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Abstract—As the number of cores per chip increases, main-
taining cache coherence becomes prohibitive for both power and
performance. Non Coherent Cache (NCC) architectures do away
with hardware-based cache coherence, but become difficult to
program. Some existing architectures provide a middle ground
by providing some shared memory in the hardware. Specifically,
the 48-core Intel Single-chip Cloud Computer (SCC) provides
some off-chip (DRAM) shared memory and some on-chip (SRAM)
shared memory. We call such architectures Hybrid Shared Mem-
ory, or HSM, manycore architectures. However, how to efficiently
execute multi-threaded programs on HSM architectures is an
open problem. To be able to execute a multi-threaded program
correctly on HSM architectures, the compiler must: i) identify all
the shared data and map it to the shared memory, and ii) map the
frequently accessed shared data to the on-chip shared memory.
In this paper, we present a source-to-source translator written
using CETUS (Dave et al. [1]) that identifies a conservative
superset of all the shared data in a multi-threaded application,
and maps it to the off-chip shared memory such that it enables
execution on HSM architectures. This improves the performance
of our benchmarks by 32x. Following, we identify and map the
frequently accessed shared data to the on-chip shared memory.
This further improves the performance of our benchmarks by 8x
on average.

I. INTRODUCTION

As we transition from a few cores to many cores, scaling
the memory architecture is one of the most difficult challenges.
Current multicore architectures feature a fully coherent cache
architecture. Coherence ensures that a write by any core is
visible to all the cores. Each core may then read and obtain
the updated values. This makes it easy to support the execution
of applications written in the multi-threaded programming
paradigm. However, implementing coherence often requires
all-to-all communication between cores and the overhead of
implementing cache coherency increases dramatically with the
number of cores, [2, 3].

NCC (Non Cache Coherent) architectures attempt to cir-
cumvent this issue by skipping the implementation of cache
coherence in hardware. Such architectures are power-efficient
and scalable, but they are difficult to program [4]. NCC
architectures are excellent for programs written in a Mes-
sage Passing Interface paradigm where the communication
between tasks is explicitly present in the application. However,
programs written in the popular multi-threaded programming
paradigm may not execute correctly on these architectures
since the values written by one thread on a core may not be
propagated to another thread on a different core.

A compromise between current multicore designs (in which
all memory is shared memory, but suffers from poor scal-
ability) and pure NCC architectures (in which there is no
shared memory, but are scalable) is Hybrid Shared Memory
(HSM) manycore architectures – in which there is some shared
memory. In HSM architectures the private memory of the
cores can be cached, but the shared memory cannot since
the caches are non-coherent. Multi-threaded programs can
be executed on HSM architectures by mapping the shared
data to the shared memory. To enable higher performance
HSM architectures may provide some limited on-chip shared
memory to improve access to frequently accessed, or long-
access latency, shared data. The 48-core SCC processor from
Intel is a prime example. It features non-coherent caches. Pages
in the off-chip memory can be configured as shared-among-
all-cores or private-to-a-core through page tables. The data in
the private pages are cache-able but the shared pages are not.
To enable efficient execution the Intel SCC processor provides
384 KB on-chip shared memory (only 8 KB per core).

In the original form, multi-threaded applications can only
be executed on a single core of the HSM processor. This will
ensure correct execution, since the same core is writing to the
memory – so it will be coherent by definition. However, clearly
this approach is not scalable since we can only use one core
on the HSM processor. The objective of this paper is to enable
efficient and scalable execution of multi-threaded applications
on HSM processors. To do that, we i) identify all the shared
data in a multi-threaded application and map it to the off-chip
shared memory. We do this through a series of analytic passes
operating on the source-code, which creates an increasingly
accurate picture of the shared nature of program variables.
For example, initially we assume that all global variables are
shared, but then in later stages through points-to analysis, we
may be able to identify that some global variables cannot
be accessed in more than one thread – and we can classify
them as non-shared. Our approach works for well-constructed
multi-threaded programs, free from improper thread accesses
and race conditions. This approach is scalable, and will have
better performance as all the threads can access their private
data through caches – only shared data is non cache-able.
Performance can be further improved by ii) mapping the more
frequently accessed shared data to the on-chip shared memory
to achieve efficient execution of multi-threaded applications on
HSM architectures.

