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ABSTRACT

Prior art in traffic incident detection rely on high sensor coverage and are primarily

based on decision-tree and random forest models that have limited representation ca-

pacity, and as a result cannot detect incidents with high accuracy. This paper presents

IncidentNet - a novel approach for classifying, localizing, and estimating the severity

of traffic incidents using deep learning models trained on data captured from sparsely

placed sensors in urban environments. IncidentNet model works on microscopic traf-

fic data that can be collected using cameras installed on traffic intersections. Due to

the unavailability of datasets that provide microscopic traffic details and traffic inci-

dent details at the same time, a methodology is also presented to generate synthetic

microscopic traffic dataset that matches given macroscopic traffic data. IncidentNet

achieves traffic incident detection rate of 98%, with false alarm rates of less than 7%

in 197 seconds on average in urban environments with cameras on less than 20% of

the traffic intersections.
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Chapter 1

INTRODUCTION

In 2019, traffic accidents alone caused approximately 28 million incidents, risking

people’s safety Blincoe et al. (2022). According to the study Byrne et al. (2019)

conducted across 2268 US counties, a 5-minute delay in emergency response increased

fatality rates by 46%, while response times under 7 minutes reduced fatality rates

by 58% in urban and rural areas. Along with traffic accidents, cargo spills, stalled

vehicles, road maintenance, and other emergency scenarios are also considered part of

traffic incidents. Traffic incidents are generally defined as non-recurring events that

reduce the roadway’s capacity PB Farradyne Inc. (2000). These incidents lead to

secondary issues such as road congestion, and delayed emergency support Alvi et al.

(2020). This motivates us to work towards detecting traffic incidents quickly, leading

to improved emergency response time and re-routing traffic faster.

Faster and more accurate incident detection presents two main challenges. (i)

Need for an algorithm to detect, locate, and estimate the severity of incidents in ur-

ban regions: Most existing traffic incident detection algorithms, such as Liang et al.

(2022), are tailored for highways. However, the existing algorithms for urban re-

gions, like Yu et al. (2015), introduced an algorithm that compares current traffic

conditions, including travel times, to a predefined threshold, and Han et al. (2020)

proposed a pattern-matching algorithm that uses a database of GPS trajectories

to identify incidents. However, the performance of such comparative and pattern-

matching algorithms heavily depends on thresholds, requiring continuous adjustment

due to traffic’s dynamic nature. (ii) Nonavailability of microscopic datasets: Exist-

ing well-known datasets like PEMS, San Francisco I-880 Skabardonis et al. (1996),
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and METR-LA Li et al. (2018) primarily use inductive loop detectors to capture

macroscopic data focusing on highways by aggregating metrics like average vehicle

speed and average flow-rate density obtained through these sensors without any ve-

hicle distinguishing features. This level of aggregation makes it challenging to get

high accuracy in dynamic urban settings. Alternatively, datasets using GPS sensors

like NYC Taxi Data Ren et al. (2024) and Bluetooth sensors like Highway 99-W Yu

et al. (2015) offer microscopic features but suffer from issues like signal loss and in-

terference and data latency Al-Turjman and Lemayian (2020); Pang et al. (2020),

hindering their use in time-critical traffic incident detection tasks.

Owing to the vast development of Computer Vision and quality of cameras over

the last decade, the deployment and utility of cameras for traffic use cases have in-

creased in urban environments and highways Yu et al. (2021). They can capture

microscopic data like speed, location, timestamp, direction, and unique vehicle iden-

tifiers for each vehicle. Due to this, developments have focused on traffic incident

detection approaches within the camera’s field of view Shah et al. (2018). However,

incidents outside their field of view remain undetected. Deploying cameras to in-

crease the coverage to 100% is challenging and not desirable. So, in this paper, we

develop methods to identify incidents outside the camera’s field of view using existing

infrastructure, even with sparse coverage of roads in urban regions. We address these

challenges through our two key contributions:

• A repeatable approach for generating realistic fine-grain synthetic datasets using

traffic flow data within a microscopic traffic simulator, facilitating researchers

with more realistic data. Our method takes readily available coarse-grain public

traffic flow data. It generates a synthetic dataset using traffic data within a

simulator that closely matches the coarse-grain distributions of the public traffic

flow real-world dataset.
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• A novel technique that can detect and localize a traffic incident without the

incident being directly in the field of view of a visual sensor. Localization of

the incident is achievable without knowing the precise distance between sensors.

