Register File Organization for Coarse-Grained Ré&gamble Architectures:

Compiler-Microarchitecture Perspective

by

Dipal Saluja

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree
Master of Science

Approved July 2014 by the
Graduate Supervisory Committee:

Aviral Shrivastava, Chair
Yann-Hang Lee

Carole-Jean Wu

ARIZONA STATE UNIVERSITY

August 2014

ABSTRACT

Coarse-Grained Reconfigurable Architectures (CGRi)a promising fabric for
improving the performance and power-efficiency @imputing devices. CGRAs are
composed of components that are well-optimizedxecete loops and rotating register
file is an example of such a component presentGiREs. Due to the rotating nature of
register indexes in rotating register file, it isry challenging, if at all possible, to hold
and properly index memory addresses (pointers) static values. In this Thesis,
different structures for CGRA register files arevastigated. Those structures are
experimentally compared in terms of performancenwdpped applications, design
frequency, and area. It is shown that a registertiiat can logically be partitioned into
rotating and non-rotating regions is an excellémice because it imposes the minimum
restriction on underlying CGRA mapping algorithmilkehresulting in efficient resource

utilization.

DEDICATION

To my parents and my sister who have always engedrane to pursue my dreams and

work towards the betterment of mankind.

ACKNOWLEDGMENTS

I am thankful to Prof. Aviral Shrivastava for giginme an opportunity to work with him
on this project. He has always been there as &@nd a source of immense inspiration.

He helped me explore my true potential.

I am thankful to Prof. Yann-Hang Lee for being anderful teacher. His methodological
and student friendly approach to teaching not onbtivated me to gain technical skills

but also helped me develop a detail oriented miraise life skills.

I am thankful to my friend and colleague Mahdi HamZor always being there to help

me look at the big picture and help me with thgqub

| am thankful to my dear friends Hitesh Khunti, ¥y@ak Kumar, Mohit Shah and
Saurabh Jaluka for all the motivation and techndiatussions that helped me gain a

wider perspective of Science.

TABLE OF CONTENTS

Page
LIST OF TABLESottt ettt sttt s rmmmmn e s nnes vi
LIST OF FIGURESooiiitiiiiiiiiiee e ot sttt ettt bt nne e Vii
CHAPTER
I 0 To [Tox 1 o] o P PR UPPRPTROPPRRR 1
2 Motivation for Rotating and Non Rotating RF ... e 4
3 Register File Organization for Efficient LOOPEEXILION..........cceeeeeriiiiiiiiiiiiiees e 10
3.1 Design I: Programmable Register File (PRE).c................ 10
3.2 Design II: A Rotating Register File Per PEhar@d Non-Rotating
Register File Per ROWooiiiiiiiiieeeeee e 13
3.3 Design lll: A Non-Rotating Register File Per,REd a Rotating
Register File Per PE ...t e 15
v/ @] o] o] 1[=T g U] o] o To] £ SRR 17
5 EXperimental RESUILSccooiuuuiie s ee e esieee e e s siee e e st ee e e st emmmm s e e e e neee s 21

5.1 PRF Configuration Maps Loops With Minimum Numb¥ Registers

5.2 PRF Configuration Imposes A Minimal Area Ovexthe........ 22
5.3 PRF Imposes a Minimal Frequency Overhead................. 23

5.4 SNRRF and PRF Required Close Number of Regikiea Given |l

... 24
5.5 Mapping Limitations of SNRRF ... 25
5.6 SNRRF and FRF Organizations are Restrictive................. 27

1\

CHAPTER Page

B REIATEA WWOTK ..ottt ettt ettt e et et e e e e e e e e e e e e e eennneenes 28
A OT0) aTe3 [0 o [T TTPPT 29
(R LS (<] (=T R[0T TR 30

LIST OF TABLES

Table Page
1: The Effect of Changing the Ratio of Rotating anchMotating Registers on.lL...... 26

Vi

LIST OF FIGURES

Figure Page
114 XA CGRA e e e aaaeare 2
2: MOdUIO SChEAUIING ... e e benene 5
3: Mapping with and Without Rotating RegISters...............uvviviiiiiiiiiiieiieiiiiiiiiiieenenn. 6
4: Mapping with Rotating and Non-Rotating RegiSterS............uuveviviiiiimiiiiiiiiiiiniienn. 8
5: Rotating Register File StrUCLUIE ... 11
6: Programmable Register File StrUCIUIe......ccecvvviiiieiiiiiiiiiiiiviiivevieiieievveeeeeee e 12
7: Shared Register File SIrUCIUIEouiiiiiiiiiiiiiiiieieeiieieeieeceeveveveveesbeneeneeseeeeeeeeees 14
8: Fixed Register File StrUCIUIeoiiceeieiiiiiiiiiiiiiiiii e eeeeee s 16
9: Minimum Registers Required to FINd @ Mapping c........uueeumemmmmmmeaeeee e 22
10: Area Overhead for Each RF Configurationcevvvvviiviiiiiiviiiiiiiiieieinienne. 23
11: Fixed RF Results in BeSt FIEQUENCY......cccmmmmumiiniie e 24
12: Total Number of Registers to Achieve an ll..........ccccoooi, 25

vii

Chapter 1
INTRODUCTION

Maximizing the performance while achieving a highgoee ofenergy efficiency has
become the central focus of microelectronic systesign in practically every market segment -
from battery powered mobile devices to high perfamge servers. Accelerators are a promising
approach to improve the performance and powerieffay of all such systems. At one extreme
are special purpose, custom hardware acceleratbtese have been shown to achieve the
highest performance with the least power consumptitowever, they are not programmable
and incur a high design cost. At the other endhef dpectrum are Graphics Processing Units
(GPUs), which have become very popular. AlthougiU&Rre programmable, they are limited
to accelerating onlparallel loops. In between these two extremes, are Field ProgabterGate
Arrays (FPGAs). They have some of the advantagdsamlware accelerators, and are also
programmable. However, théine-grain reconfigurability incurs a very high cost in termoi
power and energy efficiency.

Coarse-Grained Reconfigurable Architectures or C&RAve been shown to be an
excellent alternative as they not only have povkciencies close to hardware accelerators, but
can be utilized for a wide range of applicationsduse they are programmable. For instance,
ADRES CGRA has been shown to achieve performandgawer efficiency of 60 GOPS/W in
90 nm CMOS technology [3].

