
11

Control Flow Checking or Not? (for Soft Errors)

ABHISHEK RHISHEEKESAN, Intel Technology India Pvt. Ltd., India

REILEY JEYAPAUL, ARM Research, UK

AVIRAL SHRIVASTAVA, Arizona State University, USA

Huge leaps in performance and power improvements of computing systems are driven by rapid technology
scaling, but technology scaling has also rendered computing systems susceptible to soft errors. Among the
soft error protection techniques, Control Flow Checking (CFC) based techniques have gained a reputation of
being lightweight yet effective. The main idea behind CFCs is to check if the program is executing the instruc-
tions in the right order. In order to validate the protection claims of existing CFCs, we develop a systematic
and quantitative method to evaluate the protection achieved by CFCs using the metric of vulnerability. Our
quantitative analysis indicates that existing CFC techniques are not only ineffective in providing protection
from soft faults, but incur additional performance and power overheads. Our results show that software-only
CFC protection schemes increase system vulnerability by 18%–21% with 17%–38% performance overhead and
hybrid CFC protection increases vulnerability by 5%. Although the vulnerability remains almost the same for
hardware-only CFC protection, they incur overheads of design cost, area, and power due to the hardware
modifications required for their implementations.

CCS Concepts: • Computer systems organization → Reliability; • Software and its engineering → Data

flow architectures; Control structures;

Additional Key Words and Phrases: Soft error, reliability, vulnerability, transient fault, error correction code

ACM Reference format:

Abhishek Rhisheekesan, Reiley Jeyapaul, and Aviral Shrivastava. 2019. Control Flow Checking or Not? (for
Soft Errors). ACM Trans. Embed. Comput. Syst. 18, 1, Article 11 (February 2019), 25 pages.
https://doi.org/10.1145/3301311

1 INTRODUCTION

The race for technology scaling has exposed the problem of fragile devices and the susceptibil-
ity of modern computing systems to environmental peturbances. Soft errors are transient faults
caused due to multiple sources like static noise, external interference, and so forth, but the predom-
inant cause of soft errors in modern processors is charge carrying radiation particles. In the era of
many core systems the failure rate of our computing systems due to soft errors has exponentially
increased, to reach critical levels [21].

Due to the threats posed by soft errors to reliable computing, reliability is rapidly emerging
as a key design metric. Many soft error protection schemes have been built around space and/or

Authors’ addresses: A. Rhisheekesan, Intel Technology India Pvt. Ltd., Sarjapur 2, 23-56P, Devarabeesanahalli, Varthur
Hobli, Outer Ring Road, Bangalore, India; email: abhishek.rhisheekesan@intel.com; R. Jeyapaul, ARM Research, ARM
Ltd Central Building (ARM3), 110 Fulbourn Road, Cambridgeshire, Cambridge, UK; email: reiley.jeyapaul@arm.com; A.
Shrivastava, Arizona State University, 660 S. Mill Ave, Suite 203-15, Tempe, AZ; email: aviral.shrivastava@asu.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1539-9087/2019/02-ART11 $15.00
https://doi.org/10.1145/3301311

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

https://doi.org/10.1145/3301311
https://doi.org/10.1145/3301311

11:2 A. Rhisheekesan et al.

Fig. 1. CFCSS [28]: A software CFC scheme. CFCSS attaches signatures to each basic block. In basic block

B2, the first instruction expects Runtime Signature Register G to hold the signature S1 of basic block B1. It

applies xor operation on contents of G with D2 and stores the result in G, where D2 = S1 xor S2. If the

equality check for G = S2 fails, e.g., if the control flow erroneously reached basic block B2 from some basic

block other than B1 due to a soft fault, it indicates error and detects the CFE.

time redundancy. The simple redundancy based protection schemes, where same computation
is executed twice and results checked for a mismatch, have been developed at various levels of
system design abstraction—from transistor level [17] to gate level [14, 38] to system level [20,
29, 37]. While these redundancy based techniques can provide effective system reliability, they
incur high overhead of 2× or more. Even though the performance overhead of redundancy based
methods can be hidden or minimized, the power and area overheads cannot be hidden.

In pursuit of low overhead schemes, researchers found that the majority of soft faults affecting
program behavior eventually manifest in the form of faults in the program execution sequence
(33% of all transient errors result in control flow error on RISC processors and 77% on CISC pro-
cessors [30]) and in general, results in erroneous execution. Therefore, by ensuring the control
flow of the program is correct, significant protection can be achieved. Several protection schemes
were proposed that protect computation by verifying the control flow of the program is correct
and are called Control Flow Checking (CFC) techniques. For example, as shown in Figure 1, CFCSS
adds some instructions to assign a variable to a unique value (signature) in each basic block, and
also adds instructions in each basic block to check if the control flow is coming from a correct pre-
decessor basic block. Several control flow based soft error protection techniques were developed
over the last few decades and span across design layers from hardware [11, 23–25, 31, 32], software
[2, 3, 9, 15, 28, 39, 40], and hardware-software hybrid techniques [4, 10, 12, 34–36, 42].

The CFC techniques claim to provide significant protection by detecting deviations from the
correct execution flow of the program due to soft faults. Almost all the existing CFC techniques
have performed targeted fault injection to evaluate the effectiveness of the techniques in detect-
ing these deviations. In the later sections, we explain why these fault injection techniques are
ineffective in comprehensively evaluating the effectiveness of the CFC techniques. Our system-
atic and quantitative methodology to evaluate the protection achieved by CFCs demonstrates that
software-only CFC protection schemes increase system vulnerability by 18%–21% and hybrid CFC
protection increases vulnerability by 5%. The vulnerability remains almost the same for hardware-
only CFC protection, but the implementation of these techniques requires hardware modifications
that incur additional overheads of area, power, and design cost. Thus, our studies refute the claims
by various CFC schemes that they provide significant protection for execution of programs in pro-
cessors against soft faults. In fact, our results prove that the latest CFC techniques tend to increase
the system vulnerability of the programs compared to their predecessors and make the programs
more susceptible to soft errors.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

Control Flow Checking or Not? (for Soft Errors) 11:3

Fig. 2. Control Flow Error (CFE). The execution of instructions from basic block B1 to B2 or from B1 to B3 is

correct, but a jump from B1 to B4 due to the occurrence of a soft fault is called a control flow error.

Fig. 3. Classification of CFCs into software based, hardware based, and hardware-software hybrid ap-

proaches.

2 CONTROL FLOW ERRORS AND CONTROL FLOW CHECKING

Control flow error (CFE) is the variant of soft errors which cause error in the control flow of appli-
cations. For any program, given a program input, the sequence of instructions executed is fixed.
A control flow error is defined as the deviation from the correct execution flow of the program.
For example, Figure 2 shows the control flow graph for a program with nodes representing basic
blocks and edges depicting branches. A basic block is the section of the program code with a single
entry point and a single exit point like a branch or a return instruction. In Figure 2, the execu-
tion is correct from basic block B1 to B2 or from B1 to B3, but a jump from B1 to B4 is considered
incorrect. Due to the occurrence of a soft error strike during the execution in B1, if it jumps to some
address location in B4, some of the instructions may have been skipped. Such a deviation in the
control flow is termed as a control flow error. A CFE can result in incorrect output of the program
like system crash or system hang or may go silent and cause output data errors. A CFC technique
identifies deviation from the correct execution flow of the program. For example, it can detect the
incorrect execution flow in the above case where the program took a jump from B1 to B4.

Existing CFC techniques can be broadly classified into software based, hardware based, and
hardware-software hybrid approaches, as shown in Figure 3.

(1) Software CFC techniques [2, 3, 8, 9, 15, 28, 39–41] generally detect deviation in control
flow by modification of the program by compilers or binary translators to insert signatures
for each basic block in the program to represent the program’s control flow, and by com-
paring these signatures with the signatures generated at runtime. For example, CFCSS [28]
inserts a few instructions at the beginning of each basic block to set the outgoing signature
(identifying the basic block in the program), and check the incoming signature register in
the successor basic blocks to ensure the correctness of execution flow. CEDA [39], an
advanced member of the software CFC category, adds signature verification at the start

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

11:4 A. Rhisheekesan et al.

and end of each basis block, and detects even the aliasing errors by maintaining unique
signatures for the aliased blocks. (The aliasing problem and its solution in CFCSS+NA [8]
will be discussed in a subsequent section.) Other software CFC techniques like ECCA [2],
ACCE [40], YACCA [15], and ACFC [41] use some variations of signature verification of
basic blocks.

