
Energy Efficient Code Generation Exploiting Reduced Bit-width

Instruction Set Architectures (rISA)∗

Aviral Shrivastava Nikil Dutt
Center for Embedded Computer Systems Center for Embedded Computer Systems

School of Information and Computer Science School of Information and Computer Science
University of California, Irvine, CA 92697-3425, USA University of California, Irvine, CA 92697-3425, USA

aviral@ics.uci.edu dutt@ics.uci.edu

1. ABSTRACT
Energy consumption is emerging as a critical design con-

cern for programmable embedded systems. Many Reduced
Bit-width Instruction Set Architectures (rISA) (e.g., ARM
Thumb) are being increasingly used to decrease code size.
Previous work has explored energy savings in non-cached
rISA architectures as a byproduct of code size reduction. In
this paper we present an energy efficient code generation tech-
nique for rISA architectures, and furthermore explore energy
savings for both cached and non-cached architectures. Our
code generation technique uses profile information to find the
most frequently executed parts of the program. By aggres-
sively reducing code size on frequently executed parts, fewer
fetches to instruction memory are incurred, thus reducing the
power consumption of the instruction memory. We achieve
an average 30% reduction in instruction memory energy con-
sumption in cached systems, on a variety of benchmarks, as
compared to non-rISA architectures.

2. INTRODUCTION
With the decreasing cost of memory and stringent energy

requirements of emerging processors, much research has been
done towards applying/modifying code compression techniques
to lower the energy consumption for low cost, battery oper-
ated embedded applications[8, 2, 6]. However all these code
compression techniques employ complex translation schemes.
Such complex translation scheme has two distinct disadvan-
tages: first, the hardware needed for such complex translation
schemes is either slow or costly, and second, the translation
scheme is too complex for a compiler to make good use of
it. This has been recognized as a problem and solutions have
been attempted.[1, 5].

Reduced bit-width Instruction Set Architecture (rISA) is
a popular architectural feature that is used to reduce in-
struction memory size of programs. rISA processors can ex-
ecute instructions from two different Instruction Sets (IS):
the ”normal” IS, and the ”reduced bit-width” IS. The re-
duced bit-width instruction set encodes the most frequently
occurring instructions in fewer bits, resulting in code size re-
duction. A common example of this feature is ARM7TDMI
processor, which has a 32-bit normal IS, and 16-bit wide
”Thumb” IS. Other processors that include the rISA fea-
ture are MIPS32/16 bit TinyRISC, STMicro’s ST100, and
the ARC Tangent processor.

If the whole program can be expressed in terms of rISA in-
structions, then upto 50% code size reduction may be achieved,

∗This work was partially supported by SRC contract 2003-
HJ-1111 and NSF grants CCR-0203813 and CCR-0205712

which may in turn result in upto 50% reduction in instruc-
tion memory energy consumption. Thus the main advantage
of rISA lies in achieving high code compression and energy
savings with minimal changes in hardware. The simplicity of
rISA design implies a simple ”translation unit”. Simplicity of
rISA also makes it amenable to aggressive exploitation using
compiler techniques[4, 3].

Although [7] shows a 20% decrease in power consumption of
ARM7TDMI (rISA architecture) core over ARM7DMI (non-
rISA architecture), they have not shown energy consumption
results on cached systems, and their objective for compilation
is code compression, rather than energy savings.

The contributions of this paper are two fold: first we pro-
pose a novel profile guided energy efficient code generation
technique for processors that have rISA, and second we ex-
plore energy savings in rISA architectures on cached as well
as non-cached systems.

In Section 3, we refine the problem of energy efficient code
generation, in Section 4, we present our solution, and demon-
strate the efficacy of our approach in Section 5.

3. PROBLEM DEFINITION
Code compression techniques (including rISA) owe the de-

crease in energy consumption (and even performance im-
provement, if any) to code size reduction; this in turn de-
creases the number of fetches to the memory subsystem and
thus reduced power consumption. However it is noticeable
that the goals of code compression and energy reduction are
not the same. Code compression techniques aim to minimize
Static Code Size i.e.

Pi=n
i=1 ci, while energy efficient tech-

niques aim to minimize the Dynamic Code Size i.e.
Pi=n

i=1 cixi.

Where ci is the number of instructions in the ith Basic Block,
and xi is the number of times it is executed.

As rISA processors can operate in either the rISA mode
or in the normal, our rISA Archietcural model assumes the
presence of mode change instruction in both the Instruction
Sets (mx in normal IS, and rISA mx in rISA IS). This provides
us the ability to switch execution mode at instruction level
granularity.

The compilation process for rISA code generation consists
of three main steps. In the first the compiler marks instruc-
tions that can be converted into rISA instructions. Contigu-
ouly marked instructions constitute a rISABlock. In the sec-
ond step, profitable rISABlocks are converted to rISA In-
structions. And finally mode change instructions are added
at the begining and end of rISABlock. The addition of mode
change instructions however results in increased code size
(even though it may be estimated and accounted for in the
profitability analysis). The problem then translates to trying

© 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained from the IEEE.

