from the
BRF via connection C5. In the fourth cycle, add operation
is executed and the result R1 is bypassed to BRF via con-
nection C4. In the fifth and final cycle R1 is written back to
RF via connection C3. OTs of operations in a given sched-
ule can be combined to discover all the pipeline hazards.
Table 2 shows how OTs can be used to detect data hazard
between two simple dependent instructions:
ADD R1 R2 R3
SUB R5 R1 R4
on the pipeline shown in Figure 2. The OT-based compiler
has to maintain the state of the machine in terms of busy re-
sources and available registers in each register file for each
cycle. This bookkeeping allows the detection of data haz-
ards (e.g. when a required register is not present in a reach-
able register file), and resource hazards (e.g. a required re-
source is busy). Table 2 shows that after scheduling the first
operation (ADD), register R1 is not available in RF in cy-

Operation Table of ADD R1 R2 R3
1 F
2 D
3 OR

ReadOperands
R2

C1, RF
R3

C2, RF
C5, BRF

DestOperands
R1, RF

4 EX
WriteOperands

R1
C4, BRF

5 WB
WriteOperands

R1
C3, RF

Table 1. Operation Table of ADD R1 R2 R3

cle 4. Register scoreboarding makes destination of a issued
instruction unavialble in the register file until it is written
back to to avoid a WAW hazards. The next operation (SUB)
can read R1, its first operand only from RF (due to absence
of a bypass from EX pipeline stage to the first operand of
RF). Thus there is a data hazard in cycle 4. The data haz-
ard is cleared in the next cycle (cycle 5), when R1 becomes
available via RF.

Thus OTs can be used to detect all the pipeline hazards in
a given schedule, even in the presence of partial bypassing.
This ability of accurate hazard detection can be used to re-
order operations and generate bypass sensitive code. Since
PBExplore is an exploration framework, and we are inter-
ested in estimating the performance potential of a bypass
configuration, we look at all possible orderings of opera-
tions in a basic block, and pick up the one with best perfor-
mance. Since this scheme is exponential, we impose a limit
on the number of operation orderings (10, 000) that we try.
This bound leaves the compile-time (few mins) negligible
as compared to cycle accurate simulation time (few hours).

Cycle Busy Resources !RF BRF
ADD R1 R2 R3 SUB R5 R1 R4

1 F - -
2 D F - -
3 OR C1 C2 D - -

4 EX C4 Data Hazard R1 R1
5 WB C3 OR C1 C2 - -
6 EX C4 R5 R5
7 WB C3 - -

Table 2. Hazard detection using OTs
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3.2 Cycle Accurate Simulator

The code generated for a particular bypass configuration
has to be executed on a cycle accurate processor simula-
tor with the same bypass configuration to estimate the ex-
ecution cycles required for the application. Structural cy-
cle accurate simulators that are written in sequential lan-
guages like C, model the processor pipeline by modeling
pipeline stages and the pipeline registers explicitly. Mod-
eling pipeline registers eliminates the dependencies be-
tween the pipeline stages, making it possible to execute the
pipeline stages in any order. Each pipeline stage reads the
pipeline register just before it, executes, and then writes the
result into the pipeline register after it. Updating the con-
tents of the pipeline register results in an increment in the
simulation cycles of execution.

However, bypasses impose a dependency between the
pipeline stage generating the bypass and the one using it.
The bypass value generating stage should be executed be-
fore the one that uses it. To solve this problem we represent
the processor pipeline using a directed graph, which has an
edge from the pipeline stage that generates the bypass to
the one that uses it. Any breadth first ordering of this graph
(topological sort) produces a legal execution order of the
pipeline stages. The cycle accurate simulator also gener-
ates the inputs and outputs of the bypass control logic every
cycle. This is used by the power simulator to estimate the
energy overhead for the bypass configuration.