(2) Hardware CFC techniques [11, 23–25, 31, 32], in general, deploy dedicated monitoring
hardware like watchdog processor or extra hardware within the processor to monitor the
control flow by comparing the instruction addresses with stored expected addresses, or
runtime signatures with reference signatures, or by verifying the integrity of signatures
with error correction codes. For example, CFCET [32] uses execution tracing to transmit
the runtime branch instruction address and branch target address to an external watch-
dog processor. The watchdog processor compares these addresses with the reference ad-
dresses stored in its associative memory to detect deviation in control flow. WDP [24] and
OSLC [23] use the watchdog processor to compare with reference control flow. ASIS [11]
uses a hardware signature generator and watchdog monitor to check the control flow of
several processors.

(3) Hybrid CFC techniques [4, 10, 12, 34–36, 42], in general, involve modifications of pro-
gram code using a compiler, and modifications in the processor hardware, to monitor
the control flow. They apply a mix of software and hardware techniques to detect CFEs.
CFEDC [12] inserts instructions identifying branches before the branches using a com-
piler, and modifies the fetch and decode stages in the processor pipeline with a hard-
ware logic to correct any errors in the instruction preceded by a hamming code of the
branch instruction. SIS [35] generates instruction streams of the program code applied
with signatures and monitors signatures of the sequence of executed instructions using a
watchdog processor. CSM [42] uses two-dimensional signatures where vertical signature
identifies an interval of instructions that comprises multiple blocks and horizontal signa-
ture appends additional bits to every instruction word in the horizontal direction, and the
dedicated signature monitoring hardware compares them with the runtime signatures.

We employ a widely used metric, architectural vulnerability [27], to estimate the unreliability of
program execution on a microprocessor. A bit in a processor cycle, represented by a <bit, cycle>
pair, is considered vulnerable if a fault in the bit can cause incorrect output and is considered not
vulnerable, if the execution eventually results in correct output despite the fault in the bit. For
example, in Figure 1, if a fault happens in PC during the fetch of the first instruction of B1, it will
be caught by the CFC code of CFCSS. Therefore, the bits in the PC at that cycle are not vulnerable
after CFCSS is implemented. The total vulnerability of the program execution is estimated as the
count of <bit, cycle> pairs that are vulnerable during the execution in the processor.

Targeted fault injection is another methodology to evaluate the effectiveness of CFC techniques
and they have been employed in evaluation of most of the CFC schemes. However, this is compu-
tationally prohibitive. Consider that on average, a MiBench benchmark [16] executes for 39 billion
cycles on gem5 simulator [5], and it takes 1,121 seconds of execution time on our host processor
(a 22-node Linux cluster with 22 Dual Quad-Core Intel Xeon E5620 2.4GHz processors with 24GB
RAM). For exhaustive validation of the vulnerability of a 32-bit register, the total number of fault
injection simulations required is equal to the number of bits in the register times the average exe-
cution cycles, which is equal to 1.25 × 109. So, the total host simulation time required for the fault
injection campaign on the 32-bit register is 252 years. In contrast, performance simulation based
architectural vulnerability calculation requires a single simulation run, which takes 1,121 seconds
to execute on our host processor and is extremely faster compared to targeted fault injection.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

Control Flow Checking or Not? (for Soft Errors) 11:5

Fig. 4. Classification of Control Flow Errors (CFEs) that may occur in a generic control flow graph due to

soft errors, mapped as transition of execution flow from different locations in basic blocks to locations in

the same or different basic blocks or non-code memory regions (the rest of the possibilities are shown in

Figure 8). For example, C → CW indicates a jump from an instruction in the CFC code of a basic block (C),

to the first instruction in the CFC code of the wrong successor of the basic block (CW), which is one of the

correct successors but execution should have ideally gone to the other successor of the basic block as per

correct execution flow. Solid lines represent the original control flow of the program. Dotted lines indicate

a deviation in control flow or CFE, between different portions of basic blocks in the original program code

and the CFC code added by CFC techniques, due to soft errors.

This provides avenues for more sophisticated analysis of CFC schemes, as detailed in later sec-
tions. Also, architectural vulnerability analysis provides a more comprehensive determination of
whether each and every <bit, cycle> pair in execution of a program is vulnerable or not after ap-
plying a CFC technique, whereas targeted fault injection selectively inserts faults in random <bit,
cycle> pairs during execution of a program and tries to identify whether the fault results in a CFE.

3 QUANTITATIVE ANALYSIS OF CONTROL FLOW CHECKING

Our quantitative analysis of CFC strives to identify the <bit, cycle> pairs that were vulnerable,
but are no longer vulnerable after applying the CFC scheme, thereby estimating the protection
provided by the CFC technique. We approach the quantitative evaluation of CFC by breaking it
down into two steps: (i) Which CFEs will be caused by a fault in a <bit, cycle>? (ii) Given the
occurrence of that CFE, can the CFC scheme detect it?

3.1 Which CFEs are Caused by a Fault in a < bit, cycle >?

As shown in Figure 4, soft errors can cause a deviation in control flow from different basic blocks
to different basic blocks or non-code memory regions. A CFE is specified by a pc → npc transition,
where pc and npc are two consecutive PCs that are executed, such that in the correct execution
npc should not have been executed after pc . For example, O → OS transition shows a CFE caused
due to a jump from an instruction in the original source code of a basic block (O), to the original
source code of the same basic block (OS).O → OD transition indicates a jump from an instruction
in the original source code of a basic block (O) to the original source code of any other (different)
basic block (OD). CW refers to the checking code of a wrong successor of the basic block (first
instruction in the CFC code of one of the correct targets of a basic block, but the branch will be
taken to the other target in correct execution flow) andCA refers to the first instruction in the CFC
code of an aliased target of the basic block. (The aliasing problem and its solution in CFCSS+NA [8]
will be discussed in a subsequent section.) CO stands for the rest of the CFC code other than the
first instruction in the CFC code. NM indicates the non-code memory region.OB → OO indicates

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

11:6 A. Rhisheekesan et al.

Fig. 5. Classification of CFEs based on soft error source location PC and the corresponding destination

NPC or next PC, its impact on the program control flow, and whether they fall into (i) Not-successor CFE or

(ii) Wrong-successor CFE categories. Wrong successor CFE occurs if the execution flows from OB or a branch

instruction in the original source code of a basic block to the first instruction in the wrong target basic block’s

CFC code (CW). The rest of the cases fall under Not successor CFE category.

a jump from a branch instruction in the original source code of a basic block (OB) to any other
instruction in the original source code of a basic block (OO).

A vulnerable <bit, cycle> can result in two types of CFEs: (i) Not-successor control flow errors,
i.e., when the execution does not flow to a correct descendant of the instruction. For example, if
the execution jumps from the last instruction of a basic block to a basic block that is not a correct
successor of the basic block, or to non-first instruction of a correct successor, or to an instruction in
the same basic block, and (ii) Wrong-successor control flow errors, i.e., when the execution flows to a
correct successor of the instruction, but it is incorrect, i.e., in a fault-free execution, the execution
would not flow to that successor instruction. For example, a soft error alters the value of a register,
which leads to the conditional branch decision to be taken in the alternate direction, but a correct
branch target. As you can see from Figure 5, pc → npc transition from OB to CW due to a soft
error in the branch condition leading to the branch being taken in the alternate direction is a
case of wrong successor CFE and the rest of the cases fall under the not-successor CFE category.
Identifying the CFEs caused by a bit flip is considerably hard if we have to follow the dependency
chain of the faulted bit to see if it results in altering the control flow of the program. Fortunately,
our analysis is simplified by an important observation. None of the CFC techniques can detect
wrong-successor CFEs (except for YACCA [15] and CEDA [39], which try to detect some of them,
but with little success as discussed later in the section) and hence we do not need to model the
faults that cause wrong-successor CFEs. To model the not-successor type CFEs, we perform a
microarchitectural component-wise analysis to identify the CFEs generated by a vulnerable <bit,
cycle>. To simplify the discussions and due to lack of space, we will assume a five stage in order
DLX pipeline [18], but our approach is not restricted to such architectures. Chapter 3 in [18]
explains the five pipeline stages: Instruction Fetch (IF), Instruction Issue/Decode (ID), Execute (EX),

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

Control Flow Checking or Not? (for Soft Errors) 11:7

Write Result to CDB, Commit result to registers/memory (MEM to represent both Write Result and
Commit), and other processor components like Reorder Buffers (ROBs), Instruction Queue (IQ),
Register File (RF), Load/Store Queues/Buffers (LSQs), Branch Predictor, Common Data Bus (CDB),
Reservation Stations (RSs) as part of the DLX pipeline, and caches like instruction cache and data
cache as later additions to it.

3.1.1 Faults in PC. A flip in a PC bit can cause an erroneous value to be written into the PC
if the instruction is a non-branch instruction. If it is a branch instruction, the erroneous PC value
is overwritten in the next cycle with the value from the branch target address field in the execute-
memory (EX/MEM) pipeline register. Since the erroneous PC value is not used to fetch instructions,
the PC bits in the current cycle of a branch instruction can be considered not vulnerable. Let
us assume a non-branch instruction in the current cycle. The bit flip in the PC causes the PC to
change to a value that is at 1-bit hamming distance from the current value. Therefore, the PC in
the next cycle will become npc = H1(pc) + 4, where the function H1(value v) calculates all the
possible values that are 1-bit hamming distance from v . We calculate npc values for every such
1-bit hamming distance value of pc , and then use those pc → npc transitions to find if the CFC
technique will be able to catch the erroneous transition or not, as discussed in the next section.