A CGRA is a collection of Processing Elements(Risinected through a mesh network,
with each PE equipped with an ALU and a small tegidile (see Figure 1). The PEs are
connected to their neighboring PEs, and the outfput PE is accessible to its neighbors. In
addition, a common data bus from the data memayiges data to all the PEs in a row. It is
referred to as coarse-grained reconfigurable becB&s can be programmed to execute different

instructions at cycle level granularity.

| Instruction Memory |

[

Y
A
Y
A
Y

PE PE PE PE From Neighbors & BUS
[[

A e A ‘ A # I Predicates Data Data

\i

A
Y
A
Y
A
Y

PE PE PE

A t 4 3 A Register

v File

e | || PE| || PE| |
S 2 | e
A e A e A

\i

Data Memory

A
Y
A
Y
A
Y

Predicate Output Data Output

PE PE PE PE

; ; v v

Figure 1: A 4 x 4 CGRA. A PE consists of an ALU and two register files, a data
register file to hold data and a predicate register file. Predicate register file is used to
execute instruction conditionally in the presence of control divergencein the code.

Applications execute in phases and often justnagfeases or regions contribute most to
the execution time. Those regions are usually campamfloops, and it is the acceleration of
such loops that can significantly reduce the apgibmn execution time. Note that GPUs can
accelerate such loops only if they have no depasidgmcross iterations. Acceleration of loops,
even with dependencies across iterations, can therped very efficiently using CGRAs. This
is done by using a classical technique referredsteoftware pipelining [16], which reorders
instructions. Modulo scheduling [21] is a form of software pipelining that allowseavlapping
the execution of successive iterations of a lodpis requires the use of a special register file,
referred to as eotating register file [22], which prevents a register irdem being overwritten
in successive iterations before that registerasl i@nd consumed by dependent operations.

A rotating register file is not sufficient on itgsvn. This is because some operations
require a register index that does not change guhie execution. Such operations include loads
and stores, and operations with constant operaniss both a rotating and non-rotating register

files are needed, and this poses a unique probber@GRAs. For instance registers that hold

constant values would be difficult to index if thegister indices change dynamically, which
would be the case with a rotating register file.

In this thesis, we investigate different regisféde structures for CGRAs that can
efficiently handle memory operations as well asrsheed values. This problem is important
because it is necessary to efficiently perform lead store operations in most computation
segments. To this end, we present three diffeesister file structures for CGRAs:

1. A programmable register(PRF) file at each PE widah be logically partitioned into
rotating and non-rotating regions. In this case,dbmpiler must determine the boundary
between rotating and non-rotating region for eakls lPegister file. This boundary is set
for each at configuration time. Our experimentsvgltizat a programmable solution is the
best in terms of performance and area. This streanables us to accelerate a wider
spectrum of applications and deliver better pertoroe compared to the other solutions.

2. A rotating register file in each processing elenm{@&f) and a shared non-rotating register
file for the set of PEs in each row.

3. Afixed size rotating and non-rotating registee fit each PE.

Chapter 2
MOTIVATION FOR ROTATING AND NON ROTATING RF

In this section we present the motivation behindidg a rotating and non-Rotating
register file within each PE. We first give a lbagerview of modulo scheduling.

Figure 2 shows an illustration of havodulo scheduling [21] helps in accelerating the
execution of loops and makes CGRAs an excellentethor the same. The performance metric
of modulo scheduling igiitiation interval or I, which is the required time between theiation
of two successive iterations of the loop. Theslinversely proportional to execution time.

The vertices of Data Flow Graph(DFG) representaperations inside a nested loop and
the edges represent the data dependencies betiaeran Eigure 2(d) shows a valid mapping of
the operations from the DFG of Figure 2(a) onto@@&RA of Figure 2 (b). As we can see each
iteration requires 4 cycles to complete and thesedteration cannot begin its execution before
the completion of the first iteration. Figure 2 ¢dows a modulo schedule generated mapping for
the same DFG on the same CGRA. The execution ofipteuiterations of the DFG using the
modulo scheduled mapping is shown in Figure 2 \(fe can see that after exploiting the
possibility of a software pipelined execution, veadnitiate a new iteration every 2 cycles (l1=2)
and hence achieve a performance gain of 2X. Theedloegion in Figure 2(f) comprises of all

the operations from the loop body.

on

Iterati

Ite

Figure 2: (a) an input DFG. The vertices indicates operations and edges indicate the data
dependencies (b) A 2 x 2 CGRA (c) The CGRA in b shown horizontally (d) A valid
mapping of the operations from DFG a onto the CGRA b (d) A modulo scheduled mapping
of the operations from DFG a onto the CGRA b with an Initiation Interval of 2 (e) Actual
execution sequence of the mappingind

The steady-state of the modulo scheduling is lsweferred to as &ernel. A kernel
consists of an instruction for each PE fbycles. Those instructions are repeatedly exdcute
until the execution of a loop is completed. Notattthe same kernel body, and therefore the
same set of instructions, are executed eliecycles. Note that the register index encoded in an
instruction cannot change (because it is the sastaiction) across iterations. However, because
the same instruction is executed in different tieres, and the destination register index does not
change, it may overwrite a previous value in thesttohation register. This can cause a problem
if another instruction requires that previous valnea future iteration. This is well known
problem in VLIW processors, which has been addebgehe use of rotating register files [22].

In a rotating register file, the register indi@s changed either logically or physically at
the end of each loop iteration. In the logical agoeh, an offset to the register index is

incremented at the end of each iteration. On therdtand, a physical

1 2 H.
as @
(@) ————1
2. | ® @
"g _S__ T T
o 2 L] L
ks T @ &
— T
¥
i+4 @
J y
(b) (<)
Time ————————— — -
i Instruction |~ - 1 i|lal | Instryctlon
I+1| | Register @ @ T Register
Index: 1 = . a Index: O
Effective - =1 ~ Effective
i+2 Register ~Lala Register
Index: 1 ®, — - @ =L Index: O
e L = =
- [] i e —
1 on i j & | Instruction
; Instruction | - J B = L
i+3 Register ©@ @A =] Eed%:IiF%[
Ef?;;t:ivle :_ ———— : —~ Effective
i+4| | Register ‘ r= ~ h@ E?:l%f-teir
. Index: O) B ®, — - aﬂl L -
v e~ A R
(d)

Figure3: (a) A 2x 1 CGRA, (b) an input DFG, (c) a valid mapping of the given DFG (b) on
(a) without using registers. The value of operation a is routed to the operation d through
PEs. This mapping achieves initiation interval Il = 4. (d) Another mapping, that uses
registers to transfer value to operation a to operation d. This mapping achieves initiation
interval 11 = 2. Lower Il is achieved because two iterations of the loops are executed
simultaneously which becomes possible because internal registers of PE; are used to route

data from PE; at cycle 1 to PE; at cycle 4.

change requires the use of a shift register, tbiates the values in the register file. In either
case, a value stored in the previous iteratiomgtidex would not be overwritten in subsequent
iteration when the same register index is seleated destination. A rotating register enables a
compiler to generate very compact code. Figure @vshhow rotating register files enable an

efficient loop execution.