We have implemented our compiler analysis in the CETUS
source-to-source compiler framework [1]. We evaluate the
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effectiveness of our techniques by measuring the runtime of
several parallel benchmark kernels on the Intel SCC processor.
As compared to executing multithreaded applications on a
single-core, identifying the shared data and mapping it to the
off-chip shared memory increases the performance by about
32x. On top of this, by identifying and mapping frequently
accessed data to on-chip shared memory, we can improve
performance further by about 8x on average.

II. RELATED WORK

The work presented in this paper has two aspects. The
first aspect is to identify a conservative but tight superset of
shared data. Many hardware-level techniques for identifying
shared data have been developed with the intent of better
utilizing or improving caches. Bellosa and Steckermeier [5]
utilize hardware performance counters in order to detect data
sharing between threads with a goal of co-locating data on
the same processor. Liu and Berger [6], Paul et al. [7] focus
on cache improvement as well – detecting and preventing false
sharing in cache lines or reducing the traffic overhead incurred
through cache coherence protocols. In addition there is work
in this domain that attempts to detect shared data at runtime.
For example, shared memory spaces are explored in von Praun
and Gross [8] and Poziansky and Schuster [9], where thread
access is controlled in order to efficiently allocate shared data.
Savage et al. [10] need to determine data sharing in order
to prevent race conditions; unsafe operations in a program are
prevented by employing a consistent locking discipline in order
to manage resource contention. The advantage of runtime-
based analyses is evident in repeated-run profiling techniques
such as Xu et al. [11] and Yang et al. [12], where the former
implement a detector with atomic regions that identify data
sharing when multiple threads interact with the regions, and
the latter in which multiple runs of the program help detect
shared data. We prefer a static analysis approach to avoid
the execution overhead of runtime-based techniques. Kahlon
et al. [13] use a static analysis technique in order to detect
and prevent race conditions which result from improper access
of shared variables. Gondi et al. [14] take a different path to
preventing race conditions by minimizing the time shared data
is kept in memory, purging it as soon as a last-use is detected.
However, none of these works is directly applicable for our
approach, since we need a compile-time approach to identify
shared data in a multi-threaded application.

The second component of our work deals with data
partitioning and memory management. The HSM manycore
architecture has both on-chip and off-chip shared memory, and
both Panda et al. [15] and Kandemir et al. [16] have addressed
data partitioning between on and off-chip memory. However,
neither consider parallel programs in their analysis. In par-
ticular, estimating the number of accesses to program vari-
ables is different in sequential and multi-threaded applications.
Our work extends theirs by implementing a data partitioning
scheme which considers parallel programs and approximates
data read and write counts from all the threads. Cichowski
et al. [17] use a manual process to port a single multi-threaded
program to the SCC. To the best of our knowledge, our
technique is novel in that it combines a static shared data
analysis within the context of a multi-threaded program and
uses it in order to automatically enable application execution
on an HSM manycore architecture.

III. OUR APPROACH

C POSIX threads (Pthreads) [18] programs present unique
challenges for HSM manycore systems due to how global
variables and shared data are managed within threads versus
how they are handled across processes. In multi-threaded
programs, a global variable is implicitly shared between any
threads since the threads share the program text, data, and
heap space of the parent process. In a multiprocess application,
however, each thread from the original multi-threaded program
is “mapped” to a full process – one per core. Variables which
are global within a process are not implicitly shared with other
processes. For proper execution these must be identified and
converted to explicitly shared variables accessible through the
HSM manycore software API. Functions and data managed by
threads must also be transformed to process-based execution.
This analysis builds up an increasingly accurate picture of the
state of each variable (including pointers) as it appears in the
program. The sample program provided in Listing 1 should be
useed as a reference for this section.