3.1.2 Faults in Pipeline Registers. In order to estimate the vulnerability of the pipeline registers,
the effect of faults in the fields that can cause not-successor CFEs need to be modeled. We start with
the branch target address field in the EX/MEM pipeline register. If the instruction in the current
cycle is a branch instruction, a bit flip in the branch target address field can cause an erroneous
value to be written in the next cycle. For this incorrect pc → npc transition, the corresponding npc
value is npc = H1(EX/MEM[Branch Tarдet Address]). Applying similar logic to that of PC, the
bits in branch target address field in the pipeline register are deemed vulnerable or non-vulnerable
based on the entry in the CFC protection table for the corresponding pc → npc transition. The bits
can be considered non-vulnerable if the instruction in the current cycle is a non-branch instruction.
To measure the vulnerability of the branch/non-branch control bit in the EX/MEM pipeline register
(the bit that leads to the MUX select bit for the multiplexer that chooses between PC+4 and branch
target), we consider two cases: (i) The bit indicates a branch instruction and is flipped to indicate
a non-branch instruction in the current cycle, and (ii) vice versa. In the first case, the current PC
value is supplied to the adder from the PC itself to increment by 4 considering the instruction in the
current cycle to be non-branch instead of taking the value from the branch target address field in
the EX/MEM pipeline register for a normal branch instruction. The corresponding npc values are
npc = pc + 4. In the second case, the erroneous PC value is read from the branch target address field
in the EX/MEM pipeline register considering the instruction in the current cycle to be a branch
instead of supplying the value of PC to the adder to increment by 4 for the actual non-branch
instruction. The corresponding npc value is npc = EX/MEM[Branch Tarдet Address].

Moving to the fields in the decode-execute (ID/EX) pipeline register, for the branch offset field
in the ID/EX pipeline register, a bit flip can cause an erroneous value to calculate branch tar-
get address for the next cycle, provided the branch/non-branch control bit in the ID/EX pipeline
register shows a branch instruction in the current cycle. The corresponding npc value is npc =
H1(ID/EX [Branch Offset]) << 2 + ID/EX [PC].

For the PC field in the ID/EX pipeline register, the same equations can be used except that the
1-bit hamming distance is applied in that pipeline PC field. For the PC and branch offset fields in
the fetch-decode (IF/ID) pipeline register, the same equations apply. For the opcode field in the
IF/ID pipeline register, the same logic applies for npc calculation as the branch/non-branch control
bit in the ID/EX pipeline register, except that the npc values for every 1-bit hamming distance

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

11:8 A. Rhisheekesan et al.

Fig. 6. In CFCSS [28], checking-instructions are added to each basic block to set a variable to the basic block

signature; and to check if the execution is coming from a correct predecessor basic block. When execution

flows to B2 from B1 (a correct predecessor of B2) the signature checks out, but if the execution flows from

B3 (not a correct predecessor of B2), a CFE happens.

opcode that can transform a branch instruction to a non-branch instruction and vice-versa have
to be considered. A detailed analysis of the faults in pipeline register fields is presented in [33].

3.1.3 Rest of the Components. We assume that both instruction cache and data cache have par-
ity protection. For instruction cache, parity protection is enough, as it is not dirty, so whenever
we detect a fault, a correct copy of instructions can be copied from the protected lower levels of
memory. However, for data cache, parity protection is not enough and ECC protection has very
high overheads. Faults in register file, data caches, ROB, IQ, and LSQ typically cannot cause not-
successor CFEs; they can only cause wrong-successor CFEs. Therefore, their vulnerability remains
the same before and after CFC. There is one exception though, and that is when the value in mem-
ory/register is used as target address to jump. This happens only in a few cases: (i) during function
call, when the return address is saved in link register, (ii) switch case implementation where de-
pending on the condition, the execution jumps to an address that is stored in an array, (iii) jump
table where depending on the index of the function call, the execution jumps to a function address
that is stored in an array, and (iv) faults in data in register/memory, where the data is consumed by
instructions that may cause processor exceptions and exception handlers are called. We monitor
the first three situations, and assume that the register and the memory location that contain the
jump value for both the function call, and switch case and the associated instruction sequences
are protected by the CFC techniques. The register/memory containing data for the fourth case is
considered to be vulnerable in our control flow checking analysis. In addition, we find that none
of the existing CFC techniques, to the best of our knowledge, detect a deviation in control flow to
a processor exception handler due to fault in data in register/memory.

3.1.4 Wrong-Successor Control Flow Errors. There are more fields in the components, but they
cause wrong-successor CFEs. Since existing CFC techniques are unable to detect wrong-successor
CFEs, we do not need to model the protection offered by CFC techniques to those bits.

3.2 Given that Fault Results in a CFE, can a CFC Catch It?

This section describes the CFC schemes in detail and explains which CFEs can occur in the presence
of these CFC techniques and will be detected by them, and maps CFEs to the protection model
offered by the techniques.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

Control Flow Checking or Not? (for Soft Errors) 11:9

Fig. 7. CFE Protection Table—For each CFC technique, we build this table, which shows whether the CFC

technique can detect each kind of erroneous pc → npc transition. This table shows the protection model for

the CFCSS technique.

3.2.1 Analysis of CFCSS. Consider the working of CFCSS shown in Figure 6. G or Runtime
Signature Register holds the identifying signature of a basic block during runtime. At the start of
the basic block B2, the signature of the predecessor basic block B1 is expected in G. The CFC code
at the beginning of the B2 transforms this expected value in G to match the signature of B2 using
xor operation. It compares G with the signature value of B2 and a mismatch will flag an error. If
the execution flows from basic block B3 to the first instruction of B2 due to a fault in the PC during
execution in B3, the CFCSS signature checking code will detect it. G will be holding the signature
of B3 while executing instructions in B3. When it jumps to B2, G holds an incorrect signature
value of B3, triggering a call to flag the error. Therefore, the bits in the PC of instructions in B3
(or any basic block other than the correct predecessor of B2) which can become the address of the
first instruction in B2 are no longer vulnerable after CFCSS is implemented. Therefore, an incorrect
pc → npc transition to a different basic block (or an incorrect successor) can be detected by CFCSS.
On the other hand, CFCSS cannot detect the CFE when execution jumps to an instruction in the
same basic block. If an incorrect branch happens within the basic block B1, G will still hold the
signature of B1 while executing B1, and no error will be flagged during the signature match in B2.

In order to comprehensively model the protection achieved by a CFC scheme, we generate a table
called a CFC protection table, which lists all the categories of pc → npc transitions, and indicates if
they will be caught or not. The table in Figure 7 shows the protection model of CFCSS. The first
column shows the location of pc , while the second column shows the location of npc . The third
column lists whether the erroneous control flow that happens from pc → npc will be caught by
the CFC or not. For example, the first row in the table shows that CFCSS cannot catch if the CFE
causes a pc → npc transition from an instruction in the original source code of a basic block (O),
to the original source code of the same basic block (OS). The second column states that if the CFE
causes an erroneous pc → npc transition from an instruction in the original source code of a basic
block (O) to the original source code of any other (different) basic block (OD), then CFCSS will
catch it.

3.2.2 Analysis of CFCSS+NA. Figure 9 takes us through the working of the CFCSS+NA [8]
scheme and how it tackles the problem of aliasing. In the case when multiple blocks share mul-
tiple successor nodes with the successor nodes having multiple predecessor nodes, owing to the
mechanism of signature assignment and verification in CFCSS, aliasing of the signatures renders
certain CFEs undetectable. For example, in this case where B4 and B5 share a common predecessor
B2 and also have their independent predecessor B1 and B3, respectively, CFCSS selects the base
for runtime adjusting signature D to be the signature of common predecessor B2 and the signature

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

11:10 A. Rhisheekesan et al.

Fig. 8. When a basic block has more than one predecessor, then CFCSS requires a runtime adjusting signa-

ture (D) to uniquely identify where the execution is coming from. However, when there is a W-like control

flow (formed by the control flow edges from B1 to B4, B2 to B4, B2 to B5, and B3 to B5), CFCSS is unable

to uniquely identify the execution path. If a control flow fault causes the execution to jump from B1 to B5,

CFCSS is unable to detect that, and it thinks that the execution is coming from B3 to B5. This is called

aliasing, and B5 is an aliased block of B1.