Consider a 2 x 1 CGRA where each PE has 2 log@dters, as shown in figure 3 (a). We
intend to accelerate a loop whose data flow gr&#f) has 4 operations, as depicted in figure
3(b). The first mapping shown in figure 3(c) re@sird cycles to execute one iteration of the
loop. The next iteration can be initiated afterydles. Thus Il of this mapping is 4. The second

mapping shown in Figure 3(d) improves the perforoeaby X because every 2 cycles, a new
iteration of the loop can be initiated<£2). The iteration label is shown as superscrigtaltion

j starts at cyclé+1 whend is executed ofE,. The result ol is stored on register 0 8F,. At
the next cycleb' is executed ofE;. At cyclei+3, c is performed ofPE;. Finally, PE, executes

d at cyclei+4. The DFG indicates thal requires the value af stored in register 0 iRE,.
Therefore, following this schedule, it takes 4 egclo completely execute one iteration.

Since all resources to execute the next iterabibthe loop at cycleé+3 andi+4 are
available (not used by operations that belong eaiionj), the next iteration can be initiated
well before the previous iteration is completede@fically, the next iteration can be initiated at
cyclei+3 whenPE, executesf*!. This results in a reduction in thieby a factor of 2, implying
that the performance is increased By 2

his reduction ifl is only possible when PEs are equipped with nogategister files. The
steady-state of the pipeline is shown in figure) 3tween the two thick lines from cygke3 to
i+4. Note that sincdl=2, the same instructions shown in cydle3 andi+4 are executed
repeatedly. In steady state, the operat@fisandc are executed at cycle 0 (like3), andb™**
andd at cycle 1 (likei+4).

Since the same instruction is executed at evergtite of steady state, the same register
index is used to select the destination registexn(index 0 org). However, due to rotation of
the register file (or register index), the effeetidestination index changes, which results in
writing to a different register index. Figure 3(shows the usage of rotating register files by
operations a and d in the DFG in 3(b) for an etienuinstance. The effective register index
after the rotation is calculated g&me + iteration number) % I1). We can see that instructiah
at cyclei+1 anda*! at cyclei+3 use the same destination index register (0), hewewo
different register indices (index 0 and 1) are uwpdawhen they are executed. This is an
important feature becauseaf® were to update the same indekywould have been overwritten
at cyclei+3. Thus, at cyclé+4, result ofa would have not been available to exeaditeThis
rotation feature allows us to generate a very cammapping. If not, the register indices have to
be manipulated on every iteration, which requirgecation of more instructions, and also

increasing thel.

Time

I N~] 1 T R e
1 H«> 2 H (Instruction | i+1F ~ {5 Py J d{' - Instruction
:leglst%r) P, d Register
ndex: Index: 0
. / ~
(a) Effective i+2] P Ta >« Effective
Register ’ 5) ~| | Register
Index: 0 Y, 2 : _|[\Index:0
i+3 @l B_l :.-:i E
2 s
y i g
i+4 12 [d B
2 © p2 i
— — gl T
| Instruction | 45 [=p, ilqgr4 -~ - Instruction
perer R) [e R e &
Effective e 15 — > Effective
Register [1 r ~ Register
\Undex:0) | ® P, @ d’ N .\Index: 1
(b) (c)

Figure4: (a) a2 x 1 CGRA, (b) an input DFG wherel isaload instruction from address p;
and sisa store operation to address p,. The arc between operation d and a has a weight of 2
representing dependency between operation a at iteration j and operation d at iteration j-2
(c) a valid mapping of the given DFG (b) on (a) with iteration 11=4 and latency of 6 cycles.
The superscript isused to represent theiteration number of the operations.

While a rotating register file is a perfect struetufor satisfying data dependencies
between producer and consumer instructions in j, lidémposes difficulties when we use them
to hold addresses and constant values. Considera maalistic DFG shown in Figure 4(b) with
load and store operations.

Nodel is a load instruction, ang is the address from where data is to be loaded. It
increased by 4 every times executed (in the loop, we are loading from r@eger array and
moving to the next element in array in next itemajfi Nodes is a store instruction arg is the
address where data is to be storedsplso increased by 4 every timés executed. There is an
arc from nodel to nodea with a weight of 2. This represents dependencyéena andd™.

In this example, 4 registers are required: 2 regssto holdp; andp, for load and store
operations, 2 registers to satisfy data dependbetweere! andd ™ (as there is an inter-iteration
data dependency). A valid mapping of this DFG anfbx 1 CGRA is shown in Figure 4(c).

For registers inPE,, it is necessary to have a non-rotating regigter ff there is a
rotating register file irPE;, we cannot keep bofty andp; in the registers oPE; because,
would be overwritten by operatidnConsider a PE with a rotating register file whereandp,
are stored in register 0 and 1 respectively adtitenj. In the next iteration, whens executed to
updatep;, p; would be written to register 1 which holds valdeg(the index is increased from
previous iteration in rotating register file). Thésre, we loose the value g and the store
operation would update a wrong location.

Meanwhile, it is necessary to have a rotating tegifile in PE,. It is because whed is
executing onPE,, it should not overwrite the value df* in its register file. Therefore, every
time d is executed, it should update a different registéex than the one it updated in previous
iteration (so the index should change every iteratiThus we need both a rotating register file
in PE, and a non-rotating register file iE; for mapping in Figure 4(d). In the following

section we present several designs of a registefoli CGRAs, that allow both types of registers.

Chapter 3

REGISTER FILE ORGANIZATION FOR EFFICIENT LOOP EXECUTION

In this section, we present an efficient registéx fesign, which we refer to as a
programmable register file(PRF), and compare it against two other registeofganizations:
1. Arrotating register file per PE and a shared ndatitog register file per row.

2. Aregister file per PE that is physically partitezhinto rotating and non-rotating regions.

The programmable register file can be logicallytifaned into rotating and non-rotating
regions at run-time. The boundary between thosemsgs determined by the compiler and is set

at configuration time for each PE.

