
Fast and Energy-Efficient Constant-Coefficient
FIR Filters Using Residue Number System

Piotr Patronik1, Krzysztof Berezowski1, Stanisław J. Piestrak2, Janusz Biernat1, Aviral Shrivastava3
1Institute of Computer Engineering, Control, and Robotics Wrocław University of Technology, Wrocław, Poland

{piotr.patronik,krzysztof.berezowski,janusz.biernat}@pwr.wroc.pl
2IRISA, 6 rue de Kerapont, Lannion, France, piestrak@univ-metz.fr

3Compiler Microarchitecture Lab, Arizona State University, Tempe AZ, 85287, USA, aviral.shrivastava@asu.edu

Abstract—In this paper, we present constant-coefficient finite
impulse response (FIR) filters design using residue number
system (RNS) arithmetic. The novelty of our approach rests
in an attempt to maximize the accumulated benefit of the
application of RNS to the design of constant coefficient filters.
To achieve this, we consider the impact of RNS on many layers:
from coefficient representation and techniques of sharing of
subexpressions in the multiplier block (MB), to its optimized
usage in the MB and accumulation pipeline hardware design.
As a result, we propose a common subexpression elimination
(CSE) based synthesis technique for RNS-based MBs, along
with a high-performance RNS-based FIR filter architecture that
employs RNS arithmetic principles but implements them mainly
using more efficient 2’s complement hardware. Several filters with
numbers of taps ranging from 25 to 326 and dynamic ranges from
24 to 50 bits have been synthesized using TSMC 90 nm LP kit and
Cadence RTL Compiler. Comparison of power, delay, and area
of the new filters implemented using the 4- and 5-moduli RNSs
against various equivalent 2’s complement counterparts show
uniform improvement in performance and power efficiency, often
accompanied by significant reduction in area/power consumption
as compared to 2’s complement implementations. We observed
up to 22% improvement in peformance (19% reduction in area)
within bounded power envelope, or up to 14% reduction in power
consumption (12% reduction in area) at same frequency.

I. INTRODUCTION

Finite impulse response (FIR) filters are typically perfor-

mance critical components of digital signal processing (DSP)

applications. In many cases their bandwidth and power con-

sumption requirements can only be met by custom application-

specific implementations that trade off flexibility for high

performance and power efficiency by hardwiring filter’s co-

efficients directly into the filter hardware.

The problem of designing FIR filters directly from their

coefficients has been thoroughly researched over the years [1],

[5], [6], [18], [20]. As a result, it is well known that in the

transposed form of the FIR filter (Fig. 1a) all multiplications

can be integrated into a single multiplier block (MB) with its

design abstracted as a multiple constant multiplication (MCM)
problem: given a set of n coefficients {c1, . . . , cn} and an

input sample xk, compute simultaneously all products {c1 ·
xk, . . . , cn ·xk}. The resultant structure can be optimized in at

least three ways. First, the multiplications can be calculated as

sums of shifted operands, with shifts hardwired at no hardware

cost. Second, the number of partial products can be reduced by

expressing the coefficients in the canonical signed digit (CSD)

representation, which guarantees that at least half of their bits

are zero [10]. Finally, partial sums of different products can be

aggregated for sharing in order to reduce the total number of

additions necessary to compute all products. Over the years,

that last problem has drawn a significant amount of attention

and a variety of sharing methods have been proposed [1].

Consequently, many methods of subexpression sharing in

MBs are available — many of them recently surveyed in [1].

They fall into two major categories: graph dependence (GD)

methods, e.g. [20], and common subexpression elimination

(CSE) methods, e.g. [5]. Either approach attempts to exploit

the observation that the more partial sums are shared among

products, the more adders are eliminated from the design.

In GD methods, partial sums are represented as nodes of a

graph, what typically results in greater reduction in the number

of adders at the expense of typically longer critical path. In

CSE, partial sums are expressed in terms of sums of shifted

operands, what usually yields more additions required to com-

pute all products, but allows for explicit control over addition

depth [5], thus for trading off performance for complexity.

