
Path Selection Based Acceleration of Conditionals
in CGRAs

ShriHari RajendranRadhika, Aviral Shrivastava, Mahdi Hamzeh
Arizona State University, Tempe, AZ, USA 85281

Email: {shrihari, aviral.shrivastava, mahdi}@asu.edu

Abstract—Coarse Grain Reconfigurable Arrays (CGRAs) are
promising accelerators capable of achieving high performance at
low power consumption. While CGRAs can efficiently accelerate
loop kernels, accelerating loops with control flow (loops with
if-then-else structures) is quite challenging. Existing techniques
use predication to handle control flow execution – in which they
execute operations from both the paths, but commit only the
result of operations from the path taken by branch at run
time. However, this results in inefficient resource usage and
therefore poor mapping and lower acceleration. The state-of-the-
art dual issue scheme fetches instructions from both the paths,
but executes only the ones from the correct path but this scheme
has an overhead in instruction fetch bandwidth. In this paper,
we propose a solution in which after resolving the branching
condition, we fetch and execute instructions only from the path
taken by branch. Experimental results show that our solution
achieves 34.6% better performance and 52.1% lower energy
consumption on an average compared to state of the art dual
issue scheme.

I. INTRODUCTION

Accelerators are now widely accepted as an inseparable

part of computing fabric. Special purpose, custom hardware

accelerators have been shown to achieve the highest per-

formance with the least power consumption [1]. However,

they are not programmable and incur a high design cost. On

the other hand Graphics Processing Units or GPUs, although

programmable, are limited to accelerating only parallel loops
[2]. Field Programmable Gate Arrays (FPGAs) have some

of the advantages of hardware accelerators and are also

programmable [3]. However, their fine-grain reconfigurability

incurs a very high cost in terms of energy efficiency [4].

Coarse Grain Reconfigurable Arrays (CGRAs) are pro-

grammable accelerators that promise high performance at low

power consumption [5] [6]. CGRA is an array of processing

elements (PE) which are connected with each other through

an interconnection network as shown in Figure 1. Each PE

consist of a functional unit, local register files and output

register. The functional unit typically performs arithmetic,

logic, shift and comparison operations. The operands for

each PE can be obtained from neighbouring PEs, its own

output from previous cycle, data bus or the local register file.

Every cycle, instructions are issued to all PEs specifying the

operation and the position of input operands. CGRAs are more

power-efficient than FPGAs, since they are programmable at

a coarser granularity – at the level of arithmetic operations

– in contrast to FPGAs which are programmable at bit level.

Since CGRAs support both parallel and pipelined execution,

D
a
t
a

M
e
m
o
r
y

Instruction Memory

FU

reg

Data Output

Data

 Register
File

Predicate
Register
File

reg

Predicate Output

Predicates
From Neighbors & BUS

Data

Fig. 1. A 4 × 4 CGRA with PEs connected in a torus interconnect. A PE
consists of an ALU and register files and receives an instruction each cycle
to operate on available data.

they can accelerate both parallel and non-parallel loops [5] –

as opposed to GPUs that can only accelerate parallel loops.

One of the major challenges associated with CGRAs is

that of accelerating loops with if-then-else structures. Hamzeh
et al.[7] show the importance of accelerating loops with if-

the-else constructs because they are present in many long

running loops in important applications. Since the result of

the conditional is known only at run time, existing solutions in

CGRAs handle them by predication [8], [9], [10], [11] where

instructions are executed from both the paths of an if-then-else

structure and then commit the results of only the instructions

from the path taken by the branch at run time. While pred-

ication allows for correct execution, it results in inefficient

resource usage – and therefore inefficient execution. Dual-

issue schemes [12], [13], [7] try to improve this by fetching

the instructions from both paths but only executing instructions

from the correct path. They achieve higher performance, but at

the cost of increased instruction fetch bandwidth – they have

to fetch 2 instructions per PE every cycle.

