
Register File Organization for Coarse-Grained Reconfigurable Architectures:

Compiler-Microarchitecture Perspective

by

Dipal Saluja

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved July 2014 by the
Graduate Supervisory Committee:

Aviral Shrivastava, Chair

Yann-Hang Lee

Carole-Jean Wu

ARIZONA STATE UNIVERSITY

August 2014

 i

ABSTRACT

Coarse-Grained Reconfigurable Architectures (CGRA) are a promising fabric for

improving the performance and power-efficiency of computing devices. CGRAs are

composed of components that are well-optimized to execute loops and rotating register

file is an example of such a component present in CGRAs. Due to the rotating nature of

register indexes in rotating register file, it is very challenging, if at all possible, to hold

and properly index memory addresses (pointers) and static values. In this Thesis,

different structures for CGRA register files are investigated. Those structures are

experimentally compared in terms of performance of mapped applications, design

frequency, and area. It is shown that a register file that can logically be partitioned into

rotating and non-rotating regions is an excellent choice because it imposes the minimum

restriction on underlying CGRA mapping algorithm while resulting in efficient resource

utilization.

 ii

DEDICATION

To my parents and my sister who have always encouraged me to pursue my dreams and

work towards the betterment of mankind.

 iii

ACKNOWLEDGMENTS

I am thankful to Prof. Aviral Shrivastava for giving me an opportunity to work with him

on this project. He has always been there as a guide and a source of immense inspiration.

He helped me explore my true potential.

I am thankful to Prof. Yann-Hang Lee for being a wonderful teacher. His methodological

and student friendly approach to teaching not only motivated me to gain technical skills

but also helped me develop a detail oriented mindset and life skills.

I am thankful to my friend and colleague Mahdi Hamzeh for always being there to help

me look at the big picture and help me with the project.

I am thankful to my dear friends Hitesh Khunti, Vinayak Kumar, Mohit Shah and

Saurabh Jaluka for all the motivation and technical discussions that helped me gain a

wider perspective of Science.

 iv

TABLE OF CONTENTS

Page

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

CHAPTER

1 Introduction ... 1

2 Motivation for Rotating and Non Rotating RF ... 4

3 Register File Organization for Efficient Loop Execution ... 10

3.1 Design I: Programmable Register File (PRF) 10

3.2 Design II: A Rotating Register File Per PE, a Shared Non-Rotating

Register File Per Row ... 13

3.3 Design III: A Non-Rotating Register File Per PE, and a Rotating

Register File Per PE .. 15

4 Compiler Support .. 17

5 Experimental Results .. 21

5.1 PRF Configuration Maps Loops With Minimum Number Of Registers

 ... 22

5.2 PRF Configuration Imposes A Minimal Area Overhead 22

5.3 PRF Imposes a Minimal Frequency Overhead 23

5.4 SNRRF and PRF Required Close Number of Registers for a Given II

 ... 24

5.5 Mapping Limitations of SNRRF .. 25

5.6 SNRRF and FRF Organizations are Restrictive 27

 v

CHAPTER Page

6 Related Work .. 28

7 Conclusions ... 29

References .. 30

 vi

LIST OF TABLES

Table Page

1: The Effect of Changing the Ratio of Rotating and Non-rotating Registers on II 26

 vii

LIST OF FIGURES

Figure Page

1: 4 x 4 CGRA .. 2

2: Modulo Scheduling ... 5

3: Mapping with and Without Rotating Registers .. 6

4: Mapping with Rotating and Non-Rotating Registers ... 8

5: Rotating Register File Structure ... 11

6: Programmable Register File Structure .. 12

7: Shared Register File Structure .. 14

8: Fixed Register File Structure .. 16

9: Minimum Registers Required to Find a Mapping .. 22

10: Area Overhead for Each RF Configuration .. 23

11: Fixed RF Results in Best Frequency... 24

12: Total Number of Registers to Achieve an II ... 25

 1

Chapter 1

INTRODUCTION

Maximizing the performance while achieving a high degree of energy efficiency has

become the central focus of microelectronic system design in practically every market segment -

from battery powered mobile devices to high performance servers. Accelerators are a promising

approach to improve the performance and power-efficiency of all such systems. At one extreme

are special purpose, custom hardware accelerators. These have been shown to achieve the

highest performance with the least power consumption. However, they are not programmable

and incur a high design cost. At the other end of the spectrum are Graphics Processing Units

(GPUs), which have become very popular. Although GPUs are programmable, they are limited

to accelerating only parallel loops. In between these two extremes, are Field Programmable Gate

Arrays (FPGAs). They have some of the advantages of hardware accelerators, and are also

programmable. However, their fine-grain reconfigurability incurs a very high cost in terms of

power and energy efficiency.

Coarse-Grained Reconfigurable Architectures or CGRAs have been shown to be an

excellent alternative as they not only have power efficiencies close to hardware accelerators, but

can be utilized for a wide range of applications because they are programmable. For instance,

ADRES CGRA has been shown to achieve performance and power efficiency of 60 GOPS/W in

90 nm CMOS technology [3].

A CGRA is a collection of Processing Elements(PEs) connected through a mesh network,

with each PE equipped with an ALU and a small register file (see Figure 1). The PEs are

connected to their neighboring PEs, and the output of a PE is accessible to its neighbors. In

addition, a common data bus from the data memory provides data to all the PEs in a row. It is

referred to as coarse-grained reconfigurable because PEs can be programmed to execute different

instructions at cycle level granularity.

 2

Figure 1: A 4 x 4 CGRA. A PE consists of an ALU and two register files, a data

register file to hold data and a predicate register file. Predicate register file is used to

execute instruction conditionally in the presence of control divergence in the code.