For the purpose of high-performance yet power-efficient

FIR filter design, the Residue Number System (RNS) has

long been of interest [14]. Capitalizing on the premises of

the Chinese Remainder Theorem (CRT), RNS decomposes

the filter structure into a number of parallel and independent

modulo channels, each being a transposed form filter itself

(Fig. 1b). Such a decomposition results in reduced magnitude

of per channel operands, therefore enjoys reduced carry prop-

agation and small partial product matrices in the distributed

per channel multiplications and additions. RNS however does

come with some disadvantages: most prominently, the binary-

to-residue (forward) and residue-to-binary (reverse) conver-

sions form an overhead necessary to interact with 2’s comple-

ment system (TCS) datapath. However, voluminous evidence

demonstrates that in the multiply-intensive applications like

FIR filters, the advantages of RNS outweigh its overheads and

the application of RNS results in performance or/and power-

efficiency improvements [8], [12], [13], [16], [18], [19].

Most of the existing literature on RNS-based hardware

considers the design of programmable filters. Only few works

consider constant-coefficient filters and multipliers by constant

using RNS and related hardware [6], [7], [13], [18], [19], [21].

In [19], very high order RNS-based FIR filters with multipli-

978-1-61284-660-6/11/$26.00 © 2011 IEEE 385



Multiplier block (MB)

c1 xk

z-1

cN-1xk cN xk

z-1

xk

yk

c1 cN-1 cN

R
ev

er
se

 C
on

ve
rt

er

yk

F
or

w
ar

d 
C

on
ve

rt
er

xk Filter channel 
mod m2

Filter channel 
mod m1

Filter channel
mod mL

c1 xk

z-1

cN-1xk cN xk

z-1

xk

yk

c1 cN-1 cN

a) b)

Fig. 1. FIR filter structures: a) Transposed form; b) RNS-based

ers by constant coefficients implemented using custom logic

were proposed. The general theory of computing constant-

coefficient inner products in RNS taking advantage of the

periodicity properties of the series of 2k taken modulo odd

m was presented in [21]. Recently, [13] and [18] discuss a

complete filter synthesis of TCS and RNS implementations

of both programmable and constant-coefficient FIR filters.

However, in either work, the multiplication by constant was

implemented with a lookup table and neither exploits other

properties of the RNS but the simple coefficient decomposition

inherent to RNS representations. A discussion of parallel

FIR filters employing number theoretic transforms (NTTs)

is given in [7]. However, to the best of our knowledge the

implications of using RNS on performance of MCM and

constant-coefficient filters in general have not been sufficiently

studied yet, though such possibility was mentioned in [6], [18].

II. THE CONTRIBUTION OF THIS PAPER

In this paper, we comprehensively revisit all problems

related to the RNS-based design of the constant-coefficient

filters. We study the impact of RNS on all aspects of such

design: the MCM problem, the MB architecture and imple-

mentation, and the transposed form accumulation pipeline

implementation. As a result, we propose a holistic design

framework that rests on our three novel contributions: (i)

augmented CSD representations of the constant coefficients

that exploits the periodicity properties of the modulo integer

constants; (ii) the modifications to the level-constrained CSE

algorithm [5] that utilizes these properties for more efficient

design of RNS-based MBs; and finally, (iii) the novel MB and

accumulation pipeline architectures that, as compared to many

alternatives that we have evaluated, minimize the hidden costs

of RNS arithmetic hardware. The net result of this effort is

the filter synthesis framework that provides uniformly higher

performance as compared to TCS implementations, typically

with extra improvement in area and/or power consumption.

III. PRELIMINARIES

A. Finite Impulse Response (FIR) Filter

The response of an FIR filter of an order N is given by

y(n) =
N−1∑
k=0

ckxn−k. (1)

The above equation is typically implemented in hardware in

the transposed form (Fig. 1a) as it enjoys higher performance

and modularity. The RNS realization follows essentially the

same hardware structure in each of L channels computing the

filter function modulo on the reduced magnitude residues. Ad-

ditionally, the forward and the reverse converters are necessary

to interact with TCS components (Fig. 1b).

B. Residue Number System (RNS)

An RNS is defined by a set of L positive integer moduli
{m1,m2, . . . , mL}, which are pairwise relatively prime. The

dynamic range M of such RNS equals to M =
∏L

i=1 mi.

