
Blame-Free Motion Planning in Hybrid Traffic
Sanggu Park, Edward Andert, and Aviral Shrivastava

Arizona State University

Abstract—Despite the potential of autonomous vehicles (AV) to improve
traffic efficiency and safety, many studies have shown that traffic acci-
dents in a hybrid traffic environment (where both AV and human-driven
vehicles (HVs) are present) are inevitable because of the unpredictability
of HVs. Given that eliminating accidents is impossible, an achievable goal
is to design AVs in a way so that they will not be blamed for any accident
in which they are involved in. In this paper, we propose BlaFT Rules –
or Blame-Free hybrid Traffic motion planning Rules. An AV following
BlaFT Rules is designed to be cooperative with HVs as well as other AVs,
and will not be blamed for accidents in a structured road environment.
We provide proofs that no accidents will happen if all AVs are using a
BlaFT Rules conforming motion planner, and that an AV using BlaFT
Rules will be blame-free even if it is involved in a collision in hybrid
traffic. We implemented a motion planning algorithm that conforms to
BlaFT Rules called BlaFT. We instantiated scores of BlaFT controlled
AVs and HVs in an urban roadscape loop in the SUMO simulator and
show that over time that as the percentage of BlaFT vehicles increases,
the traffic becomes safer even with HVs involved. Adding BlaFT vehicles
increases the efficiency of traffic as a whole by up to 34% over HVs
alone.

I. INTRODUCTION

With recent advances in machine learning, sensor accuracy, and
edge-computing, Autonomous Vehicles (AVs) are getting closer to
becoming a reality. Improvements in safety, traffic efficiency, and
accessibility are being touted as benefits of the technology. However,
before we reach the often-imagined world of all AVs, there is
likely to be a long transition period where autonomous vehicles
have to operate along-with human-driven vehicles (HVs). These HVs
introduce complications to the environment that an AV operates in,
namely non-determinism in their driving patterns and even the need
to occasionally avoid accidents that can be entirely caused by the
negligence of the human drivers. Ideally, we would like to build AVs
that can avoid all accidents. However, several studies have shown that
it is not possible for an AV to avoid all accidents in hybrid traffic
where AVs and HVs co-exist due to the nature of these HVs [1]. Let
us consider a simple example situation where an AV is traveling on
a multi-lane street. There is a vehicle immediately ahead of our ego
AV, and another vehicle immediately to the left and right of the ego
AV, and finally, a vehicle following close behind the ego AV as well.
The vehicles to the left of the AV begins encroaching into the ego
AVs lane such that the ego vehicle must choose between hitting the
vehicle to the right of it or waiting for this encroaching vehicle to
strike it (see Fig. 1). It can be seen here that the unpredictable nature
of HVs can cause a crash despite an AVs best attempts to avoid one.
Because accidents are unavoidable in a hybrid environment, Shalev
et al. argued that AVs should do their best to avoid the unavoidable
accidents to be exempted from the blame [2]. This idea of a blame-
free AV has been explored in various ways. As Gliess et. al argue
that AVs cannot take blame in an accident as they have no concept of
punishment, and there was an atmosphere of skepticism at the time
that AV manufacturers should be responsible for the accident [3].
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Fig. 1: Surrounding human driven vehicles (in grey) can crash into
an AV (in blue) and the AV cannot avoid all accidents. The best an
AV can do is not to be blamed for any accident it is involved in.

However, in March 2022, Mercedes-Benz broke the hesitation within
AV industry and announced that they will accept legal responsibility
for their autonomous driving system by volunteering the company to
take the crash blame [4]. This move by Mercedes is a major break
from previous incidents where the manufacturer pits the blame for its
faulty autonomous system entirely on the driver [5]–[7]. Therefore
building an AV software that will not be blamed for an accident will
be very valuable to manufacturers taking on the liability for collisions
of their AVs as will not have to suffer any legal issues as long as
their code itself is blame free and another agent causes the crash. But
first we must define what blame means.