Fig. 9. CFCSS+NA [8]: Demonstrating the aliasing problem in CFCSS implementation, with an example

CFG.

checking code is generated as shown in Figure 8. Here, B5 can be considered as an aliased tar-
get of B1, or the independent successor of the predecessor B2 with which B1 shares the common
successor B4. If a CFE causes a pc in B1 to erroneously transition to the npc of first instruction in
B5, the aliasing problem renders such CFEs undetectable since the signature checking code in B5
will pass. The solution to the aliasing problem is provided by CFCSS+NA as shown in Figure 9 by
splitting of the critical edge [7]. Here, between the blocks that form a W-shaped structure, one of
the transition edges is interrupted by a dummy block B5′ with a unique signature S5′ of its own.
This fix ensures that no two basic blocks in a given program share a common predecessor. The
only difference in the protection model for CFCSS+NA compared to CFCSS is the erroneous tran-
sition of pc → npc fromO toCA can be detected in CFCSS+NA, as shown in the table in Figure 10,
where O represents the original source code and CA represents the CFC aliased target as shown
in Figure 8.

3.2.3 Analysis of CEDA. CEDA [39] is one of the state-of-the-art techniques in the field of
software-only CFC. As illustrated in Figure 11, this CFC detection mechanism adds signature
verification code at the start and end of each basic block. It detects aliasing errors by maintaining
unique signatures even for the aliased blocks and is one of the few techniques to detect incorrect
conditional branches or wrong successor CFEs by employing jump check instructions (although

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

Control Flow Checking or Not? (for Soft Errors) 11:11

Fig. 10. This table shows the protection model for the CFCSS+NA [8] technique.

Fig. 11. CEDA [39]: The original program with five basic blocks (B1–B5) is shown with the CEDA imple-

mentation of signature-checking code headers and footers (S1–S5 and S1′–S5′) to detect CFEs during its

execution. The detection of (i) aliasing errors and (ii) incorrect conditional executions is shown.

Fig. 12. The jump check instructions in CEDA provide protection to only the condition flags in the processor

status register. It cannot detect indirect errors in the variables that propagate to the conditional variable foo

that decides the branch outcome.

Fig. 13. This table shows the protection model for the CEDA [39] technique.

with limited success as detailed in the later part of this section). Figure 12 shows an instance of the
conditional branch in B6 which is supposed to direct the branch execution to B7, but due to a soft
fault, the B6 to B8 branch is taken. The jump check instruction, iffoo > 0,br error , in the B8 header
which rechecks the condition will detect such an incorrect conditional branch and flag a CFE. The
CEDA protection model, as shown in the table in Figure 13, captures the solutions to aliasing and

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

11:12 A. Rhisheekesan et al.

Fig. 14. CFEDC [12]: (i) Working of CFEDC. (ii) Program hardening.

Fig. 15. This table shows the protection model for the CFEDC [12] technique.

to some limited extent, for wrong-successor CFEs in the erroneous transition of pc → npc from O
to CA and from O to CL as detected.

CEDA is one among the few CFC techniques that attempt to protect one case of wrong-successor
CFEs through jump-check instructions. This scheme can protect the processor status register (that
holds the condition flags of the comparison) for the short duration (between the two comparisons).
However, if there was a fault in the variable that was used in the comparison, then these jump-
check instructions cannot detect it. We monitor this in the evaluation of the CEDA scheme and
assume that it protects the whole processor status register.

3.2.4 Analysis of CFEDC. CFEDC [12] is a hybrid CFC technique that detects and corrects CFEs.
The methodology involves two stages: (i) Program hardening: The control instruction CI is a ham-
ming code of the subsequent branch instruction as shown in Figure 14. During compilation, a
correction code for the control instruction CI, called correction data CD, is inserted before each
branch instruction in the program. CD from the program is introduced into the pipeline before
the decoding of the control instruction. (ii) Correcting hardware: The CD from the program is pro-
cessed by specialized hardware within the pipeline to detect any errors during the f etch stage of
the control instruction. In the case of a detected error, the Correcting Logic CL together with the
Correction Data Register CDR is used to introduce the correct control instruction into the pipeline
register of the decode stage.

The CFEDC protection model is shown in the table in Figure 15. CFEDC can detect only CFEs
occurring in two types of erroneous pc → npc transitions: (i) from the branch instructions (repre-
sented by OB or original source code branch instructions) to any other instructions like OB, OO

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

Control Flow Checking or Not? (for Soft Errors) 11:13

Fig. 16. CFCET [32]: A typical program with its Program Jumps Graph (PJG) is shown. PJG is used as a

reference graph by the watchdog processor in CFCET.

Fig. 17. CFCET [32]: Different CFEs and their effects on PJG are shown here; for example, (i) branch insertion

at address 15, (ii) branch target modification at address 10, and (iii) branch deletion at address 10.

(which represent other source code in the original basic blocks), or C (which stands for the CFC
code or the control instruction CI), and (ii) from the CFC code (C) to branch instructions (OB),
since the correction data generated from the correction logic CL during the fetch of the branch
instruction and the value in the correction data register CDR from the CI instruction will cause a
mismatch.

3.2.5 Analysis of CFCET. CFCET [32] employs a watchdog processor along with the internal
execution tracing feature available in most COTS processors (e.g., Branch Trace Messaging or
BTM available in the Intel Pentium family [19]) to verify the control flow execution of a program
on the main processor. The CFC scheme traces the program jumps graph (PJG) at runtime and
compares with a reference jumps graph generated at compile time to detect a possible alteration
in control flow. As shown in Figure 16, PJG represents the control flow of the program where the
rectangular nodes represent basic blocks excluding the branch instructions at the end of the basic
blocks, the diamond nodes represent the branch instructions, and the branches represent the jump
between the branch instructions and its correct branch targets. The reference PJG is loaded in the
associative memory of the watchdog processor. A branch insertion or a branch target modification
causes a mismatch when compared to this reference PJG, as shown in Figure 17, thereby leading
to the detection of the CFE. However, a branch deletion cannot be detected using CFCET since it

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

11:14 A. Rhisheekesan et al.

Fig. 18. This table shows the protection model for the CFCET [32] technique.

Fig. 19. Overview of the gemV+llvmV framework highlighting (i) the LLVM compiler setup with methods

for instrumentation for software based control flow protection techniques and (ii) the gem5 simulator setup

including the vulnerability tracker and protection model.

causes a non-branch instruction to execute instead of a branch instruction, but BTM cycles will
not be generated as BTM is enabled only for branch instructions.

The CFCET protection model, as shown in the table in Figure 18, has a relatively simplified
erroneous pc → npc transition case since it can detect only branch insertions and branch target
modifications. Branch insertions and branch target modifications are represented by transitions
from OB or branches in the original source code to O or any original source code instructions.
The rest of the cases like branch deletion (as explained earlier in this section), erroneous pc → npc
transitions due to soft faults in PC (same explanation as branch deletion), and wrong-successor
CFEs (since both the branches will be present in the reference PJG) go undetected.

4 GEMV-CFC IMPLEMENTATION

In order to model the protection offered by CFC techniques, we built a framework called
gemV+llvmV (V stands for vulnerability), as shown in Figure 19, based on the gem5 simulator [5]
and LLVM compiler [22]. gemV models the architectural vulnerability of all microarchitectural
components, including caches, register files, pipeline registers, reorder buffers, load store queues,
and so forth. We have implemented various state-of-the-art software CFC technqiues like CFCSS,
CFCSS+NA, and CEDA, and the software portion of the hybrid technique CFEDC in the llvmV
compiler.

4.1 Vulnerability Modeling in gemV

To calculate the vulnerability of microarchitectural components in a processor, we implemented
two software modules in gem5, vulnerability tracker (VT) and protection model (PM), and plugg-
ed the modules to each microarchitecture component in the gem5 simulator, as shown in
Figure 20. The Vulnerability Tracker functions as a wrapper around each processor component’s

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

Control Flow Checking or Not? (for Soft Errors) 11:15

Fig. 20. Detailed description of the gemV simulator setup, in which the Vulnerability Tracker (VT) and Protec-

tion Model (PM) implementations are highlighted for each of the architecture components. One such VT+PM

block is expanded, and its interface with the component accesses is described in detail, and the flow toward

deriving the vulnerability outputs are indicated.

Fig. 21. The vulnerability tracking for a register in the register file.

functional model to monitor its accesses, and computes the vulnerability of the attached processor
component. Vulnerability of a component begins from the time data is written into the component
until the time it is last used by the processor or removed from the component. An access can be
considered final and binding iff the instruction that initiated the access is committed. In the event
of a branch misprediction, the speculatively executed instructions are squashed in the processor
pipeline, and the associated accesses should not be counted. Once the accesses that effectively
contribute to the vulnerability of the component are committed, the vulnerability intervals are
computed. The vulnerability intervals of a register in a register file during a sequence of reads and
writes to the register are shown in Figure 21. These vulnerability intervals for each unit (entry)
of the component accessed during execution are accumulated to derive the total component
vulnerability. The vulnerabilities of individual processor components are then accumulated to
obtain the total system vulnerability.