This incident detection technique is also robust to sparse sensor placement in

urban regions.

We generated a synthetic dataset for Tempe, AZ, for 12 separate urban backbone

roads for an area of about 4 square miles with a traffic approximation model and con-

firmed by the Kolmogorov-Smirnov test kst (2008). TabNet Arik and Pfister (2019)

models were trained on 31 days of simulated data. In an urban region, IncidentNet

detection rate of traffic incidents was 98%, the mean time to detect incidents was

197.44 seconds, and the false alarm rate was a mere 6.26% with a sensor sparsity of

81.4%. Furthermore, applied to a highway scenario, IncidentNet achieved a detec-

tion rate of 99% with a false alarm rate of 4.17%, making it suitable to tackle both

environments.
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Chapter 2

RELATED WORK

Challenges of Macroscopic Datasets

The PEMS Bay dataset collects traffic data using inductive loop detectors placed

throughout the highways in the Bay area and other parts of California. Traffic metrics

like average speed, occupancy, and vehicle count are gathered and aggregated at 5-10

minute intervals without distinguishing information about individual vehicles. I-880

Skabardonis et al. (1996) and METR-LA Li et al. (2018) also capture macroscopic

data through inductive loop detectors, similar to the PEMS dataset. These datasets

(i) don’t capture the nuance details essential for better accuracy detection in urban

areas, and (ii) primarily originate from highway and freeway sensors, not reflecting

urban-level traffic dynamics, making it difficult to build accurate incident detection

systems. We address these challenges by simulating fine-grained traffic using micro-

scopic traffic simulation built on real-world coarse datasets.

Limitations of Existing Incident Detection and Localization Methods

Various incident detection algorithms and their metrics like Detection Rate (DR),

False Alarm Rate (FAR), Mean time to detect (MTTD), region (type of road), and

type of data (microscopic and macroscopic) have been summarized in Table 2.1. Liang

et al. (2022) used multiple highway cameras to detect incidents via spatial trajectory

anomalies but did not address complex scenarios like ramps or lane closures. Chen

et al. (2023); Xu et al. (2024) used the XGBoost algorithm for highway incident de-

tection with Xu et al. (2024) also calculating incident severity. However, they make
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Work Region Dataset DR FAR MTTD

Liang et al. (2022) Highway Macroscopic 88.09 % 2.80 % 26.80 sec

Chen et al. (2023) Highway Macroscopic 99.33 % 6.50 % NA

Han et al. (2020) Urban Microscopic 86.40 % 8.69 % 61 sec

Zhu et al. (2018) Urban Macroscopic 86.6 % 5.12 % NA

Yang et al. (2023) Both Macroscopic 80 % 4.68 % 450 sec

Atilgan et al. (2023) Highway Macroscopic 74 % 7.6 % 300 sec

Ours Both Microscopic 98 % 6.26 % 197.4 sec

Table 2.1: Summary of incident detection works and their observed metrics. Given

our interest in urban regions, Zhu et al. (2018) has shown the best detection and false

alarm rates.

predictions every 5 minutes, introducing increased incident detection time. In urban

settings, Yu et al. (2015) and Han et al. (2020) detected incidents using comparative

and pattern-matching approaches with thresholds but failed to work well in dynamic

traffic conditions, and they also require the installation of additional infrastructure

to enable communication. Alternatively, Zhu et al. (2018) utilized a deep learning

approach using traffic volume data from inductive loop detectors to detect incidents.

However, its reliance on an adjacency matrix representing a sensor network and us-

ing macroscopic data raises scalability and efficiency concerns. Also, similar to Xu

et al. (2024), they predict incidents at 5-minute intervals, leading to delayed incident

detection.

