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Abstract—Due to technology scaling in modern computing
platforms, the safety and reliability issues have increased tremen-
dously, which often accelerate aging, lead to permanent faults, and
cause unreliable execution of applications. Failure in some com-
puting systems like avionics may cause catastrophic consequences.
Therefore, managing reliability under all circumstances of stress
and environmental changes is crucial in all abstraction layers,
from application to transistor levels. Machine learning techniques
are recently being employed for dynamic reliability estimation
and optimization. They can adapt to varying workloads and
system conditions. This paper presents reliability improvement
approaches from multiple perspectives—from transistor-level to
application-level—and discusses their effectiveness and limitations
as well as open challenges.

Index Terms—Aging, Cross-layer reliability, Device and circuit
reliability, Dynamic reliability estimation, Error mitigation, Ma-
chine learning for systems, Task scheduling, Timing reliability.

I. INTRODUCTION

ECHNOLOGY advancement has enabled computing sys-
tems to become an integral part of human life. How-
ever, the ongoing technology scaling is introducing an ever-
increasing number of reliability challenges, especially when it
comes to advanced technology nodes [1], [2]. This endangers
the correct operation of hardware and software of computing
processors. A failure of such systems (applications or hardware)
may lead to catastrophic consequences. To design a reliable
system, mitigation and countermeasures against error and aging
need to be applied across multiple abstraction layers of the
computing system, from transistors to all the way up to the
application design, since various levels may be involved in
the error and aging process [3]. Several design- and run-time
approaches should be exploited, which can adapt to varying
system conditions, execution requirements, and workloads vari-
ations during run-time. Machine learning (ML) techniques are
recently employed for dynamic reliability improvement [4].
They can effectively adapt to such variations and determine
effective system configuration under dynamic and environmen-
tal changes. Although ML techniques are very promising for
improving reliability, they introduce several challenges in each
and across layers that need to be carefully considered.
This paper discusses various aspects of learning-based re-
liability monitoring and improvement in computing systems.
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Fig. 1. Learning-based reliability management.

Fig. 1 shows a workflow for learning-based reliability man-
agement in which actions refer to optimization knobs used
by the learning controller, states are the inputs based on the
observation, and the agent aims to optimize the reward function,
i.e., reliability improved in different abstraction layers, by using
the resiliency models like mean time to failure (MTTF). In
this paper, we first discuss how ML techniques can be used
to estimate and mitigate aging from the transistor level to
the standard-cell and circuit levels (Section II). Section III
describes how ML can help to alleviate challenges of reliability
modeling and improvement at the architectural level. Then,
Section IV presents a survey of learning-based approaches that
could improve reliability at the application layer through oper-
ating system (OS) techniques. We then analyze the reliability on
a fault-tolerant system and discuss the timing costs in correcting
register-level errors in Section V. Finally, we discuss the open
challenges and limitations in Section VI and present summary
in Section VIIL.

II. ESTIMATING DEVICE AND CIRCUIT RELIABILITY
USING CLASSICAL AND EMERGING MACHINE LEARNING

Reliability is one of colossal concerns for circuit design-
ers. Transistor self-heating (SHE) is increasingly challenging
because transistor scaling is reaching atomic levels in which
quantum confinement becomes substantially prominent. With
more confined 3D structures (e.g., TSMC Nanosheet FETs and
Intel Ribbon FETs), heat arising in the transistor’s channel
cannot be easily dissipated and is hence “trapped” inside the
transistor’s channel. Such heat trapped inside the transistor
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Fig. 2. Transistor self-heating temperatures within a RISC-V processor core.
The shown temperatures are above chip temperature. Accurately modeling the
temperatures for individual standard cells allows for more accurate and less
pessimistic estimations of required safety margins [10].

cannot be revealed (during the design time) even when using
thermal setups that employ infrared cameras [5].

During runtime, this largely exacerbates the underlying aging
mechanisms in transistors [6], which when combined with the
existing challenged due to IR drops [7] can lead to seri-
ous reliability threats, especially in advanced technologies [8]
At the design time, it is profoundly challenging to estimate
safety margins that incur minimum overhead while prevent-
ing/mitigating implications of aging and self-heating during
the entire projected lifetime. This is because foundries do not
share their calibrated physics-based models that comprise of
proprietary information about technology and material.

ML techniques (both classical and brain-inspired methods)
can open new doors for foundries to train accurate models
that empower circuit designers to estimate the actual impact of
aging, from the material and transistor level to the circuit and
processor level, without sharing any confidential physics-based
models [9]. With certain adjustments to standard cell libraries,
well-established EDA tools can be employed to upheave self-
heating effects in individual devices at the transistor level and
all the way up to entire processors/chip at the final layout
level [10].