 Applications execute in phases and often just a few phases or regions contribute most to

the execution time. Those regions are usually composed of loops, and it is the acceleration of

such loops that can significantly reduce the application execution time. Note that GPUs can

accelerate such loops only if they have no dependencies across iterations. Acceleration of loops,

even with dependencies across iterations, can be performed very efficiently using CGRAs. This

is done by using a classical technique referred to as software pipelining [16], which reorders

instructions. Modulo scheduling [21] is a form of software pipelining that allows overlapping

the execution of successive iterations of a loop. This requires the use of a special register file,

referred to as a rotating register file [22], which prevents a register index from being overwritten

in successive iterations before that register is read and consumed by dependent operations.

 A rotating register file is not sufficient on its own. This is because some operations

require a register index that does not change during the execution. Such operations include loads

and stores, and operations with constant operands. Thus both a rotating and non-rotating register

files are needed, and this poses a unique problem for CGRAs. For instance registers that hold

 3

constant values would be difficult to index if the register indices change dynamically, which

would be the case with a rotating register file.

 In this thesis, we investigate different register file structures for CGRAs that can

efficiently handle memory operations as well as short lived values. This problem is important

because it is necessary to efficiently perform load and store operations in most computation

segments. To this end, we present three different register file structures for CGRAs:

1. A programmable register(PRF) file at each PE which can be logically partitioned into

rotating and non-rotating regions. In this case, the compiler must determine the boundary

between rotating and non-rotating region for each PE's register file. This boundary is set

for each at configuration time. Our experiments show that a programmable solution is the

best in terms of performance and area. This structure enables us to accelerate a wider

spectrum of applications and deliver better performance compared to the other solutions.

2. A rotating register file in each processing element (PE) and a shared non-rotating register

file for the set of PEs in each row.

3. A fixed size rotating and non-rotating register file at each PE.

 4

Chapter 2

MOTIVATION FOR ROTATING AND NON ROTATING RF

In this section we present the motivation behind having a rotating and non-Rotating

register file within each PE. We first give a brief overview of modulo scheduling.

Figure 2 shows an illustration of how Modulo scheduling [21] helps in accelerating the

execution of loops and makes CGRAs an excellent choice for the same. The performance metric

of modulo scheduling is initiation interval or II, which is the required time between the initiation

of two successive iterations of the loop. The II is inversely proportional to execution time.

The vertices of Data Flow Graph(DFG) represent the operations inside a nested loop and

the edges represent the data dependencies between them. Figure 2(d) shows a valid mapping of

the operations from the DFG of Figure 2(a) onto the CGRA of Figure 2 (b). As we can see each

iteration requires 4 cycles to complete and the second iteration cannot begin its execution before

the completion of the first iteration. Figure 2 (e) shows a modulo schedule generated mapping for

the same DFG on the same CGRA. The execution of multiple iterations of the DFG using the

modulo scheduled mapping is shown in Figure 2 (f). We can see that after exploiting the

possibility of a software pipelined execution, we can initiate a new iteration every 2 cycles (II=2)

and hence achieve a performance gain of 2X. The dotted region in Figure 2(f) comprises of all

the operations from the loop body.

 5

Figure 2: (a) an input DFG. The vertices indicates operations and edges indicate the data

dependencies (b) A 2 x 2 CGRA (c) The CGRA in b shown horizontally (d) A valid

mapping of the operations from DFG a onto the CGRA b (d) A modulo scheduled mapping

of the operations from DFG a onto the CGRA b with an Initiation Interval of 2 (e) Actual

execution sequence of the mapping in d

 The steady-state of the modulo scheduling is usually referred to as a kernel. A kernel

consists of an instruction for each PE for II cycles. Those instructions are repeatedly executed

until the execution of a loop is completed. Note that the same kernel body, and therefore the

same set of instructions, are executed every II cycles. Note that the register index encoded in an

instruction cannot change (because it is the same instruction) across iterations. However, because

the same instruction is executed in different iterations, and the destination register index does not

change, it may overwrite a previous value in that destination register. This can cause a problem

if another instruction requires that previous value in a future iteration. This is well known

problem in VLIW processors, which has been addressed by the use of rotating register files [22].

 In a rotating register file, the register indices are changed either logically or physically at

the end of each loop iteration. In the logical approach, an offset to the register index is

incremented at the end of each iteration. On the other hand, a physical

 6

Figure 3: (a) A 2 x 1 CGRA, (b) an input DFG, (c) a valid mapping of the given DFG (b) on

(a) without using registers. The value of operation a is routed to the operation d through

PEs. This mapping achieves initiation interval II = 4. (d) Another mapping, that uses

registers to transfer value to operation a to operation d. This mapping achieves initiation

interval II = 2. Lower II is achieved because two iterations of the loops are executed

simultaneously which becomes possible because internal registers of PE2 are used to route

data from PE2 at cycle 1 to PE2 at cycle 4.

change requires the use of a shift register, that rotates the values in the register file. In either

case, a value stored in the previous iteration at any index would not be overwritten in subsequent

iteration when the same register index is selected as a destination. A rotating register enables a

compiler to generate very compact code. Figure 3 shows how rotating register files enable an

efficient loop execution.

 Consider a 2 x 1 CGRA where each PE has 2 local registers, as shown in figure 3 (a). We

intend to accelerate a loop whose data flow graph (DFG) has 4 operations, as depicted in figure

3(b). The first mapping shown in figure 3(c) requires 4 cycles to execute one iteration of the

loop. The next iteration can be initiated after 4 cycles. Thus II of this mapping is 4. The second

 7

mapping shown in Figure 3(d) improves the performance by 2X because every 2 cycles, a new

iteration of the loop can be initiated (II=2). The iteration label is shown as superscript. Iteration

j starts at cycle i+1 when aj is executed on PE2. The result of aj is stored on register 0 of PE2. At

the next cycle, bj is executed on PE1. At cycle i+3, cj is performed on PE1. Finally, PE2 executes

dj at cycle i+4. The DFG indicates that dj requires the value of aj stored in register 0 in PE2.