3.1 Design I: Programmable Register File (PRF)

The PRF structure is derived by modifying the desifja rotating register file, which
will allow logical partitioning into rotating andom-rotating regions at run-time. To better

understand the new design, we first discuss thuetsire of a rotating register file presented in

[9].

As stated earlier, in a rotating register file, imgut register index is added by an offset
value as shown in Figure 5. The result of this apen drives the input port of register bank. The
offset register is incremented at the end of eitergation of the loop, or every Il cycles. Only
logz(n) bits are required to index a register bank witegisters. Therefore, the bit width of both
offset counter and adder in this structurbogs(n) bits. Note that an overflow from an addition
simply results in a modulo operation. It is becatingehigher bits are not used to index register
bank. Similarly, when the offset counter reachesmtaximum valua (We assume the number

of registersn is a power of 2), in the next iteration, it widlget to zero.

The logical partition of the register file into abing and non-rotating regions can be
achieved by adding a simple finite state machiagig¢ter control or RC) that controls the offset
counter and register bank ports as depicted inr€i§uAt configuration time, RC receives a
threshold numbeiT. Let (x_{w-1}, x {w-2}, ..., x_0), be the binary representationgfwhere

w= logy(n) andn is the number of registers in register bank.
10

Offset counter
Register 1
R1 /I(/Jgn [R.l Register 2
................................. . =
data 1
—
log n — R2 -
RZ.o] S —=s : data 2,
write log n —- + W Register n-1
B > Register n
Register Bank

Figure5: A rotating register file structure. Inputsto thisregister fileisadded to an offset
value and then drivetheregister bank ports. Thisresultsin alogical rotation of register
indexesin register file. The bit width of adder isdesigned to be equal to logz(n) wherenis
the number registersin register bank.

Since the register file is always on the criticallp it is important to minimize the delay
overhead of any additional functionality. To tkisd, we limit the compiler to s&tto values
that can be represented a4 20 <=i <=log(n). This limitation simplifies the path between the
input register index and register bank port to faamodulo operation function. For a giviell
bits in T from positioni to positionw-1 are 0, while the rest of the bits are 1. Thuggfperform
a bitwiseAND operation betweem and output of the adder, it guarantees that thdatres always
less tharT, while the lower bits of the index would not changhus, with a simple adder and a
bitwise AND operation, we can implement the modulo operationfgnction, and emulate a
rotation of the register indices.

11

Reset
— Offset counter—,,,
I "\ R1 Register 1
Rl/'_?g”: + ?:__"__,D—> o Register 2
! datal
_‘ """"""""" > R2
logn B ——t——> -
RS) a2
e et 1] I
write " P I—»D_> > Register n-1
/“’ 'L ;'""‘ oo Register n
i R {— Register Bank
] >
______________________________ E RC

I
Figure6: In thisconfiguration, theregister file can belogically partitioned into rotating
and non rotating regions. Thisflexibility comes at the cost of extra componentsin RC unit.

An input register index of register file is senfRE as well. If the register index is less
thanT, the output of bitwis&ND operation drives the register bank port. Otherwise input
register index is selected to drive the registeikb&s shown in Figure 6, this structure imposes
a minimal amount of logic overhead to the regifiteras compared to the design of the original

rotating register file. Note that bitwige\ND is a fully parallel operation.

At the end of an iteration, RC increments the aftseinter and compares it agaimstf
the value of offset counter is greater tAaiRC resets it to zero. Note that in this struct®€
explicitly resets offset counter register whiclini€ontrast to the previous design where the
value of offset register is implicitly reset to aavhen it reaches the maximum value it can

represent.

This simple change significantly increases CGRAndéigurability. In this design, the
border between rotating and non-rotating regiorsriegister file can be dynamically changed.
Therefore, a compiler can allocate rotating and-rmating registers in a flexible manner at each
PE.

The proposed structure can also significantly siimpégister allocation in the compiler.
A compiler can map operations just based on tla tatmber of registers needed at each PE

12

instead of allocating rotating and non-rotatingstsy separately. In contrast, existing CGRA
compilers such as [7] have to keep track of thelyemof rotating and non-rotating registers

separately because they have fixed the size dinmgtand non-rotating register files.

The second benefit is that a wide spectrum of apptins can be efficiently mapped by
this structure. Some applications, such as thosehigh data dependencies between operations,
impose a high demand on rotating register filds]enother applications that have many load
and store operations, place a high demand for atating registers. As long as the total number
of registers are sufficient in those applicatiam®RF can effectively accelerate those loops. By
fixing the number of rotating and non-rotating stgrs at design time, only a limited set of those
applications can be effectively accelerated on CGRAPRF does not impose any change in
instruction size. It, however, requires an incraaseéGRA configuration size (only one

instruction) to set RC thresholds.

3.2 Design 11: A Rotating Register File per PE, a Shared Non-Rotating Register File per
Row

We refer to this organization asSaared Non-Rotating Register File (SNRRF). In this
configuration, there is a rotating register fileeath PE. In addition, there is a non-rotating
register file at each row that is shared amon&B8 in that row. On any cycle, only one PE in a
row can update a register in a non-rotating regfgee However, all PEs in a row can
simultaneously read from this unit. This structisrehown in Figure 7.

13

A rotating register is usually used to temporahibfd an output of an operation that is to
be used in next few iterations by one or more coneswperations. It is important to note that

the number of registers in rotating register fiées la direct impact in mapping Il [12].

PE PE PE PE

NRRF

X

KA KL

Figure7: The shared register file organization. The output of all PEsin arow are sent to
shared register file. However, only one PE per cycle can writeto thisregister file. All PEsin

arow can simultaneously read from shared register file.

Non-rotating register files are used to hold menamgiresses and constant values that do
not fit in the immediate field of instructions. Vales such as counters that are only alive within
Il cycles can also be kept in non-rotating regifites because of the short schedule distance
between producer and consumer. For instance, tipelaipdates the pointer address which is
used by the same instruction at the next iteratidfigure 4. In fact, this instruction loads an
element of a linear integer array. Assume fhas initially pointing to the first element in that
array. When it is executed, it increases the poimyet. Therefore, in next iteration, it would
load the next element of the array. This is algodéise for store operatigin figure 4(b). This is
an example of a short distance between produckc@msumer, thus, a non-rotating register file

serves this dependency well.

The non-rotating register file structure can leadn efficient register utilization. For
instance, if a pointer is used in multiple load atate operations, we only need to allocate 1

register to hold that address if those instructimesmapped to PEs located at the same row.