The challenge incurred by transistor SHE at the circuit
level is showed in Fig. 2, in which all individual standard
cells in the post-layout design are colored based on their
maximum occurring SHE above chip temperature. Although
only 59 different standard cells are used in the design, a wide
variety of SHE temperatures are observed. Besides specific
transistor characteristics such as width or number of fins, the
experienced SHE depends on input signal slews and connected
load capacitance that differ for each standard cell in the circuit
based on its position and pin connections. As a result, accurate
estimation of SHE at the circuit-level is a challenging task. It
is not implemented in commercial EDA tools. However, the
functionality required to obtain SHE information (as depicted
in Fig. 2) can be acquired with specifically adjusted standard
cell libraries and conventional EDA tool-flows. An overview of
our SHE flow is shown in Fig. 3.

The SHE flow outlined in Fig. 3 can be roughly separated
into two sections. The upper part of the flow alters the standard
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Fig. 3. Flow to obtain accurate circuit timings under the impact of transistor
self-heating. The flow employs conventional Static Timing Analysis (blue) and
specifically adjusted characterization flows (orange) for both SHE [10] and ML-
based operation, enabling rapid generation of thousands of individual cells [9].

cell characterization flow to include SHE temperatures in
standard cell libraries. Before the characterization is carried
out, additional SPICE instructions are injected to measure
SHE temperatures for each operating condition and timing arc
during the characterization process. Afterward, the obtained
SHE temperatures are copied into the cell library, replacing the
cell’s delay information. With the SHE-included cell library,
conventional STA can by employed to generate a standard
delay format (SDF) file for any given circuit. Since the delays
have been replaced with temperatures, the resultant SDF file no
longer contains delays but the (maximum) SHE temperatures
for each cell in the circuit [10]. The bottom part of the flow in
Fig. 3 uses the individual cell SHEs to build a corner library
that accurately reflects the impact of SHE on the target circuit.
The idea is simple but hard to scale: Instead of characterizing
each standard cell once for the entire circuit (as it is handled in
conventional flows), we characterize each cell instance in the
circuit under the impact of its corresponding SHE temperatures.
This results in the library including thousands of cells, which
is practically infeasible to use with conventional SPICE sim-
ulation. Therefore, we replace the conventional SPICE-based
characterization with an ML-based approach that can generate
a circuit-specific cell library including thousands of cells within
seconds [9]. By using the resultant cell libraries in STA, we
retrieve timing reports that yield accurate timing guardbands
for the given circuit. In contrast to conventional worst-case
estimations, this approach offers better circuit performance
due to less pessimistic guardbands while still ensuring full
reliability of the circuit during operation [11], [12].

Small yet sufficient guardbands are indispensable for effi-
cient and reliable circuits. Traditional algorithms rely on these
guarantees of correct computations. Circuits for approximate
computing are designed intentionally with incorrect computa-
tion but are under the same reliability constraints as traditional
circuits. To truly exploit the gains from technology scaling
and emerging technologies, the reliability constrains have to
be loosened and algorithms employed which function correctly
despite unreliable circuits.

Brain-inspired hyperdimensional computing (HDC) is such
an algorithm [13], [14]. Instead of computing with floating-



point weights like a neural network, HDC employs large vectors
with thousands of components (hypervectors). Instead of fault-
sensitive matrix multiplications, robust similarity computations
of two hypervectors are performed. Despite an error rate of
about 40 % on average, the inference accuracy with HDC drops
only by 0.5 % [13]. This robustness against errors stems from
the design of the hypervectors, which have independent and
identically distributed (i.i.d.) components [14]. If HDC opera-
tions with some components of the hypervector are incorrect,
due to the unreliable hardware, the other thousands of correctly
performed operations prevent a failure because they are i.i.d.
by design.

The HDC approach has been applied to a wide range of
applications [15], from circuit reliability [16] and semiconduc-
tor manufacturing [17] to language and bio-signal classification
[13]. HDC has also been employed to mimic confidential
physics-based aging models [18]. Such detailed non-pessimistic
models are not available to the circuit designer because the
foundry calibrates them with their highly confidential tech-
nology parameters. Instead, designers have to rely on worst-
case estimations for the whole chip. In the approach like [18],
the foundry can train an HDC model with typical transistor
stimuli as samples and the predicted transistor aging from their
confidential model as the label. The HDC model learns to
associate the gate voltage waveforms with the threshold voltage
degradation AV;y,. Because the model is based on hypervectors,
it abstracts the sensitive information from the physics-based
model. Thus, it can be made accessible to circuit designers,
who, in turn, can employ a non-pessimistic aging model for
close-to-the-edge guardband design.