Therefore, following this schedule, it takes 4 cycles to completely execute one iteration.

 Since all resources to execute the next iteration of the loop at cycle i+3 and i+4 are

available (not used by operations that belong to iteration j), the next iteration can be initiated

well before the previous iteration is completed. Specifically, the next iteration can be initiated at

cycle i+3 when PE2 executes aj+1. This results in a reduction in the II by a factor of 2, implying

that the performance is increased by 2X.

his reduction in II is only possible when PEs are equipped with rotating register files. The

steady-state of the pipeline is shown in figure 3(d) between the two thick lines from cycle i+3 to

i+4. Note that since II=2, the same instructions shown in cycle i+3 and i+4 are executed

repeatedly. In steady state, the operations aj+1 and cj are executed at cycle 0 (like i+3), and bj+1

and dj at cycle 1 (like i+4).

Since the same instruction is executed at every iteration of steady state, the same register

index is used to select the destination register index (index 0 or r0). However, due to rotation of

the register file (or register index), the effective destination index changes, which results in

writing to a different register index. Figure 3(d) shows the usage of rotating register files by

operations a and d in the DFG in 3(b) for an execution instance. The effective register index

after the rotation is calculated as ((time + iteration number) % II). We can see that instruction aj

at cycle i+1 and aj+1 at cycle i+3 use the same destination index register (0), however, two

different register indices (index 0 and 1) are updated when they are executed. This is an

important feature because if aj+1 were to update the same index, aj would have been overwritten

at cycle i+3. Thus, at cycle i+4, result of aj would have not been available to execute dj. This

rotation feature allows us to generate a very compact mapping. If not, the register indices have to

be manipulated on every iteration, which requires execution of more instructions, and also

increasing the II.

 8

Figure 4: (a) a 2 x 1 CGRA, (b) an input DFG where l is a load instruction from address p1

and s is a store operation to address p2. The arc between operation d and a has a weight of 2

representing dependency between operation a at iteration j and operation d at iteration j-2

(c) a valid mapping of the given DFG (b) on (a) with iteration II=4 and latency of 6 cycles.

The superscript is used to represent the iteration number of the operations.

While a rotating register file is a perfect structure for satisfying data dependencies

between producer and consumer instructions in a loop, it imposes difficulties when we use them

to hold addresses and constant values. Consider a more realistic DFG shown in Figure 4(b) with

load and store operations.

Node l is a load instruction, and p1 is the address from where data is to be loaded. It is

increased by 4 every time l is executed (in the loop, we are loading from an integer array and

moving to the next element in array in next iteration). Node s is a store instruction and p2 is the

address where data is to be stored. p2 is also increased by 4 every time s is executed. There is an

arc from node d to node a with a weight of 2. This represents dependency between aj and dj-2.

 9

In this example, 4 registers are required: 2 registers to hold p1 and p2 for load and store

operations, 2 registers to satisfy data dependency between aj and dj-2 (as there is an inter-iteration

data dependency). A valid mapping of this DFG onto a 2 x 1 CGRA is shown in Figure 4(c).

 For registers in PE1, it is necessary to have a non-rotating register file. If there is a

rotating register file in PE1, we cannot keep both p1 and p2 in the registers of PE1 because p2

would be overwritten by operation l. Consider a PE with a rotating register file where p1 and p2

are stored in register 0 and 1 respectively at iteration j. In the next iteration, when l is executed to

update p1, p1 would be written to register 1 which holds value of p2 (the index is increased from

previous iteration in rotating register file). Therefore, we loose the value of p2 and the store

operation would update a wrong location.

Meanwhile, it is necessary to have a rotating register file in PE2. It is because when dj is

executing on PE2, it should not overwrite the value of dj-1 in its register file. Therefore, every

time d is executed, it should update a different register index than the one it updated in previous

iteration (so the index should change every iteration). Thus we need both a rotating register file

in PE2 and a non-rotating register file in PE1 for mapping in Figure 4(d). In the following

section we present several designs of a register file for CGRAs, that allow both types of registers.

 10

Chapter 3

REGISTER FILE ORGANIZATION FOR EFFICIENT LOOP EXECUTION

In this section, we present an efficient register file design, which we refer to as a

programmable register file(PRF), and compare it against two other register file organizations:

1. A rotating register file per PE and a shared non-rotating register file per row.

2. A register file per PE that is physically partitioned into rotating and non-rotating regions.

The programmable register file can be logically partitioned into rotating and non-rotating

regions at run-time. The boundary between those regions is determined by the compiler and is set

at configuration time for each PE.

3.1 Design I: Programmable Register File (PRF)

The PRF structure is derived by modifying the design of a rotating register file, which

will allow logical partitioning into rotating and non-rotating regions at run-time. To better

understand the new design, we first discuss the structure of a rotating register file presented in

[9].

As stated earlier, in a rotating register file, the input register index is added by an offset

value as shown in Figure 5. The result of this operation drives the input port of register bank. The

offset register is incremented at the end of every iteration of the loop, or every II cycles. Only

log2(n) bits are required to index a register bank with n registers. Therefore, the bit width of both

offset counter and adder in this structure is log2(n) bits. Note that an overflow from an addition

simply results in a modulo operation. It is because the higher bits are not used to index register

bank. Similarly, when the offset counter reaches the maximum value n (We assume the number

of registers, n is a power of 2), in the next iteration, it will reset to zero.

