
Optimal Hardware/Software Partitioning for Concurrent Specification using
Dynamic Programming

Aviral Shrivastava, Mohit Kumar, Sanjiv Kapoor, Shashi Kumar, M. Balakrishnan
Department of Computer Science & Engineering, I.I.T. Delhi, New Delhi-110016, INDIA

skapoor,shashi,mbala@cse.iitd.ernet.in

Abstract

An important aspect of hardware-software co-design is
partitioning of tasks to be scheduled on the hardware and
software resources. Existing approaches separate partition-
ing and scheduling in two steps. Since partitioning so-
lutions affect scheduling results and vice versa, the exist-
ing sequential approaches may lead to sub-optimal results.
In this paper, we present an integrated hardware/software
scheduling, partitioning and binding strategy. We use dy-
namic programming techniques to devise an optimal solu-
tion for partitioning of a given concurrent task graph, which
models the co-design problem, for execution on one soft-
ware (single CPU) and several hardware resources (multi-
ple FPGA’s), with the objective of minimizing the total ex-
ecution time. Our implementation shows that we can solve
problem instances where the task graph has 40 nodes and
600 edges in less than a second.

1 Introduction

New tools which extend design automation to system
level have to support the integrated design of both the hard-
ware and the software components of an embedded system.
The input specification accepted by such design tools de-
scribes the functionality of the system together with some
performance constraints and is typically given as a set of in-
teracting processes. Satisfaction of these performance con-
straints can frequently be achieved only by hardware im-
plementation of some components of the specified system.
In this paper we describe a dynamic programming based ap-
proach to select parts of functionality for hardware and soft-
ware implementations with the objective to minimize the to-
tal execution time. This is a well-known hardware/software
partitioning problem.

The general “hardware/software codesign” problem is
known to be a hard problem and no polynomial time algo-
rithm exists for this problem. Many heuristics based on dif-
ferent cost functions and approaches like greedy approach,

simulated annealing [2, 3, 4, 5], TABU search [5] etc.
have been developed. Developing an algorithm to find an
optimal solution is still very important to get a deeper un-
derstanding of the problem, as well as for comparing dif-
ferent heuristic solutions. Optimal partitioning techniques
that have been proposed are based on ILP formulations or
Branch and Bound techniques and suffer from very high
computational requirements even for small problem sizes
[6].

Our target architecture consists of a single processor and
reconfigurable hardware in the form of multiple FPGAs. In
this scenario, apart from partitioning, we need to address
the scheduling invocation of individual tasks and binding
of tasks to FPGAs. In our approach, we integrate the tasks
of scheduling, partitioning and binding and solve this opti-
mally by using dynamic programming techniques.

This paper is divided into five sections. Section 2 de-
scribes our assumptions about the co-synthesis environment
and the execution model. Sections 3 deals with the problem
formulation and an algorithm for the dynamic programming
solution of the problem. In section 4 we present and discuss
our results. We also discuss the data generation strategy
used to empirically test our algorithm. We draw some con-
clusions in the last section.

2 The Co-Synthesis Environment

Our underlying model of architecture is a single proces-
sor host connected to a reconfigurable multiple FPGA board
system through a bus. The program initially is in software
and contains a set of functions which can either be mapped
onto the FPGAs or executed in the processor itself. We have
a library of FPGA configuration files of all the functions that
can possibily be mapped onto FPGA’s.

If a function is to be executed on an FPGA and that func-
tion is not already configured on that FPGA, then first the
configuration file is written onto the FPGA, followed by
passing the parameters and then execution of the function
[7]. When the function execution ends on the FPGA, an in-
terrupt is raised and the results of the computation are read



from predefined “locations” on the FPGA by the processor.
Functions can be executing in parallel on the processor (in
software) and the FPGA’s (in hardware).

We assume that a function is mapped onto exactly one
FPGA and all the parameter passing is controlled by the
processor. Further, we assume that once a function starts on
a FPGA, it proceeds uninterrupted till it ends. This means
that if a function is executing on an FPGA, only when it
ends, can the next scheduled function start.