III. IMPROVING ARCHITECTURAL RELIABILITY
A. Overview

With aggressive scaling of the semiconductor technology,
high integration density aggravate the fault-rate of the device.
Assessing the reliability of the safety-critical system against
hardware faults accurately and quickly becomes a crucial
design issue. The reliability of a target system can be evaluated
in various ways, e.g., by either modeling the hardware faults
or performing fault injection experiments. A key common
challenge is the uncertainty associated with the occurrence of
the actual faults, i.e., which architectural component becomes
faulty and when during the application’s execution. Simulating
the architectural execution with faults injections can provide
a more controlled setup for vulnerability analysis [19] and
resilience of the architecture, but with slower simulations, the
trials become much slower. Also, a huge number of injection
trials are typically required for more accurate resilience anal-
ysis, which often makes simulations infeasible — at least for
resource-constrained design environments or studies. Another
approach is to inject faults within the application itself, which
makes the analysis faster. But, faults simulated at higher levels
of the computing stack can show much different behaviors and
erroneous resiliency analysis than the real-world setup. This
accuracy-efficiency trade-off remains a challenge in modeling
faults at the architecture level.

Improving the reliability of a target system is also an im-
portant concern. This is usually resolved through redundancy,
as defective parts of the system can be detected or corrected
through their redundant counterparts. However, many applica-
tion requirements cannot afford the immense overhead of full
error protection techniques, especially embedded systems with
strict resource-constraints. So, recent protection mechanisms
sacrifice reliability at an extent with amortized overheads of
performance and energy consumption. Selective replication
techniques protect only the most vulnerable parts of the system
to reduce overhead, but they rely on heuristics and probabilistic
methods when determining the vulnerable parts of the system.
Thus, they may not be broadly applied. Symptoms-based pro-
tection techniques detect errors by catching the flags that errors
raise, but they tend to miss failure scenarios where there are
no/mild fault-symptoms; thus they suffer from under-protection.

In this section, we discuss how ML-based approaches can
be incorporated to help mitigate these challenges. ML models
are effective and increasingly deployed for a wide range of
tasks, including predictions and identifying patterns. With their
approximation capabilities for arbitrary functions, they can
help overcome limitations of heuristic models/measures for
resilience. Further, as even simple models may accurately do
predictions, they can reduce overheads of performing time-
consuming fault injections or error mitigations. For instance,
light-weight models for robust and secure execution can be part
of the architecture itself, and can be repeatedly invoked at every
few cycles as compared to intensive/redundant error checking
in the hardware or software. ML-based approaches can also
help to distinguish between the reliable and vulnerable regions
of the large-scale system and selectively safe-guarding it.

In summary, this section discusses the use of ML techniques
to achieve the following:

o Resolving the challenges in modeling and analyzing faults
at the architecture level

o Developing accurate and efficient reliability-enhancing
techniques

B. Modeling Reliability using ML

Techniques for statistical fault analysis mitigate the infeasible
task of collecting and analyzing the results for all possible fault
injections. However, the number of trials for fault injections still
needs to be large enough so that the analysis is statistically
significant. Further, the sheer amount of data makes it difficult
to do analysis and acquire insights about how the errors
propagate. In this section, we discuss how ML models can help
mitigate such challenges.

1) Accelerating Fault Injection Process: Architecture’s vul-
nerability to the hardware-faults can be modeled by injecting
the faults into the flip-flops of the circuit. However, fault
injections into each flip-flop are infeasible. In such scenarios,
simple ML models like k-nearest neighbor or support vectors
can be trained that predicts whether the flip-flop is vulnerable
to the fault or not. The training data for these models can
account for relevant features, e.g., fan-in/fan-out factors and
information about connections and proximity of flip-flop’s



inputs/outputs [20]. Recent works such as [20] show that these
ML models can predict vulnerabilities with similar accuracy
while using about only 20% of the data for the training. Thus,
the overall fault injection process can be accelerated by a
considerable factor.

In large-scale environments, even one injection trial may
become too slow. One approach is to model errors at a small
scale and then using it with ML-based techniques to predict the
error behavior at the large scale. For instance, [21] showed that
the fault behaviors of large-scale applications like DOE applica-
tions running on 4096 cores can be modeled with 90% accuracy
while using the data from the small-scale execution on a single
core. As compared to simpler ML models like multi-layer
perceptrons (MLPs), naive bayes, or support vector machines,
ML models like AdaBoost or stochastic gradient boosting can
be more consistently accurate, as they continuously learn from
mispredicted samples and adapt their weights [21].

2) Resiliency Analysis: Extracting meaningful information
from the collected large data requires an immense amount of
effort. This can be overcome by using ML models to find
patterns and predict potential fault scenarios. This is because,
ML models can filter irrelevant features of execution traces
and draw correlations between the fault-injection outcomes
and platform’s architectural characteristics. For instance, [22]
showed the effectiveness of the gradient boosting decision tree
for finding error patterns in a large trace data collected from
a large-scale HPC system during 6 months. The decision-tree-
based model also predicted future scenarios of errors in GPU
executions. Likewise, [23] showed using various supervised and
unsupervised learning techniques to find patterns in a dataset
containing over 1.2 million fault injection trials.