In this paper, we propose to accelerate loops with if-then-

elses by fetching and executing instructions only from the

path taken by branch at run time. Our solution contains two

parts, i) execute the branch condition as early as possible, and

ii) once the branch is computed, communicate its results to

the Instruction Fetch Unit (IFU) of the CGRA, which then

starts to fetch instructions from the correct path. Experimental

results on accelerating loop kernels, with if-then-else structures

from biobench [14] and SPEC [15] benchmark by our solution

results in 34.6% improvement in performance and 52.1%

lower energy consumption (CGRA power and power spent

on instruction fetch operation) as compared to state of the art

dual-issue technique presented in [7].

121978-3-9815370-4-8/DATE15/ c©2015 EDAA

a bS

ct

cf

yfxf
a

yfxf

cf

ct

yt

yt

s
bs

c

c

cf

yfxf

aS a

xf

ct

b

cf

yf
yt

ct

ytS

S

a bS

n,xf

ct,cf

s

a b

n,xf
yt,yf

c s

 Routing node
a node from adjacent iteration

Fig. 2. (a) Shows a loop kernel with control flow (b) Shows a flattened 2x2 CGRA with data and predicate output registers highlighted (c) Shows the loop
in (a) after SSA transformation, C represents constants available from immediate field of an instruction to PE, (d)(e) and (f) Shows the Data Flow Graph
(DFG) of the loop kernel mapped on the CGRA via partial predication scheme, full predication and dual issue scheme respectively.

II. BACKGROUND AND RELATED WORK

Loop kernels are the most desirable parts of the program

to be accelerated in a CGRA [16]. Most of the computational

loop kernels have if-then-else structures in them[7]. Consider

a loop kernel with if-then-else as shown in figure 2(a),(c). The

kernel has 5 predicate based instructions, two in the if-block
and three in the else-block. The variable c[i] is updated in

both the blocks, so it must be conditionally updated depending

upon the branch outcome at runtime. Variables yt and xf , yf
are intermediate variables used for the computation of ct and
cf in if and else block respectively. Three commonly used
techniques to execute loop kernels with if-else structures are:

i) Partial predication, ii) Full predication, and iii) Dual issue.

In a partial predication scheme [13][8], the if-path and else-

path operations of a conditional branch are executed in parallel

in different PE resources. The final result is selected between

outputs of two paths based on outcome of the conditional

operation (predicate value) as shown in figure 2(d). This is

accomplished by a select instruction (shown as a diamond

shaped node for variable c[i] in Fig.2(d)) which acts like a

hardware multiplexer or a phi operation in compilers. PE

template for a partial predication scheme is shown in figure

1. There is a predicate mux selecting a predicate available

from the neighbouring PEs or from the predicate register file

or the predicate value generated by the PE in previous cycle.

Predicate communication is done via a predicate register and

a predication network. Fig.2(d) shows how the loop kernel in

Fig.2(a) can be executed via a partial predication scheme. The

metric of performance is the Initiation Interval (II), which is

the number of cycles after which the next iteration can be

started and hence lower the better. Obtained II is 3 in this

case.

In full predication scheme [10],[13], the output of false path

operations are suppressed based on a predicate bit (0 for false

path operations). Operations that update the same variable have

to be mapped to the same PE albeit at different cycles. Figure

2(e) shows that operations ct and cf are mapped to the same

PE (PE 1) at cycles 4 and 5 which has the predicate value.

The correct value is available in the register of the PE (PE

1) after the execution of operations from both paths is past

(in our case, at cycle 6). This eliminates the need for select

instructions. Hardware support requires a predicate enabled PE

output. Achieved II = 5 for our example fig.2(e).

In dual-issue[12], each PE receives two instructions, one

from the if-path and the other from else-path at each cycle. At

run-time, the PE executes only one of the instructions based

on the predicate bit. Since an operation from the false path is

not executed, a select operation is not required. Operations in

the different paths producing the same output (e.g., ct and cf)
are merged together to execute on the same PE. Nodes that

have 2 instructions associated with them are called merged

nodes, as shown by octagons in fig.2(f). In addition to the

architectural support required for partial predication scheme,

supporting Dual issue requires a 2x1 mux which selects either

the if -path operation or the else-path operation to be executed
by the PE. Achieved II = 3 as shown in fig.2(f).