Notations and Constraints

� Computing resources are denoted byri; i 2 (0::m).
r0 denotes the software resource, the processor.
ri; i 2 (1::m) denote them hardware resources (FPGA’s)
. � We have n function instances denoted byfi; i 2 (1::n).
Each function instance is chosen from the following set of
function types:fFi; i 2 (1::N)g.
� A functionntoN(i) exists which maps function instances
to function types.
� Hardware time, Software time, and Configura-
tion time of each function is known and denoted by
hw time[i]; conf time[i]; sw time[i]; 8i 2 (1::N),
respectively.
� Precedence Constraints are depicted by the� (prec)
operator. Iffi � fj thenfj can start executing only after
fi has ended.
� There is no preemption, i.e. if a function is executing on
a resource, next function can start only after it has ended.

The input to the partitioner is a concurrent sequence flow
graph and the output is a schedule of functions for each re-
source, the time when a function has to start on an appropri-
ate resource, and the time taken to execute using this sched-
ule. The objective is to minimize the total time of execution
of the functions defined by the sequence flow graph.

3 Dynamic Programming Algorithm

In this section we set up a Dynamic Programming Re-
currence which characterizes the optimal solution to the
HW/SW partitioning problem. We assume that all times
are integral. As a convenience in setting up the recurrence,
we use a functionf0 whosse execution time and configura-
tion time are zero on each resource. A functionf0 on any
resource implies that the resource is free. We will use dis-
cretized time instants for establishing our recurrence.

3.1 Parameters of the recurrence

The DP recurrence will have two parameters, one rep-
resenting the Current Configurartion of the FPGA’s and
the other representing the queue of function waiting to be

No. Case Description Time to be added
1 No function 0

on processor
2 No function 0

on FPGA
3 A function sw time(ntoN(i))

on processor
4 A function of same hw time(ntoN(i))

type on FPGA
5 A function hw time(ntoN(i))

of different type
on the FPGA + conf time(ntoN(i))

Table 1. Case enumeration for processor

scheduled for execution. The second parameter is neces-
sary since it is not possible to schedule all the functions
which become candidates for execution on a FPGA after
their precedence constraints are satisfied.

We characterize the configuration as follows:
The current configuration is am+ 1 tuple of functions.

Ci = < fci0; f
c
i1; f

c
i2; ::: ; f

c
im >

wheref cij ; i 2 (1::n); j 2 (0::m) is the function that is
being executed onjth resource at the end ofith event.

The current queue is represented as a list of functions.

Qi = < f
q
i0; f

q
i1; f

q
i2; ::: ; f

q
ik >

wheref qij ; i 2 (1::n); j 2 (1::k) is the function waiting
for execution at theith event.

The size of the list,k is not known. An upper bound for
k may ben � 2. This occurs when all then � 2 nodes are
the children of one node and parent of another node. Thus
k � n� 2.

The state of the system is uniquely determined by the
pair< Ci; Qi >.

Ci = << fci0; ti0 >; < fci1; ti1 >; :: :: ; < fcim; tim >>

Qi = < f
q
i0; f

q
i1; :: :: ; tik > ; k � n� 2

In the current configuration along withf cij is also kepttfij
which is the time left for the complete exceution off cij at
the end of theith event.

3.2 Formulation of the Recurrence

The recurrence reflects the following recursive procedure
for optimum partitioning. At the occurrence of an event we
perform the following tasks.

� Find the function that is going to finish first.



opt(<< f ci 0; ti 0 >; < fci 1; ti 1 >>; < f
q
i 1; ::; f

q
i ki

>) =

min

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

opt(<< f0; 0 >;< f ci+1 1 = fci 1; ti+1 1 = ti 1 � ti 0 >>; < f
q
i+1 1 = f

q
i 1 >) (1)

opt(<< fci+1 0 = fci 0; ti 0 � ti 1 >; < f0; 0 >>;< f
q
i+1 1 = f

q
i 1 >) (2)

opt(<< fci+1 1 = f
q
i 1; sw time[fqi 1] >; < fci 1; ti 1 � ti 0 >>; <>) (3)

opt(<< fci 0; ti 0 � ti 1 >; < f
q
i 1; hw time[fqi 1] >>; <>) (4)

opt(<< fci+1 0; ti 0 � ti 1 >; < f
q
i 1; hw time[fqi 1] + conf time[fqi 1] >>; <>) (5)

Table 2. Dynamic Programming Solution Recurrence

� Remove the finishing function from the configuration.