The logical partition of the register file into rotating and non-rotating regions can be

achieved by adding a simple finite state machine (register control or RC) that controls the offset

counter and register bank ports as depicted in Figure 6. At configuration time, RC receives a

threshold number, T. Let (x_{w-1}, x_{w-2}, ..., x_0)2 be the binary representation of T, where

w= log2(n) and n is the number of registers in register bank.

 11

Figure 5: A rotating register file structure. Inputs to this register file is added to an offset

value and then drive the register bank ports. This results in a logical rotation of register

indexes in register file. The bit width of adder is designed to be equal to log2(n) where n is

the number registers in register bank.

Since the register file is always on the critical path, it is important to minimize the delay

overhead of any additional functionality. To this end, we limit the compiler to set T to values

that can be represented as 2i-1, 0 <= i <= log2(n). This limitation simplifies the path between the

input register index and register bank port to form a modulo operation function. For a given i, all

bits in T from position i to position w-1 are 0, while the rest of the bits are 1. Thus, if we perform

a bitwise AND operation between T and output of the adder, it guarantees that the result is always

less than T, while the lower bits of the index would not change. Thus, with a simple adder and a

bitwise AND operation, we can implement the modulo operation (%) function, and emulate a

rotation of the register indices.

 12

Figure 6: In this configuration, the register file can be logically partitioned into rotating

and non rotating regions. This flexibility comes at the cost of extra components in RC unit.

An input register index of register file is sent to RC as well. If the register index is less

than T, the output of bitwise AND operation drives the register bank port. Otherwise, the input

register index is selected to drive the register bank. As shown in Figure 6, this structure imposes

a minimal amount of logic overhead to the register file as compared to the design of the original

rotating register file. Note that bitwise AND is a fully parallel operation.

At the end of an iteration, RC increments the offset counter and compares it against T. If

the value of offset counter is greater than T, RC resets it to zero. Note that in this structure, RC

explicitly resets offset counter register which is in contrast to the previous design where the

value of offset register is implicitly reset to zero when it reaches the maximum value it can

represent.

This simple change significantly increases CGRA reconfigurability. In this design, the

border between rotating and non-rotating regions in a register file can be dynamically changed.

Therefore, a compiler can allocate rotating and non-rotating registers in a flexible manner at each

PE.

The proposed structure can also significantly simplify register allocation in the compiler.

A compiler can map operations just based on the total number of registers needed at each PE

 13

instead of allocating rotating and non-rotating register separately. In contrast, existing CGRA

compilers such as [7] have to keep track of the number of rotating and non-rotating registers

separately because they have fixed the size of rotating and non-rotating register files.

The second benefit is that a wide spectrum of applications can be efficiently mapped by

this structure. Some applications, such as those with high data dependencies between operations,

impose a high demand on rotating register files, while other applications that have many load

and store operations, place a high demand for non-rotating registers. As long as the total number

of registers are sufficient in those applications, a PRF can effectively accelerate those loops. By

fixing the number of rotating and non-rotating registers at design time, only a limited set of those

applications can be effectively accelerated on CGRA. A PRF does not impose any change in

instruction size. It, however, requires an increase in CGRA configuration size (only one

instruction) to set RC thresholds.

3.2 Design II: A Rotating Register File per PE, a Shared Non-Rotating Register File per

Row

We refer to this organization as a Shared Non-Rotating Register File (SNRRF). In this

configuration, there is a rotating register file at each PE. In addition, there is a non-rotating

register file at each row that is shared among all PEs in that row. On any cycle, only one PE in a

row can update a register in a non-rotating register file. However, all PEs in a row can

simultaneously read from this unit. This structure is shown in Figure 7.

 14

A rotating register is usually used to temporarily hold an output of an operation that is to

be used in next few iterations by one or more consumer operations. It is important to note that

the number of registers in rotating register file has a direct impact in mapping II [12].

Figure 7: The shared register file organization. The output of all PEs in a row are sent to

shared register file. However, only one PE per cycle can write to this register file. All PEs in

a row can simultaneously read from shared register file.

Non-rotating register files are used to hold memory addresses and constant values that do

not fit in the immediate field of instructions. Variables such as counters that are only alive within

II cycles can also be kept in non-rotating register files because of the short schedule distance

between producer and consumer. For instance, operation l updates the pointer address which is

used by the same instruction at the next iteration in Figure 4. In fact, this instruction loads an

element of a linear integer array. Assume that p1 is initially pointing to the first element in that

array. When it is executed, it increases the pointer by 4. Therefore, in next iteration, it would

load the next element of the array. This is also the case for store operation s in figure 4(b). This is

an example of a short distance between producer and consumer, thus, a non-rotating register file

serves this dependency well.

The non-rotating register file structure can lead to an efficient register utilization. For

instance, if a pointer is used in multiple load and store operations, we only need to allocate 1

register to hold that address if those instructions are mapped to PEs located at the same row.

 15

The major problem with the non-rotating register file is that the number of rotating and

non-rotating registers are fixed at design time. Therefore, it is not the total number of registers

that determines whether or not an application can be accelerated well. Rather, either total number

of rotating registers or total number of non-rotating registers can separately limit the CGRA to

accelerate an application. Therefore, this structure cannot effectively accelerate a wide spectrum

of applications.

Since a non-rotating register file is shared among PEs in a row, the shared register file

should have a multi read/write port implementation. This imposes significant area overhead and

degrades the CGRA design frequency. It is important to note that increasing the register file

delay significantly impact the design frequency. In addition, only one PE per cycle can write to

non-rotating register file, thus II might need to be increased to avoid write access conflicts

between PEs. It may also increase the prolog length to initially store addresses and constants in

non-rotating register files. Hence, there is a configuration time overhead associated with this

design.