475

V5

V4

V2 V3

V1

V0

V6

(a)

Orignal CFG, G = (V, E)

v61

v62

v51

v52

v41

v42

v21

v22

v31

v32

v11

v12

v01

v02

g2

g3

g6

g1

g4

g5

(c)

G’ = {g1, g2, ... gr}

v01

v02

v11

v12

v21

v22

v31

v32

v41

v42

v51

v52

v61

v62

(b)

Modified Graph, G’ = (V’, E’)

Figure 1: Mode Change Instruction Insertion

to minimize the addition of mode change instructions, and
to add these mode change instructions so as to minimize the
Dynamic Code Size.

4. APPROACH
The insertion of mode change instructions is done in two

steps. If mode change occurs inside a basic block, correspond-
ing mode change instruction is inserted at the boundary of
rISA Block in the first step.

After the first step, the CFG (Control Flow Graph) can be
visualized as a directed graph G = (V, E), where V represents
the basic blocks, and E represent the Control Flow edges as
shown in Figure 1(a). G has two distinguished vertices, the
start vertex v0 and the end vertex vn. Three functions are
thus defined on V,

• ExecFrequency : V − > N gives the execution fre-
quency for each vertex.

• EntryMode : V → {Normal, rISA} gives entry mode
of the basic block represented by the vertex is Normal
or rISA. EntryMode(Vi) is rISA if the first instruction
of the basic block is a rISA instruction. Otherwise it is
Normal.

• ExitMode : V → {Normal, rISA}. ExitMode(Vi) is
rISA if the last instruction of the basic block is a rISA
instruction. Otherwise it is Normal.

We get ExecFrequency for each basic block from the pro-
file information. The functions EntryMode and ExitMode
are computed for each basic block.

We can switch the EntryMode, or ExitMode of a vertex by
inserting a mode change instruction at the start of the basic
block, or at the end of the basic block respectively. However
switching the EntryMode or ExitMode of the vertex vi costs
ExecFrequency(vi).

The problem of mode change instruction insertion is to find
EntryMode and ExitMode for each vertex so that,
for each edge (vi, vj) ∈ E,

ExitMode(vi) == EntryMode(vj)
such that the switching cost is minimized. The switching cost
essentially represents the Dynamic Code Size.

To solve this problem we transform our graph G. We break
each vertex vi into two vertices, vi1 and vi2 in graph G’ as
shown in Figure 1(b). Vertex vi1 represents the entry of vi,
and vi2 represents the exit of vi. All the incoming edges into

vi now come to vi1, and all the outgoing edges from vi, now
emanate from vi2. Two functions are defined on vertices of
G’,

• ExecFrequency(vij) = ExecFrequency(vi)

• Mode(vi1) = EntryMode(vi)

• Mode(vi2) = ExitMode(vi)

The new Graph G′ = (V ′, E′) is a forest of connected com-
ponents. Our problem now reduces into finding Mode for
each vertex so that all the vertices in a connected component
have the same mode.

We identify all the connected components of G′ = {g1, g2, ...gk},
as depicted in Figure 1(c). Each connected component is a
subgraph gi = (Vi, Ei), containing a subset of vertices,
Vi ⊂ V ′, Vi = {u1, u2, ...ur}.

These vertices are partitioned into two (possibly empty)
sets VNormal and VrISA.

Vi = VNormal

S
VrISA, and VNormal

T
VrISA = φ.

Cost of converting all vertices to rISA Mode =
Σi=1..|VNormal|ExecFrequency(ui).

Cost of converting all vertices to Normal Mode =
Σi=1..|VrISA|ExecFrequency(ui).

We pick the lower cost conversion, thus deciding upon Mode
of each vertex in G’, and hence EntryMode and ExitMode
of each vertex in G. Finally we insert the appropriate mode
change instructions. To change the EntryMode of a basic
block from Normal to rISA, we add a mx instruction as the
first instruction of the basic block. To change the EntryMode
of a basic block from rISA to Normal, we add a rISA mx in-
struction as the first instruction of the basic block. To change
the ExitMode of a basic block from Normal to rISA, we add
a mx instruction as the last or second last instruction of the
basic block. To change the ExitMode of a basic block from
rISA to Normal, we add a rISA mx instruction as the last or
second last instruction of the basic block.

Note that if the last instruction of a basic block is a branch
operation, and the machine does not have a delay slot, then
the mode change instruction has to be added as the second
last instruction in the basic block.