To restate the US Law Second torts, § 454 on the matter of blame
in a collision: injurers are liable for accident damages if any of the
two conditions are satisfied. First, of course, the injurer must have
acted negligently – that is, he must have exercised less than “due
care” (negligence), or secondly, the injurer’s negligence must have
caused the accident (causation). Based on this, [8] concludes that
to avoid blame for an accident in which a vehicle is involved, it
must prove that i) the vehicle did not cause the accident (causation),
AND ii) it did its “due diligence” to avoid the accident (negligence).
Geistfeld et. al argue that the US Law of Torts can and should be
easily applied to AVs with minor modifications to federal law [9]. In
this paper, we seek to further the idea of blame-free AVs by codifying
the US Law of Torts blame definition into a general set of rules for
motion planning algorithms. The intention is for any motion planning
algorithm to be able to follow these rules, and as a proof of concept
we create a motion planner that conforms to our set of rules. Thus,
this paper makes the following contributions:

• We propose a novel set of motion planning rules: an autonomous
vehicle that conforms to our ‘Blame-Free hybrid Traffic Rules’
(BlaFT Rules) fully observes the blame-free conditions in US
Law of Torts.

• We propose a ‘Blame-Free hybrid Traffic motion planning
algorithm’ (BlaFT) that conforms to our BlaFT Rules. BlaFT
is also a framework aimed to integrate existing sensing and
collision avoidance maneuver (CAM) techniques which share
I/O types.

• We provide safety proof that shows there is no accident in all-
BlaFT traffic.

• We provide blame proof that shows an AV with our BlaFT is
never be blamed for accident in hybrid traffic.

Furthermore, to demonstrate the benefits of BlaFT Rules on safety



and efficiency aspects, we implemented hybrid traffic simulation in
an urban roadscape loop in the Simulated Urban Mobility (SUMO)
traffic simulator [10]. We implemented our BlaFT within the SUMO
simulator. In the simulation, we intentionally designed HVs to drive
in unsafe ways to cause accidents. Adjusting the ratio of BlaFT
conforming AVs to HVs from 0% to 100%, we observe i) as
BlaFTAV-to-HV ratio increases, the number of collisions linearly
decreases, reaching no collisions when all the vehicles are BlaFT
vehicles; and ii) adding BlaFT AVs actually increases the efficiency
of the traffic by eliminating the chaotic behavior of HVs by up to
34% as compared to HV-only traffic.

II. RELATED WORK

A. Safety Proofs for Autonomous Driving

As AVs are becoming more prevalent and real-world traffic trans-
forms from HV-only traffic to hybrid traffic, issues of whether AVs
and HVs can drive together in the same road has been raised [11],
[12]. To make hybrid driving possible, Nyholm et al. and Roald et
al. suggest that AVs need to predict the other vehicle’s behaviors
by estimating the externally measurable physical states, regardless of
whether the other vehicle is an HV or AV [12]. On the other side,
since HVs cannot distinguish if another vehicle is an AV or HV,
an AV’s driving should be indistinguishable from an HV to prevent
disturbance to current traffic safety. And Matthias et al. shows in
simulation that AVs drive in human-like manner and they reduced
90% of accidents with a relatively small response time [13]. However,
despite the fact that traffic will be ‘safer’ with more AVs, Riedmaier
et al. points out that public commercialization of AV is still a long
way off, because whether AV is always safe in traffic has not been
proved yet [14].

To address this challenge, Shalev et al. and Hilscher et al. sug-
gest safety proofs that show in what condition AVs are free from
the collision [1], [2]. First, Shalev et al. propose Responsibility-
Sensitive-Safety (RSS) rules state that AVs should drive carefully
by making sure AVs observe a conservative longitudinal and lateral
safe distances to other vehicles and decide proper Right-Of-Way
(ROW) among multiple vehicles [2]. And the authors prove by
induction that the AV longitudinal headway distance rule they propose
guarantees the safety in lane following case [2]. However, Shalev et
al.’s approach and proofs ignored the limited lane width and ROW
decisions in current traffic, and that can cause their driving to be
blamed for accidents during lane changing and merging. Meanwhile,
to prove lateral safety, Hilscher et al. provide formal expressions for
fully autonomous driving in multi-lane traffic [1]. Distinguishing the
driver’s behaviors to be lane-following (LF) and lane-changing (LC),
the authors prove that lateral safety between LF and LC is possible
whenever LC maintains the reserved space in the target lane to be
empty [1]. However, it still admits that lateral safety is only possible
when both LF and LC participating in LC process are equipped
with the same motion planner, and they explicitly understand the
other’s driving (or only for AV-only traffic). In other words, these
disprove that both AVs and HVs are unsafe because of unidentifiable
ROW decisions during the space-sharing conflict and the use of
heterogeneous motion planning methods.