Last, this structure imposes overhead in the instruction size. Since non-rotating register

file is shared amongst all PEs of a row, a separate field in an instruction bundle has to be

dedicated to drive the write index of non-rotating register file. In addition, to be able to index

shared registers as well as local registers, the register index field in an instruction has to

increased to accommodate this need.

3.3 Design III: A Non-Rotating Register File per PE, and a Rotating Register File per PE

As shown in Figure 8, in this organization, each PE is equipped with a register file that is

physically partitioned into rotating and non-rotating regions. We refer to this structure as Fixed

Register File (FRF). Let's assume there are n rotating and n non-rotating registers at each PE. If a

register index exceeds the rotating region limit (index > n), then that index simply bypasses the

adder and drives the read port of register file. Thus, it would read from the non-rotating region.

Along with offset counter, the adder is responsible to offset register index to act as a rotating

register file. Note that the most significant bit of the add operation is statically assigned to zero.

 16

Figure 8: A register file that is physically partitioned into rotating and non-rotating

regions.

The advantage of this structure over SNRRF (Design II) structure is that there is no need

for a specific instruction to control the shared register file. In addition, there is less area and

delay overhead because this register file in not shared. The delay and area of this structure is

slightly better than PRF. It is because the bitwise AND operation is eliminated in this structure.

However, if multiple memory operations reading and writing from and to the same

address are mapped onto different PEs, each PE has to allocate a register to keep the address

separately.

Similar to SNRRF structure, this design cannot present an effective register utilization in

wide spectrum of applications. It is because applications present varying need for rotating and

non-rotating registers. Since the physical partition between rotating and non-rotating region is

fixed and is set at design time, it cannot deliver an efficient resource availability if a wide

spectrum of applications are to be executed on the CGRA. Also, the number of rotating and non

rotating registers required is application dependent as well as this requirement changes from PE

to PE.

 17

Chapter 4

COMPILER SUPPORT

In this section we first present REGIMap [12], a register-aware CGRA mapping

technique. We extend this technique to allocate both rotating and non-rotating registers.

REGIMap initially extracts the minimum II using technique in [14]. Then operations are

scheduled to minimize II. In the next step, a time extended resource graph is constructed.

Afterwards, a compatibility graph P is generated from scheduled DFG and RII. When P is

constructed, a maximum clique C=(VC,EC) in graph P where the sum of weight of outgoing arcs

at all nodes is less than the register file size must be found. The mapping is completed when

|VC|=|VD|. If REGIMap fails to find such a clique, it reschedules operations not present in the

clique and tries again until a mapping is found. The REGIMap algorithm is presented in

Algorithm 1.

Algorithm 1: REGIMap(Input D,Input CGRA)

1. begin

2. MII ← DetemineMII(D,|VD|)

3. S ← |VC|; DS ← D;

4. while true do

5. N ← ∞

6. while true do

7. DS,II ← Schedule(DS,S);

8. if II > MII then

9. MII ← MII + 1;

10. S ← |VC|; DS ← D;

11. break;

12. RII ← Construct_Resource_Graph(C, MII);

13. P ← Construct_Compatibility_Graph(DS, RII);

14. C ← Weight_Constrained_Max_Clique(P);

15. if |VC| = |VDs| then

 18

16. return C;

17. else

18. if |VDs | - |VC| > N then

19. S ← S - 1; DS ← D;

20. break;

21. else

22. DS ← Re-Schedule(VDs - VC);

23. N ← |VDs - VC|;

In this algorithm, the placement and register allocation is reduced to finding a clique in

compatibility graph. The sum of arc weights in this graph represent the number of required

registers per PE. Thus, if a node is selected to be added to the clique, the sum of arcs for this

node is verified to be less than the number of available registers in a PE. We extend

Weight_Constrained_Max_Clique(P) (line 14) function to verify the number of available

registers when an operation is to be mapped on a PE. It should be noted that each node i=(oi, ri)

in graph P, represents a pair of an operation oi and a PE ri in resource graph.

Let C be the clique graph that is formed during mapping and i be a candidate node to be

added to this clique. Shown in Algorithm 2, the number of total registers, rotating and non-

rotating, is checked for PRF structure. In this algorithm, R(oi) returns the number of non-rotating

registers required to map operation oi. For instance, for a memory operation, a non-rotating

register is required to hold the pointer address. If it is an instruction with a constant operand that

is greater than 215-1 (in our CGRA ISA, only 16 bits are dedicated to immediate field which can

be negative or positive), that operand is kept in non-rotating register.

A table is formed to keep track of the total number of allocated non-rotating registers for

SNNRF design. In Algorithm 3, first the row index of a resource (PE) is found. Using this index,

we first verify whether mapping of operation oi increases the number of required non-rotating

register beyond the number of available non-rotating registers per PE. If there are sufficient non-

rotating registers available, this function verifies the number of rotating registers available at

each PE. If it passes both of these conditions, the mapping of operation oi on resource ri is

accepted.

 19

Algorithm 4 depicts how the number of available rotating and non-rotating registers at

each PE are checked for FRF design. In this function, the number of non-rotating registers

required to map operation oi on resource ri is determined. We keep track of the number of

allocated rotating and non-rotating registers separately. For each node j in the clique, if that node

represents the same PE as ri is representing, we increase the number of allocated non-rotating

registers by non-rotating registers required by operation j is representing. We also keep track of

rotating registers separately. In the end, we check if such mapping does not increase the number

of rotating and non-rotating registers beyond what is available at each PE, the mapping

represented by node i is accepted.