Incident detection algorithms reliant on data from all sensors during inference face

efficacy challenges as some sensors may become non-functional over time. This was

shown in the report Bikowitz and Ross (1985), which highlighted that about 25% of

New York’s traffic sensors were nonfunctional during the survey. This has not been
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a focus area in previous studies, making it a crucial problem to be addressed.
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Chapter 3

PROPOSED METHOD

Microscopic Traffic Dataset Generation

Most real-world traffic flow information is macroscopic, but we need microscopic

data to detect incidents accurately in urban environments. We can obtain microscopic

data through simulators such as SUMO Lopez et al. (2018), VSIM Yang et al. (2023),

and AIMSUN Aimsun (line). We do this in three parts: (i) Microscopic traffic flow

simulation from macroscopic data, (ii) Traffic incident simulation, and (iii) Dataset

generation.

Microscopic Traffic Flow Simulation from Macroscopic Data

It’s essential to model macroscopic data such as publicly available vehicle counts to

create realistic traffic simulations, as simulators don’t have this capability inherently.

The city of Tempe provides vehicle count data aggregated and reported every 15

minutes for multiple days. We use a 24-hour period of data as shown in Fig. 3.1 and

generate microscopic traffic information that can produce vehicle counts for every

second, allowing simulators to use this data to simulate the traffic. We start by

computing the average vehicle counts across all roads of interest at every time step

in an urban region.

We then apply Fast Fourier Transforms(FFT) Cooley and Tukey (1965) to the

averaged vehicle count data points as shown in Fig. 3.2 and obtain the top two

frequencies to build a non-linear equation that can approximately model the average

traffic behavior over time, represented by the Equation 3.
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Figure 3.1: The plot of the vehicle counts for a 24-hour period from the Department

of Transportation of Tempe for the 12 roads between the placed sensors of interest

from the selected Tempe region shown in Fig. 3.3.

f(t) = A1 sin(B1t+ C1) + A2 sin(B2t+ C2) +D + α

(3.1)

Figure 3.2: Representation of averaged ground truth vehicle counts and generated

traffic flow model. To ensure variance in generated vehicle counts, a small deviation

alpha is considered.
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To determine the parameters that best represent the original vehicle counts, we

use the Levenberg-Marquardt algorithm (Equation 3) to tune the parameters, which

results in minimizing the difference between the original vehicle counts and traffic

flow model predictions.

δ =
JT [y − f(t)]

(JT · J + λI)

(3.2)

In this equation, λ represents the damping factor (= 0.01); δ represents the amount

by which the parameters are updated in each step; J is the Jacobian matrix of partial

derivative of the Equation 3 with respect to its parameters; f(t) represents the vehicle

count that we obtain from Equation 3.

Traffic Incident Simulation

Traffic incidents are simulated by halting vehicle(s). Depending on the likelihood

of incident occurrence per vehicle, we first determine if we must insert an incident. If

we have to insert an incident, we pick a random vehicle and halt it for a duration, also

picked randomly based on the probability of the incident’s severity. Once an incident

is inserted, the radius of impact of the incident is calculated based on the severity of

the incident. Inside the radius of impact, the vehicles are slowed down to emulate

real-world crash behavior.

Dataset Generation

Fig. 3.3 shows all the intersections at which traffic lights and, therefore, cameras

can be placed. The red dots indicate the locations where the sensors are placed to
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Figure 3.3: Shows A Tempe, AZ region selected as the test area for our implemen-

tations. All the plotted points indicate the locations where cameras can be deployed

for simulation. However, the deployed locations are highlighted in red to make the

deployment of cameras similar to the real world.

capture simulation data, leading to an inherent sparsity in data capture. The simula-

tion process is executed for multiple days, depending on the simulation configuration.

We use an API service called Traci, provided by SUMO, to extract all the available

features like vehicle counts, occupancy, vehicle speed, time of the day, and vehicle

identifiers within a range of sensor locations similar to cameras for every second and

consolidate them into a tabular format, generating huge raw microscopic traffic flow

and incident dataset.

Traffic Incident Detection, Localization and Severity Estimation

The captured raw dataset has (i) low variance as data is captured second, and

traffic does not change significantly in such short intervals, leading to repeated data,

(ii) frequent zero values, which are important from a data perspective but difficult

to use from a deep learning perspective, like traffic counts, which makes sense for

data, but acts as a sparse value for deep learning approaches and (iii) missing critical

10



features such as vehicle travel time, limiting its effectiveness in training deep learning

models. We consider data pre-processing approaches to overcome these challenges.