B. Blame Attribution for Collisions Involving Autonomous Vehicle(s)

Since an accident in hybrid traffic is always possible, the best
AV (or AV manufacturer) can do for the unpredictable accident is
to avoid blame [15]. To be blame-free, the current law requires
the victim to prove that they did not cause an accident (causation)

AND did their best to avoid or mitigate the crash damage (due
diligence) so that no one else can make a counterargument [8]. In
HV-only traffic, the driver’s blame is subjectively determined by
the investigations and reasoning in court because it is impossible
to prove an individual human’s decisions and driving behavior.
On the other hand, when it comes to AV’s blame for accidents,
a wide social consensus has been studied and confirmed that AV
manufacturers should be blamed for accidents when the autonomous
agent is driving the vehicle [4], [16]–[18]. Unlike the mysterious
nature of the typical human driver’s thought process, AV’s decision
making should be transparent (traceable and reversible) so that it
contributes to passengers’ increased trust on AV system and promote
clear blame discrimination [19]–[21]. Nevertheless, to the best of
our knowledge, no AV blame criteria currently exists, so it is hard to
decide if AV manufacturers should be blamed and bear the cost for
an unpredictable accident.

C. Challenges in Existing Motion Planning Methods

Macroscopically, there are two approaches to AV motion planning:
end-to-end machine learning and modular-based approach [22]. First,
end-to-end machine learning methods have the benefit of having the
flexibly to deal with any scenario [21], [23], however, it suffers
from a ‘black-box’ problem so that AV’s exact decision process is
untraceable and cannot be estimated in a stochastic way [21]–[23].
Thus, a motion planner should adopt the modular-based approach to
clarify blame. However, if the modular-based methods don’t take care
of every traffic scenario, the missing scenarios might incur an accident
[14]. Plus, as Laurene et al. criticize, each modular-based method is
developed independently so they focus on different kinds of scenarios
(e.g., car following, lane changing, emergency, etc.), and there are
gaps in use cases such as communication methods, I/O types, and
driving appetite [24]–[27]. Therefore, these limitations make it hard
to assess the safety of the existing modular-based approaches with a
unified standard [23], [24].

On the other hand, to enable ‘safer’ autonomous driving in hybrid
traffic, Markkula et. al. and Wang et. al. emphasizes successful
and implicit interaction between AV and HV for space-sharing
conflict [12], [26], [28]. To achieve this, recent studies have widely
introduced game-theoretic methods to anticipate the other driver’s
vague intentions and make AVs adapt to them [27], [29]–[31]. But
this approach cannot provide any safety or blame guarantee due to
the inherently probabilistic nature of reward functions. Furthermore,
collision avoidance and mitigation (CAM) algorithms with time-to-
collision metrics have been introduced to assess risk and prevent the
accident in time [32]–[35]. However, not just because hybrid traffic
is not safe but also because safety concepts are irrelevantly defined
from other works, the spatio-temporal collision decision points differ
from each other or are even unclear. Thus, we want to conclude
that existing methods fail to provide blame solution for autonomous
driving. Rather, we a need blame-free motion planning method that
is applicable in all scenarios.

III. BLAFT RULES

In this section, we define safety envelopes, ‘safe’, ‘crash’, and
‘blame-free’ states that are used to set up BlaFT Rules.