ML-based techniques for fault prediction or silent data cor-
ruption (SDC) often rely on handcrafted features that may not
entirely capture the valuable information for predicting the
errors. This can be automated by predicting the proneness of
instructions to the errors through ML models. For example,
the graph attention network in [24] predicts SDC-prone in-
structions. It considers a program as a heterogeneous graph
in which a node is an instruction and different types of
edges represent the relationship between the instructions. This
is because, the effects of fault propagation vary depending
on the relationships among different instructions. Its graph
neural network learns hidden structural features by aggregating
the neighboring nodes’ features (opcode and the destination
operands), and then reasons about contributions of nodes to
fault propagation through a self-attention mechanism. Then,
it predicts the probability of the outcome (SDC, crash, hang,
benign fault) through a softmax function. For generalization,
[24] extends the graph neural network to an inductive model,
so that the trained model can be applied to unknown programs
without retraining and additional fault injection experiments for
the target programs.

C. Improving Reliability using ML
1) Selective Replication: The most vulnerable parts of the

system can be protected by selective replication. To do so, the
reliability of each part of the system must be examined. This is

usually achieved through extensive fault injection experiments
or heuristics-based analysis. In this section, we discuss how
ML-based techniques can greatly enhance the accuracy and
speed of this step.

Software-based approaches for error-resilient computing typ-
ically replicates instructions for detecting and protecting er-
rors [25], [26]. ML-based approaches can help identify the
vulnerable instructions that need to be replicated instead of
replicating all instructions. For example, IPAS [27] extracted
features from each instruction and performed random fault
injection trials to find vulnerable and non-vulnerable instruc-
tions. The fault injection results and instruction features were
fed to train a support vector machine (SVM). By replicating
only the instructions classified as vulnerable by the SVM,
IPAS achieved as much as 47% less slowdown compared to
the baseline selective replication technique, while maintaining
similar coverage.

Similar technique can be applied at architectural level. Identi-
fying the faults that are critical to functionality when processing
applications on an architecture can help limit the redundancy
that need to be introduced in the architecture. For instance,
for processing deep neural networks (DNNs) on memristor
crossbars, [28] trained a small neural network to predict the
criticality of a fault with 99% accuracy. By protecting only the
critical faults, it reduced the redundancy required in crossbars
for fault tolerance by 93%.

2) Symptom-based Detection: Symptom-based detection
techniques assume that the errors that eventually lead to failure
would show specific symptoms during the execution of the
system. However, these symptoms were previously determined
through heuristics and previous symptom-based detection suf-
fered low error-coverage rates [29]. As ML models can effec-
tively detect patterns, recent studies suggest using ML-based
techniques to detect even the mildest of symptoms of failure.

Small models like MLPs are often used to identify signs of
errors in executions. For example, [30] used a neural network
with two hidden layers for detecting anomalies in the intermedi-
ate outputs, when executing DNNss. It detected misclassification
errors with 99% recall and 97% precision while requiring only
2.67% computation overhead compared to executing DNNs
with no protection. The reason behind usage of such simpler
models for resiliency is their effectiveness of capturing error
propagation without introducing much computational overhead.
Plus, such models can be efficiently processed on existing
processors. Further, in case such ML models for resiliency
are larger, they can still be compressed to avoid computa-
tional/storage overheads while achieving resilience goals. This
is because recent compression techniques for ML models make
them significantly compact so that their computations and
storage can be reduced by orders of magnitude with achieving
similar accuracy for predictions [31].

In addition to detecting the symptoms of errors during the
execution of the system, ML-based techniques can be used to
detect perturbations in the inputs to the system. For example,
WarningNet [32] is a small neural network that could be
executed in parallel with a mission-critical task to detect noise



or environmental conditions in the input that could lead to task
failures. Due to its simplicity, WarningNet consumes only about
1/20-th of the time to detect potential failures. The reliability
of the overall system can be improved by the early warnings
provided with on-demand pre-processing of the input.

IV. IMPROVING APPLICATION RELIABILITY THROUGH OS

Due to technology scaling, the safety and reliability issues
have increased tremendously, which often increase aging, lead
to permanent faults, and cause unreliable execution of appli-
cations. Transient faults lead to soft errors, which may result
in incorrect execution or crashing of applications. In general,
soft error rate (SER) can be expressed as the number of
failures in a given time, and it may degrade the functional
or timing reliability of applications [1], [33]. Failure during
an application execution in safety-critical embedded systems
like avionics may cause catastrophic consequences, which is
not admissible. Therefore, managing reliability of applications
under all circumstances of stress and environmental changes is
crucial in these systems during run-time [34]-[36].

In order to improve the reliability in these embedded systems,
several system-level design- and run-time techniques have been
exploited. However, most of the existing approaches are not
adaptive to variations in system conditions and workloads
during run-time, or they need prior knowledge of the system
and applications that introduce large profiling overheads [4],
[37]. ML techniques are recently being employed for dynamic
reliability improvement, as they can adapt to variations in
workloads and system conditions. They can learn from past
events and make better decisions to improve the system’s
performance while sustaining the system’s operation.