Feature Extraction from Raw Data

As travel time between intersections is an essential metric for incident detection,

we used vehicle re-identification Huang et al. (2022) to compute the travel time be-

tween all possible combinations of two contiguous intersections based on the sensor

placements. Incorporating these travel times, junction mean speed, vehicle count, and

vehicle occupancy into our dataset resulted in a feature-rich data source, significantly

improving the dataset’s utility and addressing the raw dataset’s challenges.

Due to the presence of outlier data points, for example, when vehicles make un-

scheduled stops, we apply rolling window averages to reduce their impact. This

technique involves averaging historical and current data, which allows us to smooth

out anomalies in the dataset. If the current duration is labeled as an incident in the

raw data, we label the rolling window average data points as incidents.

Model Selection

Despite these pre-processing efforts, we still observe missing data due to vehicles

bypassing major intersections through interior roads and not getting re-identified.

However, it still represents valuable information on traffic behavior. So, it is crucial

to consider deep learning approaches that can better handle missing data.

Self-attention-based transformer models have worked exceptionally well to un-

derstand long-range sequences. TabNet Arik and Pfister (2019) is an architecture

designed for interpretable learning from tabular data. For training, the data is pro-

cessed by the TabNet encoder, which uses a decision-making decoder to classify the

results. Each TabNet encoder block comprises an attentive transformer block, a learn-
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able mask, and a feature transformer. The learnable mask performs a soft selection

of salient features, the feature transformer processes the filtered features from the

learnable mask, and the attentive transformer learns the importance of each feature

during training. Multiple layers of these encoder blocks form the TabNet Encoder.

The authors claim that this instance-wise feature engineering and learning allows for

a better performance than Decision Tree-based models like XGBoost, making it a

significant factor for us to consider this as our model architecture.

IncidentNet’s Model Architecture Design

Figure 3.4: The block diagram depicts IncidentNet’s architecture. The raw data from

the simulator is transformed into processed data. For training, all data points are used

for the incident detection model, and data points with positive incident labels are used

for incident localization and severity estimation models. During prediction phase,

localization and severity estimation models depend on incident detection model’s

prediction.

Our incident detection architecture employs a stacked ensemble of three models

dedicated to incident detection, localization, and severity estimation tasks. All three

12



models are trained individually, with varying input data. For the incident detection

model, the complete data with all the features of the pre-processed dataset is provided

as input and trained to predict if an incident has occurred in the complete selected

urban region. For localization and severity estimation models, the data points with

positive ground truth incident labels are considered for training. The localization

model predicts the roads on which the incident occurred, and the severity estimation

classifies if an incident is severe. Our ensemble model can localize and estimate

severity only due to the microscopic dataset we generated. A unique aspect of our

architecture is its robustness in accommodating sparse sensor settings, a common

challenge in real-world traffic monitoring scenarios. Unlike existing incident detection

methods, our models are evaluated under various levels of sensor sparsity to assess

the performance of each task under various degrees of sparsity.

13



Chapter 4

EXPERIMENTS

Simulation Setup for Dataset Generation

We generate simulation files using the OSM Web Wizard for a continuous period

of 30 days to simulate traffic flow for the selected Tempe region and generate the

microscopic data using the process described in our approach.

Pre-processing Raw Dataset

We test with three variations: 300, 600, and 900 seconds to pre-process the raw

data and select the rolling window size. We train our model using pre-processed data

aggregated using different window sizes and observe F1 scores of 93.12%, 96%, and

96%, respectively, for the three window sizes. Given that more data increases the

computational requirement, we choose 600 seconds as our window size choice, as the

F1 score for 600 seconds and 900 seconds is the same.

Model Training and Evaluation Considerations

We used TabNet to evaluate the Tempe dataset. The model was trained on

NVIDIA RTX 5000 GPU, and for TabNet, the hyperparameters used are mentioned

in Table 4.1.

Table 4.2 shows the different metrics we use to evaluate the performance of our

model. We used the three standard metrics, Detection Rate (DR), Mean Time to

Detect (MTTD), and False Alarm Rate (FAR), to evaluate the performance of the

incident detection algorithm.