A. Safety Envelopes

To start with, we define two levels of braking for a vehicle. The
first one is adec,max – which is the ‘maximum braking’ of the vehicle,
and it can be referred to by the manufacturer’s vehicle specification.
And the second one is adec,res – which is the ‘response braking’ that



Fig. 2: Vehicles are in safe state (upper case), if vehicles’ REs
(green shade) do not overlap, or the REs overlap but CEs (blue
shade) do not. This is because both vehicles can avoid accident by
proper braking. However, if the CEs overlap, vehicles are in a crash
state (bottom case) and the accident will be unavoidable even with
the maximum braking.

the vehicle seeks to apply if it senses danger. To be more specific
about the latter one, it is a target braking threshold that HVs in a
hybrid environment expect other vehicles to apply typically. Next, we
define the vehicle’s stopping distances w.r.t. the adec,max as dc using
Eq. (1) and adec,res as dr using Eq. (2). (Note that these equations
consider ‘sense-to-actuation time’ (ρ).) We assume the worst case is
that the vehicle accelerates at the maximum rate during ρ. Thus we
can calculate the stopping distance for both terms as follows:

dc = v · ρ+
1

2
aacc,max · ρ2 +

(v + ρ · aacc,max)
2

2adec,max
(1)

dr = v · ρ+
1

2
aacc,max · ρ2 +

(v + ρ · aacc,max)
2

2adec,res
(2)

Crash and Response Envelope: Corresponding to these two brak-
ing and two stopping distances, we define two trajectory envelopes for
a vehicle. The Crash Envelope (CE) – of length dc, and the Response
Envelope (RE) – of length dr , and the width equal to the width of
the vehicle w. Using the lane-based coordinate system from [2], we
define CE and RE as:

CE = {t(Y ) + α · w(Y ) · t⊥(Y )|Y ∈ [Ytail, Yhead + dc], α ∈ [±1/2]} (3)

RE = {t(Y ) + α · w(Y ) · t⊥(Y )|Y ∈ [Ytail, Yhead + dr], α ∈ [±1/2]} (4)

where the Y -axis is the curve of the center line of the trajectory
of the vehicle, starting from Ytail to Yhead. t(Y ) is the trajectory of
the vehicle in the direction of the center line of the lane, and w is
the width of the vehicle. The parameters α ∈ [±1/2] allow all the
points around the trajectory line within the width of the vehicle to
be included in the envelope.

One key idea in the driving algorithm of the AV is that at each
time-step (of ρ time), if the AV senses another vehicle’s estimated
trajectory to overlap with the RE, then the AV will update its motion
plan to avoid the overlap. If another vehicle’s estimated trajectory
overlaps with the CE of the AV, then the accident may be unavoidable.
Fig. 2 shows depictions of the possible RE and CE overlap scenarios.

B. Safe and Crash States

From the perspective of an AV, now we can define its state w.r.t.
another vehicle at the moment in time as a crash state, safe state, or
blame-free state. First, an AV is in a crash state with another vehicle
if the (Crash Envelope) CE of the other vehicle overlaps with the CE
of the AV. As depicted in Fig. 2, this is because not just the colliding
vehicles’ trajectories are overlapped but also they are not able to stop
before the collision point even with ‘adec,max.’ (We discussed this
with Eq. (1) and (3).) On the contrary, if the vehicles are not in a
crash state, we define them as a safe state. This is because the AV

can avoid the accident by merely slowing down with less than the
maximum deceleration rate while following the route. Thus:

crash ≡ ∀c : c ̸= ego ∧
〈
CEc ∩ CEego

〉
(5)

safe ≡ ¬crash (6)

C. Blame-free State

To determine whether an AV is to be blamed or not, we follow
Kahan et al.’s two blame conditions, causation, and negligence [8].
As per Kahan et al., a vehicle will be blamed for an accident if
it caused the accident (causation) OR if it could have avoided the
accident (negligence) [8]. Thus:

blame-free ≡ safe ∨
(
crash ∧ ¬causation ∧ ¬negligent

)
(7)

Causation is determined by Right-of-Way (ROW). Thus, we define
that a vehicle without ROW is the cause of an accident. ROW
is determined from the structured road rules, such as a stop sign
indicating that the ego vehicle would not have the ROW when
merging. (Please refer to Fig. 3.)

causationego ≡ ¬ROWego (8)