ML techniques can be classified into three categories: su-
pervised learning, unsupervised learning, and reinforcement
learning. In supervised learning, a function is extrapolated
from given inputs and outputs at design-time to learn the
relation between them. It is then used to determine action
at run-time based on the learned data in previous experi-
ences. Linear Regression and Neural Network are the most
common supervised-learning methods, used for reliability im-
provement [2]. Contrarily, unsupervised learning extrapolates a
function from only the input data by working on its own to learn
and determine the output at run-time. It often achieves lesser
accuracy while being computationally intensive. In commonly
used reinforcement learning, learning is through trial-and-error
interaction with an environment. The interaction between the
environment and agent is modeled using finite states, a set of
actions, and a reward function [4], [38]. Pagani er al. [4]
presented a comprehensive study of learning techniques. In
general, depending on the problem, parameters, and inputs, at
least one of these techniques is used for system optimization.

ML-based reliability improvement techniques commonly
consider three OS-level knobs or a combination thereof:

o Task-to-core (re-)allocation used in multi/many-core proces-
sors, including homogeneous and heterogeneous cores, is an
effective method for system optimization. Survey [34] dis-
cussed various mapping methodologies depending on differ-
ent optimization goals. Such an approach provides flexibility

to control the peak temperature and thermal-cycling based
on the temperature at run-time, and consequently, the device
failure is decelerated [39], [40].

e Dynamic voltage and frequency scaling (DVFS) is an ef-
fective and commonly used technique that allows the cores
to scale their voltage and/or frequency V-f levels dynami-
cally; it can be applied to cores individually, in clusters, or
globally, based on the target architecture. Although DVFS
is an optimization technique for minimizing power, prevent-
ing temperature gradients and hot-spots, and consequently
maximizing the lifetime reliability, it negatively affects the
functional reliability because of the increase in transient fault
rate and tasks’ execution time [1], [41]. Therefore, the DVFS-
based optimizations need to account for the trade-off between
the lifetime and functional reliability.

o Dynamic power management (DPM) can change the power
states of the system’s cores into active, idle, sleep, or off
modes. While this technique is typically used for improving
energy efficiency, it can also help manage the thermal and
reliability issues, especially by tuning the state of cores in
multi/many-core processors [42].

If the control knobs are not configured effectively, or the
appropriate learning technique is not used, it could violate func-
tional or timing reliability or accelerate aging which degrades
the lifetime for reliable computing. Knowing about the target
applications and requirements for the system can help to select
most effectual configuration for error-resilient computing on
different platforms and under different working environments.

Recent approaches apply ML-based techniques for improv-
ing dynamic reliability in single/multi/many-core processors.
In general, they configure the design knobs to improve the
system reliability, in addition to other optimization goals and
constraints, such as average/peak power, temperature, or perfor-
mance. Rest of this section summarizes such approaches that
aim to improve reliability through learning.

A. Timing and Functional Reliability Improvement

ML-based approaches improve timing and functional relia-
bility in the following ways:

1) Soft Error Mitigation: System reliability is negatively
affected due to increased fault rate while using the DVFS
optimization knob and lowering the V-f levels to optimize en-
ergy consumption. Therefore, some approaches like [33], [43]
target learning-based dynamic reliability management, while
minimizing the energy consumption/maximizing the lifetime
reliability at run-time under SER, performance, temperature,
and power constraints. A neural network can be trained for
quick and accurate SER estimation [43]. Such approaches target
soft errors and MTTF separately, and they suffer a drawback
when real-time applications are executing. Applying the DVFS
technique causes long execution of applications and a negative
impact on timing reliability.

2) Application Reliability Improvement: To optimize the
functional reliability of applications, the impact of soft errors,
i.e., transient faults, must be investigated during the execution
of tasks, e.g., as considered in [1], [44]. [1] has investigated



the dynamic cross-layer (component and system layers) SER
model based on a neural network, which is trained by using
data obtained through SPICE simulation. The availability of
the system (i.e., MTTF, affected by both soft and hard errors)
is then optimized during run-time for safety-critical real-time
systems by applying the DVFS-based learning method. The
application and thermal reliability can be improved by using
the reinforcement learning on the DVFS-enabled multi-core
platform [44]. Such ML-based manager is shown to improve the
functional reliability with no timing constraints for applications,
which currently makes it infeasible for safety-critical tasks.