Listing 1. Store thread ID sums and a locally defined shared variable

#include <stdio.h>
#include <pthread.h>
int global;
int *ptr;
int sum[3] = {0};
void *tf(void * tid) {
int tLocal = (int)tid;
sum[tLocal] += tLocal;
sum[tLocal] += *ptr;
pthread_exit(NULL);

}
int main() {
int local = 0;
int tmp = 1;
ptr = &tmp;
pthread_t threads[3];
int rc;
for(local = 0; local < 3; local++) {
rc = pthread_create(&threads[local], NULL,

tf, (void *)local);
}
for(local = 0; local < 3; local++) {
pthread_join(threads[local], NULL);
printf("Sum Array: %d\n",sum[local]);

}
return 0;

}

A. Variable Scope and Access Frequency Analysis (Stage 1)

This first stage takes as input the multi-threaded program
source code and performs a rudimentary analysis of local and
global variables. Details such as size of the variable, type,
read and write counts, as shown in Table I are extracted.
We implement a technique similar to that of Pabalkar et al.
[19]. We assess variables based on their context – whether
within a procedure, within a loop or nested loops, and whether
called within a thread. Such a procedure provides approximate
relative read and write counts for each variable. Each step in
this, and following stages, represents an analytic pass through
an abstract intermediate representation (IR) of the source code
[1]. Passes are designed to look as narrowly or broadly within
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TABLE I. INFORMATION EXTRACTED PER VARIABLE (POST STAGE 3)

Name Type Size Rd Wr Use In Def In
global int 1 0 0 null null

ptr int* 1 1 1 tf main

sum int* 3 2 2 tf, main tf

tLocal int 1 3 1 tf tf

tid n/a n/a 1 0 tf null

local int 1 8 4 main main

tmp int 1 1 1 main main

threads pthread t* 3 2 0 main main

rc int 1 0 3 null main

the IR as necessary. For example, to constrain a pass to local
variables only, it may restrict its search to only within proce-
dures, as anything outside would constitute a global variable.
When seeking only global variables, procedures within the IR
are excluded. At this early stage, global variables are initially
assumed to have a sharing status of shared=true while all
other variables’ sharing status is initialized to null. During a
subsequent stage, the sharing status may be refined from true
to false or false to true once, but will not revert or flip-flop.
Prior to this stages exit, each variable is “seen” at least once,
and identified as local or global. As only global variables have
had a proper sharing status assigned, remaining variables retain
the temporarily assigned sharing status of null, as shown the
second column of Table II.

B. Inter-thread Analysis (Stage 2)

This stage identifies which variables exist within threads
and also which are shared. In Algorithm 1, given a variable
name and a list of procedures, the IR is traversed in a DFS
manner to locate the variable and the procedure within which it
appears. The IR is then searched for the thread which executes
this procedure. Based on whether the thread is launched only
once, or several times (for example, within a loop), a decision
is made whether the variable is within a single thread or
multiple threads, and this information is returned. Based on this
result the sharing status of each variable (Table II) is updated.
Referring back to Listing 1, even though both the variables
sum and tLocal exist within the function tf which is launched
by a thread, tLocal is defined in the scope of the function (not
shared between threads), and has the sharing status set to false.
Table I is updated to reflect the name of the function within
which each variable was used and/or defined.

C. Alias and Pointer Analysis (Stage 3)

Because potentially shared variables may be hidden behind
pointer relationships this stage performs a “Points-to” pointer
analysis leveraged from the Cetus translation framework [1].
A brief description of the basic analysis: the goal is to identify
the set of memory locations that a pointer variable may
be pointing to. Interprocedural pointer information is ana-
lyzed via a dataflow methodology where pointer relationships
are explicitly identified from pointer assignments including
function calls. At each line of the program the analyzer
produces a relationship map as output. This data is merged
with the pointer information collected from analyzing previous
statements, building a comprehensive overview of the pointer
relationships within the program. These pointer relationships
are classified as definite or possibly, with the latter often
occurring after analyzing pointers within an if-else statement,

TABLE II. VARIABLES SHARING STATUS

Shared Status After

Variable Stage 1 Stage 2 Stage 3
global true true false

ptr true true true

sum true true true

tLocal null false false

tid null false false

local null false false

tmp null false true

threads null false false

rc null false false

where the pointer relationship branches with the control flow
and is no longer definite with respect to which branch might
be taken at runtime. As output, this analysis produces a map of
relationship-pairs that specify a pointer and pointed-at symbol.
We use this map within the passes in this stage.