14

The major problem with the non-rotating registé s that the number of rotating and
non-rotating registers are fixed at design timezr€fore, it is not the total number of registers
that determines whether or not an application eaadeelerated well. Rather, either total number
of rotating registers or total number of non-ratgtregisters can separately limit the CGRA to
accelerate an application. Therefore, this strectannot effectively accelerate a wide spectrum

of applications.

Since a non-rotating register file is shared amPBBg in a row, the shared register file
should have a multi read/write port implementatibinis imposes significant area overhead and
degrades the CGRA design frequency. It is impottanbte that increasing the register file
delay significantly impact the design frequencyadttdition, only one PE per cycle can write to
non-rotating register file, thus 1l might need ®ihcreased to avoid write access conflicts
between PEs. It may also increase the prolog letogttitially store addresses and constants in
non-rotating register files. Hence, there is a guration time overhead associated with this

design.

Last, this structure imposes overhead in the io8btm size. Since non-rotating register
file is shared amongst all PEs of a row, a sepdieltein an instruction bundle has to be
dedicated to drive the write index of non-rotatiegister file. In addition, to be able to index
shared registers as well as local registers, tistes index field in an instruction has to

increased to accommodate this need.

3.3 Design I11: A Non-Rotating Register File per PE, and a Rotating Register File per PE

As shown in Figure 8, in this organization, eachi®&quipped with a register file that is
physically partitioned into rotating and non-rotatiregions. We refer to this structureFaged
Register File (FRF). Let's assume there areotating anch non-rotating registers at each PE. If a
register index exceeds the rotating region linmtléx > n), then that index simply bypasses the
adder and drives the read port of register filauslit would read from the non-rotating region.
Along with offset counter, the adder is responsibleffset register index to act as a rotating
register file. Note that the most significant Hitlee add operation is statically assigned to zero.

15

offset countern
........................ ,.\ R1
Rl;./g* o+
: <£ datal
H -
N N R R2
R2.2LLLL+ data2
AN -
...... I..-... nrmm] W
write 27 i T+
___________ . ’j|_ Register Bank
L > RC
.................. ’

Figure8: A register filethat is physically partitioned into rotating and non-rotating
regions.

The advantage of this structure over SNRRF (Del)gtructure is that there is no need
for a specific instruction to control the sharediséer file. In addition, there is less area and
delay overhead because this register file in natesh The delay and area of this structure is

slightly better than PRF. It is because the bitwlisi® operation is eliminated in this structure.

However, if multiple memory operations reading anding from and to the same
address are mapped onto different PEs, each Pt ladlecate a register to keep the address

separately.

Similar to SNRRF structure, this design cannotgmean effective register utilization in
wide spectrum of applications. It is because appbois present varying need for rotating and
non-rotating registers. Since the physical panitietween rotating and non-rotating region is
fixed and is set at design time, it cannot delaeefficient resource availability if a wide
spectrum of applications are to be executed oi€CBRA. Also, the number of rotating and non
rotating registers required is application depehdsrwell as this requirement changes from PE
to PE.

16

Chapter 4
COMPILER SUPPORT

In this section we first present REGIMap [12], agister-aware CGRA mapping
technique. We extend this technique to allocateh bamitating and non-rotating registers.
REGIMap initially extracts the minimunil using technique in [14]. Then operations are
scheduled to minimizél. In the next step, a time extended resource graptonstructed.
Afterwards, a compatibility grapl is generated from scheduled DFG aRgd WhenP is
constructed, a maximum cliq@&= (Vc,Ec) in graphP where the sum of weight of outgoing arcs
at all nodes is less than the register file sizestntne found. The mapping is completed when
[Vc|=|Vp|. If REGIMap fails to find such a clique, it rescltes operations not present in the
cligue and tries again until a mapping is foundeTREGIMap algorithm is presented in
Algorithm 1.

Algorithm 1: REGIMap(Input D,Input CGRA)
1.begin
2. MIl «— DetemineMII(D,|\b])

S« |Vc|; Ds« D;

3
4, whiletruedo
5

N« o
6 whiletruedo
7 Dsll < ScheduleDs,S);
8. if [1'> MlIl then
9 MIl «— MII + 1;
10. S« Nc|; Ds« D;
11. break;
12. R, < Construct_Resource_GraghMil);
13. P « Construct_Compatibility _Grapbg, R);
14. C «— Weight_Constrained_Max_ Cliqu&
15. if V| = |Vbd then

17

16. returnC;

17. else

18. if [Vos | - [Vc| > N then

19. S« S-1;Ds« D;

20. break;

21. else

22. Ds<« Re-Schedul&(ps - V¢);
23. N« [Vps- Vcl;

In this algorithm, the placement and register @tmmn is reduced to finding a clique in
compatibility graph. The sum of arc weights in tigimph represent the number of required
registers per PE. Thus, if a node is selected tadaed to the clique, the sum of arcs for this
node is verified to be less than the number of labke registers in a PE. We extend
Weight_Constrained_Max_Clique(P) (line 14) functitm verify the number of available
registers when an operation is to be mapped on. & BEould be noted that each nodéo;, r;)
in graphP, represents a pair of an operat@®mand a PE; in resource graph.

Let C be the clique graph that is formed during mapgindi be a candidate node to be
added to this clique. Shown in Algorithm 2, themiber of total registers, rotating and non-
rotating, is checked for PRF structure. In thisalhpm, R(0;) returns the number of non-rotating
registers required to map operation For instance, for a memory operation, a non-ragat
register is required to hold the pointer addrefss.i$ an instruction with a constant operand that
is greater than’-1 (in our CGRA ISA, only 16 bits are dedicatedrtomediate field which can
be negative or positive), that operand is keptan-rotating register.

A table is formed to keep track of the total numbkallocated non-rotating registers for
SNNRF design. In Algorithm 3, first the row indekaresource (PE) is found. Using this index,
we first verify whether mapping of operatienincreases the number of required non-rotating
register beyond the number of available non-rotptegisters per PE. If there are sufficient non-
rotating registers available, this function vesfithe number of rotating registers available at
each PE. If it passes both of these conditions,nteping of operatiom; on resource; is

accepted.