3) Mean Workload to Failure Optimization: In order to opti-
mize the mean workload to failure (MWTF) at run-time, some
approaches like [2] consider the optimal task-to-core map-
ping in heterogeneous multi-core processors. For example, [2]
showed that by maximizing the MWTEF, more tasks can be
executed successfully before the system fails; this could be es-
timated by considering the Architectural-Vulnerability-Factor,
the task’s execution time, and the raw SER. It used a neural
network to estimate vulnerability factors of heterogeneous cores
for obtaining an efficient task mapping and balancing between
performance and vulnerability, while maximizing the MWTE.

4) Replicas Management: To improve functional reliability,
fault-tolerance techniques such as replication are been used that
could guarantee the correct execution of real-time tasks. ML-
based approaches can be employed to determine the status of
architecture, whether it is faulty or non-faulty, modify the fault-
tolerance attributes, and change the number of task replicas in
response to environmental changes e.g. in [45].

B. Lifetime Reliability Improvement

1) MTTF Maximization: In determining how reliable a
system is over the long term (called lifetime reliability), and
how long an application can execute safely, some metrics
such as MTTF can be used, depending on whether a fault
can be repaired. To model the system-level lifetime reliabil-
ity and estimate the MTTF, the designers use one of the
device-level reliability models, such as electro-migration (EM),
temperature-dependent dielectric breakdown (TDDB), thermal-
cycling (TC), negative bias temperature instability (NBTI), and
hot carrier injection (HCI). A comprehensive study of device-
level reliability models and their equations is presented in [46].
Techniques either improve the system-level lifetime reliability
simultaneously with other design parameters/metrics, or they
optimize other system parameters/metrics under the lifetime
reliability constraint. We focus on the recent works in the first
category. In order to optimize MTTF, several schemes based on
device-level reliability models have been proposed, including:

o TDDB lifetime reliability improvement through ML-based
enhancement of the system’s availability, which is affected
by TDDB and soft errors [1]. The enhancement is based on
the reinforcement learning and uses DVFS knob under the
timing constraints and system utilization bound in single-core
safety-critical systems

o EM lifetime reliability improvement [33], [44]. The improve-
ment is based on the reinforcement learning and employing

the DVFS and DPM knobs to control the active cores under

peak power, temperature, and performance constraints.

o TC lifetime reliability improvement through ML-based ther-
mal management while preserving the performance con-
straint [39], [40]. The improvement is based on the reinforce-
ment learning and using thread allocation and DVFS knobs
to address thermal-cycling, peak or average temperature.

« NBTI lifetime reliability improvement by proposing an ML-
based process variation and aging-aware approach [47]. The
improvement is based on the reinforcement learning and
using task-to-core mapping and DVFS knobs.

o BTI stress estimation and mitigation at system level through
learning [48]. With the trained model, the stress can be miti-
gated by mapping the workload and adjusting core frequency
appropriately.

According to the discussion, the DVFS is a useful technique
to optimize MTTF and lifetime reliability. However, the timing
and functional reliability are degraded with decreasing the V-
f levels, which needs to be considered. From the perspective
of learning methods, a lightweight ML technique should be
employed that could make accurate predictions and effective
decisions, even at scale, e.g., with an increased number of cores,
inputs, or objectives. Thus, using some learning methods may
not be efficient due to the memory and timing overheads.

2) Thermal Management: Many studies have focused on
reducing the thermal hot-spots and high-temperature gradients
due to its affect on MTTF and lifetime reliability. Recent re-
search works have focused on maximum temperature reduction
through different approaches such as 1) learning-based task-
to-core allocation [49], 2) supervised-learning-based thermal
management through monitoring temperatures of the cores and
using the DVFS and DPM knobs [50].

Since thermal stress is one of the major causes of declining
lifetime reliability, both spatial and temporal thermal gradients
are suggested to be controlled in multi/many-core platforms,
which are not studied in most recent works. DVFS and task
re-allocation are the two most common techniques used for
thermal management. However, most of the embedded sys-
tems are real-time; the timing overheads of changing the V-
f levels and migration are the major concerns during run-
time, which have not been studied attentively in ML-based ap-
proaches. Besides, the timing overhead of predicting/measuring
the temperature, which may be used in learning techniques,
is also essential to consider. In addition, ML techniques can
be memory-intensive and computationally expensive. It makes
some of these techniques incompatible with real-time systems
and resource-constrained embedded systems. While a simpler
ML model could be usable, it may not necessarily provide the
desired accuracy when making predictions. Therefore, choosing
an appropriate ML technique and accounting for its run-time
overheads for learning and prediction play a key role in
controlling a safe mission.

V. RELIABILITY ANALYSIS ON A FAULT-TOLERANT
TIMING-GUARANTEED SYSTEM

In logic circuits, errors such as timing violations in critical
paths could occur at registers of every pipeline stage due to
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Fig. 4. Schematic of the collaboration between checkpointing and rollback-recovery, and cycle-noise mitigation.

variability in process, voltage, temperature, and aging. To en-
sure functional correctness, these errors need to be corrected by
fault-tolerant mechanisms such as checkpointing and rollback-
recovery [51]. However, these mechanisms induce execution
time overhead by generating “cycle noise” [52], which is the
variability in the number of clock cycles to run an application.
This is particularly detrimental to time-critical applications such
as multimedia and autopilot, which are required to finish before
their deadlines. To ensure timing guarantees of these systems,
the cycle noise needs to be mitigated. This could be achieved
by real-time scheduling which predicts the future workload and
switches processor speed accordingly at run time [52].