3.3 Area and Energy Overhead Estimation

We quantify the area and energy consumption overhead
of bypassing by synthesizing the bypass control logic for
each bypass configuration. Figure 3 shows the bypass logic
for the second operand in the OR pipeline stage in the
pipeline in Figure 3, which recieves only one bypass (from
the EX pipeline stage). Each operand can potentially re-
cieve bypass from each pipeline stage. Of course for real
processors that have large number of such bypasses for
each operand, the bypass control logic scales and result in
significant area and energy consumption overhead. Each

pipeline stage that is a source of a bypass, generates a by-
pass value, a bypass valid and a bypass register number. If
the operand to be read matches any of the incoming bypass
register numbers, then the corresponding bypass value is
chosen, otherwise the value from the register file is chosen.
We synthesize the bypass logic using the Synopsys Design
Compiler[11] and estimate the area overhead of the bypass
control logic. Synopsys Power Estimator[11] is then used
to simulate this bypass control logic with the input stimuli
generated by the cycle accurate simulator to estimate the
energy consumption of the bypass control logic.

4 Experiments

To demonstrate the need, usefulness and capabilities of
PBExplore, we perform several experiments on the Intel
XScale[10] architecture. XScale is a popular embedded
processor for wireless and handheld devices. We perform
experiments on benchmarks from MiBench[8] suite, which
represent applications in the same domain. Due to space
constraints we present only a few results, however the re-
sults and conclusions are similar for other benchmarks. Fig-
ure 5 shows the 7-stage out-of-order super-pipeline of XS-
cale. XScale has three execution pipelines, the X pipeline
(units X1, X2, and XWB), the D pipeline (units D1, D2 and
DWB), and M pipeline (units M1, M2 and Mx(referred to
as MWB in this paper)). For our experiments we assume
that 7 pipeline stages, X1, X2, XWB, M2, MWB, D2 and
DWB can bypass to all the 3 operands in RF . Thus there
are 7 × 3 = 21 different bypasses in XScale. No computa-
tion finishes before or in the pipeline units M1 and D1, thus
there are no bypass connection from these units.

We synthesized the bypass control logic for each bypass
configuration using design compiler of Synopsys-2001.10
and 0.8µ library lsi 10k. To estimate the area overhead
we synthesized the bypass control logic for minimum de-
lay. We used Synopsys power estimate and the input stimuli
from cycle accurate simulator to estimate the energy con-
sumed by each bypass configuration for the given applica-
tion.

In the first part of experimental section, we show that
performance evaluation by the simulation-only exploration
and our bypass-sensitive compiler-in-the-loop exploration
differ significantly, and may lead to different design deci-
sions. In the second part we perform a multi-dimensional

Figure 5. 7-stage super-pipeline of XScale
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Figure 4. Simulation-only vs. Compiler-in-the-Loop Exploration

(performance-area-energy) exploration to demonstrate the
usefulness and capabilities of PBExlpore.

4.1 Simulation-only versus Compiler-in-the-Loop
Exploration

In the XScale pipeline model, we vary whether a pipeline
stage bypasses its result or not. If a pipeline stage by-
passes, all the operands can read the result. Thus there are
27 = 128 possible bypass configurations. Figure 4(a) plots
the runtime (in execution cycles) of the bitcount benchmark
for all these configurations using simulation-only (dark di-
amonds), and compiler-in-the-loop (light squares) explo-
ration. We make two important observations from this
graph. The first is that all the light squares are below their
corresponding dark diamonds, indicating that the execution
cycles evaluated by compiler-in-the-loop exploration is less
than the execution cycles evaluated by the simulation-only
exploration. This implies that the bypass-sensitive compiler
is able to effectively take advantage of the bypass configu-
ration, and is generating good quality code for each bypass
configuration. The second observation is that the difference
in the execution cycles for a bypass configuration can be
up to 10%, implying that the performance evaluation by
simulation-only exploration can be up to 10% inaccurate.