The operation of RNS is the consequence of the Chinese

Remainder Theorem (CRT) which states that an L-tuple

{X1, X2, . . . , XL}, where: Xi = X mod mi = |X|mi
, i =

1, 2, . . . , L, uniquely represents an integer |X|M . More im-

portantly, when two integers |X|M and |Y |M are respectively

represented by the sets of residues Xi, Yi, i = 1, 2, . . . , L,

then a set of residues Zi, i = 1, 2, . . . , L computed as

Zi = |Xi ◦ Yi|mi
, where ◦ ∈ {+,−,×}, uniquely represents

Z = |X ◦ Y |M . Consequently, an RNS datapath can compute

interleaved series of additions and multiplications of integers

in L parallel and independent channels as the interleaved series

of modulo additions and multiplications of their residues. Also,

we call two integers X and Y congruent mod mi, or X ≡ Y
(mod mi), if |X|mi

= |Y |mi
.

The complexity, the delay, and the power consumption

of the modular arithmetic hardware relate strongly to the

periodicity of the series |2k|mi . While it is periodic for any odd

modulus mi, odd moduli with small period P (mi) and half-
period HP (mi) parameters typically enjoy low implemen-

tation costs [17]. Particularly, for every non-negative integer

k, j : k < n, the low-cost moduli 2n − 1 and 2n + 1 enjoy

2k+nj ≡ |2k|2n−1, n ≥ 2 (2)

2k+nj ≡ |(−1)j2k|2n+1, n ≥ 1. (3)

what yields very efficient implementations of many arithmetic

circuits [2], [4], [6], [11], [12], [16], [17], [21].

Let X = (xn−1 . . . x0) be an integer mod 2n − 1 (or X =
(xnxn−1 . . . x0) — an integer mod 2n + 1), k — a positive

integer, and X̄ = (x̄n−1 . . . x̄0) — a bitwise negation of X .

|2kX|2n−1 ≡ (xn−k−1 . . . x0xn−1 . . . xn−k) (4)

| −X|2n−1 ≡ (x̄n−1, . . . , x̄0) (5)

|2kX|2n+1 ≡ |(xn−k−1 . . . x0x̄n−1 . . . x̄n−k)+2k−1|2n+1 (6)

| −X|2n+1 ≡ |(x̄n . . . x̄0) + 2|2n+1 (7)

Finally, it is obvious that

|2kX|2n = (xn−k−1 . . . x0

k 0′s︷ ︸︸ ︷
0 . . . 0). (8)

C. Canonical Signed-Digit Representation

In the multiplication by constant, the number of non-zero

bits of the constant determines the number of partial products

being added. This number can be reduced by converting filter

coefficients to a redundant signed-digit (SD) representation

[10] which allows for both positive and negative digits at

each bit position (1 and 1̄). Specifically, its canonical form

386



(CSD) guarantees the minimum number of non-zero bits in

the representation. The conversion of an n-bit number into at

most (n+ 1) bits of the CSD representation is performed by

scanning the bits from the least significant bit (LSB) up to the

most significant bit (MSB) and replacing the continuous non-

zero bit sequences by pairs of non-zero positive and negative

bits: 11 . . . 1 → 100 . . . 1̄. Then the remaining pairs of adjacent

bits 1̄1 are replaced by a pair 01̄. The resultant CSD form

behaves much like a regular binary representation and can be

used in modular calculations as well. In particular, Equations

(4), (6), and (8) also hold for the (C)SD representation [16].

IV. CONSTANT-COEFFICIENT FIR FILTER DESIGN

A. CSD Representation of Modulo Integers

Although coefficient residues used in modulo channels are

simply integers and can be converted to the CSD represen-

tation using the standard procedure described above, the fact

that they actually are integers mod 2n ± 1 allows us to take

advantage of Equations (2) and (3). As a consequence, the

MSB of the coefficient residue encoded into a standard CSD

form can be considered as a signed digit of the weight 20

and added to the remainder of the CSD representation. The

resultant SD form can again be reduced to the canonical form

which represents a value congruent to the original residue mod

2n±1 and may have less non-zero bits that the standard form.