Algorithm 1 Variable in Thread

Input: P, v, F /* Program IR, variable v, set of functions called
by pthread create */

Output: /* How many threads v is in */

1: for all Variable s ∈ Program P do
2: if v matches s then
3: proc ← name of procedure which contains v
4: if proc ∈ F then
5: caller ← pthread create launching proc
6: if caller appears within a loop then
7: return “In Multiple Threads”
8: else
9: seen ← number of times proc appears in

pthread create calls
10: if seen > 1 then
11: return “In Multiple Threads”
12: else
13: return “In Single Thread”
14: end if
15: end if
16: end if
17: end if
18: end for
19: return “Not in Thread”

If a particular pointer is shared then the object it points to
is also accessible in the context of this sharing. Algorithm 2
describes the high-level details of this process. It is possible
that the pointed-to symbol is yet another pointer, or it may be
a variable. The pointed-to object is retrieved and its sharing
status is updated as a shared entity, such as that of the variable
tmp given in the last column of Table II. The Points-to analysis
offers a powerful capability to extract relationships that are not
evident otherwise, and additionally our analysis can be less
conservative, since the set of variables which are the same as
a given variable is constrained. As Stage 3 ends, refer again to
Table II. Notice that global variables which were defined but
entirely unused, such as global, may be set as private.

D. Data Partitioning (Stage 4)

This stage uses information from previous stages in order to
make decisions about where to place the data in the context of
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Algorithm 2 Points-to Analysis (Shared Variables)

Input: P, V, R /* Program IR, Variable Status Map, Pointer
relationships map */

Output: V /* Updated Variable Status Map */

1: for all Pointer symbol s ∈ R do
2: if A relationship exists with s and the relationship is

“definite” then
3: ptr ← Pointer symbol
4: ptt ← Pointed-to symbol
5: shared ← ptr status from V
6: if shared is True then
7: shared ← ptt status from V
8: shared ← True
9: update ptt status in V

10: end if
11: end if
12: end for

the HSM memory hierarchy. Just as with traditional caches, the
size and frequency of access influences where data is stored
and for how long. If all of the shared data fits within the
on-chip shared memory, then it is collectively allocated into
the faster SRAM even if some data is accessed much more
frequently than others. A tradeoff is made if not all the data
fits on the on-chip shared memory. In line 14, Algorithm 3, the
variables are being sorted by size, as in Panda et al. [15]. A
slightly modified algorithm also accommodates for sorting by
frequency of use, as that metric is retained within the properties
collected during the analysis of each variable. Shared scalars
may be mapped to on-chip memory readily, with further
granularity provided by frequency of access to those variables.
Larger arrays may be allocated entirely in DRAM or split
between DRAM and SRAM. The shared memory declaration
is identical to a dynamically allocated variable in C, the
difference is in the name of actual function call. The newly
constructed declaration is inserted into the ‘main’ procedure in
the target program, to effectively make the variable or pointer
explicitly shared across the entire multiprocess application.

E. Translation Framework (Stage 5)

The final stage implements a source-to-source translator
which uses the analysis from stages 1–4 to transform the
IR and output C source code. The thread-to-process pass
(Algorithm 4) attempts to find functions launched via the
pthread create call. This routine accepts four parameters: the
thread ID, a thread attribute (or NULL), the function executed
by the thread, and an argument (or NULL) being passed to the
executing function (see Listing 1). Once a pthread create func-
tion is found, the third and fourth arguments to pthread create
are extracted and saved. A new function call is generated
using the function name derived from the third argument, and
is given either the original argument specified as the fourth
parameter in the pthread create call, or, a core identifier if the
argument passed to the function would be a thread ID and if
the target architecture supports a core ID. After inserting the
new function call above the pthread create call in the IR, the
pthread create call is removed from the IR. Last, the function
name and the order of appearance of the pthread create call
is noted for subsequent use and stored within a hash table.