Algorithm 2: Can_Insert_PRF(Input i = (oi; ri), Input Clique C = (VC;EC), Input Register Size
N)
1. begin

2. S ← 0;

3. for ∀j ∈ VC do

4. if e(i,j) ∉ EC then

5. return false;

6. S ← S + w(i,j);

7. S ← S + R(oi);

8. if S > N then

9. return false;

10. return false;

Algorithm 3: Can_Insert_SRF(Input i = (oi; ri), Input Clique C = (VC;EC), Input PE Register

Size N, Input SRF Size M)

1. begin

2. if Table[get_row(ri)] + R(oi) > M then

3. return false;

4. S ← 0;

5. for ∀j ∈ VC do

6. if e(i,j) ∉ EC then

 20

7. return false;

8. S ← S + w(i,j);

9. if S > N then

10. return false;

11. return false;

Algorithm 4: Can_Insert_FRF(Input i = (oi; ri), Input Clique C = (VC;EC), Input NRF Size N,

Input RRF Size M)

1. begin

2. Sr ← R(oi);

3. Sn ← 0;

4. for ∀j = (oj,rj) ∈ VC do

5. if e(i,j) ∉ EC then

6. return false;

7. if PE(rj) == PE(ri) then

8. Sn ← Sn + R(oj);

9. Sr ← Sr + w(i,j);

10. if Sr > N then

11. return false;

12. if Sn > M then

13. return false;

14. return false;

 21

Chapter 5

EXPERIMENTAL RESULTS

The CGRA with different register file configurations was specified in RTL to evaluate

the overhead associated with each register file structure. The various configurations were

synthesized using Cadence RTL Compiler using a CMOS 65nm TSMC technology.

The REGIMap [12] algorithm is the base mapping technique used to support all of these

register file structures. It is then integrated as a separate pass in the llvm compiler framework [6].

We also modeled CGRA as an accelerator in the GEM5 system simulation framework [2]. Loops

that are important for performance were selected using Livermore Compiler Analysis Loop Suite

[1] benchmark. Those loops represent typical nested loops in scientific codes. Experiments were

conducted to evaluate the advantages and disadvantages of each structure in benchmarks.

The loops were mapped on to a 4 x 4 CGRA with sufficient instruction memory to hold

all instructions within a loop body, as well as sufficient data memory space to hold all the

variables. Latency of all the operations were assumed to be only one cycle. Load and store

operations requires two CGRA operations, one for the address bus transaction and the other for

the data bus transaction. The address and data buses are shared among all PEs within a row. In

other words, only one memory transaction can proceed at any cycle in a row. We conducted

experiments on mesh-interconnected CGRA.

As we stated earlier, we need non-rotating registers to perform memory operations

efficiently. Hence, in our setup, the number of memory operations that can be performed in a

loop kernel is limited by the total number of non-rotating registers present in the CGRA. Once

the total number of registers is fixed, the proposed PRF design will be able to perform the

maximum number of memory operations as all the registers in it can be configured to behave as

non-rotating structures.

 22

5.1 PRF configuration maps loops with minimum number of registers

In our first experiment, we change REGIMap [12] to increase the number of available

registers for each configuration until the first mapping can be found (starts from 0). The results

can be seen in Figure 9 which shows the minimum number of registers required by each register

configuration to find a valid mapping. This is by far the most important factor to evaluate the

effectiveness of each structure. It shows that a mapping can be found with the minimum number

of registers when we use PRF in CGRA. Shared register structure requires relatively more

registers even though it enables the maximum register sharing possibility for PEs.

Figure 9: The minimum number of registers required for each RF configuration to find a

mapping.

This is an important factor because it proves that with a given number of registers, can

enable us to accelerate significantly more applications. This is crucial to a programmable

accelerator such as CGRA because it is designed to be used as a general purpose accelerator

rather than specialized accelerator.

5.2 PRF configuration imposes a minimal area overhead

Figure 10 shows the synthesis results for the three proposed register file structures. For a

fair comparison, we have configured the CGRAs with a total of 64 registers. Fixed RF and

 23

Shared RF have equal number of rotating and non-rotating registers (32 rotating and 32 non-

rotating in each structure). PRF has a total of 64 registers i.e. 4 registers per PE.

Figure 10: The area overhead imposed by each RF configuration. The PRF configuration

imposes less area overhead compared to shared RF configuration.

CGRA synthesized with Fixed RF has the least area as all the PEs have their own

Register Files without any shared registers amongst the PEs. Also, the boundary between the

rotating and non-rotating region is fixed at the design time.

Even though the PEs of the CGRA using PRF structure do not share any registers, its area

is slightly more than that of Fixed RF configuration because of the area overhead imposed by

extra hardware required to dynamically configure the boundary between the rotating and non-

rotating regions. To enable this feature an extra register (The size of this register is

logarithmically proportional to the size of register file} is added to each PE and that accounts for

the increase in area.

CGRA synthesized with Shared RF has the highest area overhead because all the PEs in a

row share the non-rotating registers. This imposes extra multiplexer at the input and output of

this register file. This leads to an increase in the number of ports and hence the area. We can see

that the differences in the area of all the three structures is negligible and lies in the error range

of the synthesis tool (Because synthesis tools use many approximations and non-deterministic

algorithms for area and frequency estimation).

5.3 PRF imposes a minimal frequency overhead

Figure 11 shows the synthesis results for the frequency of the CGRAs synthesized with

the same configuration as above. CGRA synthesized with Fixed RF structure has the highest

 24

frequency because of the design regularity. However, it provides the least flexibility in terms of

register file usage.

Figure 11: The Fixed RF configuration results in the best frequency. PRF results in slightly

better frequency than shared RF structure.

The PRF structure has a slightly lower frequency as compared to the Fixed RF. But this

register file structure provides a lot of flexibility in terms of register file usage which in turn

leads to a very efficient mapping with a lower II and hence shorter schedules. The Shared RF

structure has the lowest frequency amongst the presented register structures. This can be

accounted by the fact that all the PEs in a row have access to a shared RF and this leads to slow

register reads/writes.