18

Algorithm 4 depicts how the number of availableatotg and non-rotating registers at
each PE are checked for FRF design. In this functibe number of non-rotating registers
required to map operation, on resource; is determined. We keep track of the number of
allocated rotating and non-rotating registers saphr. For each noden the clique, if that node
represents the same PErass representing, we increase the number of akacabn-rotating
registers by non-rotating registers required byraipen| is representing. We also keep track of
rotating registers separately. In the end, we chieslich mapping does not increase the number
of rotating and non-rotating registers beyond wisatavailable at each PE, the mapping

represented by nodes accepted.

Algorithm 2: Can_Insert_PRF(Input= (o;; r;), Input CliqueC = (V¢;Ec), Input Register Size
N)

1.begin

2. S« 0;

3 for vj € Vcdo

4 if &5 & Ec then

5 return false;
6. S S+ W)

7 S« S+ R(@0);

8 if S>N then

9 return false;

10. return false;

Algorithm 3: Can_lInsert_SRF(Input= (o;; r;), Input CliqueC = (V¢;Ec), Input PE Register
SizeN, Input SRF Sizé/)
1.begin
2. if Table[get row(r;)] + R(0) > M then
return false;
S 0;
for vj € Vc do

o o bk~ w

if €i.) ¢ Ec then

19

return false;

S S+wj);
9. if S> N then
10. return false;

11. return false;

Algorithm 4: Can_Insert_FRF(Input= (o;; ri), Input CliqueC = (V¢;Ec), Input NRF SizeN,
Input RRF SizeVl)

1.begin

2. S «— R(a);

3 S« 0;

4 for vj = (0;,rj) € Vcdo

5 if gij) € Ecthen

6. return false;

7 if PE(r;) == PE(r;) then
8 S S+ R0);
9 S — S + W),

10. if §>Nthen

11. return false;

12. if §>M then

13. return false;

14. return false;

20

Chapter 5
EXPERIMENTAL RESULTS

The CGRA with different register file configurati®nwas specified in RTL to evaluate
the overhead associated with each register filactre. The various configurations were
synthesized using Cadence RTL Compiler using a CM&#n TSMC technology.

The REGIMap [12] algorithm is the base mapping téghe used to support all of these
register file structures. It is then integratechaeparate pass in the llvm compiler framework [6].
We also modeled CGRA as an accelerator in the GEpdtem simulation framework [2]. Loops
that are important for performance were selectégusvermore Compiler Analysis Loop Suite
[1] benchmark. Those loops represent typical nelstegs in scientific codes. Experiments were
conducted to evaluate the advantages and disadsndd each structure in benchmarks.

The loops were mapped on to a 4 x 4 CGRA with ewgfit instruction memory to hold
all instructions within a loop body, as well as feiént data memory space to hold all the
variables. Latency of all the operations were assumo be only one cycle. Load and store
operations requires two CGRA operations, one feratidress bus transaction and the other for
the data bus transaction. The address and data buseshared among all PEs within a row. In
other words, only one memory transaction can paadeany cycle in a row. We conducted
experiments on mesh-interconnected CGRA.

As we stated earlier, we need non-rotating regster perform memory operations
efficiently. Hence, in our setup, the number of roeynoperations that can be performed in a
loop kernel is limited by the total number of namating registers present in the CGRA. Once
the total number of registers is fixed, the proplo&RF design will be able to perform the
maximum number of memory operations as all thestegg in it can be configured to behave as

non-rotating structures.

21

5.1 PRF configuration maps loops with minimum number of registers

In our first experiment, we change REGIMap [12]inorease the number of available
registers for each configuration until the firstppang can be found (starts from 0). The results
can be seen in Figure 9 which shows the minimumbmurof registers required by each register
configuration to find a valid mapping. This is bar the most important factor to evaluate the
effectiveness of each structure. It shows that ppim@ can be found with the minimum number
of registers when we use PRF in CGRA. Shared mxgsructure requires relatively more

registers even though it enables the maximum mgs$taring possibility for PEs.

70
60 O Design 1:PRF E E E
E 50 Bl Design 2:SNRRF % % %
8 B Design 3:FRF = = =
& 40 = \; =
S w= = =
R = i \= e N = BN ENS NS
2 NE NE NE NE NE % NE NE
£ = = NE NE NE NE NE |
3 20 NE NE NE §= :§= §= NS
< TE ME MNE NE | RE M NE TRE
NE NE NES W= NES NE NE
0 §E :'\\E \E W= \: \E \E
& E’g\ e\’@ ¥ & &ob & S &
N &7 X,/ &0/ &S 47 3’ QQ}
>/ ;\<\ 9'\\‘\% & (\Q, 7 &"b ()
\o’bo ‘6\ 6\ (\

Figure 9: The minimum number of registers required for each RF configuration to find a
mapping.

This is an important factor because it proves Wigt a given number of registers, can
enable us to accelerate significantly more appbtoat This is crucial to a programmable
accelerator such as CGRA because it is designde tosed as a general purpose accelerator
rather than specialized accelerator.

5.2 PRF configuration imposes a minimal area overhead

Figure 10 shows the synthesis results for the threposed register file structures. For a

fair comparison, we have configured the CGRAs vdthotal of 64 registers. Fixed RF and
22

Shared RF have equal number of rotating and natingt registers (32 rotating and 32 non-
rotating in each structure). PRF has a total aofe@dsters i.e. 4 registers per PE.

430000
420000
o 410000
g
< 400000 -
390000 -
380000 -

M Area (sg. micra m)

Design 3:FRF(2RR 2NR) Design 1:PRF(4) Design 2:SNRRF(2RR 8NR)

Figure 10: The area overhead imposed by each RF configuration. The PRF configuration
imposes less ar ea over head compared to shared RF configuration.

CGRA synthesized with Fixed RF has the least asallathe PEs have their own
Register Files without any shared registers amotigstPEs. Also, the boundary between the
rotating and non-rotating region is fixed at thsige time.

Even though the PEs of the CGRA using PRF struactaneot share any registers, its area
is slightly more than that of Fixed RF configuratibecause of the area overhead imposed by
extra hardware required to dynamically configure Houndary between the rotating and non-
rotating regions. To enable this feature an extgister (The size of this register is
logarithmically proportional to the size of regisfie} is added to each PE and that accounts for
the increase in area.

CGRA synthesized with Shared RF has the higheat@rerhead because all the PEs in a
row share the non-rotating registers. This impaesds multiplexer at the input and output of
this register file. This leads to an increase mitamber of ports and hence the area. We can see
that the differences in the area of all the thteactures is negligible and lies in the error range
of the synthesis tool (Because synthesis toolsmaey approximations and non-deterministic

algorithms for area and frequency estimation).