Algorithm 3 Partitioning Shared Variables

Input: P, V /* Program IR, Set of Shared Variables+properties
*/

Output: M /* Transformed Program IR */

1: for all Shared variable s ∈ V do
2: total size + = s.mem size
3: end for
4: if total size ≤ on-chip memory then
5: for all Shared variable s ∈ V do
6: Create on-chip malloc call, C
7: Insert put and get calls in P to access on-chip

memory
8: if Previous malloc call B for s exists in P then
9: Remove B

10: end if
11: Insert C in main function of P
12: end for
13: else
14: Sort V by size, ascending
15: R ← size of remaining on-chip memory
16: for all Shared variable s ∈ V do
17: if s.mem size ≤ R then
18: Create on-chip malloc call, C
19: Insert put and get calls in P to access on-chip

memory
20: R ← R− s.mem size
21: else
22: Create off-chip malloc call, C
23: end if
24: if Previous malloc call B for s exists in P then
25: Remove B
26: end if
27: Insert C in main function of P
28: end for
29: end if

Consider: after the thread to process conversion, an application
runs the same executable on multiple cores. In this case, if a
particular thread runs on all cores then the information in the
hash may be discarded. However, if a task is thread-specific
and not delegated across all the other threads, it must be
isolated such that it executes only on the given core(s). To
isolate such a function within the hash, it is wrapped in an
if-condition where the conditional checks if the program is
running on the core with the proper core ID. The core ID is
the value associated with the function name in the hash table.
We ensure that thread IDs correspond 1:1 with core IDs.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We perform our experiments on the Intel Single-chip
Cloud Computer (SCC) [20]. The 48-core non-coherent cache
architecture features a unique on-die shared SRAM (384 KB)
called the Message Passing Buffer (MPB). Through the mes-
sage passing buffer, the cores communicate a limited amount
of data directly and bypass both the L2 cache and DRAM
(up to 64 GB). Each benchmark test is run on the SCC,
each core running Linux, at 800 MHz core frequency, 1600
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Algorithm 4 Threads to Processes

Input: P, T /* Multi-threaded Program IR and set of thread
IDs (user supplied) */

Output: M /* Transformed Multi-process Program IR */

1: ProcList ← List of Procedures in P
2: for all functions ∈ P do
3: UseCoreID ← False
4: if function name is pthread create then
5: ProcName ← argument 3 from pthread create call
6: ProcArg ← argument 4 from pthread create call
7: if ProcArg ∈ T then
8: UseCoreID ← True
9: end if

10: end if
11: if ProcName ∈ ProcList then
12: NewFunction ← ProcName /* Create new function

from ProcName */
13: if UseCoreID is True then
14: Set NewFunction argument to ‘CoreID‘
15: else
16: Set NewFunction argument to value in ProcArg
17: end if
18: end if
19: if pthread create ∈ Loop then
20: Insert NewFunction outside Loop
21: else
22: Insert NewFunction before pthread create call
23: end if
24: Remove pthread create call
25: if Loop contains no pthread create then
26: Remove Loop
27: end if
28: end for
29: return P as M

MHz network mesh, and 1066 MHz off-chip DDR3 memory
frequency. RCCE library on the Intel SCC provides support to
execute shared memory programs [21].

We run several multithreaded applications on the Intel
SCC with and without our analysis and transformation. These
applications include a program to Count Primes, to do a Pi
Approximation, sum increasingly large multiples of 3 and 5 in
3-5-Sum, LU Decomposition, Dot Product, and also a synthetic
benchmark for memory operations, Stream from McCalpin
[22]. All applications were compiled for SCC using the Intel
C++ compiler (icc) version 8.1 (gcc 3.4.5), and RCCE 2.0.