III. INEFFICIENCIES OF EXISTING TECHNIQUES

The fundamental inefficiency of existing solutions in han-

dling loops with control flow is that they do not utilize the

knowledge of the branch outcome to reduce the overhead of

branch execution – even after the branch outcome is known.

For instance, the branch outcome is known at cycle 1 in the

partial and full predication schemes (figs. 2(d), and 2(e)).

However, they still execute three unnecessary operations, xf ,

yf and cf , if the condition evaluates to true. This blind-

eye towards an important output and failure to use its result

translates into excessive resource usage, lower performance

and more dynamic power wasted. This limitation may be

tolerable for if-then-else structures which have relatively lower

number of operations, but it becomes high for if-then-elses

where the number of operations in the conditional path is quite

large. Even though the dual-issue scheme does not execute the

false path instructions it still keeps on fetching them – not

utilising the branch outcome even after it is known in cycle 1

(fig. 2(f)).

The other limitation of the existing approaches is that the

predicate value must be communicated to the PEs executing

the if -path and the else-path operation. This communication
is done either by storing the predicate value in the internal

register of a PE or through the predicate network via routing.

The need for this communication results in restrictions on

where the conditional operations can be mapped. For instance,

in partial predication, the select operation c can be mapped

only to PEs in which the corresponding predicate value is

available, and in full predication scheme, the operations ct,
and cf should be mapped onto the same PE (PE1) where

the predicate value is available. For dual issue scheme, the

predicate value must be present in the internal register of the

PEs executing merged nodes 〈nop, xf 〉, 〈yt, yf 〉 and 〈ct, cf 〉
to select the right instruction. These restrictions in mapping

conditional operations lead to poor resource utilization.

122 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Fig. 3. CGRA instructions for execution of the kernel via PSB technique

IV. OUR APPROACH

Considering that only one path is taken at run time for the

if-then-else construct, we communicate the predicate (result

of the branch instruction) to the Instruction Fetch Unit (IFU)

of the CGRA, to selectively issue instructions only from the

path taken by the branch at runtime. This is the essence of our

Path Selection based Branch (PSB) technique. This is similar

to if-then-else execution in general purpose processors, but

while simultaneously taking advantage of parallelism available

in the CGRA for performance improvement through software

pipelining.

Figure 3 shows the arrangement of instructions of the

loop body in figure 2(c) to be executed on a 2x2 CGRA

as per our approach. In the first cycle, the branch operation

〈blt a[i − 1], S | 2〉 is executed on PE 2, while the rest of

the PEs are idle. The operation 〈blt a, b | K〉 is a branch

instruction that compares if a < b. K is the maximum number

of cycles required to execute the if-path or the else-path. The

else-path is composed of instructions at addresses 3 and 4, and
it takes 2 cycles to execute. The if -path also takes 2 cycles,
and is composed of instructions at addresses 5 and 6. Even

though the condition in the branch operation executes in cycle

1, the operations in the if -path or else-path does not begin
execution until cycle 3. Cycle 2 is the delay slot of the CGRA,

in which the operations independent of the current branch

outcome (including operations from adjacent iterations) can

be executed. This delay slot cycle is used to communicate the

branch outcome to the IFU. Operations 〈a[i] = a[i−1]+C1〉
and 〈b[i] = b[i−1]−C2〉 are executed on PEs 2 and 3 in the
delay slot in cycle 2. After the delay slot the IFU will start

issuing instructions from the path taken by the branch. If the

else-path is taken, then instructions 3 and 4 will be issued.

After executing else-path instructions, the IFU will skip the

next K instructions, and start issuing instructions after that. If

the branch is taken, then the IFU will skip K instructions and

start issuing if -path instructions.
For branch outcome based issuing of instructions, addi-

tional hardware support is required as shown in figure 4.