5.3 PRF imposes a minimal frequency over head

Figure 11 shows the synthesis results for the #aqu of the CGRAs synthesized with

the same configuration as above. CGRA synthesizéd Mixed RF structure has the highest

23

frequency because of the design regularity. Howav@rovides the least flexibility in terms of

register file usage.

M Frequency (MHz)

Frequency

Design 3:FRF(2RR 2NR) Design 1:PRF(4) Design 2:SNRRF(2RR 8NR)

Figure 11: The Fixed RF configuration resultsin the best frequency. PRF resultsin dlightly
better frequency than shared RF structure.

The PRF structure has a slightly lower frequencgaspared to the Fixed RF. But this
register file structure provides a lot of flexibjliin terms of register file usage which in turn
leads to a very efficient mapping with a lower Hdahence shorter schedules. The Shared RF
structure has the lowest frequency amongst theeptes register structures. This can be
accounted by the fact that all the PEs in a ronehaacess to a shared RF and this leads to slow

register reads/writes.

5.4 SNRRF and PRF required close number of registersfor agiven |1

In our next experiment, we fix Il but increase thember of registers (starting from 0) in
all configurations until a mapping at that Il isufad. This provides a fair comparison between
these configurations to show which one can utileggsters in a better way.

Note that shared structure is the only configuratishich enables register sharing
between PEs. Thus we expect this structure to redgemst number of registers. In addition, for
fixed and PRF, the total number of registers aceemsed by a factor of 16 (total number of PEs
or in other words one more reg per PE). This isthetcase for shared structure. The number of
registers in this structure can increase by a fagtal (there are 4 rows). Thus, registers are

increased in a finer granularity for this structure

24

As can be seen in Figure 12, the total numberreqtired registers in shared and PRF
configuration are in fact very competitive. We cluge that the flexibility of partitioning the

register file in PRF structure compensates itstéition on sharing registers very well.

100
90 O Design 1:PRF ?
, 20 DDesign 2:SNRRF |5
£ 70 s
- BDesign 3:FRF [E —Hul-Hul-|
< = NE = = E
“ 50
= E -
S < N\ N E —
s 30 N = N
2 NE RE
" NE e
10
0
S O O O ©® » © ©»
[& \5@' L, c,.(-‘% O (,\\‘b \\@ o
&7 .,) o N Q S e »
57 N & & 11) o7
-

Figure 12: Total number of registersto achieve an I1. On average, the number of registers
required in PRF and Shared RF configurations is relatively close. The lower number of
Shared is because the total number of registers in this configuration is increased in finer
granularity.

Even though Fixed structure is very similar to PRFesults in low register utilization.
On an average, to achieve the same performanct;,88,registers are required in shared, PRF,
and fixed register configurations respectively. <tat the better results of shared structure is
also because of finer increase in number of registe

5.5 Mapping limitations of SNRRF

In this experiment, we keep the total number ofstegs in the CGRA constant and vary
the number of rotating registers per PE and thebaurof non rotating registers in the shared

register file at each row. The results are showmahle 1. Observing this table, we can see that

25

the Shared RF structure cannot be used for a vpdetrsim of applications because we need to
decide on one configuration at the design time.ddeit is possible that the one configuration of
Shared RF structure accelerates an applicationweliywhereas results in No Mapping(NM) or
extremely inefficient acceleration in others.

Table 1: Theeffect of changing theratio of rotating and non-rotating registerson |1

Kernel Total Registers NR/Row R/PE I
band_lin_eq 32 8 0 9
band_lin_eq 32 4 1 5
band_lin_eq 32 0 2 NM

first_diff 32 8 0 5
first_diff 32 4 1 5
first_diff 32 0 2 NM
first_sum 32 8 0 5
first_sum 32 4 1 5
first_sum 32 0 2 NM
hydro_id 52 13 0 7
hydro_id 52 9 1 7
hydro_id 52 5 2 5
hydro_id 52 1 3 NM
iccg 60 15 0 NM
iccg 60 11 1 9
iccg 60 7 2 8
iccg 60 3 3 NM
inner_prod 48 12 0 5
inner_prod 48 8 1 5
inner_prod 48 4 2 4
inner_prod 48 0 3 NM
mat_x_mat 40 10 0 7

26

mat_x_mat 40 6 1 6
mat_x_mat 40 2 2 NM
tridiag_elim 48 12 0 6
tridiag_elim 48 8 1 6
tridiag_elim 48 4 2 5
tridiag_elim 48 0 3 NM

5.6 SNRRF and FRF organizations arerestrictive

There is an important problem that designers haaltiress if they choose to use shared
structure: how many registers are to be a pati@®NRRF and how many are to be a part of the
RRF? This problem is visible in Table 1. For thiperiment, we fix the total number of registers
in CGRA, but vary the ratio between the numberegfisters in RRF and the number of registers
in the shared register structures. This has an rtapbeffect on CGRA performance and the
spectrum of applications it can actually acceler@tesre are applications where the number of
memory operations are small. However, there is)wéata dependency between operations. For
such applications, the best performance can bewastiiwhen we assign more registers to RRF.

For instance irhydro_1d, the performance significantly increases when RiRFease to
2 (per PE). However, further increasing of it idad to failure in finding any mapping. On the
other hand, applications such fast_diff do not benefit from more rotating register. Thasan

important burden for CGRA to be used as a genenglgse accelerator.

27

Chapter 6
RELATED WORK

During the past decade, there has been an exteresearch on CGRA designs. This
resulted in many inspiring architectures includlQRES CGRA [3], PADDI [4], PipeRench
[10], KressArray [13], Morphosys [17], MATRIX [18and REMARC [19]. Although rotating
register files have beend extensively investigatedGRAS, non-rotating register files have
been just overlooked.

Recently, there has been a shift to developing maatic mapping techniques to
effectively utilize CGRAs. It is because without efficient compiler, it is impractical to use
CGRAs in real applications. Those inspiring mappieghniques include [5,20,11,18everal
mapping techniques address register allocationgaleith mapping. This includes REGIMap
[12] and [7]. These algorithms extensively investegthe allocation of registers in rotating
register files present at each PE. However, thélpno of register allocation in non-rotating
register files is missing from CGRA compiler litaree.