Without our analysis and transformation multi-thread
Pthread programs can only execute on a single core. To
enable them to run on multiple cores we need to convert
them to RCCE programs. We have implemented our analysis
and transformation in the source-to-source CETUS compiler
framework [1]. Each component or ‘pass’ of our framework is
a subclass of either the AnalysisPass or TransformPass classes.
These classes provide boilerplate code as well as perform some
consistency checking to ensure that the program IR remains
in a self-consistent state. The Driver class brings together
all passes and executes them in series to analyze and make
iterative changes to the IR. We use Java 1.6, ANTLR 2.7.5

Fig. 1. Performance of RCCE applications utilizing off-chip shared memory
and 32 cores normalized to the performance of the 32-thread Pthread programs
running on a single core.

Fig. 2. Run time performance comparison of RCCE programs utilizing shared
off-chip memory against the on-chip shared memory provided by the MPB.

and Cetus 1.3 running on Linux Mint 12.

B. Mapping shared data to off-chip shared memory improves
performance by 32X

As an evaluation baseline we run each Pthread application
on a single core of the SCC. We then generate a RCCE variant
for each program which takes advantage of 32 cores of the
SCC and utilizes off-chip shared memory, and measure the
runtime. The Pthread benchmarks were built for 32 threads
and the RCCE applications utilize 32 cores. Pi Approximation,
3-5-Sum, Count Primes and Stream achieve improvements of
32x, 29x, 16x and 17x, respectively. Fig. 1 shows the relative
performance increase for each application (using only off-chip
shared memory). The RCCE applications for Dot Product and
LU Decomposition have large arrays in off-chip memory and
have at least 8 cores in contention per memory controller.
Although the performance benefits of 32 vs 1 core are hardly
surprising, our work of converting multi-threaded programs to
run as HSM applications makes this comparison possible.

C. Using on-chip shared memory further improves perfor-
mance by 8X on average

Comparison of RCCE programs which only use off-chip
memory vs those that utilize on-chip memory is given in
Fig. 2. Programs which either exhibit a high degree of memory
usage or those that balance memory use and core computation
see the most performance improvement using the MPB. For
example, Stream already benefits from the parallelism via 32
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Fig. 3. Relative performance improvement over single-core Pthread applica-
tion of multiprocessor RCCE program with varying core count on SCC.

cores, versus a single core with competing threads. In addition,
when converted to utilize the MPB, not only are the memory
accesses distributed across the cores, the locality for core-
to-MPB is much closer than than of core-to-DRAM. Finally,
MPB transfers may be done in bulk copy of memory (often
contiguous addresses) further improving performance for an
all-memory synthetic benchmark. LU Decomposition is an
interesting case, as the matrix within that program does not fit
into the on-chip shared memory. For a very slight performance
improvement a small portion of the matrix (few rows) may be
allocated separately on the MPB.

D. Enabling Scalable Applications on HSM Architecture

Converting multi-threaded programs to take advantage of
multiple cores of the HSM architecture enables scalability.
While this is application-dependent, programs with sufficiently
large computations and which transfer data between cores
using the on-die MPB can achieve significant performance
increases with increasing core count. See Fig. 3.

V. CONCLUSION

We present a novel analysis and translation framework used
to convert and enable applications to run on the Intel Single-
chip Cloud Computer. Our approach automatically analyzes
the multi-threaded source program and extracts the properties
of all variables (shared and private) and efficiently maps the
shared data to available on-chip and off-chip shared memory.
Our technique is used to convert incompatible or inefficient
programs by leveraging architecture-specific transformations,
with experimental results demonstrating the suitability and
performance benefits of enabling multi-threaded applications
for efficient execution on HSM manycore architectures. The
limitations of our work are: we limit source programs to those
which do not use the non-portable ( np) Pthread extensions.
Our analysis is also limited to the maximum number of
cores as are on our experimental platform (48). However, the
framework is not dependent on, or limited by, a given number
of cores and is scalable to platforms with different core counts.
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