The architecture of partial predication scheme is extended to

communicate the branch outcome to CGRA′s IFU along with

the information of number of cycles to execute the branch. IFU

is modified to issue instructions from the path taken based on

branch information (outcome + no.of cycles for conditional

path).

A. What must the compiler do?

In addition to the hardware support, the compiler must map

operations from the loop kernel (including if-path, else-path

and select or phi operations) onto the PEs of the time-extended

CGRA. The PEs required to map the if-then-else portion of

the loop kernel is the union of the PEs on which the operations

FU

reg

Data

 Register
FilePredicate

Register
File

reg

Predicates Data
From Neighbors & BUS(data only)

Instruction
Fetch

Unit(IFU)

 Instruction
Memory

I
n
s
t
r
u
c
t
i
o
n

A
d
d
r
e
s
s

Instruction

Predicate Data
Other
PEs

Fig. 4. Architectural support for our proposed approach. The branch infor-
mation and outcome is communicated to the instruction fetch unit (IFU) to
issue instructions only from the path taken at run time.

from the if and else-path are mapped. Since only one of the

paths is taken at runtime, we map the operations from the if-

path and the operations from the else-path to the same PEs,

so that the number of PEs used to map the if-then-else is

equal to the maximum of the number of PEs required to

map either path’s operations as shown in fig. 5(a). Hence,

irrespective of the path taken by branch, the PEs that are

allocated paired operations from the if and else-path, executes

a useful operation from the path taken. This results in better

utilization of PE resources and more PEs being available

to map operations from adjacent iterations to facilitate the

use of a modulo scheduling scheme to further improve the

performance. Let us consider a case where if-path and else-

path operations are mapped onto different PEs, fig.5(b), the

PEs mapped with if-path operations will be inactive when

else-path executes and vice-versa. In such a case, the PEs

allocated to execute the operations in the conditional path is

the sum of the PEs required for the if-path operations and

else-path operations. But at run time only the PEs which were

mapped with operations from the path taken is active and PEs

associated with the false path is inactive, resulting in higher

II (II = 3) fig.5(b).

Hence, by pairing operations from if-path and from else-

path to form a fused node and mapping them to a CGRA via

a modulo scheduling scheme, we achieve lower II = 2, which

is the best achieved so far, and therefore better performance

and resource utilization. The mapping and the corresponding

instruction arrangement is shown in fig. 5(a) and fig. 5(c).

B. Problem Formulation

Since pairing of operations from the if-path and the else-

path improves resource utilization and performance, we define

our problem formulation as obtaining a valid pairing ensur-

ing the correct functionality of the loop kernel. Problem is

ba

S

ba

yt yf

cfct

xf

Fig. 5. (a) Shows a mapping with pairing of operations via PSB resulting
in lower II (b) Shows mapping without pairing resulting in poor resource
utilization (higher II), (c) Instructions after pairing and modulo scheduling.

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 123

Fig. 6. (a)(b)(c) shows a valid pairing of operations from the if and else-path.
(d) shows an invalid pairing since such a pairing fails to meet the criteria for
validity and a feasible schedule for such a pairing does not exist.

formulated as finding a transformation T (D) = P from the

input Data Flow Graph (DFG): D = (N,E) to an output DFG:
P (M,R) with fused nodes, with the objective of minimizing
|M | (N and M represent the set of nodes in D and P) while
retaining the correct functionality.

Input: DFG: D = (N,E) is a data flow graph that

represents the loop kernel, where the set of vertices N are

the operations in the loop kernel, and for any two vertices,

u, v ∈ N, e = (u, v) ∈ E iff the operation corresponding to

v is data dependent or predicate dependent on the operation

u. For a loop with control flow N = {Nif ∪Nelse ∪Nother}
where {Nif } is the set of nodes representing the operations in
the if-path and likewise {Nelse} for the else-path. Nother is

the set of nodes representing operations not in the if or the

else-path and includes select operations.