5. EXPERIMENTS

Figure 2: Energy Savings in non cached architecture

476

Figure 2 shows the normalized energy consumption for a
non-cached architecture. The machine is MIPS R4K-like,
with a 32-bit wide processor to memory bus. For each bench-
mark, the leftmost bar shows the energy consumption by in-
struction memory subsystem, assuming the processor does
not have the rISA feature (base case). The middle bar is the
energy consumption when code is compiled for minimum code
size. The rightmost bar for each benchmark shows the energy
consumption when the benchmark is compiled for minimum
energy. As can be seen from Figure 2, our technique achieves
about 26% instruction memory energy savings over a non-
rISA architecture. Our energy saving compilation technique
is responsible for about 5-10% more energy savings, over min-
imum code size compilation.

Figure 3: Energy Savings over all the benchmarks in
a cached architecture

Figure 3 shows the normalized energy consumption of in-
struction memory subsystem of rISA architectures. The ma-
chine is assumed to have an L1 instruction cache, connected
to the processor and Main memory using separate 32-bit
buses. We assume that L1 cache hit latency is 1 cycle, and
miss latency is 10 cycles. For each benchmark, the leftmost
bar shows the energy consumption by instruction memory
subsystem, assuming the processor does not have the rISA
feature (base case). The middle bar is the energy consump-
tion when code is compiled for minimum code size. The right-
most bar for each benchmark shows the energy consumption
when the benchmark is compiled for minimum energy. As
can be seen from Figure 2, our technique achieves about 33%
instruction memory energy savings over a non-rISA architec-
ture. Energy efficient compilation technique is responsible
for about 10% more energy savings, over minimum code size
compilation.

To study the sensitivity of energy savings technique, we
estimated energy consumption by instruction memory for all
the benchmarks over a range of cache sizes (64 Byte, 128
Byte, 256 Byte), line sizes (8 byte, 16 byte, 32 byte), and
associativities (2, 4, 8). Figure 4 shows the energy consump-
tion of instruction memory across various cache configura-
tions, near the critical cache size for the benchmark com-
press. Critical cache size, informally is the cache size for an
application, after which increasing the cache size, does not
result in a significant improvement in performance. The en-
ergy consumption of instruction memory first decreases, and
then increases with the increase in cache size. Increasing the
cache size reduces the cycle count, thus decreasing the en-

Figure 4: Energy Savings of compress over various
benchmarks

ergy consumption. By increasing cache size more than criti-
cal cache size, there is no advantage in performance, but the
energy consumed per cache access increases, thus resulting in
an increase in memory consumption. For the same cache size
the energy consumption of the instruction memory decreases
with increase in associativity. This can be attributed to the
performance improvement. Finally for the same cache size
and line size, the energy consumption increases with increas-
ing associativity. Increasing associativity, implies that more
cache lines tags be compared simultaneously to find the data.
Thus the energy consumed per access is much more than the
performance benefits. When the cache size is less than criti-
cal cache size, code size reduction achieves energy savings due
to reduced cache and main memory accesses. However when
we increase the cache size beyond critical cache size, reduced
code size does not result in lesser main memory accesses, thus
reducing energy benefits.

Thus in conclusion, we can achieve upto 33% instruction
memory energy savings as compared to a non-rISA architec-
ture, on a SOC based system. Also our proposed energy ef-
ficient code generation technique that results in up to 10%
instruction memory energy savings over code compression
compilation techniques. Instruction memory energy (in this
paper) comprises cache energy, memory energy, bus energy,
and ”translation unit” energy.

6. REFERENCES
[1] L Benini, A. Macii, and A. Nannarelli. Cached-code

compression for energy minimization in embedded processors.
In ISLPED 2001, pp 322-327, 2001.

[2] L Benini, A. Macii, and M. Poncino. Selective instruction
compression for memory energy reduction in embedded
systems. In IEEE, Proceedings of Micro-30, 1999.

[3] A. Halambi, A. Shrivastava, and el.al. An efficient compiler
technique for code size reduction using reduced bit-width isas.
In DATE, 2002.

[4] Young-Jun Kwon, Xiarong Ma, and Hyuk Jae Lee. PARE:
instruction set architecture for efficient code size reduction.
Electronics Letters , pp. 2098-2099, 1999.

[5] H. Lekatsas, Jorg Henkel, and Venkata Jakkula. Design of
one-cycle decompression hardware for performance increase in
embedded systems. In DAC 2002, 2002.

[6] H. Lekatsas, Jorg Henkel, and Wayne Wolf. Code compression
for low power embdedded system design. In DAC 2000,
pp.294-299, 2000.

[7] Simon Segars, Keith Clarke, and Liam Goudge. Embedded
control problems, thumb, and the arm7tdmi. IEEE Micro’95,
pages 22–30, 1995.

[8] Y. Yoshida, B.Y. Song, H. Okuhata, T. Onoye, and
I. Shirakawa. An object code compression approach to
embedded processors. In ISLPED 1997, pp.265-268, 1997.

477