Example 1: Consider a CSD representation of |27|31. The

binary representation of 27 is (011011)b. By reducing adjacent

groups of 1s we obtain (101̄101̄)SD = (1001̄01̄)CSD with

three non-zero bits. However, knowing that 27 is an integer

mod 31 we can use the fact that 32 ≡ 1 mod 31, i.e., the

MSB and LSB may cancel themselves out. The resultant value

(0001̄00)CSD = −4 is congruent to 27 mod 31 and has only

one non-zero digit. Similarly, a standard CSD form of |29|33
is (1001̄01)CSD. Again, if 29 is considered to be an integer

mod 33, 32 ≡ −1 mod 33, and the resulting congruent value

with best CSD representation is (0001̄00)CSD = | − 4|33.

B. RNS LCCSE algorithm

In the next step, we construct a modular MCM, i.e., derive

an MB structure for each residue channel. In fact, any existing

MCM technique could be used to compute such an MCM

structure. However, similarly to computing the CSD form, we

can again exploit the fact that coefficients are integers modulo

2n ± 1, although it requires changes in existing algorithms.

For our purposes, we augment the existing level-constrained

CSE (LCCSE) algorithm of [5] in order to compute modular

MCMs. It is worth noticing that although some algorithms for

constructing MBs for RNS FIR filters exist [6], [18], none of

them directly addresses the problem of subexpression sharing.

Therefore, to the best of our knowledge, our modification of

[5] is the first CSE algorithm for modular MCMs.

The comprehensive coverage of the LCCSE can be found

in [5]. For our purposes let us briefly say that this algorithm

iteratively decomposes the values from the set of values

waiting to be decomposed {UDS} and puts them into the

set of decomposed values {DS}. Initially, {UDS} contains

all filter coefficients. In each step, the algorithm picks a value

ck from {UDS} and attempts to decompose it into shifts n1

and n2 of two values d1 and d2 from {UDS}∪ {DS}∪ {1},

such that ck = ±d1 · 2n1 ± d2 · 2n2 .
If the step succeeds, and the decomposition meets the level

constraint (the maximum number of additions on the critical

path of the block), the result is put into the set {DS}. If after

this step {UDS} is empty, the number of adders is minimal

and the procedure ends. Otherwise, it is repeated using terms

from the set {APCS}, which is the set of all candidates which

can be used to decompose values in {UDS}. The {APCS}
is initialized by extracting all the possible combinations of

nonzero terms of CSD numbers in {UDS}.
Our modifications to the LCCSE flow essentially affect the

way the values from {UDS} are decomposed (lines 5 and 11

in Fig. 2). The impact of these modifications is twofold. First,

instead of decomposing filter coefficients directly, we consider

their bases, i.e., the values that for some integer k minimize

the value of an expression

bi =

{ | ± 2kci|2n−1 (channel modulo 2n − 1)

| ± 2kci|2n+1 (channel modulo 2n + 1).

Two coefficients ca, cb either share the same base or have two

distinct bases. Given a set of unique bases of all coefficients,

any coefficient may be computed solely through bit rotation

and inversion, which we assume to have negligible hardware

cost. Therefore, in our modification of the LCCSE algorithm,

the set {UDS} is initialized with a set of bases bi rather than

the set of coefficients ck. Then, in each decomposition step,

the bases from {UDS} are decomposed in a way that accounts

for their modular interpretation

ck =

{ | ± d1 · 2n1 ± d2 · 2n2 |2n−1 (mod 2n − 1)

| ± d1 · 2n1 ± d2 · 2n2 |2n+1 (mod 2n + 1).

Example 2: Consider the modulus 63 and the 2-element set

of coefficients 5 = (000101)b and 29 = (011101)b. Inversion

Require: Coefficients c1 . . . cN , Levels L1 . . . Lk

1: {DS} = φ
2: {UDS} = coefficient set
3: {APCS} formed from {UDS}
4: repeat
5: Decompose {UDS} numbers with {UDS} ∪ {DS} ∪ {1}
6: Perform level constraint check
7: Move decomposed numbers from {UDS} to {DS}
8: until No decomposition possible
9: if {UDS} �= φ then

10: repeat
11: Find all possible decompositions of {UDS} numbers with

{UDS} ∪ {DS} ∪ {1} ∪ {APCS}
12: Perform level constraint check
13: Find the smallest subset {S} of {APCS} to cover all

decomposable {UDS} numbers
14: Move decomposed numbers from {UDS} to {DS}
15: Move elements of {S} from {APCS} to {UDS}
16: until No further decomposition possible
17: end if{ {UDS} = φ }
Ensure: {DS} decompositions