Next, we define a collision to be not negligent whenever the
‘crash’ condition appears with no prior warning. In other words,
if the collision happened and it was predictable for a driver, then
the driver was ‘negligent’ for the accident. In terms of the envelopes
we define, this means the RE area of the other vehicle did not pass
through AV’s RE in at least the previous time step. Therefore the AV
never had a chance to react to the potential collision and avoid it.

negligentego ≡ ∀c : c ̸= ego

∧
〈(

REego ∩ ¬CEego

)
∩REc

〉 (9)

By substituting Eq. (8) and (9) into Eq. (7), we derive an Eq. (10).
It concludes that an AV is blame-free whenever it is not engaged
in the accident(safe) or proves it had the ROW against the other car
‘c’ for the accident (crash ∧ROWego).

blame-free ≡ safe ∨
(
crash ∧ROWego

∧ ¬
〈(
REego ∩ ¬CEego

)
∩REc

〉)
↔ safe ∨

(
crash ∧ROWego

) (10)

IV. BLAFT ALGORITHM

Fig. 4 outlines BlaFT – A ‘Blame-Free’ motion planning algorithm
which works in hybrid Traffic. BlaFT is a motion planning algorithm
and runs at a high frequency and conforms to BlaFT Rules. And a
relatively infrequent routing algorithm runs concurrently on the top
of this motion planning algorithm and provides the context for the
motion planning algorithm – specifically, it provides it with the set
of waypoints (WP ) to follow towards the destination (dst).

A. Behavior Decision

An AV may want to change the lane for various reasons, such
as following its route to the destination, optimizing the time of
travel/fuel efficiency, or even avoiding accidents. Thus, as the first
step of the algorithm, BlaFT decides whether it plans to continue
on the current lane (Lane Following or LF), or it plans to change its
lane (Lane Changing or LC).

Before the decision, BlaFT creates a Behavior Line (BL) as a
behavior criterion. As expressed in an Eq. (11), BL is the vertical
line which is ‘dblink’ distant alongside the planned trajectory (t(Y ))



(a) Merging before the stop sign (b) Merging into roundabout (c) Entering into intersection area

Fig. 3: BlaFT Rules in multi-road scenarios. Due to the clear ROWs among the roads, Fig. 3a and 3b show that BlaFT AV (blue car) not
just maintains the safe distance but also yields the ‘ROW’ against the vehicles (grey cars) on the adjacent roads. In the intersection (Fig. 3c),
traffic lights temporally separate the overlapping routes, and BlaFT does not need to predict the vehicles in other routes as it is expected
the road rules are followed. In this manner, BlaFT Rules are observed by the ROWs among the roads and safe distances.
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Fig. 4: Flowchart of BlaFT driving. BlaFT consists of four parts:
behavior decision, conservative sensing, collision detection, and col-
lision avoidance and mitigation (CAM).

and the wide as much as the ego vehicle’s width (wego). ‘dblink’
is the distance within which BlaFT has to turn on the blinker to
warn other vehicles. And it is the minimum blinking time (tblink)
multiplied by the velocity limit (vlimit) so that it enables the AV to
warn others safely. (We assume ‘tblink’ and ‘vlimit’ are preset by
the traffic rules.)

BL = {t(Y ) + α · wego · t⊥(Y )|Y = Y0 + dblink, α ∈ [±1/2]} (11)

If there is at least one lane (Li) that overlaps with ego AV’s
BL (BLego) but does not overlap with ego AV (ego) at all, then
BlaFT considers the current behavior as LC. Otherwise, the behavior
becomes LF. As a result, as shown in Fig. 5, ego AV’s behavior is

Fig. 5: Demonstration of behavior decision. Ego AV (blue car) draws
BL (pink line), which is ‘dblink’ distant alongside the planned
trajectory (white line). If ego and BL overlap with the lane L1 only,
then AV is in LF mode (top). However, if BL starts to overlap with
L0 but ego does not, AV is in LC mode (middle). After entering the
target lane, then ego overlaps with L0 and recovers back to the LF
mode (bottom).

switched from LF to LC as its BL starts to overlap with the target
lane. And it is continued until the moment ego AV starts to overlap
with the target one. After the moment, the behavior is recovered back
from LC to LF.