4.2 Pipeline Vulnerability Modeling

No publicly available tool models the vulnerability of pipeline registers. This is because even
though performance simulators are cycle-accurate, they are not bit-accurate. They do not model
all the bits in the pipeline to achieve speedup over RTL, and as a result, they cannot model the
reads and writes to the bits, and therefore, cannot model their vulnerabilities. We need to model
the pipeline vulnerability more accurately, since protecting some of the fields of pipeline registers
is one of the main goals of CFC techniques. Our accurate pipeline vulnerability modeling is based
on detailed RTL analysis of the pipeline of ARM Amber core [1]. We divide the bits in the pipeline
register into logical fields, and a field is considered vulnerable if a fault in that field may cause
incorrect execution, which includes wrong results, generating an exception, or a CFE. We further
classify the vulnerability of the fields as per instruction as their vulnerability is most closely as-
sociated with the opcode of the instruction. To find the vulnerable fields of a pipeline register, we

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

11:16 A. Rhisheekesan et al.

perform detailed fault injection experiments. We find that even though the pipeline stages have
more than 1,646 bits, only about 390 of them are vulnerable for the adc instruction, for example.
A detailed analysis of the pipeline register fields, and which fields are vulnerable in each pipeline
register for each opcode, while omitted here for lack of space is presented in [33].

4.3 Validation of Vulnerability Estimation

None of the currently available vulnerability estimation tools [6, 13, 27] have presented validation
results. Validating architectural vulnerability modeling and its implementation is quite difficult as
it may require correlation against fault injection. However, this is impractical as it is computation-
ally prohibitive, as explained earlier.

We have partially validated our vulnerability models and implementation through fault injection

experiments. We compare v
bc

from gemV, and f s

as
from fault injection experiments. Correlation

coefficient (CoC) is defined asCoC = (v
bc
×100)/(f s

as). From gemV,v is the estimated vulnerability of a
processor component over the execution of a program (v stands for vulnerable <bit, cycle> pairs,
defined in Section 2), b is the number of bits in that processor component, and c is the number of
cycles for which the program executes. From the fault injection experiments, f s is the number of
simulations that failed, and as represents the total number of simulations. Since fault injection is
computationally prohibitive, we perform exhaustive fault injection for some random locations in
each microarchitectural processor components, e.g., register 2 of the RF, entry 1 of the ROB, and
so forth.1

For processor components with array-like structures (e.g., PC, register file, caches), we inject
faults and let the execution continue to see if the fault will cause an error. For processor compo-
nents like pipeline registers, we use the results of RTL analysis. If a pipeline field has been identified
as vulnerable for an opcode, then we assume that fault in that field when the pipeline register car-
ries the instruction with the given opcode will definitely cause an error. For other buffers in the
architecture (e.g., ROB, LSQ), we assume that the whole entry is vulnerable if it is live.

Since we are only modeling architectural vulnerability, these fractions may not match. This is
because of software masking. Software masking is the effect where, even though a variable is used,
its value does not affect the result. For example, if one operand of a multiplication operation is zero,
then fault injection experiments will not fail on an error in the second operand, while the vulner-
ability simulator will estimate the vulnerability of the second operand. To avoid this mismatch in
our validation experiments, we execute programs that have minimal software masking. We get
pretty high correlation (see Table 1) of the vulnerability against fault injection results. Since we
are using normalized effective vulnerability as the ratio of system vulnerability after and before
control flow checking, software masking should not affect the ratio as long as software masking is
not changing the overall system vulnerability by a significant margin, although the absolute sys-
tem vulnerability numbers in the experiments are affected by the overestimation due to software
masking.

4.4 Protection Modeling in llvmV and gemV

The protection offered by the CFC techniques cannot be modeled solely in the simulator, since
information about the implementation of the software techniques is required in the simulator.
This information must be generated in the compiler, and provided to the simulator, separately.
We implement the software CFC protection techniques in LLVM, and generate the binary of the
application with and without the CFC protection, as well as the extra information needed by the
simulator, as shown in Figure 19. For example, for the CFC technique CFCSS, where basic block

1In this sense, our validation is incomplete.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

Control Flow Checking or Not? (for Soft Errors) 11:17

Table 1. Correlation Coefficient between v
bc

(SER from GemV-CFC) and
f s
as (SER

from Fault Injection Experiments), Where Soft Error Rate (SER) is Defined

as System Failure Rate Due to Soft Errors

Benchmark Correlation coefficient between v

bc
and

f s
as

Matrix Multiplication 100.26
Vector Dot Product 100.11

Vector Addition 99.71
Matrix Determinant 99.99

Fibonacci 100.34
Factorial 99.97

Vector Cross Product 99.98
Permuations and Combinations 99.98

Correlation coefficient (CoC) is defined as CoC = (v
bc
×100)/(

f s
as).

Table 2. Experimental Setup for the Case Study Demonstration

of the GemV-CFC Framework

Compilation Environment

Compiler LLVM (ARM v7-a)
Cross-compiler CodeBench gcc (ARM v7-a)

Simulation Environment

Mode System Emulation mode
Architecture ARM v7-a
Pipeline 5-stages (Out-Of-Order)
L1 D-Cache 64KB (Two-way)
L1 I-Cache 32KB (Two-way)
D-TLB / I-TLB 64 entries
Physical Reg (INT/FP) 128/128
Architecture Reg (INT/FP) 16/32

boundaries are required to determine whether it can detect the CFE or not, we develop compiler
APIs to identify and label the boundaries. The instrumented binaries are then interpreted by the
protection models in the simulator to compute effective system vulnerability in the presence of CFC
techniques.

The Protection Model software module attached to the simulated model of each processor com-
ponent, as shown in Figure 20, evaluates the protection offered to the component. PM implements
the systematic methodology to determine the cycles during which soft faults in the microarchi-
tectural component bits can cause CFEs that can be detected by CFC schemes, by looking up the
respective CFC scheme’s protection tables. Such bit-cycles are accumulated and “negated” from
the vulnerability derived from the corresponding Vulnerability Tracker, thus computing its effective
vulnerability after protection.

5 HOW EFFECTIVE ARE CFCS?

We perform our experiments and quantitative estimation of the effectiveness of CFC schemes on
our gemV+llvmV framework for the ARM v7-a architecture on MiBench benchmarks [16]. More
details of the experimental setup are provided in Table 2. We have implemented state-of-the-art

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

11:18 A. Rhisheekesan et al.

Fig. 22. The effective system vulnerability (normalized over original program vulnerability) of CFCSS, for a

ECC protected L1 data cache.

Fig. 23. The effective system vulnerability (normalized over original program vulnerability) of CEDA, for a

ECC protected L1 data cache.

software CFC techniques like CFCSS, CFCSS+NA, and CEDA, and the software part of the hybrid
technique CFEDC in llvmV compiler. The compiler also generates the information about the loca-
tion of CFC instructions within each basic block, and the location of the original source code to
detect the category of erroneous pc → npc transitions in CFC protection tables, in the assembly file.
Program binary and the object dump files are generated from the assembly file by cross compil-
ing with the gcc cross-compiler for ARM. The object dump file is parsed to obtain the instruction
addresses corresponding to the CFC and the original basic block locations in the assembly file.
This is provided as an input to the gemV simulator to model the protection achieved by the CFC
techniques. For each CFC technique, we construct the CFC protection table and provide it as an
input to gemV.

5.1 Vulnerability Increases on Applying CFC, Making It Ineffective!

Figure 22 plots the vulnerability of benchmarks on implementing CFCSS, normalized to the vul-
nerability of the original benchmarks without applying CFCSS. On average, CFCSS increase the
vulnerability of the MiBench benchmarks by 18%, although the intent of the CFC technique is to
reduce the vulnerability of the programs. In fact, for dijkstra benchmark, applying CFCSS increases
its vulnerability by more than 40%.

Similarly, on applying state-of-the-art software CFC techniques like CEDA and CFCSS+NA in-
creases the vulnerability of these benchmarks by 21% and 18%, respectively (as shown in Figure 23
and Figure 24), while the hybrid CFEDC scheme increases their vulnerability by 5% on an average,
as shown in Figure 25. Although the vulnerability on applying CFCET remains the same as shown
in Figure 26, the additional design, area, power, and cost overheads cannot be ignored.

The CFC code added to the original program by the software-only CFC techniques adds to the
execution time of the original program. Compared to the original program, the CFC code in the
program code generated by software-only CFC techniques reduces the performance of the program
execution on the processor and also increases the executed instructions. In effect, it increases

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

Control Flow Checking or Not? (for Soft Errors) 11:19

Fig. 24. The effective system vulnerability (normalized over original program vulnerability) of CFCSS+NA,

for a ECC protected L1 data cache.