� Add the children of the finished function to the queue
if all their other predecessors are executed.

� Then we recursively try all the permutations of map-
ping the functions on different resources. This includes
the case when one or more resources are free.

� While backtracking, we choose the permutation that
takes the minimum time to execute.

We consider all the cases, so any function can be mapped
onto any resource. This includes the case when the resource
is kept free.

In each of the different cases that can arise, the execution
time to be added is different. The different cases and the
time to be added in each case is summarised in Table 1. For
illustration purposes, we write the recurrence (Table 2) for
m = 1 andki = 1, for the case when no child is added
to the queue. We have a general form suitable for multiple
resources and multiple functions waiting in the queue [8].

3.3 Iterative Solution of the Recursion

We encode the configuration and the queue by integers
so that we can use these integers to access the table. A
table is maintained, wherein the< Ci; Qi > containsopt <
Ci; Qi >. The value for a node is calculated only once and
later whenever it is required, it is looked upon from the table
only.
Encoding ofCi

Ci =<< f ci0; ti0 >;< f ci1; ti1 >; ::::; < f cim; tim >>

We needlog10 n digits to store a function. Suppose the
max time of a function ist then we requirelog10 t digits to
specify the time value. For one resource we needlog10 nt
digits. Since there arem+ 1 functions in the configuration
at a certain time, we need(m + 1) � log10 nt digits for

no. of no. of no. of no. of InA InB
function function FPGA’s edges time time

types instances (ms) (ms)
2 4 2 7 0 0
2 10 2 30 8 7
3 15 3 60 20 15
3 20 3 150 36 24
3 30 3 300 41 38
5 40 4 600 60 52

Test Graphs in InA column are RSCFG’s
Test Graphs in InB column are Fork-Join graphs

Table 3. Time taken to partition Sequence
Flow Graphs

encoding all the functions.
Encoding ofQi

The length of queue can be at mostn � 2, the worst
case being when all then� 2 functions are children of the
first node and are the parent of the last node. We keep a
bit to indicate the absence or presence of a function. There
aren functions and so we needlog2 n bits to encode the
functions.

4. Implementation and Results

4.1. Table Structure

The Dynamic Program looks at all the cases and chooses
the one with minimum time. Due to the optimality con-
straint, the search space becomes extremely large. Tra-
ditionally a table is constructed in which times for each
configuration-queue pair is kept. Now since the table
formed in our case is so huge, we cannot afford to main-
tain such a table. So we choose to allocate space for this ta-



ble dynamically. We use a structure based on binary search
trees . The structure is a tree at two levels. At the first level
is the configuration tree, and at the second level is the queue
tree. When we are to search for a configuration-queue pair,
we first find the configuration node by traversing the config-
uration tree. Once we find the configuration node, we jump
to the queue-tree attached to that configuration node. Now
we search for the queue in the queue-tree. Since these are
tree structures, the time complexity is proportional to the
logarithm of the height of the tree.

4.2. Data Generation and Results

To test the implementation and to compare it with other
contemporary implementations we require test examples,
i.e. sequence flow graphs. We studied the flow graphs in
many real-life examples and found that most of them are
of the fork-and-join type. To complete our study, we tested
our program on both the random graphs and the fork-join
graphs.
Random Concurrent Sequence Flow Graphs: To gener-
ateRandom Concurrent Sequence Flow Graph(RCSFG) of
n nodes we first fill the top-right-half adjacency matrix size
n � 1 by 10s. Now we generate random numbers between
0 and n(n�1)

2 . If the generated random number denotes a
element in top-right-half adjacency matrix, which is1 and
the changing of this element from1 to 0 does not violate the
following row or column constraint , then we change the el-
ement from1 to 0.