BH =

{
LC, ∃Li ∈ L : ⟨BLego ∩ Li⟩ ∧ ¬⟨ego ∩ Li⟩
LF, otherwise

(12)

B. Conservative Sensing

As a part of AV motion planning, sensing techniques (e.g., ob-
ject detection) are developed in various ways but not in a unified
way. Therefore, we propose the ‘minimum requirements of sensing
information’ for AV to be blame-free, enabling the multiple existing
techniques to be integrated into BlaFT framework.

This step uses the sensed data that the AV has collected to
project the worst-case future trajectory of the other vehicles on
the road, considering the error margin of the sensor(s) [36]. The
sensing information consists of the location (xc, yc), the heading
angle θc, and the velocity vc of each of the vehicles it observes in
it’s sensing range. Furthermore, when admitting the road only allows
2-dimensional maneuver, we define that ego AV’s safety-related area
can be limited to its related lane (Li) and its adjacent one(s) (Li±1).
Thus, we avoid unnecessary sensing demands which are not related



to safety at all. To clearly specify the sensing target following AV’s
behavior, we define the vehicle as a sensing target in the second line
in Eq. (13).

zc =
(
xc yc θc vc

)T
,

∀c,∀Li ∈ L :c ̸= ego ∧
〈(
BLego ∪ ego

)
∩ Li

〉
∧
〈
c ∩

(
Li ∪ Li±1

)〉 (13)

To calculate other vehicles’ near-future trajectories, BlaFT uses the
Constant Turn Rate and Velocity (CTRV) model [37]. In the CTRV
model, the differentials of turning angle (θ) and of velocity (v) are
assumed to be constants ‘ω’ and ‘0’, respectively, where ‘ω’ is the
maximum steering angular velocity. Based on the constants, BlaFT
predicts other vehicle’s near-future information (z′

c) as an Eq. (14).

z′
c =


x′
c

y′
c

θ′c
v′c

 =


xc +

v

ω
· sin

(
θc + ω∆t

)
−

v

ω
· sin θc

yc −
v

ω
· cos

(
θc + ω∆t

)
+

v

ω
· sin θc

θc + ω∆t
vc

 (14)

Lastly, BlaFT uses the worst-case sensing information, which is
within the range of zc’s over the error margins (ϵz) of the values. The
worst-case sensing information (ẑc) is set to minimize the distance
between the vehicle c’s position and the ego vehicle’s position at the
time of ‘t+∆t’ (Eq. (15), (16)). Then, BlaFT can draw the worst-
case trajectory of all the other vehicles in the sensing range of the
AV.

ẑc =


x̂c

ŷc
θ̂c
v̂c

 = argmin
ẑc

(
[D′

c,ego|ẑc ∈ [zc ± ϵz]
)

(15)

D′
c,ego =

√
(x̂′

c − x′
ego)2 + (ŷ′

c − y′
ego)2 (16)

Algorithm 1 Collision Detection
Input: WP , BH , zego, ẑc

Output: CA

1: CA = ∅
2: REego = create RE(WP, zego)
3: for all c ∈ C do
4: if Yc > Yego then
5: R̂Ec = create RE(ẑc)
6: CA = CA ∪

(
REego ∩ R̂Ec

)
7: if BH = LC then
8: LEego = create LE(WP, zego, tblink)
9: for all c ∈ C do

10: if (Lc ̸= Lego) ∧ (Yc < Yego) then
11: R̂Ec = create RE(ẑc,WL(Yc), tenter)
12: if LEego ∩ R̂Ec ̸= ∅ then
13: CA = CA ∪

(
REego ∩ LEego

)
14: break
15: return CA

C. Collision Detection

Once BlaFT derives the worst-case trajectories of the other ve-
hicles, it determines the potential collision area. BlaFT draws the
envelopes of itself and of the sensed vehicles and searches for the
overlap between them. Then, the union of the overlapped areas is
considered to be the potential collision area. And the way BlaFT

draws the envelopes depends on whether it is in LF or LC mode.
The process is described in algorithm 1 and Fig. 6, 7.