Output: DFG: P = (M,R): WhereM is the set of nodes in

the transformed DFG representing the operations in the loop

kernel with M = {Mfused ∪Mother}. The nodes Mfused

represent the fused nodes. Each fused node m ∈ Mfused

is a tuple m = 〈mif ,melse〉, where mif ∈ Nif ∪ {nop}
and melse ∈ Nelse ∪ {nop}. For nodes x, y ∈ Mfused, r =
(x, y) ∈ R iff there is an edge eif = (xif , yif) ∈ E or

an edge eelse = (xelse, yelse) ∈ E. For nodes xother ∈
Mother, y ∈ Mfused, r = (xother, y) ∈ R iff there is an edge

eif = (xother, yif) ∈ E or an edge eelse = (xother, yelse) ∈ E
where xother ∈ Nother. For nodes x ∈ Mfused, yother ∈
Mother, r = (x, yother) ∈ R iff there is an edge eif =
(xif , yother) ∈ E or an edge eelse = (xelse, yother) ∈ E
where yother ∈ Nother.

Valid Output: The output DFG P obtained after trans-

formation is valid iff: For two vertices x,y with x =
(xif , xelse), y = (yif , yelse) ∈ Mfused and r = (x, y) ∈ R
then if there is a path from xif to yif then there is no path

(intra-iteration) from yelse to xelse and if there is a path

from xelse to yelse there is no path (intra-iteration) from

yif to xif originally in the input DFG. However, recurrence

paths satisfying inter iteration dependencies are valid. Figure 6

shows an example each for a valid paring (6(b),(c)) and an

invalid pairing (6(d)).

Optimization: Objective is to minimize |M | under con-
straints of a valid output. |Mfused| can be minimised by

minimizing no.of nops used to make a pair. |Mother| can be
minimised by eliminating the eligible select or phi operations

that belong to Nother.

Select/Phi operation elimination: A select operation is used

to select an output of a variable updated in both paths. If the if-

path operation and the else-path operation updating the same

Fig. 7. (a)(b)(c) Shows elimination of eligible phi/select operation with
inputs from if-path and else-path, (d) shows an example of a phi that cannot
be eliminated since its input does not belong to the set of if or else-path
operations.

variable is paired to form a fused node, there is no need for a

select operation since at run time only one of the operations

is executed, the output of the fused node has the right value

after execution. Figure 7 shows scenarios in which a select/phi

operation can be eliminated.

C. Our Heuristic

The process of creating a DFG from CFG (Control Flow

Graph) of a loop is presented in [17]. The operations from

the if-path and else-path form the set of operations Nif and

Nelse respectively. The algorithm for forming the DFG with

fused node is shown in Alg.1. Fig. 8 demonstrates how the

kernel in fig. 2(c) is transformed using PSB. The algorithm

starts with pairing of operations from if and else-path. Pairing

starts from the terminating operations ct and cf in the if-path
and the else-path respectively, lines 1,2 in alg. 1. Then the

pairing proceeds iteratively in a partial order of operations as

long as there are unpaired operations in the if and the else-

path. This partial order is according to the dependence flow of

the operations in the if block and the else block of the CFG.

Node 〈yt, yf 〉 represents a resulting fused node after iterative
pairing. If the operations in the if and else-path are unbalanced,

the unbalanced operations are paired with a nop, lines 7,9 in
Alg. 1, hence, the unpaired else-path operation xf is paired

Algorithm 1: PSB (Input DFG(D), Output DFG(P))

nif ← getLastNode({Nif});1

nelse ← getLastNode({Nelse});2

while (nif �= NULL or nelse �= NULL) do3

if nif ∈ Nif and nelse ∈ Nelse then4

fuse(nif , nelse);5

else if nif ∈ Nif and nelse == NULL then6

fuse(nif , nop);7

else if nif == NULL and nelse ∈ Nelse then8

fuse(nop, nelse);9

nif ← getLastRemainingNode({Nif});10

nelse ← getLastRemainingNode({Nelse});11

for ni such that i=0 to |N | do12

if ni is an eligible select operation ∈ Nother, 	13

input1(ni), input2(ni) = mfused ∈ Mfused then
Eliminatephi(ni);14

Remove Redundant Arcs(E);15

Prune Predicate Arcs(E);16

124 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

n,xf

ct,cf

Instruction
Fetch Unit

yt,yf

a b

cf

yfxf yt

ct

Fig. 8. Shows construction of DFG with fused nodes from an input DFG.