A case can be made for simulation-only exploration by
arguing that the error in exploration is important only if it
leads to a difference in trend. To counter this claim we will
now zoom into this graph and show that simulation-only
exploration and compiler-in-the-Loop exploration result in
different trends, and may lead to different design decisions.
Figure 4(b) is a zoom-in of Figure 4(a) and shows the ex-

plorations when only the X-bypasses are varied, while the
rest are present. To bring out the difference in trends, the
bypass configurations in this graph are sorted in the order
of execution cycles as evaluated by simulation-only explo-
ration. Figure 4(b) shows that as per the simulation-only ap-
proach, all configurations with bypasses from two stages in
the X-pipeline are similar, i.e. the execution cycles for con-
figurations < X2 X1 >, < XWB X1 > and < XWB X2 >
are similar. However, our bypass-sensitive compiler is able
to exploit the configuration < X2 X1 > better than other
configurations with two X-bypasses. Figure 4(c) and Fig-
ure 4(d) focuses on varying D and M bypasses while keep-
ing the rest in-place. Figure 4(c) shows that the simulation-
only exploration evaluates the performance of the bypass
configurations with one bypass as equivalent. However, our
PBExplore determines that if you can have only one bypass,
the bypass from the D2 pipeline stage is a superior choice.
We make similar observations for the M-bypass exploration
in Figure 4(d).

4.2 Performance-Area-Energy Exploration

To demonstrate that PBExplore can effectively perform
a multi-dimensional exploration, we vary the bypasses only
for the first operand, and assume that all the bypasses reach
the other two operands. Thus there are 27 = 128 bypass
configurations. Figure 6 (a) and (b) show the performance-
area and performance-energy trade-offs of various bypass
configurations computed using PBExplore. The perfor-
mance area and energy consumption are shown relative to
that of a fully bypassed processor. The interesting pareto-
optimal design points 1 and 2 are marked in both the graphs.

5



Performance Area Trade-off

60%

65%

70%

75%

80%

85%

90%

95%

100%

105%

100% 105% 110% 115% 120% 125% 130%

Execution cycles compared to full bypassing

A
re

a 
co

m
pa

re
d 

to
 fu

ll 
by

pa
ss

in
g

1

2

Performance Energy Trade-off

70%

75%

80%

85%

90%

95%

100%

105%

100% 105% 110% 115% 120% 125% 130%

Execution cycles compared to full bypassing

En
er

gy
 c

om
pa

re
d 

to
 fu

ll 
by

pa
ss

in
g

1
2

Figure 6. Power-Area-Energy trade-offs using PBExplore

Design point 1 represents the bypass configuration when
MWB and XWB do not bypass to the first operand. This
bypass configuration, uses 18% less area than full bypass-
ing and consumes 14% less energy than full bypassing,
while suffering only 2% performance penalty. Similarly de-
sign point 2 represents the bypass configuration when only
D2 and X2 bypass to the first operand. This configura-
tion uses 25% less area and consumes 16% less power than
fully bypassed processor, while losing only 6% on perfor-
mance. These configurations represent cheaper (in area and
energy consumption) design alternatives, at the cost of min-
imal performance degradation. These are exactly the kind
of trade-offs that an embedded processor designers would
need to evaluate when customizing bypasses.

5 Summary

Effective performance, area and energy trade-offs can be
achieved by varying partial bypassing in a processor. Given
that a bypass-sensitive compiler significantly affects the
performance of a partially bypassed processor, simulation-
only exploration of partial bypass configurations is inac-
curate. In this paper we present PBExplore which not
only accurately evaluates the performance of a partially by-
passed processor, it also accurately estimates the area and
energy overhead of a partial bypass configurations. We
have shown that traditional exploration leads to sub-optimal
design decisions and that PBExplore is able to effectively
perform multi-dimensional performance-area-energy trade-
offs in embedded processor design. However the partial by-
pass design space is huge, and cannot be explored by evalu-
ating each point. Our future work includes developing par-
tial bypass design space walker.
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