Fig. 2. The modified LCCSE algorithm

387



Multiplier block (MB)

c0

c1 xk

z-1

cN xk

c1 xk

z-1

z-1 z-1

z-1
xk

Product pipeline

cM xk

yk

xk (CSA/EAC) adder network

nmb nmb

CPA CPA CPA

cM-1 xk cM xk

nin

CPA

nmb

nPP

nPP

z-1

nin

a)

b)

c)

nmb

nmb nmb

nmb cN-1xk nmb nmb

nPP

nPP

n n n n n n

with CSA
in channel

mod 2
n
+1

c1xk

zj
zj-1

cj xk
d)

Bit
width

Filter channel

2n-1 2n 2n+1

nin

nmb

npp n+1

n+1

n+1

n+1

n

n

n

n

n

Fig. 3. Implementation of single filter channel: a) general structure; b)
multiplier block; c) transpose stage; d) bit-widths of signals in channels

of bits of 29 yields (100010)b = 34 = | − 29|63. Rotating this

vector by one position left yields (000101)b, i.e. 5. Thus the

base of 29 is 5. Therefore, 5 becomes the base for the set.

This results in potentially smaller initial {UDS} as well

as potentially larger choice of decompositions. Moreover,

remember that the coefficients in each channel are already low

magnitude residues of the original filter coefficients. Together

with their potentially more compact CSD forms, the proba-

bility of sharing a partial sum constructed using the modified

LCCSE is higher than for the unmodified method. Moreover,

due to reduced magnitude of the coefficient residues, it is

more likely that the residues of different integer coefficients

are identical, what may lead to fewer unique MB outputs.

C. Multiplier Block Architecture

The addition graph computed using the modified LCCSE

has to be implemented as an MB. Similarly to [3], we use

carry-save adders (CSA) combining carry-save (CS) represen-

tation with carry-propagate merging adders (CPA) to achieve

high power efficiency. We also take advantage of the results of

[9] that some CS pairs may be constructed using one or just no

CSA at all. In the MB, an output of any adder is the result of

the multiplication by some constant. These intermediate results

are called fundamentals [9]. Depending on their values, we

consider three types of fundamentals. Let f written as {fc, fs}
in the CS form be a fundamental, xk — an input value, and

0 ≤ a, b, 2i, 2j < 2n ± 1 — integers corresponding to the

decomposed coefficients.

1) Fundamentals of the form (±2i ± 2j)xk are created by

simply assigning {fc, fs} = {±2ixk,±2jxk).
2) Fundamentals of the form ±2ixk±axk, where the vector

axk is a fundamental in the CS form, and ±2ixk is in

the binary form are created by adding the three vectors

in one CSA layer, i.e. {fc, fs} = ±2ix± axk.

3) Fundamentals of the form axk+bxk, where both vectors

axk and bxk are fundamentals in the CS form, are

created by adding the four vectors in two CSA layers,

i.e. {fc, fs} = axk + bxk.

Since in 2n ± 1 channel all additions have to be performed

using end-around-carry (EAC) adders, it is typically of pref-

erence to use cheaper EAC-CSA structures where possible,

and costly EAC-CPAs only when necessary [17]. Equations

(4) through (7) state that the multiplications by signed bits

of coefficients are relatively simple (especially in the case of

2n−1 modulus). In channel modulo 2n+1, computations are

slightly more complicated as shifts and adds in the manner

of 2n − 1 channel can only be performed on lower n bits of

xk, while the special case of xk = 2n needs to be dealt with

separately. Therefore, in the 2n + 1 channel the fundamentals

1 and 2 have to be calculated as follows:

1. {fc, fs} =

{ {±2ixk,±2jxk} when xk < 2n

{∓2i,∓2j} when xk = 2n

2. {fc, fs} =

{ ±2ixk + axk when xk < 2n

∓2i − a when xk = 2n

The third case, where fundamentals are already in CS form,

requires no special treatment, while cases 1 and 2 require

multiplexers to switch outputs when xk = 2n. Finally, the

constants generated by inversions in channel modulo 2n+1 are

accumulated and added at the beginning of the filter pipeline

as c0 in Fig. 3a. To obtain the multiplication result, the carry-

save form is merged into a single result using CPAs. In the

channel mod 2n − 1, the adder mod 2n − 1 of [15] is used

and produces an n-bit wide result. In the channel mod 2n+1,

the residue is (n+1)-bit wide, and since addition mod 2n+1
is less efficient than mod 2n − 1 [11], we employ a regular

binary adder instead of a mod 2n + 1 adder, thus producing

an (n+ 1)-bit value congruent to the actual residue.