Fig. 6: Collision detection in lane-following mode. Ego AV (blue car)
draws CEego (blue shade), REego (green shade), and the worst case
ˆREc of other vehicle c (grey car). If ego AV detects the overlap(s)

between them (red shades), the union of the overlaps becomes the
collision area.

First, if AV is in LF mode, the default collision area (CA) is set to
be an empty set and BlaFT draws ‘REego’ (line 1-2). Then, BlaFT
creates the worst-case response envelopes ‘R̂Ec’ for all other vehicles
c ∈ C, which are longitudinally in front (line 3-6). Now, CA is the
union of the overlaps between REego and R̂Ec (line 7).

Fig. 7: Collision detection in lane-changing mode. While conducting
the collision detection same as LF (top), ego AV additionally draws
LEego on the target lane (white shade). If ego AV detects the overlap
between LEego and R̂Ec, REego ∩ LEego is considered to be the
collision (top, middle). Otherwise, if no overlap exists (bottom), AV
neglects the area of LEego (dashed white box).

However, if BlaFT is in LC mode, BlaFT additionally draws a
Lane-change Envelope (LE) (lines 7-8). LE is essentially the RE in
the target lane that the ego vehicle will draw at the moment it starts
to enter the new lane (Eq. (17)). And that is the reason why the range
of Y is from Y lc to Y lc + dr , where Y lc is the Y-axis position of
the vehicle when it changes lane.

LEego = {t(Y ) + α · w(Y ) · t⊥(Y )|Y ∈ [Y lc, Y lc + dr], α ∈ [±1/2]} (17)

The collision detection in LC mode is depicted in Fig. 7. To detect
the potential collision in the target lane with the LEego, BlaFT
draws the Response Envelopes (R̂Ec) of all the other surrounding
vehicles (except the rear vehicles in the same lane) assuming that
their response time to be ρc + tenter (line 10-12). This essentially
has the effect of elongating the R̂Ec to cover the area that the other
vehicle could be in, even if it did not notice the ego vehicle while ego
vehicle was entering, and the vehicle accelerated to it’s maximum.
Furthermore, in order to prevent the ego vehicle from even partially
entering the target lane if it is not safe, BlaFT widens the ˆREc of
the other vehicles in the target lane to cover the whole width of
the target lane (WL(Y )), instead of the vehicle width (Wc(Y )) (line
12). Once the envelopes are drawn, BlaFT searches for the overlap
between LEego and R̂Ec. Once BlaFT finds out the overlap, then



Fig. 8: Map graph update and rerouting step. BlaFT AV (blue car)
updates the graph G to G′ by removing the waypoints (red circles)
close to the CA (red rectangle). Note that the interval of the removed
waypoints is longer than the blinking distance ‘vlimit ·tblink’ to allow
the AV to activate the blinker for enough time before recovering to
the intended lane. In this example, the AV finds two sets of WP ′

when re-routing from its current position to dst.

BlaFT considers the overlap between REego and LEego as the CA
and stops the searching (lines 13-14). If there is no overlap, then
LEego becomes an empty set and there is no CA in the target lane
area.

Algorithm 2 Collision Avoidance and Mitigation
Input: CA, zego, ẑc, WP , G
Output: response

1: response = (WP,−adec,max)
2: if CA = ∅ then
3: WP ′ = WP
4: else if CA ̸= ∅ then
5: G′ = remove colliding nodes(G,CA, dblink)
6: WP ′ = rerouting(G′,zego, dst)
7: for all WP ′ do
8: for all a′ ∈ [−adec,max, aacc,max] do
9: z′

ego = update velocity(zego, a
′)

10: if (v′ego ≥ vlimit) ∨ (a′
lat ≥ alat,max) then

11: continue
12: BH ′ = decide behavior(WP ′, G′,z′

ego, dblink)
13: CA′ = detect collision(WP ′, BH ′,z′

ego, ẑc)
14: if CA′ = ∅ then
15: response = (WP ′, a′)
16: return response
17: return response

D. Collision Avoidance and Mitigation

When BlaFT detects a potential collision area, it tries to come up
with a pair of alternative waypoints (WP ′) and acceleration rate (a′)
so as to avoid the collision. If the collision area is unavoidable, BlaFT
applies maximum braking to minimize the impact of the collision.
The overall process is outlined in algorithm 2.