Shared register file structures and their confitans have been investigated in [9,15].
They explored register file structures for longetivand short lived values from the hardware
perspective. Here short lived and long lived valvefer to data dependencies and constants
respectively. Also, they present effective regiditr configurations in terms of degree of
connectivity, the number of ports, and the numberegisters in the RFs, and their respective
performance in terms of Instructions Per Cycle {IPC

Rotating register files when they are directly etied to PEs are studied in ADRES
CGRA [3] and RaPiD [8]. Non-rotating register filase studied in [9] and [15]. They studies
different configuration of rotating and non-rotatiregister files from shared one to local register

files at PEs. However, those papers only addressejister file from hardware perspective.

28

Chapter 7

CONCLUSIONS

In this work, we show the problems associated Vaitips containing memory operations
and present three register file structures thatestiitose problems efficiently. We presented the
advantages and disadvantages of all the threetwtegcboth in terms of the hardware overhead
they impose and their effects on the mappings géeerfor loop nests. With our experiments we
are able to show that a CGRA synthesized with PRfRe best register file structure for loop
executions on CGRAs as it provides a lot of conmdilexibility with a minimal area overhead

and a minimal decrease in frequency.

29

REFERENCES

[1] Lcals: Livermore compiler analysis loop sui2®13.

[2] BINKERT, N., BECKMANN, B., BLACK, G., REINHARDT S. K., SAIDI, A., BASU, A,
HESTNESS, J., HOWER, D. R., KRISHNA, T., SARDASHH¥I, SEN, R., SEWELL, K.,
SHOAIB, M., VAISH, N., HILL, M. D., AND WOOD, D. AThe gem5 simulator. SIGARCH
Comput. Archit. News 39, 2 (Aug. 2011), 1-7.

[3] BOUWENS, F., BEREKOVIC, M., SUTTER, B. D., ANGAYDADJIEV, G. Architecture
enhancements for the adres coarse-grained recoalbiguarray. In Proc. HIPEAC (2008), pp.
66-81.

[4] CHEN, D., AND RABAEY, J. A reconfigurable muttrocessor ic for rapid prototyping of
algorithmic-specific high-speed dsp data pathfidSstate Circuits, IEEE Journal of 27, 12
(Dec 1992), 1895-1904.

[5] CHEN, L., AND MITRA, T. Graph minor approachrfapplication mapping on cgras. In
Field-Programmable Technology (FPT), 2012 Inteorati Conference on (Dec 2012), pp. 285—
292.

[6] CHRIS LATTNER AND VIKRAM ADVE. The LLVM Instrudion Set and Compilation
Strategy. Tech. Report UIUCDCS-R-2002-2292, CS Dépitiv. of lllinois at Urbana-
Champaign, Aug 2002.

[7] DE SUTTER, B., COENE, P., VANDER AA, T., AND MEB. Placement-and-routing-
based register allocation for coarse-grained regordble arrays. In Proceedings of the 2008
ACM SIGPLAN-SIGBED Conference on Languages, Compjland Tools for Embedded
Systems (2008), LCTES '08, pp. 151-160.

[8] EBELING, C., CRONQUIST, D., AND FRANKLIN, P. Rad & A “T reconfigurable
pipelined datapath. In Field-Programmable Logic 8Applications, New Paradigms and
Compilers, R. Hartenstein and M. Glesner, Eds., 142 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 1996, pp. 136~

[9] ESSEN, B. V., PANDA, R., WOOD, A., EBELING, CAND HAUCK, S. Managing short-
lived and long-lived values in coarse-grained rdigurable arrays. In FPL (2010), IEEE, pp.
380-387.

[10] GOLDSTEIN, S., SCHMIT, H., MOE, M., BUDIU, MCADAMBI, S., TAYLOR, R,,

AND LAUFER, R. Piperench: a coprocessor for stregymmultimedia acceleration. In
Computer Architecture, Proceedings of th& Bternational Symposium on (1999), pp. 28 —39.

30

[11] HAMZEH, M., SHRIVASTAVA, A., AND VRUDHULA, S.Epimap: using epimorphism
to map applications on cgras. In Proceedings ofiéitk Annual Design Automation Conference
(2012), ACM, pp. 1284-1291.

[12] HAMZEH, M., SHRIVASTAVA, A., AND VRUDHULA, S.Regimap: register-aware
application mapping on coarse-grained reconfigerabthitectures (cgras). In Proc. DAC
(2013), pp. 18:1-18:10.

[13] HARTENSTEIN, R., HERZ, M., HOFFMANN, T., AND NGELDINGER, U. Using the
kress-array for reconfigurable computing. In PISIE (1998), pp. 150-161.

[14] HUFF, R. A. Lifetime-sensitive modulo scheahgi In Proc. PLDI (1993), pp. 258-267.

[15] KWOK, Z., AND WILTON, S. J. E. Register filaehitecture optimization in a coarse-
grained reconfigurable architecture. In Field-Pamgmable Custom Computing Machines, 2005.
FCCM 2005. 13th Annual IEEE Symposium on (April 3D(p. 35-44.

[16] LAM, M. Software pipelining: an effective sath@ing technique for vliw machines. In
Proceedings of the ACM SIGPLAN 1988 conference mgRAmming Language design and
Implementation (New York, NY, USA, 1988), PLDI '88CM, pp. 318-328.

[17] LEE, M.-H., SINGH, H., LU, G., BAGHERZADEH, NKURDAHI, F. J., FILHO, E. M.
C., AND ALVES, V. C. Design and implementation bétmorphosys reconfigurable computing
processor. J. VLSI Signal Process. Syst. 24 (2000);-164.

[18] MIRSKY, E., AND DEHON, A. Matrix: a reconfigaible computing architecture with
configurable instruction distribution and deployabésources. In Proc. FPGAs for Custom
Computing Machines (1996), pp. 157 —166.

[19] MIYAMORI, T., AND OLUKOTUN, K. Remarc: Reconflurable multimedia array
coprocessor. IEICE Trans. on Information and Systér898), 389-397.

[20] PARK, H., FAN, K., MAHLKE, S. A, OH, T., KIMH., AND KIM, H.-S. Edge-centric
modulo scheduling for coarse-grained reconfigurabbhitectures. In Proceedings of the 17th
International Conference on Parallel Architectuaed Compilation Techniques (New York, NY,
USA, 2008), PACT '08, ACM, pp. 166-176.

[21] RAU, B. R. Iterative modulo scheduling: an@ighm for software pipelining loops. In
Proc. MICRO (1994), pp. 63-74.

[22] RAU, B. R,, LEE, M., TIRUMALAI, P. P., AND SCHANSKER, M. S. Register allocation

for software pipelined loops. In Proceedings of A&V SIGPLAN 1992 Conference on
Programming Language Design and Implementation}1 3. 283-299.

31