Fig. 25. The effective system vulnerability (normalized over original program vulnerability) of CFEDC, for a

ECC protected L1 data cache.

Fig. 26. The effective system vulnerability (normalized over original program vulnerability) of CFCET, for a

ECC protected L1 data cache.

the vulnerability of the program and negates even the small amount of protection achieved by
these CFC techniques. The overhead in vulnerability and execution time added by the CFCSS
code inserted by the compiler is plotted in Figure 27. We observe that in most benchmarks, the
added CFC code contributes significantly to the total effective system vulnerability, thereby adding
(32.5%) instead of reducing system vulnerability. The reason for this is an average 19.5% increase
in simulation runtime added on by an additional 32.5% executed instructions. We can also see
that in the cases where the CFC code contributes a larger fraction of the system vulnerability,
it also contributes a larger fraction toward the runtime. In other words, runtime increase and
vulnerability increase go hand-in-hand.

To expose the impact of performance on vulnerability increase by CFC techniques, Figure 28
plots the normalized vulnerability per-instruction and per-cycle of the program execution. The
normalized vulnerability per execution cycle is almost 1, asserting the fact that the increase in
vulnerability follows the trend of the increase in execution time. Owing to the increased number
of CFC instructions executed in software based protection techniques (five to seven instructions
per basic block), the increase in vulnerability is proportionately less compared to the increase in the

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

11:20 A. Rhisheekesan et al.

Fig. 27. The percentage contribution of original code and the CFC code toward the effective system vulner-

ability and the execution time with CFCSS protection.

Fig. 28. The normalized effective system vulnerability per cycle and per instruction upon implementation of

(a) CFCSS, (b) CFCSS+NA, (c) CEDA, (d) CFEDC, and (e) CFCET.

number of dynamic instructions executed. The normalized vulnerability per instruction in hybrid
technique, CFEDC, is slightly higher (0.95) compared to SW based CFC techniques (0.8), since it
uses only one instruction per basic block for CFC. In the case of CFCET, although the executed
instructions remain the same, the vulnerability increases due to the extra execution cycles required
for execution tracing, thereby increasing the residency of vulnerable data in processor components
and reflecting in an increase of 9% in normalized vulnerability per instruction.

6 WHY CFCS ARE NOT EFFECTIVE?

The ineffectiveness of existing CFC techniques lies in their inability to provide reasonable pro-
tection against wrong-successor CFEs. Existing CFC techniques only attempt to detect a subset of
soft faults that cause not-successor CFEs. The catch lies in the fact that only a small fraction of the
soft faults cause not-successor CFEs, while most of them cause wrong-successor CFEs. For exam-
ple, in our experimental setup, even without considering cache, the average vulnerability over all
MiBench applications is 1.72 × 1014 bit-cycles.2 Even if only 33% of these can cause CFEs [35], it
implies that faults in 1.72 × 1014 × 0.33 = 5.7 × 1013 bit-cycles can cause CFEs. Out of these, only
2.3 × 1012 bit-cycles are protected by CFCSS, according to our runs using gemV-CFC. This implies
that CFCSS can detect only 4% of all the soft faults that cause CFEs. On average, not-successor
CFEs can happen in CFCSS protected MiBench benchmarks in 2.64 × 1012 bit-cycles, as per our
estimates from the simulation runs. Therefore, the rest of the bit-cycles can cause wrong-successor
CFEs (5.44 × 1013 bit-cycles), which constitutes a large fraction (95.4%) of possible CFEs, and are
not protected by any of the existing CFC techniques. This is the main reason why existing CFC
techniques are not effective in protecting from soft faults. This is true even for several other CFC
techniques that we have not evaluated, since none of them attempt to provide protection from
wrong-successor CFEs.

2If you consider cache vulnerabilities also, then the number is 5.4 × 1017.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

Control Flow Checking or Not? (for Soft Errors) 11:21

Fig. 29. Vulnerability distribution in the processor components.

Table 3. Protection Achieved in Processor Components in the gemV+CFC

Framework for the Case Study Experiments

Protection Achieved
Protection Pipeline Link Processor Status

Technique PC Register Register Register

CFCSS 91.03% 0.72% 100% 0%
CFCSS+NA 91.03% 0.73% 100% 0%
CEDA 93.19% 1.07% 100% 100%
CFEDC 12.8% 0.21% 0% 0%
CFCET N/A 0.4% 0% 0%

We analyze the distribution of vulnerability among the processor components, as shown in
Figure 29. We find that the pipeline registers (89%) constitute the major vulnerability proportion
followed by the register file (6.62%), rename table (3.16%), and then the PC (0.54%). The rest (0.77%)
is contributed by ROB, IQ, and LSQ. Since the primary targets of protection by CFC techniques
are the PC, pipeline registers, link register, and processor status register, CFC techniques do stand
a good chance of providing protection. However, Table 3 shows that although CFC techniques
are able to achieve good protection of PC, they are not so effective in protecting the pipeline
registers from soft errors. The protection achieved on pipeline registers, which contribute the
most to system vulnerability, is grossly inadequate in all these CFC techniques.

7 WHY PREVIOUS EVALUATIONS WERE WRONG?

We further investigate to find out the reasons for the stark difference in our results, and that ob-
tained by the previous researchers, and narrow it down to flaws in the experimental methodology
of the previous works. Almost all the previous CFC papers have performed “targeted fault injec-
tion.” They essentially directly inject faults that will cause not-successor CFEs and then perform
assumption/analysis/simulation/execution to see if their technique can detect the injected fault or
not. Three main approaches have been taken by researchers in targeted fault injection when it
comes to how and where to insert faults: (i) Assembly code instrumentation used in CFCSS [28]
and CFCSS-NA [8], (ii) gdb-based runtime fault injection used in ACCE [40] and CEDA[39], and
(iii) fault injection in memory bus used in OSLC [23] and SIS [36]. Researchers have also em-
ployed probability based expressions to increase coverage of fault injections and have even used
analytic arguments in many instances to explain the effectiveness of their CFC techniques, while
comparing with other schemes. The gdb-based runtime fault injection, fault injection in memory
bus, and targeted fault injection methods deployed by CFC techniques, in general, have several
shortcomings: (i) The targeted fault injections, directed to analyze the error detection capabilities

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

11:22 A. Rhisheekesan et al.

of the specific CFC technique implementation, are not representative of the error coverage pro-
vided to the processor as a whole. (ii) The targeted nature of the fault injections does not give an
accurate measure for comparative analysis among different proposed techniques. (iii) The exhaus-
tive amount of simulation runs, required for reasonable fault injection coverage to get an estimate
of SER (Soft Error Rate) (as explained in Section 2), make this methodology unsuitable for quick
and extensive design space explorations. (iv) The targeted fault injection methods cannot be easily
ported across different processor architectures or system configurations. We will attempt to ex-
plain the problems in detail with an assembly code instrumentation approach. Other evaluation
schemes also exhibit similar shortcomings.

The assembly instrumentation scheme involves toggling bits in assembly instructions in the
benchmark program’s assembly/binary code and simulates a soft fault during the execution in the
processor pipeline. Several CFE types like a non-branch instruction becoming a branch instruction
(branch insertion), a branch turning into a non-branch (branch deletion), branch offset error, and
branch predicate error can be simulated based on the instruction the fault is injected into and
which instruction bit is corrupted. By counting the number of CFEs detected by the CFC scheme
and dividing it by the total number of inserted faults, the effectiveness of a CFC technique can be
estimated. This approach can be ineffective in catching CFEs due to at least three problems:

(1) Coverage of faults in space or across microarchitectural components is not suffi-

cient: Instrumentation of assembly code instructions maps to simulation of fault injection
in the instruction register or the IF/ID pipeline stage or the instruction cache, but it ig-
nores the CFEs caused by the rest of the processor components like program counter,
other pipeline stages, register file, or data cache.

(2) Coverage of faults in time is not enough (how many faults or duration in which

faults are injected in a microarchitectural component): A random instruction bit at
a random address is selected and toggled in the assembly code instrumentation scheme to
achieve an even probability of fault injection. This is not an accurate representation of the
distribution of transient faults. As per the definition of the metric Vulnerability, a bit in a
microarchitectural component is vulnerable in a cycle of execution, if a soft fault in the
bit leads to an invalid result, and hence the probability of a transient fault is proportional
to the amount of time the bit is resident in the component. For example, the instructions
inside a loop have a higher probability of exposure to a soft fault, since they are resident in
instruction cache for a longer time than non-loop instructions which get quickly replaced
in the cache by the next set of instructions.