For time-critical applications, two reliability requirements
should be simultaneously fulfilled: functional correctness by
error correction, and timing guarantees by preventing dead-
line misses. Fig. 4 shows how a checkpointing and rollback-
recovery mechanism could collaborate with a cycle-noise mit-
igation mechanism to meet the dual reliability requirements.
Without cycle-noise mitigation, the errors could be fixed by
rollback and re-computation of the erroneous parts. However,
the generated cycle noise might cause deadline misses. With
cycle-noise mitigation, the processor speed are raised in ad-
vance in consideration of potential rollback events, so the
deadline misses are prevented. Both mechanisms could be
implemented with reasonable overhead of time, energy and
area [51], [53]. Moreover, cycle-noise mitigation system can
be optimized by learning-based approaches to improve its
prediction accuracy of execution time.

We analyzed the interplay of both mechanisms with a model
we developed. The details are elaborated in the following parts.

A. Register-level error model

Prior works addressed real-time scheduling in the presence
of errors [54], [55]. However, most of them assume only a
single error or a bounded number of errors, and they limit the
error occurrences to only the main program, but not the re-
computation time. These limitations fall short in reflecting the
statistics of error occurrences.

To be realistic, the error model in our analysis does not limit
the number of errors or the time of errors. In this model, a cycle
is erroneous if any register of a pipeline stage contains a wrong
value. The probability that a cycle is erroneous is static over
time, which represents the effect of variability in logic circuits

at the running time of the application. The probability that there
is no error during any time interval is as follows:

Pr(Ne=0) = (1-p)™ (1

where NN, is the number of erroneous cycles, n. is the total
number of cycles in the interval, and p is the probability of a
cycle to be erroneous, respectively.

B. Checkpointing and rollback-recovery system

A timing model of a checkpointing and rollback-recovery
system is created by abstracting the HW/SW reliability mitiga-
tion approach [51]. In this model, each application is segmented
into atomic units. A checkpoint routine of 100 cycles is
performed in the end of each segment, which is similar to [51].
If any error occurs during the running time of this segment,
a rollback routine of 48 cycles [51] is inserted, and then the
segment is recomputed. Each re-computation must be followed
by another checkpoint routine, and possibly another instance
of rollback and re-computation if there is still error during the
previous re-computation. Therefore, there is no bound of the
number of re-computation. The number of rollbacks for each
segment follows the geometric distribution, derived with (1):

Pr(Nrb:nrb) = (1 _ (1 _p)nc)m«b (1 _ p)nc )
where N, is the number of rollbacks.

C. Cycle-noise mitigation system

Multi-timescale performance variability mitigation ap-
proach [53] is adopted for cycle-noise mitigation. Different
scheduling algorithms can be applied in this approach, depend-
ing on the budget (execution time and processor speed) allo-
cated for each segment of the application. In general, conser-
vative algorithms supply segments with larger budgets, which
could absorb cycle noise. Therefore, conservative algorithms
are better at meeting deadlines in the presence of errors. How-
ever, the high processor speed used by conservative algorithms
consumes more energy, which is unnecessary if errors are rare.

Four algorithms are selected in our analysis, ranging from
aggressive ones to conservative ones:

¢ DS: dynamic-scenario based (most aggressive)

o DS 1.5x: dynamic-scenario based, budgets scaled by 1.5x
o DS 2x: dynamic-scenario based, budgets scaled by 2x

o WCET: worst-case execution time (most conservative)
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Fig. 5. Average number of rollbacks each segment generated by the checkpoint-
ing and rollback-recovery system, under different error probability conditions.

Dynamic-scenario based approach [53] is the most aggressive
algorithm, which can derive a tight budget at run time. On the
other hand, worst-case execution time [56] is the most con-
servative algorithm. In addition, two variants of the dynamic-
scenario based algorithms are created, in which the budgets for
all segments are enlarged by 1.5x and 2x respectively.

D. Simulation results and discussion

Our analysis used the lower sub-band quantization block
of the ADPCM-encoding application in TACLeBench [57] as
the workload. It was benchmarked on the RTL model of the
Ariane processor core [58] and then segmented into segments
of 40k-270k cycles. Number of rollbacks for each segment were
randomly generated by the probability distribution of (2). We
performed simulations across different levels of error probabil-
ity. For each level, we performed Monte Carlo simulations of
100 runs and calculated the average results.