with a nop to form a fused node 〈nop, xf 〉. After all operations
in the if and else path are paired, eligible select operations are

eliminated via a phi elimination pass, line 14 in Alg. 1. In this

example, the phi operation c is eligible for eliminated and the
output of the fused node 〈ct, cf 〉 serves as the output of the
eliminated phi node. Then the redundant edges are eliminated

and predicate arcs are pruned and final output DFG (P) is

obtained as shown in fig. 8(b). The DFG is given as an input

to any mapping algorithm that can accommodate the delay

slot to find a valid mapping. The delay slot is required to

schedule the fused nodes with 1 cycle delay after the branch

operation. Fig.5(a) shows a valid mapping of the DFG with

modulo scheduling. The achieved II=2 which is the lowest

among all other techniques.

Proof of Correctness: For nodes xt, yt ∈ Nif and

xf , yf ∈ Nelse, with partial order of xt < yt and xf <
yf , meaning yt,yf cannot be scheduled earlier than xt,xf .

An incorrect pairing is 〈xt, yf 〉 and 〈yt, xf 〉 as shown in

fig.6(d). Since the algorithm starts pairing from the termi-

nating nodes 〈yt, yf 〉 of either path, and proceeds iteratively
through the partial order forming another pair, 〈xt, xf 〉, there
is no possibility of breaking the partial order and obtaining

an incorrect pairing. Time Complexity is O(n) where n

=max(|Nif |, |Nelse|) + |Nother|. O(max(|Nif |, |Nelse|)) for
pairing operations and O(|Nother|) for phi elimination.

Support for Nested Conditionals: PSB provides maximum

performance improvement when the number of operations in

the conditional path is large. Hence, for nested conditionals,

the formation of fused nodes is done for the outermost

conditional block. The no.of operations for the inner nests

are typically small and hence are acceptable to be handled

by partial predication[10] (preferred over full predication to

alleviate the tight restrictions on mapping). The if and else-

path operations of the fused nodes are inherently composed of

their respective path′s inner conditionals and their operations.

V. EXPERIMENTAL RESULTS

A. PSB achieves lower II compared to existing techniques to
accelerate control flow

To evaluate the performance of PSB, we have modelled

CGRA as an accelerator in Gem5 system simulation frame-

work [18] and integrated our PSB compiler technique as a

separate pass in the LLVM compiler framework [19]. The DFG

obtained after PSB transformation is mapped using REGIMap

mapping algorithm [20] modified to accommodate the delay

slot required for correct functioning. Computational loops with

control flow are extracted from SPEC2006 [15], biobench [14]

benchmarks after -O3 optimization in LLVM. We map the

loops on a 4 × 4 torus interconnected CGRA with sufficient

instruction and data memory. Fig. 9 plots the II achieved by

Fig. 9. Performance of compiled loops using i)Partial predication, ii)Full
Predication, iii)Dual-Issue, iv) PSB in a 4x4 CGRA. PSB achieves the lowest
II. Resource utilization and performance is inversely proportional to II

different techniques. The full predication scheme presented

in [10] has the lowest performance due the tight restriction on

mapping of operations in the conditional path. Such operations

must be mapped only to the PE in which the predicate

value is available, which increases the schedule length and

ultimately the II. Partial predication scheme performs better

since it is devoid of such restrictions and the overhead here is

introduction of select operations. Even though the dual issue

scheme [12] eliminates execution of unnecessary operations,

it suffers from restriction in mapping due to overhead in

communicating the predicate to all the merged nodes. The

performance improvement of our approach depends on the

size of the if-then-else. For the kernels in which the number of

operations in the conditional path is more (51% of operations

in tree, gapaling, gcc are in the conditional path) there is

a very significant (up to 25% reduction in node size and

45% reduction in edge size on an average due to pairing of

operations by PSB) improvement of II - an average of 62%

better than other techniques. For benchmarks with smaller if-

then-elses, our technique achieves only a moderate reduction

in II (only 11% in sphinx3, fasta, calculix). In these cases,
the number of operations in the conditional path is relatively

low (only 35%) which leads to only moderate reduction in the

DFG size (15% and 23% reduction in node and edge size).