(3) This fault injection technique only inserts faults that cause not-successor CFEs:
Lastly, and most importantly, the simulation of fault injection in assembly code instruc-
tions only results in what we term as not-successor CFEs. They insert very few faults that
lead to wrong-successor CFEs. Wrong-successor CFEs are typically the result of data cor-
ruption, due to soft faults, that lead to the branch condition or branch decision variables.
Since fault injection based on assembly code instrumentation does not toggle data bits,
this CFC evaluation scheme does not evaluate the effectiveness of CFC techniques in de-
tecting such errors.

8 ADVANCED CFCS

Advanced CFC techniques assume they provide more protection by detecting more types of CFEs.
On the contrary, our experiments show that some of the later CFC techniques in pursuit of ad-
vancing the effectiveness of CFC tend to increase the effective system vulnerability of the pro-
gram compared to its predecessors. CEDA is supposedly one of the more advanced software CFC

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

Control Flow Checking or Not? (for Soft Errors) 11:23

schemes that tries to plug the gaps in earlier CFC implementations, e.g., by detecting even one
variant of wrong-successor CFEs via jump-check instructions and also by detecting aliased errors
by maintaining unique signatures even for aliased blocks, but the effective system vulnerability
normalized over original program vulnerability increases to 21% compared to 18% in the case of
CFCSS and CFCSS+NA. For 10 out of 14 MiBench benchmarks, CEDA has increased the effective
system vulnerability of the programs compared to other CFC techniques. In fact, CEDA has an
effective system vulnerability normalized to the original program of 1.55, compared to 1.43 for
CFCSS+NA, 1.34 for CFCSS, and 1.12 for CFEDC. The additional code overhead in implementing
the advanced CFC techniques renders them worse compared to earlier software CFC techniques,
as the residency of additional CFC code instructions in different microarchitectural processor com-
ponents tends to increase vulnerability.

9 SUMMARY AND CONCLUSIONS

Our studies contradict claims by various CFC schemes that they provide significant protection for
program execution in processors against soft errors and proves that these schemes make matters
worse as they make the programs more susceptible to soft errors. Using our gemV-CFC framework,
we estimate the architectural vulnerability of the program “without CFC” and “with CFC.” Our ex-
perimental results show that the vulnerability of the program “with CFC” is higher than “without
CFC” for software -only and hybrid CFC techniques. This can be attributed to the additional vul-
nerability due to the extra instructions that implement the CFC scheme offsets the small reduction
in vulnerability achieved by the CFC technique. Even though the vulnerability remains almost the
same for hardware-only CFC techniques, the overheads incurred in design cost, area, and power
due to the hardware modifications required for their implementation cannot be hidden. Also the
contribution of reduction in vulnerability by the existing CFC techniques is small, since the total
number of bits protected by these CFC schemes is only a small fraction of the total number of
vulnerable bits in the processor.

Some other protection techniques targeted at protecting the components like pipeline registers
that are not effectively protected by CFC techniques. For example, C-element latch scheme [14]
can provide effective protection for pipeline registers and Shield [26] for register files. C-element
latch scheme can provide almost 100% protection by duplication of pipeline latches, while Shield
can selectively protect the most vulnerable registers using ECC and thus protect integer RF by up
to 84%, with reasonable hardware overheads and no performance overhead. Together, they could
provide effective protection to the system along with ECC protection for L1 data cache and parity
protection for L1 instruction cache.

REFERENCES

[1] 2010. Amber ARM-compatible core :: Overview. http://opencores.org/project,amber.
[2] Z. Alkhalifa, V. S. S. Nair, N. Krishnamurthy, and J. A. Abraham. 1999. Design and evaluation of system-level checks

for on-line control flow error detection. IEEE Trans. Parallel Distrib. Syst. 10, 6 (June 1999), 627–641. DOI:https://doi.
org/10.1109/71.774911

[3] S. A. Asghari, H. Taheri, H. Pedram, and O. Kaynak. 2014. Software-based control flow checking against transient
faults in industrial environments. IEEE Trans. Indust. Inf. 10, 1 (Feb. 2014), 481–490. DOI:https://doi.org/10.1109/TII.
2013.2248373

[4] J. R. Azambuja, M. Altieri, J. Becker, and F. L. Kastensmidt. 2013. HETA: Hybrid error-detection technique using
assertions. IEEE Trans. Nucl. Sci. 60, 4 (Aug. 2013), 2805–2812. DOI:https://doi.org/10.1109/TNS.2013.2246798

[5] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,
Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,
Mark D. Hill, and David A. Wood. 2011. The gem5 simulator. SIGARCH Comput. Archit. News 39, 2 (Aug. 2011), 1–7.
DOI:https://doi.org/10.1145/2024716.2024718

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

http://opencores.org/project,amber
https://doi.org/10.1109/71.774911
https://doi.org/10.1109/71.774911
https://doi.org/10.1109/TII.2013.2248373
https://doi.org/10.1109/TII.2013.2248373
https://doi.org/10.1109/TNS.2013.2246798
https://doi.org/10.1145/2024716.2024718

11:24 A. Rhisheekesan et al.

[6] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee, and R. Rangan. 2005. Computing architectural vul-
nerability factors for address-based structures. In Proceedings of the 32nd International Symposium on Computer

Architecture (ISCA’05). 532–543. DOI:https://doi.org/10.1109/ISCA.2005.18
[7] Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Taylor Simpson. 1998. Practical improvements to the con-

struction and destruction of static single assignment form. Softw. Pract. Exper. 28, 8 (July 1998), 859–881. DOI:https://
doi.org/10.1002/(SICI)1097-024X(19980710)28:8〈859::AID-SPE188〉3.0.CO;2-8

[8] Wang Chao, Fu Zhongchuan, Chen Hongsong, Ba Wei, Li Bin, Chen Lin, Zhang Zexu, Wang Yuying, and Cui Gang.
2010. CFCSS without aliasing for SPARC architecture. In Proceedings of the IEEE 10th International Conference on

Computer and Information Technology (CIT’10). 2094–2100. DOI:https://doi.org/10.1109/CIT.2010.356
[9] E. Chielle, G. S. Rodrigues, F. L. Kastensmidt, S. Cuenca-Asensi, L. A. Tambara, P. Rech, and H. Quinn. 2015. S-SETA:

Selective software-only error-detection technique using assertions. IEEE Trans. Nucl. Sci. 62, 6 (Dec. 2015), 3088–3095.
DOI:https://doi.org/10.1109/TNS.2015.2484842

[10] M. Duricek and T. Krajcovic. 2014. Interactive hybrid control-flow checking method. In Proceedings of the 2014 Inter-

national Conference on Applied Electronics. 79–82. DOI:https://doi.org/10.1109/AE.2014.7011673
[11] J. B. Eifert and J. P. Shen. 1995. Processor monitoring using asynchronous signatured instruction streams. In Proceed-

ings of the 25th International Symposium on Fault-Tolerant Computing, 1995, “Highlights from Twenty-Five Years’.” 106.
DOI:https://doi.org/10.1109/FTCSH.1995.532620

[12] N. Farazmand, M. Fazeli, and S. G. Miremadi. 2008. FEDC: Control flow error detection and correction for embedded
systems without program interruption. In Proceedings of the 3rd International Conference on Availability, Reliability

and Security (ARES’08). 33–38. DOI:https://doi.org/10.1109/ARES.2008.199
[13] Xin Fu, Tao Li, and José A. B. Fortes. 2006. Sim-SODA: A unified framework for architectural level software relia-

bility analysis. In Proceedings of the Workshop on Modeling, Benchmarking and Simulation (held in conjunction with

International Symposium on Computer Architecture).
[14] K. T. Gardiner, A. Yakovlev, and A. Bystrov. 2007. A C-element latch scheme with increased transient fault tolerance

for asynchronous circuits. In Proceedings of the13th IEEE International On-Line Testing Symposium (IOLTS’07). 223–
230. DOI:https://doi.org/10.1109/IOLTS.2007.5

[15] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and M. Violante. 2003. Soft-error detection using control flow asser-
tions. In Proceedings of the 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems. 581–588.
DOI:https://doi.org/10.1109/DFTVS.2003.1250158

[16] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown. 2001. MiBench: A free, commer-
cially representative embedded benchmark suite. In Proceedings of the 2001 IEEE International Workshop on Workload

Characterization, WWC-4. (WWC’01). IEEE Computer Society, Washington, DC, 3–14. DOI:https://doi.org/10.1109/
WWC.2001.15

[17] P. Hazucha, T. Karnik, S. Walstra, B. Bloechel, J. Tschanz, J. Maiz, K. Soumyanath, G. Dermer, S. Narendra, V. De, and
S. Borkar. 2003. Measurements and analysis of SER tolerant latch in a 90 nm dual-Vt CMOS process. In Proceedings

of the IEEE 2003 Custom Integrated Circuits Conference. 617–620. DOI:https://doi.org/10.1109/CICC.2003.1249472
[18] J. Hennessy and D. Patterson. 2012. Computer Architecture: A Quantitative Approach (5th ed.). Morgan Kaufmann.
[19] Intel Corporation. 1997. Pentium Processor Family Developer’s Manual. Intel Corporation.
[20] R. Jeyapaul, Fei Hong, A. Rhisheekesan, A. Shrivastava, and Kyoungwoo Lee. 2011. UnSync: A soft error resilient

redundant multicore architecture. In Proceedings of the International Conference on Parallel Processing (ICPP’11). 632–
641. DOI:https://doi.org/10.1109/ICPP.2011.76

[21] Sammy Kayali. 2000. Reliability considerations for advanced microelectronics. In Proceedings of the 2000 Pacific Rim

International Symposium on Dependable Computing (PRDC’00). IEEE Computer Society, Washington, DC, 99. http://
portal.acm.org/citation.cfm?id=826038.826937

[22] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis and transfor-
mation. In Proceedings of the International Symposium on Code Generation and Optimization: Feedback-directed and

Runtime Optimization (CGO’04). IEEE Computer Society, Washington, DC, 75–. http://dl.acm.org/citation.cfm?id=
977395.977673

[23] H. Madeira and J. G. Silva. 1991. On-line signature learning and checking: Experimental evaluation. In CompEuro’91.