5.4 SNRRF and PRF required close number of registers for a given II

In our next experiment, we fix II but increase the number of registers (starting from 0) in

all configurations until a mapping at that II is found. This provides a fair comparison between

these configurations to show which one can utilize registers in a better way.

Note that shared structure is the only configuration which enables register sharing

between PEs. Thus we expect this structure to require least number of registers. In addition, for

fixed and PRF, the total number of registers are increased by a factor of 16 (total number of PEs

or in other words one more reg per PE). This is not the case for shared structure. The number of

registers in this structure can increase by a factor of 4 (there are 4 rows). Thus, registers are

increased in a finer granularity for this structure.

 25

 As can be seen in Figure 12, the total number of required registers in shared and PRF

configuration are in fact very competitive. We conclude that the flexibility of partitioning the

register file in PRF structure compensates its limitation on sharing registers very well.

Figure 12: Total number of registers to achieve an II. On average, the number of registers

required in PRF and Shared RF configurations is relatively close. The lower number of

Shared is because the total number of registers in this configuration is increased in finer

granularity.

 Even though Fixed structure is very similar to PRF, it results in low register utilization.

On an average, to achieve the same performance, 43,46,56 registers are required in shared, PRF,

and fixed register configurations respectively. Note that the better results of shared structure is

also because of finer increase in number of registers.

5.5 Mapping limitations of SNRRF

In this experiment, we keep the total number of registers in the CGRA constant and vary

the number of rotating registers per PE and the number of non rotating registers in the shared

register file at each row. The results are shown in Table 1. Observing this table, we can see that

 26

the Shared RF structure cannot be used for a wide spectrum of applications because we need to

decide on one configuration at the design time. Hence, it is possible that the one configuration of

Shared RF structure accelerates an application very well whereas results in No Mapping(NM) or

extremely inefficient acceleration in others.

Table 1: The effect of changing the ratio of rotating and non-rotating registers on II

Kernel Total Registers NR/Row R/PE II

band_lin_eq 32 8 0 9

band_lin_eq 32 4 1 5

band_lin_eq 32 0 2 NM

first_diff 32 8 0 5

first_diff 32 4 1 5

first_diff 32 0 2 NM

first_sum 32 8 0 5

first_sum 32 4 1 5

first_sum 32 0 2 NM

hydro_id 52 13 0 7

hydro_id 52 9 1 7

hydro_id 52 5 2 5

hydro_id 52 1 3 NM

iccg 60 15 0 NM

iccg 60 11 1 9

iccg 60 7 2 8

iccg 60 3 3 NM

inner_prod 48 12 0 5

inner_prod 48 8 1 5

inner_prod 48 4 2 4

inner_prod 48 0 3 NM

mat_x_mat 40 10 0 7

 27

mat_x_mat 40 6 1 6

mat_x_mat 40 2 2 NM

tridiag_elim 48 12 0 6

tridiag_elim 48 8 1 6

tridiag_elim 48 4 2 5

tridiag_elim 48 0 3 NM

5.6 SNRRF and FRF organizations are restrictive

There is an important problem that designers have to address if they choose to use shared

structure: how many registers are to be a part of the NRRF and how many are to be a part of the

RRF? This problem is visible in Table 1. For this experiment, we fix the total number of registers

in CGRA, but vary the ratio between the number of registers in RRF and the number of registers

in the shared register structures. This has an important effect on CGRA performance and the

spectrum of applications it can actually accelerate. There are applications where the number of

memory operations are small. However, there is heavy data dependency between operations. For

such applications, the best performance can be achieved when we assign more registers to RRF.

For instance in hydro_1d, the performance significantly increases when RRF increase to

2 (per PE). However, further increasing of it will lead to failure in finding any mapping. On the

other hand, applications such as first_diff do not benefit from more rotating register. This is an

important burden for CGRA to be used as a general purpose accelerator.

 28

Chapter 6

RELATED WORK

During the past decade, there has been an extensive research on CGRA designs. This

resulted in many inspiring architectures including ADRES CGRA [3], PADDI [4], PipeRench

[10], KressArray [13], Morphosys [17], MATRIX [18], and REMARC [19]. Although rotating

register files have beend extensively investigated in CGRAs, non-rotating register files have

been just overlooked.

Recently, there has been a shift to developing automatic mapping techniques to

effectively utilize CGRAs. It is because without an efficient compiler, it is impractical to use

CGRAs in real applications. Those inspiring mapping techniques include [5,20,11,12]. Several

mapping techniques address register allocation along with mapping. This includes REGIMap

[12] and [7]. These algorithms extensively investigate the allocation of registers in rotating

register files present at each PE. However, the problem of register allocation in non-rotating

register files is missing from CGRA compiler literature.

Shared register file structures and their configurations have been investigated in [9,15].

They explored register file structures for long lived and short lived values from the hardware

perspective. Here short lived and long lived values refer to data dependencies and constants

respectively. Also, they present effective register file configurations in terms of degree of

connectivity, the number of ports, and the number of registers in the RFs, and their respective

performance in terms of Instructions Per Cycle (IPC).

Rotating register files when they are directly attached to PEs are studied in ADRES

CGRA [3] and RaPiD [8]. Non-rotating register files are studied in [9] and [15]. They studies

different configuration of rotating and non-rotating register files from shared one to local register

files at PEs. However, those papers only address the register file from hardware perspective.

 29

Chapter 7

CONCLUSIONS

In this work, we show the problems associated with loops containing memory operations

and present three register file structures that solve those problems efficiently. We presented the

advantages and disadvantages of all the three structures both in terms of the hardware overhead

they impose and their effects on the mappings generated for loop nests. With our experiments we

are able to show that a CGRA synthesized with PRF is the best register file structure for loop

executions on CGRAs as it provides a lot of compiler flexibility with a minimal area overhead

and a minimal decrease in frequency.