D. Filter Pipeline Architecture

The outputs from the MB can be either stored in the product

pipeline registers for performance (Fig. 3a) or fed directly to

the accumulation stages of the filter pipeline. Each stage adds

two values (Fig. 3c): one from the product pipeline and one

from the previous pipeline stage. The following notation is

used: zj—accumulated filter value in stage j (zj is n + 1-

bit value), zj,i—the i-th bit of zj , xk—the input value to the

filter, cj—the j-th filter coefficient (in modulo channel), uj—

the output of multiplier block (in general uj = xkcj). In both

channels modulo 2n ± 1 we have

zj ≡ zj−1 + uj (mod 2n ± 1) (9)

where

uj =

{
(uj,n−1 . . . uj,0) (mod 2n − 1)

(uj,n . . . uj,0) (mod 2n + 1).

Thanks to periodicity, the terms zj , uj are written as

zj ≡
{

(zj,n−1 . . . zj,0) + zj,n (mod 2n − 1)

(zj,n−1 . . . zj,0) + z̄j,n − 1 (mod 2n + 1)
(10)

388



TABLE I
BENCHMARK FILTERS AND MODULI SELECTION

Filter wpass/wstop n
name (method) N input DR 4M 5M

f4 0.15/0.25 (PM) 41 12 24.7 6 -
f5 0.4/0.6 (PM) 26 12 24.7 6 -
f6 0.27/0.29 (LS) 327 16 41.3 - 9
f7 0.27/0.2875 (PM) 72 24 49.2 - 10

PM – Parks-McClellan, LS – least squares
USED RNSES

Name Moduli set

4M 2n − 1, 2n, 2n + 1, 2n+1 − 1 (n even)

5M 2n − 1, 2n, 2n + 1, 2n+1 − 1, 2n−1 − 1 (n even)

2n − 1, 2n, 2n + 1, 2n+1 + 1, 2n−1 + 1 (n odd)

uj ≡ (uj,n−1 . . . uj,0) + ūj,n − 1 (mod 2n + 1). (11)

Substituting, for the mod 2n − 1 channel, we obtain

zj ≡
(

(zj,n−1 . . . zj,0)+
(uj,n−1 . . . uj,0)+ zj,n

)
(mod 2n − 1). (12)

Substituting, for the mod 2n + 1 channel, we obtain

zj ≡
⎛
⎝ (zj,n−1 . . . zj,0)+

(uj,n−1 . . . uj,0)+
z̄j,n + ūj,n− 2

⎞
⎠ (mod 2n + 1). (13)

Our final implementation employs an n-bit binary adder with

carry-in for the mod 2n − 1 addition in (12), producing an

(n + 1)-bit value. In mod 2n + 1 channel, we add two n-bit

vectors and the two bits of weight 20 from (13) using one CSA

layer ((n− 1)-HAs and one FA) with inverted EAC followed

by the n-bit binary adder with carry-in. The −2 constant gets

accumulated with all other constants and added to c0. Such an

architectural choice balances the high speed and high power

consumption of the CSA- vs. lower speed and lower power

consumption of the CPA-based design.

V. SYNTHESIS RESULTS

We implemented our proposed design methodology in a

synthesis tool and synthesized a selection of benchmarks from

[1]. The design parameters of the evaluated filters and the

RNS selection are summarized in Table I. For comparison, we

generated a number of TCS-based implementations from both

academic and industrial tools: the Spiral project [20] (Spiral),

Matlab FDATool HDL Coder (Matlab), and the implementa-

tion that Cadence RTL Compiler derived automatically from a

high-level Verilog HDL code (RTL). The complete benchmark

set was synthesized using Cadence RTL Compiler v. 8.10 over

the TSMC 90nm low power library for both minimum delay,

as well as the selected set of arbitrary timing constraints.