Fig. 5 shows the average number of rollbacks each segment
generated by the checkpointing and rollback-recovery system.
In our demonstrated system, the number of rollbacks increases
rapidly beyond the error probability of 10~5. When the error
probability exceeds 107, the number of rollbacks increases to
more than 10 rollbacks per segment, which is formidable to deal
with. The results indicate that an “error rate wall” exists around
1075 to 10~° error probability, under which the reliability
requirements can be fulfilled. The position of the wall is
strongly dependent on system parameters, such as the processor
speed, the granularity of checkpointing, etc. Therefore, it is
possible to improve the error rate limit (i.e. moving the wall
forward) by optimizing the system. For example, it is shown
that execution time overhead can be minimized by optimizing
the number of checkpoints [51].

Fig. 6 shows that the deadline hit rate, which represents
the capability of ensuring timing guarantees, is also highly
sensitive to the error probability. In a small window of 10~°
to 1075 error probability, the deadline hit rates drop from
almost one to almost zero. For the scheduling algorithms
used in cycle-noise mitigation, the results show that within
this window, conservative algorithms bring higher deadline hit
rates. However, when the error probability further increases, all
deadline hit rates converge to zero regardless of the algorithms.
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Fig. 6. Average deadline hit rate under different error probability conditions,
using different scheduling algorithms for cycle-noise mitigation.

These results are in agreement with the previous observation of
the wall around 10~° to 10~° error probability. Within the error
rate wall, the execution time overhead could be offset by higher
processor speed, so deadline misses could still be prevented by
scheduling algorithms. However, beyond the error rate wall, the
rollbacks are so frequent that even the highest processor speed
cannot save the deadlines from being missed. Thus, the error
rate wall defines the inherent system limit of the conditions that
both reliability requirements can be fulfilled. Determining how
system parameters (e.g. processor speed) affect the error rate
wall remains an important future work.

VI. UrPCOMING TRENDS AND OPEN CHALLENGES

In this section, we discuss the open challenges and limita-
tions for future academic and industrial works.

A. Run-time Cross-Layer Reliability Improvement

Recent approaches consider the cross-layer reliability, in-
vestigating the reliability, faults, and soft error mitigation of
different layers [3], [35]. Due to the system’s unexpected
behavior, the faults in each layer may propagate and conse-
quently cause an error manifestation, which impacts the other
layers’ reliability. Available solutions for improving cross-layer
reliability can lead to an explosion in the design complexity
because a number of configurations could be effective for
reliable computing at each layer. Thus, developing dynamic
learning mechanisms for improving cross-layer reliability is an
important open challenge.

B. Reliability Improvement in Mixed-Criticality Systems

Mixed-criticality systems are widely used in various indus-
trial applications, e.g., medical devices and avionics, where
tasks are classified into multiple criticality levels in terms of
real-time and reliability/safety requirements for maintaining the
applications’ predictability under different (often unseen) cir-
cumstances. These systems have different operational modes at
run-time, and hence, the reliability needs of various applications
in each criticality level must be guaranteed in these circum-
stances to prevent damages [59], [60]. However, due to envi-
ronmental changes, reliability requirements may be affected,
which cause catastrophic consequences. To further ensure the



timing and lifetime reliability, ML techniques with low run-
time timing overheads need to be applied for identifying the
application trend and optimizing the system reliability.

C. Selection of ML Models for Modeling/Improving Resilience

ML models for modeling architectural vulnerability or fault
prevention are typically supervised and require abundant data
for the training in order to be effective. Future approaches could
investigate ML models that require small amount of samples
or are unsupervised and adapt as new faults get identified.
In addition, approaches could characterize the effectiveness of
applying linear and non-linear models in modeling resilience
and protecting against faults so that system designers can
easily identify the ML models for their application-platform
configuration. Further, as features accounted by ML models
grow, dimensionality reduction techniques should be applied
for meaningful resiliency analysis and mitigation.

D. Applying ML Models to Different Design Phases and Ap-
plications

Current ML-based approaches, especially for architectural-
level reliability modeling, primarily focus on accelerating fault
injection experiments. However, collecting the training data for
these ML models remains to be accelerated. So, generative
models or ML-based techniques to accelerate data collection
can be useful. Moreover, recent ML-based methods for im-
proving architectural reliability has focused on specific domains
such as deep learning [61], presumably because of the ease
of collecting critical faults or detecting anomalous behavior.
Given the potential of ML-based approaches for fault tolerance,
their broad applicability to other vulnerable general-purpose
applications can be explored.

VII. SUMMARY

The paper provided insights into how machine learning
techniques can be employed to improve reliability in different
abstraction layers from the transistor layer to the application
layer. We also studied the reliability and timing costs of correct-
ing register-level errors. Lastly, the paper discussed trends and
open challenges for improving error-resiliency. We anticipate
ML models to improve cross-layer reliability and provide low-
cost fault tolerance with distributed fault mitigation activity
across the layers.
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