 30

REFERENCES

[1] Lcals: Livermore compiler analysis loop suite, 2013.

[2] BINKERT, N., BECKMANN, B., BLACK, G., REINHARDT, S. K., SAIDI, A., BASU, A.,
HESTNESS, J., HOWER, D. R., KRISHNA, T., SARDASHTI, S., SEN, R., SEWELL, K.,
SHOAIB, M., VAISH, N., HILL, M. D., AND WOOD, D. A. The gem5 simulator. SIGARCH
Comput. Archit. News 39, 2 (Aug. 2011), 1–7.

[3] BOUWENS, F., BEREKOVIC, M., SUTTER, B. D., AND GAYDADJIEV, G. Architecture
enhancements for the adres coarse-grained reconfigurable array. In Proc. HiPEAC (2008), pp.
66–81.

[4] CHEN, D., AND RABAEY, J. A reconfigurable multiprocessor ic for rapid prototyping of
algorithmic-specific high-speed dsp data paths. Solid-State Circuits, IEEE Journal of 27, 12
(Dec 1992), 1895–1904.

[5] CHEN, L., AND MITRA, T. Graph minor approach for application mapping on cgras. In
Field-Programmable Technology (FPT), 2012 International Conference on (Dec 2012), pp. 285–
292.

[6] CHRIS LATTNER AND VIKRAM ADVE. The LLVM Instruction Set and Compilation
Strategy. Tech. Report UIUCDCS-R-2002-2292, CS Dept., Univ. of Illinois at Urbana-
Champaign, Aug 2002.

[7] DE SUTTER, B., COENE, P., VANDER AA, T., AND MEI, B. Placement-and-routing-
based register allocation for coarse-grained reconfigurable arrays. In Proceedings of the 2008
ACM SIGPLAN-SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems (2008), LCTES ’08, pp. 151–160.

[8] EBELING, C., CRONQUIST, D., AND FRANKLIN, P. Rapid â˘A ˇT reconfigurable
pipelined datapath. In Field-Programmable Logic Smart Applications, New Paradigms and
Compilers, R. Hartenstein and M. Glesner, Eds., vol. 1142 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 1996, pp. 126–135.

[9] ESSEN, B. V., PANDA, R., WOOD, A., EBELING, C., AND HAUCK, S. Managing short-
lived and long-lived values in coarse-grained reconfigurable arrays. In FPL (2010), IEEE, pp.
380–387.

[10] GOLDSTEIN, S., SCHMIT, H., MOE, M., BUDIU, M., CADAMBI, S., TAYLOR, R.,
AND LAUFER, R. Piperench: a coprocessor for streaming multimedia acceleration. In
Computer Architecture, Proceedings of the 26th International Symposium on (1999), pp. 28 –39.

 31

[11] HAMZEH, M., SHRIVASTAVA, A., AND VRUDHULA, S. Epimap: using epimorphism
to map applications on cgras. In Proceedings of the 49th Annual Design Automation Conference
(2012), ACM, pp. 1284–1291.

[12] HAMZEH, M., SHRIVASTAVA, A., AND VRUDHULA, S. Regimap: register-aware
application mapping on coarse-grained reconfigurable architectures (cgras). In Proc. DAC
(2013), pp. 18:1–18:10.

[13] HARTENSTEIN, R., HERZ, M., HOFFMANN, T., AND NAGELDINGER, U. Using the
kress-array for reconfigurable computing. In Proc. SPIE (1998), pp. 150–161.

[14] HUFF, R. A. Lifetime-sensitive modulo scheduling. In Proc. PLDI (1993), pp. 258–267.

[15] KWOK, Z., AND WILTON, S. J. E. Register file architecture optimization in a coarse-
grained reconfigurable architecture. In Field-Programmable Custom Computing Machines, 2005.
FCCM 2005. 13th Annual IEEE Symposium on (April 2005), pp. 35–44.

[16] LAM, M. Software pipelining: an effective scheduling technique for vliw machines. In
Proceedings of the ACM SIGPLAN 1988 conference on Programming Language design and
Implementation (New York, NY, USA, 1988), PLDI ’88, ACM, pp. 318–328.

[17] LEE, M.-H., SINGH, H., LU, G., BAGHERZADEH, N., KURDAHI, F. J., FILHO, E. M.
C., AND ALVES, V. C. Design and implementation of the morphosys reconfigurable computing
processor. J. VLSI Signal Process. Syst. 24 (2000), 147–164.

[18] MIRSKY, E., AND DEHON, A. Matrix: a reconfigurable computing architecture with
configurable instruction distribution and deployable resources. In Proc. FPGAs for Custom
Computing Machines (1996), pp. 157 –166.

[19] MIYAMORI, T., AND OLUKOTUN, K. Remarc: Reconfigurable multimedia array
coprocessor. IEICE Trans. on Information and Systems (1998), 389–397.

[20] PARK, H., FAN, K., MAHLKE, S. A., OH, T., KIM, H., AND KIM, H.-S. Edge-centric
modulo scheduling for coarse-grained reconfigurable architectures. In Proceedings of the 17th
International Conference on Parallel Architectures and Compilation Techniques (New York, NY,
USA, 2008), PACT ’08, ACM, pp. 166–176.

[21] RAU, B. R. Iterative modulo scheduling: an algorithm for software pipelining loops. In
Proc. MICRO (1994), pp. 63–74.

[22] RAU, B. R., LEE, M., TIRUMALAI, P. P., AND SCHLANSKER, M. S. Register allocation
for software pipelined loops. In Proceedings of the ACM SIGPLAN 1992 Conference on
Programming Language Design and Implementation (1992), pp. 283–299.