14



Hyper-parameters Value

Prediction Layer Dimension 64

Attention Embedding Dimension 64

Optimizer Momentum 0.3

Optimizer Adam

Learning Rate 0.02

Epochs 80

Loss Function Cross Entropy

Table 4.1: Model training hyper-parameters for TabNet.

Metrics Definition

DR (Detection Rate) TP
TP+FN

FAR (False Alarm Rate) FP
FP+TN

Accuracy TP+TN
TP+TN+FP+FN

Precision TP
TP+FP

Recall TP
TP+FN

F1 Score 2× Precision×Recall
Precision+Recall

Specificity TN
TN+FP

Table 4.2: Traffic Incident Detection Metrics and their definitions based on confusion

matrix, where TP = true positives, TN = true negatives, FP = false positives, FN =

false negatives.
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Chapter 5

RESULTS

Our Microscopic Data Matches Very Well with Real-World Macroscopic Data

To validate our simulation, traffic data accurately reflects real-world conditions in

the Tempe region, and we aggregated the microscopic simulation data to match the

time frame of Tempe’s macroscopic real-world traffic count data. This produces a dis-

tribution similar to the original data represented in Fig. 3.2. To assess the similarity,

we used the Kolmogorov-Smirnov (KS) testkst (2008), which evaluates the similarity

between two distributions by calculating two metrics: KS statistic and p-value. The

KS statistic measures the maximum discrepancy between the distribution functions

of datasets. The p-value measures the probability of low discrepancy between the two

datasets. The null hypothesis is true when both distributions are similar. We reject

the null hypothesis if the p-value is below the accepted significance of 0.05.

The Tempe Department of Transportation provides the vehicle count data for just

four days, and the days on which they were collected are randomly presented. Of the

30-day simulated data, we selected four days randomly for validation. We observed

that, though there is variation in the KS Statistic and the p-value, all of them pass the

cut-off according to the algorithm as shown in Fig. 5.1, indicating similarity between

the simulated and original data.
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Figure 5.1: The KS Statistic and the p-value obtained from the KS test for the four

days of data made available by Tempe are shown. The p-value threshold is indicated

as the red line.

Algorithm DR MTTD FAR Accuracy Precision Recall F1 ScoreAUC-ROCSpecificity

Our approach (XGBoost) 96 % 94 secs 11.03 % 92.13 % 93.76 % 90.49 % 87.43 % 91.46 % 95.7 %

Our Approach (TabNet) 98 % 197.44 secs 6.26 % 93.85 % 94.27 % 91.17 % 92.70 % 93.51 % 95.95 %

Zhu et al. Zhu et al. (2018) 51 % 471 secs 35.42 % 60.06 % 40 % 50.45 % 44.62 % 51 % 64.57 %

Table 5.1: The table compares the previous state-of-the-art, XGBoost and our ap-

proach for the microscopic dataset generated for urban traffic scenarios. Our ap-

proach performed exceptionally well when compared to the previous state-of-the-art.

The other outcome we observed was that XGBoost performed better than the state-

of-the-art, proving the importance of microscopic datasets. Our method predicted

incidents every 30 seconds instead of every 5-minute interval, as in Zhu et al. (2018).
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IncidentNet is Better at Detecting Incidents in Urban Regions Compared to the

Previous Works

As highlighted before, a fast and accurate traffic incident detection algorithm can

reduce the impact of incidents economically and environmentally and, mainly, reduce

fatality rates. Their impact can be evaluated using metrics such as DR, FAR, and

MTTD, which are defined in 4. We evaluated our work against the state-of-the-art by

training a model using the architecture provided by Zhu et al. (2018), which we im-

plemented to the best of our understanding as the official model implementation was

not available, and the XGBoost model architecture, using our microscopic dataset.

As XGBoost has proven to work well on tabular dataChen et al. (2023); Xu et al.

(2024) due to its efficient selection of global features with high information value

Grabczewski and Jankowski (2005), to assess the impact of the microscopic dataset,

we also evaluate with XGBoost as the model consideration in our approach.