Therefore, PSB is well suited for loop kernels with relatively

large number of operations in the conditional path. By exe-

cuting operations only from the path taken and eliminating

the predicate communication overhead, PSB overcomes the

inefficiencies associated with existing techniques, and achieves

a performance improvement of 34.6%, 36% and 59.4% on an

average compared to the state of the art dual issue scheme [7],

partial predication scheme [9] and State based Full Predication

(SFP) scheme presented in [10].

B. PSB architecture has comparable Area and Frequency with
existing solutions

We implemented the RTL model of a 4x4 CGRA including

the IFU with torus interconnection. Since all PEs have sym-

metrical interconnections, a single designated PE is connected

to the IFU in PSB architecture. A mapping generated for

a generic 4x4 CGRA template can be panned across the

CGRA template so as to allocate the branch operation to the

designated PE. This is not a restriction in mapping since we are

able to utilise the symmetry of interconnection. For multiple

independent branches, predicates can be communicated to the

designated PE through predicate network and then to the IFU.

The RTL models were synthesized in 65nm node using RTL

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 125

TABLE I
CGRA PLACE AND ROUTE RESULTS

CGRA
Partial

Predication
Full

Predication
Dual
Issue

PSB

Area (sq.um) 375708 384539 411248 384154
Frequency (MHz) 463 477 454 458

compiler tool, functionally verified and placed and routed

using Cadence Encounter. Results are tabulated in table I. PSB

architecture does not incur any significant hardware overhead.

C. PSB has lower energy consumption compared to existing
techniques

To evaluate energy consumption, we estimate the dynamic

power for each type of PE operation (ALU, routing or IDLE)

from [21] and scale to fit our synthesized RTL. Power for an

instruction fetch operation for a configuration cache of size

2kb, in 65 nm node, is obtained from cacti 5.3 tool [22].

The total energy spent in executing kernel of each benchmark

is modelled as the function of the energy spent per PE per

cycle depending upon the type of operation and the instruction

fetch power. Fig. 10 shows that the full predication scheme

presented in [10] has the highest energy consumption in

spite of sleeping the PEs during the execution of the false

path. This is due to the higher II caused by tight restrictions

in mapping resulting in more instructions fetched and more

PEs occupied for execution of the kernel, which leads to a

corresponding increase in instruction fetch operation and PE

static power. In dual issue scheme, there is an overhead (53%

more power) in instruction fetch operation since the number

of configuration bits fetched per cycle is twice as much as

compared to other techniques. Moreover, this is worsened

by the higher II achieved due to predicate communication

overhead, increasing the overall number of instruction bits

fetched and hence the higher energy consumption per kernel.

Even though partial predication scheme executes unnecessary

operations, the energy expenditure is compensated to some

extent by achieving lower II compared to SFP and dual issue

scheme. PSB avoids fetching and executing of unnecessary

instructions also achieves the lowest II and hence has the

least energy consumption among all techniques. Experimental

results show that PSB has 52.1%, 53.1% and 33.53% lower

energy consumption on an average compared to state of the

art dual issue scheme, full predication and partial predication

schemes respectively.

VI. SUMMARY

In this paper, we propose a novel solution to accelerate

control flow loops by communicating the branch outcome to

the IFU. We eliminate fetching and execution of unnecessary

operations and also the overhead due to predicate communica-

tion thus overcoming the inefficiencies associated with existing

techniques so as to improve the acceleration obtained.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of Na-

tional Science Foundation grants CCF-0916652, IIP-1343436,

Fig. 10. Relative energy consumption with respect to PSB for executing the
the kernel of each benchmark.