It is important to explain why we chose to compare our

implementation solely to TCS implementations. We do so for

two reasons. First, most other works on RNS-based constant-

coefficient FIR filter design deal with abstracted subproblems

only (like MCM design), typically without proposing the entire

filter architecture and/or design methodology, whereas we

found evaluating these choices crucial to the success of any ap-

proach. Second, among the two works that deal with complete

TABLE II
FILTERS WITH MINIMAL DELAY

Filter Delay (D) Area Power (P) P×D

[ns] [mm2] [mW] [ns×mW]

f4 RTL 1.190 0.114 26.27 31
Spiral 1.625 0.099 23.02 37
Matlab 1.230 0.116 26.27 32
RNS 1.065 0.110 25.56 27

f5 RTL 1.180 0.072 16.21 19
Spiral 1.597 0.077 18.49 30
Matlab 1.187 0.078 17.88 21
RNS 1.063 0.078 18.66 20

f6 RTL 1.589 1.810 441.54 702
Spiral 4.744 1.166 252.14 1196
Matlab 1.966 1.642 384.66 756
RNS 1.505 1.507 373.25 562

f7 RTL 1.650 0.529 132.78 219
Spiral 2.812 0.491 106.57 300
Matlab 1.887 0.522 123.50 233
RNS 1.548 0.463 130.45 202

filter synthesis [13], [18], neither gives enough details to fully

reproduce the experimental setup. Additionally, the analysis of

the results we obtained for different TCS implementations has

made us conclude that most of the performance advantages

reported by [18] over Spiral is a sheer result of Spiral’s poor

performance. And [13] does not even clearly state what kind

of TCS implementation was used for the comparison.

All benchmarks circuits we implemented using the archi-

tecture from Fig. 3a. Notice that for the TCS filters each

tap dynamic range is adjusted to the actual tap requirements,

whereas for the RNS filters the output dynamic range has to

be maintained along the pipeline. Consequently, the average

tap width is narrower in TCS filters than in the RNS filters,

what significantly impacts the power consumption.

Our results detailed in Table II show that our design

is uniformly faster than any of the TCS implementations.

While this may seem to be an obvious result of datapath

decomposition, both our explorations, as well as the results

of other authors [18] show that such advantage often comes

with major area/power consumption penalty. Therefore, the

more important conclusion from Table II is that RNS-based

implementation yields uniformly higher performance at no or

moderate area/power penalty, often along with a significant

improvement in power efficiency measured as Power-Delay

product. In fact, if Spiral results were removed from the

set (because of the lower performance), RNS would become

competitive to the evaluated TCS implementations also in

terms of power and area. A little more insight into the results

are given in Fig. 4, where power-frequency and area-frequency

characteristics of different implementations are depicted. The

plots show clearly although the quality of the RTL compiler

optimizations are very high across the whole frequency range,

in the high performance corner RNS-based filters manifest

their structural advantages clearly in all metrics. For lower

speeds, the RNS implementations cannot really compete be-

cause its structural code does not scale as well as the RTL

code of the competitors.

389



Fig. 4. Power-frequency and area-frequency characteristics of the filter f4

VI. CONCLUSIONS

We have presented a synthesis framework for high perfor-

mance, energy efficient, RNS-based, contant-coefficient FIR

filters. It comprises a novel representation of modulo constants,

an augmented level-constrained subexpression elimination al-

gorithm, and a set of architectural and implementation choices.

In the course of our effort, we found the advantages of RNS

far more challenging to exploit for the design of constant-

coefficient filters than in the case of the programmable filters,

where the benefits come naturally from the decomposition of

the integrated multiply-and-accumulate units. The challenge

comes from two facts: (i) in the CSE-optimized MB the

amount of arithmetic hardware is reduced therefore its effi-

ciency has lesser impact on the overall efficiency and (ii) the

TCS implementations of MB that utilize CSE already yield

reduced complexity of the TCS implementations of MBs.

Nevertheless, we have demonstrated that the careful applica-

tion of RNS yields delay and energy efficiency improvements

that significantly supersede TCS implementations. This is

of ultimate importance because the applications of constant-

coefficient filters are primarily in high performance domain,

often with a tight power envelope. Our results show this supe-

riority clearly, over a handful of different implementations and

filter structures. Unlike other researchers [18], we achieved the

improvements without area and/or power dissipation penalty.