Row Constraint : There is at least one “1” in each row.
Column Constraint : There is at least one “1” in each

column.
We take as input the number of edges in the graph from the
user, and change10s to zeros until only desired number of
edges remain.
Fork-Join Graphs: To generateFork-Join Graphswe first
break the graph intosingle nodesand fork-join units that
denote the fork and joins. This we do by first choosing a
random numberk between1 andn. Now treat these ask
slots. First fill all the slots with one node . Now randomly
distribute the remaining node into the slots. The slot that
contains just1 is a single node, and a slot that contains more
than1 nodes is afork-join unit. A fok-join unit is a single
entry single exit graph. We can generate this just like ran-
dom concurrent sequence flow graphs. This strategy even
allows straight line graphs to be generated.

We tested forn ranging from 4 to 40,m ranging from 2
to 4, andN ranging from 2 to 5. The number of edges range
from 7 to 600. The graphs of both the types were generated
randomly. The results are tabulated in Table 3.

The results clearly confirm our hypothesis that actually
the search space won’t be very large inspite of the large so-
lution space. The use of dynamically allocated memory has

resulted in an efficient implementation with low space re-
quirements. The results show that optimal solution to large
real life problems are possible using dynamic programming
based approach.

5 Conclusions

In this paper, we have described a dynamic programming
based formulation to find optimal solution to the integrated
scheduling, partitioning and binding problem in the context
of hardware/software codesign. We have demonstrated that
it is possible to find optimal solution to large real life prob-
lems using our approach. This is in contrast to experiences
with other approaches likeInteger Linear Programmingand
Branch & Bound.

However, our formulation is limited to handle concurrent
sequence flow graphs which do not have loops or condi-
tional branch nodes. It will be interesting to attempt extend-
ing our formulation to incorporate these extensions. Our
testing has also been limited since we have only used ran-
dom sequence flow graphs and fork-join graphs. The ap-
proach needs to be evaluated for large real life case studies.

References

[1] D.D. Gajski, F. Vahid, “Specification and Design of Embed-
ded Hardware-Software Systems”,IEEE Design & Test of
Computers, Spring 1995, pp. 53–67.

[2] J.K. Adams, D.E. Thomas, “Multiple-Process Behavioral
Synthesis for Mixed Hardware-Software Systems”, in Proc.
International Symposium on System Synthesis, 1995, pp.
10–15.

[3] Z. Peng, K. Kuchcinski, “An algorithm for partitioning of
Application Specific Systems”, inProc. European Design
Automation Conference, EDAC, 1993, pp. 316–321.

[4] R. Ernst, J. Henkel, T. Benner, “Hardware-Software Co-
Synthesis for Micro controllers”,IEEE Design & Test of
Computers, September 1993, pp. 64–75.

[5] P. Eles, Z. Peng, K. Kuchcinski, A. Doboli, “System Level
Hardware/Software Partitioning based on Simulated Anneal-
ing and Tabu Search”, Design Automation for Embedded
Systems, Vol 2 No.1 , Jan 1997, pp. 5-33.

[6] S. Harikumar and Shashi Kumar, “Multi-Objective Search
Based Algorithms for Circuit Partitioning Problems”, Proc.
of the 10th IEEE Int. confernce on VLSI Design, Jan 1997,
Hyderabad, India.

[7] Sitanshu Jain et al., “Speeding Up Program Execution Us-
ing econfigurable Hardware and a hardware function Library,
Proc. of the 11th IEEE Int. confernce on VLSI Design, Jan
1998, Chennai, India.

[8] Aviral Shrivastava, Mohit Kumar, ”Hardware Software Par-
titioning and Synthesis targeted towards FPGA based Imple-
mentation”,B.Tech Thesis, CSE Dept, IIT Delhi, May’99.