1055094 (CAREER), IIP-1361926, ASU Center for Embedded

Systems, and the Science Foundation Arizona Grant SRG

0211-07.

REFERENCES

[1] E. Chung, P. Milder et al., “Single-Chip Heterogeneous Computing:
Does the Future Include Custom Logic, FPGAs, and GPGPUs?” in
MICRO 2010, pp. 225–236.

[2] B. Betkaoui et al., “Comparing performance and energy efficiency of
FPGAs and GPUs for high productivity computing,” in FPT 2010, pp.
94–101.

[3] S. Che, J. Li, J. Sheaffer et al., “Accelerating Compute-Intensive
Applications with GPUs and FPGAs,” in SASP 2008, pp. 101–107.

[4] G. Theodoridis et al., “A survey of coarse-grain reconfigurable ar-
chitectures and cad tools,” in Fine- and Coarse-Grain Reconfigurable
Computing, S. e. Vassiliadis, Ed. Springer, 2007, pp. 89–149.

[5] B. De Sutter et al., Handbook of Signal Processing Systems, 2nd ed.
Springer, 2013, ch. Coarse-Grained Reconfigurable Array Architectures,
pp. 553–592.

[6] A. Carroll et al., “Designing a Coarsegrained Reconfigurable Architec-
ture for Power Efficiency,” in Department of Energy NA-22 University
Information Technical Interchange Review Meeting, 2007.

[7] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Branch-Aware Loop
Mapping on CGRAs,” ser. DAC ’14. ACM, pp. 107:1–107:6.

[8] S. Mahlke, D. Lin et al., “Effective Compiler Support For Predicated
Execution Using The Hyperblock,” in MICRO 25, 1992, pp. 45–54.

[9] S. Mahlke et al., “A comparison of full and partial predicated execution
support for ILP processors,” in Computer Architecture Symposium,
1995., pp. 138–149.

[10] K. Han, K. Choi et al., “Compiling control-intensive loops for CGRAs
with state-based full predication,” in DATE 2013, pp. 1579–1582.

[11] K. Chang and K. Choi, “Mapping control intensive kernels onto coarse-
grained reconfigurable array architecture,” in ISOCC 2008, pp. 362–365.

[12] K. Han, J. K. Paek et al., “Acceleration of control flow on CGRA using
advanced predicated execution,” in FPT 2010, pp. 429–432.

[13] K. Han, J. Ahn, and K. Choi, “Power-Efficient Predication Techniques
for Acceleration of Control Flow Execution on CGRA,” ACM Trans.
Archit. Code Optim., vol. 10, no. 2, pp. 8:1–8:25, 2013.

[14] K. Albayraktaroglu, A. Jaleel et al., “BioBench: A Benchmark Suite of
Bioinformatics Applications,” in ISPASS 2005, pp. 2–9.

[15] J. L. Henning et al., “SPEC CPU2006 Benchmark Descriptions,”
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1–17, 2006.

[16] B. R. Rau, “Iterative Modulo Scheduling: An Algorithm for Software
Pipelining Loops,” ser. MICRO 27. ACM, 1994, pp. 63–74.

[17] R. Johnson and K. Pingali, “Dependence-based Program Analysis,”
SIGPLAN Not., vol. 28, no. 6, pp. 78–89, 1993.

[18] N. Binkert, Beckmann et al., “The Gem5 Simulator,” SIGARCH Comput.
Archit. News, vol. 39, no. 2, pp. 1–7, 2011.

[19] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in CGO’04.

[20] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “REGIMap: Register-
aware application mapping on Coarse-Grained Reconfigurable Archi-
tectures (CGRAs),” in DAC 2013, pp. 1–10.

[21] Y. Kim, J. Lee et al., “Improving Performance of Nested Loops on
Reconfigurable Array Processors,” ACM Trans. Archit. Code Optim.,
vol. 8, no. 4, pp. 32:1–32:23, 2012.

[22] H. CACTI, “HP Laboratories Palo Alto, CACTI 5.3,” 2008.

126 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