REFERENCES

[1] L. Aksoy, E. Da Costa, P. Flores, and J. Monteiro. Exact and approx-
imate algorithms for the optimization of area and delay in multiple
constant multiplications. IEEE Trans. CAD, 27(6):1013–1026, June
2008.

[2] P. Ananda Mohan and A. Premkumar. RNS-to-binary converters for two
four-moduli sets {2n − 1,2n, 2n + 1, 2n+1 − 1} and {2n − 1, 2n,
2n + 1, 2n+1 + 1}. IEEE Trans. Circuits Syst. I, 54(6):1245–1254,
June 2007.

[3] V. Bartlett and A. Dempster. Using carry-save adders in low-power
multiplier blocks. In Proc. ISCAS, volume 4, pages 222–225, 2001.

[4] B. Cao, C.-H. Chang, and T. Srikanthan. A residue-to-binary converter
for a new five-moduli set. IEEE Trans. Circuits Syst. I, 54(5):1041–1049,
May 2007.

[5] J. H. Choi, N. Banerjee, and K. Roy. Variation-aware low-power
synthesis methodology for fixed-point FIR filters. IEEE Trans. CAD,
28(1):87–97, Jan. 2009.

[6] R. Conway. Reducing complexity of fixed-coefficient FIR filters.
Electron. Lett., 42(20):1185–1186, 2006.

[7] R. Conway. Efficient residue arithmetic based parallel fixed coefficient
FIR filters. In Proc. ISCAS, pages 1484–1487, 2008.

[8] A. Del Re, A. Nannarelli, and M. Re. Implementation of digital filters
in carry-save residue number system. In Proc. Asilomar Conf. Sig. Syst.
Comp., volume 2, pages 1309–1313, 2001.

[9] O. Gustafsson, A. Dempster, and L. Wanhammar. Multiplier blocks
using carry-save adders. In Proc. ISCAS, volume 2, pages II473–II476,
2004.

[10] K. Hwang. Computer Arithmetic: Principles, Architecture and Design.
John Wiley and Sons, New York, NY, USA, 1979.

[11] T.-B. Juang, C.-C. Chiu, and M.-Y. Tsai. Improved area-efficient
weighted modulo 2n +1 adder design with simple correction schemes.
IEEE Trans. Circuits Syst. II, 57(3):198–202, Mar. 2010.

[12] A. Lindahl and L. Bengtsson. A low-power FIR filter using combined
residue and radix-2 signed-digit representation. In Proc. 8th Euromicro
Conf. on Digital System Design (DSD’2005), pages 42–47, 2005.

[13] A. Nannarelli, M. Re, and G. Cardarilli. Tradeoffs between residue
number system and traditional FIR filters. In Proc. ISCAS, volume 2,
pages II305–II308, Sydney, NSW, Australia, 6–9 May 2001.

[14] A. Omondi and B. Premkumar. Residue Number Systems: Theory and
Implementation. Imperial College Press, London, UK, 2007.

[15] R. Patel, M. Benaissa, N. Powell, and S. Boussakta. Novel power-
delay-area-efficient approach to generic modular addition. IEEE Trans.
Circuits Syst. I, 54(6):1279–1292, June 2007.

[16] A. Persson and L. Bengtsson. Forward and reverse converters and moduli
set selection in signed-digit residue number systems. J. Signal Process.
Syst., 56(1):1–15, 2009.

[17] S. J. Piestrak. Design of residue generators and multioperand modular
adders using carry-save adders. IEEE Trans. Comput., 43(1):68–77, Jan.
1994.

[18] I. Shuli, M. Petricca, G. Cardarilli, A. Nannarelli, and M. Re. Multiple
constant multiplication through residue number system. In Proc.
Asilomar Conf. Sig. Syst. Comp., pages 736–739, 2009.

[19] M. Soderstrand and K. Al-Marayati. VLSI implementation of very-high-
order FIR filters. In Proc. ISCAS, pages 1436–1439, vol. 2, 28 April–3
May 1995.

[20] Y. Voronenko and M. B. Püschel. Multiplierless multiple constant
multiplication. ACM Trans. Alg., 3(2), May 2007, Article 11.

[21] A. Wrzyszcz, D. Milford, and E. Dagless. A new approach to fixed-
coefficient inner product computation over finite rings. IEEE Trans.
Comp., 45(12):1345–1355, Dec. 1996.

390