Proceedings of the 5th Annual European Computer Conference on Advanced Computer Technology, Reliable Systems and

Applications.642–646. DOI:https://doi.org/10.1109/CMPEUR.1991.257464
[24] T. Michel, R. Leveugle, and G. Saucier. 1991. A new approach to control flow checking without program modification.

In Proceedings of the 21st International Symposium on Fault-Tolerant Computing, 1991. FTCS-21. Digest of Papers. 334–
341. DOI:https://doi.org/10.1109/FTCS.1991.146682

[25] G. Miremadi, J. Ohlsson, M. Rimen, and J. Karlsson. 1998. Use of time, location and instruction signatures for control
flow checking. In Proceedings of the DCCA-5 International Conference.

[26] P. Montesinos, W. Liu, and J. Torrellas. 2006. Shield: Cost-effective soft-error protection for register files. In Proceedings

of the 3rd IBM TJ Watson Conference on Interaction between Architecture, Circuits and Compilers (PAC’06).

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

https://doi.org/10.1109/ISCA.2005.18
https://doi.org/10.1002/(SICI)1097-024X(19980710)28:8<859::AID-SPE188>3.0.CO;2-8
https://doi.org/10.1002/(SICI)1097-024X(19980710)28:8<859::AID-SPE188>3.0.CO;2-8
https://doi.org/10.1109/CIT.2010.356
https://doi.org/10.1109/TNS.2015.2484842
https://doi.org/10.1109/AE.2014.7011673
https://doi.org/10.1109/FTCSH.1995.532620
https://doi.org/10.1109/ARES.2008.199
https://doi.org/10.1109/IOLTS.2007.5
https://doi.org/10.1109/DFTVS.2003.1250158
https://doi.org/10.1109/WWC.2001.15
https://doi.org/10.1109/WWC.2001.15
https://doi.org/10.1109/CICC.2003.1249472
https://doi.org/10.1109/ICPP.2011.76
http://portal.acm.org/citation.cfm?id=826038.826937
http://portal.acm.org/citation.cfm?id=826038.826937
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1109/CMPEUR.1991.257464
https://doi.org/10.1109/FTCS.1991.146682

Control Flow Checking or Not? (for Soft Errors) 11:25

[27] Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K. Reinhardt, and Todd Austin. 2003. A systematic
methodology to compute the architectural vulnerability factors for a high-performance microprocessor. IEEE/ACM

International Symposium on Microarchitecture 0 (2003), 29. DOI:https://doi.org/10.1109/MICRO.2003.1253181
[28] N. Oh, P. P. Shirvani, and E. J. McCluskey. 2002. Control-flow checking by software signatures. IEEE Trans. Reliab.

51, 1 (March 2002), 111–122. DOI:https://doi.org/10.1109/24.994926
[29] N. Oh, P. P. Shirvani, and E. J. McCluskey. 2002. Error detection by duplicated instructions in super-scalar processors.

IEEE Trans. Reliab. 51, 1 (March 2002), 63–75. DOI:https://doi.org/10.1109/24.994913
[30] J. Ohlsson, M. Rimen, and U. Gunneflo. 1992. A study of the effects of transient fault injection into a 32-bit RISC with

built-in watchdog. In Proceedings of the 22nd International Symposium on Fault-Tolerant Computing, 1992. FTCS-22.

Digest of Papers. 316–325. DOI:https://doi.org/10.1109/FTCS.1992.243569
[31] L. Parra, A. Lindoso, M. Portela, L. Entrena, F. Restrepo-Calle, S. Cuenca-Asensi, and A. Marínez-Álvarez. 2013. Effi-

cient mitigation of data and control flow errors in microprocessors. In Proceedings of the 2013 14th European Conference

on Radiation and Its Effects on Components and Systems (RADECS’13). 1–4. DOI:https://doi.org/10.1109/RADECS.2013.
6937381

[32] A. Rajabzadeh and S. G. Miremadi. 2006. CFCET: A hardware-based control flow checking technique in COTS pro-
cessors using execution tracing. Microelectron. Reliab. 46, 5 (2006), 959–972.

[33] Abhishek Rhisheekesan. 2012. Quantitative Evaluation of Control Flow based Soft Error Protection Mechanisms. Master’s
thesis. School of Computing, Informatics and Decision Systems Engineering, Arizona State University.

[34] N. R. Saxena and W. K. McCluskey. 1990. Control-flow checking using watchdog assists and extended-precision
checksums. IEEE Trans. Comput. 39, 4 (April 1990), 554–559. DOI:https://doi.org/10.1109/12.54849

[35] Michael A. Schuette and John Paul Shen. 1983. On-line monitoring using signatured instruction streams. In Proceed-

ings of the 13th International Test Conference. 275–282.
[36] Michael A. Schuette and John Paul Shen. 1987. Processor control flow monitoring using signatured instruction

streams. IEEE Trans. Comput. 36, 3 (March 1987), 264–276. DOI:https://doi.org/10.1109/TC.1987.1676899
[37] Jared C. Smolens, Brian T. Gold, Babak Falsafi, and James C. Hoe. 2006. Reunion: Complexity-effective multicore

redundancy. In Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 39).
IEEE Computer Society, Washington, DC, 223–234. DOI:https://doi.org/10.1109/MICRO.2006.42

[38] Darshan D. Thaker, Francois Impens, Isaac L. Chuang, Rajeevan Amirtharajah, and Frederic T. Chong. 2008. On
Using Recursive TMR as a Soft Error Mitigation Technique. http://citeseerx.ist.psu.edu/viewdoc/download?rep=
rep1&type=pdf&doi=10.1.1.131.523

[39] Ramtilak Vemu and Jacob Abraham. 2011. CEDA: Control-flow error detection using assertions. IEEE Trans. Comput.

60, 9 (Sept. 2011), 1233–1245. DOI:https://doi.org/10.1109/TC.2011.101
[40] R. Vemu, S. Gurumurthy, and J. A. Abraham. 2007. ACCE: Automatic correction of control-flow errors. In Proceedings

of the IEEE International Test Conference (ITC’07). 1–10. DOI:https://doi.org/10.1109/TEST.2007.4437639
[41] Rajesh Venkatasubramanian, J. P. Hayes, and B. T. Murray. 2003. Low-cost on-line fault detection using control flow

assertions. In Proceedings of the 9th IEEE On-Line Testing Symposium (IOLTS’03). 137–143. DOI:https://doi.org/10.
1109/OLT.2003.1214380

[42] Kent Wilken and John Paul Shen. 1988. Continuous signature monitoring: Efficient concurrent-detection of processor
control errors. In Proceedings of the 1988 International Conference on Test: New Frontiers in Testing (ITC’88). IEEE
Computer Society, Washington, DC, 914–925. http://dl.acm.org/citation.cfm?id=1896122.1896279

Received March 2018; revised November 2018; accepted November 2018

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 11. Publication date: February 2019.

https://doi.org/10.1109/MICRO.2003.1253181
https://doi.org/10.1109/24.994926
https://doi.org/10.1109/24.994913
https://doi.org/10.1109/FTCS.1992.243569
https://doi.org/10.1109/RADECS.2013.6937381
https://doi.org/10.1109/RADECS.2013.6937381
https://doi.org/10.1109/12.54849
https://doi.org/10.1109/TC.1987.1676899
https://doi.org/10.1109/MICRO.2006.42
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.131.523
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.131.523
https://doi.org/10.1109/TC.2011.101
https://doi.org/10.1109/TEST.2007.4437639
https://doi.org/10.1109/OLT.2003.1214380
https://doi.org/10.1109/OLT.2003.1214380
http://dl.acm.org/citation.cfm?id=1896122.1896279