We evaluated all the models on a newly generated evaluation dataset for the same

region, consolidated in Table 5.1. We observe that XGBoost’s performance improves

drastically compared to the model’s performance on microscopic data, showing the

importance of considering microscopic datasets for traffic incident detection. Our

TabNet approach is more accurate than XGBoost, with a DR of 98% and FAR of

6.26%. The downside we observed is that the MTTD is 197.44s, almost 100s higher

than XGBoost. However, this is offset by the much lower FAR, which indicates that

our model has the ability to report incidents more accurately while remaining fast

enough to be within the 7-minute mark, as defined in Byrne et al. (2019). Besides

achieving good performance in Incident Detection, the models we used have quick

inference times too. We evaluated the inference time of TabNet model on the Intel

Xeon W-2555 CPU and found that it averaged 5 milliseconds. This swift processing
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enables our models to provide timely insights and support real-time decision-making.

IncidentNet Works Even In Sparse Sensing Condition

Figure 5.2: Our approaches’ performance with consideration for different sparsity

levels. Notice that the incident detection rate is still high for sparsity, as high as

93%. Tabnet performs better in incident detection with a low false alarm rate.

Sensing hardware is fallible and degrades over time, thus it is reasonable to assume

that not all cameras will be working at all times. It is vital for a model to have the

capability to work even in such conditions. So, we test our model’s performance with

increasing levels of sparsity. We start with a realistic sensor deployment at 8 of the

43 possible intersections and scale down to just 3 intersections.

In Fig. 5.2, we observe with increased sensor sparsity that our model still retains

the capability to detect if an incident occurs with low variations, but the accuracy of

localization and severity predictions is reduced. Interestingly, with only six sensors,

the MTTD does not increase much. However, the MTTD increases more drastically

with fewer than 6 sensors. The FAR also increases with an increase in sparsity.
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Although we observe this increase, we show our model is still capable of predicting

metrics, even during infrastructure anomalies.

IncidentNet can Detect Incidents on Highways

Algorithm DR (%) FAR (%) MTTD (secs)

Our Approach (XGBoost) 98 6.02 45

Our Approach (TabNet) 99 4.17 70

Table 5.2: Highway performance of IncidentNet our approach compared against XG-

Boost model architecture on our microscopic dataset. Results demonstrate that the

performance of XGBoost improves because of the microscopic dataset, and Incident-

Net performs better than XGBoost, where the DR is higher and the FAR is lower,

with a slight increase in MTTD.

Given that our model works in urban regions, we wanted to test if our approach

works in a highway scenario. We used an 8-mile highway stretch, inserted the sensors

on every available ramp, and simulated the microscopic dataset. We trained and

evaluated the simulated dataset using XGBoost and our model. The metrics obtained

are shown in Table 5.2. We observed that XGBoost’s performance was higher than

the values reported by previous works, shown in Table 2.1. Our model performed

better than XGBoost in terms of DR and FAR, with a very minimal increase in the

MTTD, proving that our approach has the capability to work in both urban regions

and highways.
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Chapter 6

CONCLUSION

In this paper, we have shown that IncidentNet, a lightweight TabNet model with

approximately 55,000 parameters, can successfully detect traffic incidents with a high

detection rate in urban roads using microscopic sensor data. For the 8 junction

data comprising a section of Tempe, the model inferred incidents within 5 millisec-

onds, demonstrating its efficiency.In particular, the results confirm that using just 3

instrumented intersections of the 43 possible IncidentNet can accurately detect, local-

ize, and classify incidents in a large area, marking a significant advancement in traffic

management technologies.However, scaling the model’s application to cover the entire

Tempe region would likely increase the number of parameters, potentially affecting

the inference time. While the model’s compact nature is promising, ensuring its scala-

bility across larger areas or the entire city while still maintaining acceptable inference

times remains an area for future exploration. Building upon this supervised model, a

promising next step is implementing a semi-supervised version of IncidentNet. This

would allow the model to continually improve and handle recurring congestion when

deployed in real-world settings. This work also highlights the importance of sensor

placement in sparse sensing scenarios, highlighting the need for an algorithm to effi-

ciently place sensors while maximizing the incident detection rate in sparse sensing.

Further investigation could extend to categorizing incidents into more classes and

enhancing localization accuracy, possibly including rough estimation of distances of

incidents from the intersections.
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