To start with, the default response is set to be a pair of the current
waypoints (WP ) and maximum braking rate (adec,max) (line 1). If
ego AV detects no collision area (line 2), it maintains the current
trajectory (line 3). In contrast, if the collision area is detected, it
updates the road graph (G) by removing the nodes (lines 4-5). The
removed ones are close to the collision area, as shown in Fig. 8. To
enable AV to take sufficient time to take over the collision area, the
distance between the removed ones should be longer than ‘dblink =
vlimit ·tblink.’ Then, it finds out all possible future waypoints (WP ′)
to reach the destination (dst) (line 6).

Subsequently, BlaFT applies all possible acceleration rates a ∈
[−adec,max, aacc,max] (searching from −adec,max to pursue the best
effort to mitigate the unpredicted damage) to find out the collision
area (CA′) by the response alongside each alternative waypoints

(WP ′) (line 7-9). Using the future velocity (v′ego = vego + a ·∆t),
BlaFT checks if the future velocity and the centrifugal acceleration
(a′

lat) exceeds the maximum constrained values (line 10). The cen-
trifugal acceleration is calculated by using the maximum curvature
of the trajectory (κ) and the future velocity (v′) as an Eq. (18). If it
violates the condition 18, then it goes to the next iteration (line 11).

a′
lat = κ · v′2 < alat,max (18)

If the condition is met, BlaFT predicts its future behavior (BH ′)
and future collision area (CA′) (lines 12-13). And it uses the
same methods proposed in previous sections. If no collision area is
detected, then BlaFT returns a tuple of the set of waypoints and the
acceleration rate as a response (lines 14-16). Otherwise, it continues
the search.

In spite of searching, cannot return a safe response, then there is no
option for collision avoidance. In this case, BlaFT returns the default
response which consists of the current waypoints and the maximum
deceleration rate ‘adec,max’ to mitigate the damage (line 17).

V. PROOFS

In this section, we first prove that in a situation where all vehicles
are known to be running BlaFT, there will not be any collisions
(safety proof). Then, we also prove that in a hybrid traffic scenario, a
vehicle driving with BlaFT will not be blamed for any accident that
it is involved in (blame proof). These proofs are done by following
the collision scenarios that AV might face. As depicted in Fig. 1, we
classify the scenarios into three: collision from the different lane(s),
collision from a rear vehicle in the same lane, and collision with
a vehicle in front in the same lane. Our proof is based on the two
following assumptions: i) the trajectories of the other vehicles given
by BlaFT are on the road maneuver following the continuous in
2-dimensional space, so that they do not jump abruptly from one
position to another; ii) other vehicle’s driving specifications, e.g.,
acceleration rate or response time, are safely estimated by BlaFT.

A. Safety Proof

Theorem 1. If all vehicles on a structured road are driven by BlaFT,
and they start from a safe state, then there will be no accident.

Proof. We will prove this by mathematical induction at the time
moments defined in multiples of ρ (the response time of ego vehicle).
We will show that at any timestep k, the Collision Envelope of the
ego vehicle CEego does not overlap with the CEc of any other
vehicle c. In fact:

∀c : c ̸= ego ∧ ¬
〈
CEego ∩ CEc

〉
(19)

Base Case (t = 0): We assume that the base case is true by the
assumption in the theorem – that we start from a safe state. This
implies that the CEego does not overlap with the CEc of other
vehicles ‘c.’
Inductive Hypothesis (t = k): At some time step t = k, we assume
the Crash Envelope of the ‘ego’ vehicle CEego does not overlap with
the one of any other vehicle ‘c’ CEc at time step k, i.e.,

∀k ≥ 0,∀c : c ̸= ego ∧ ¬
〈
CEk

ego ∩ CEk
c

〉
(20)

Inductive Step (t = k + 1): Now, we prove that CEk+1
ego does not

overlap with CEk+1
c of any other vehicle c. We divide the proof

by the behavior modes – i.e., whether the ego vehicle is in the lane
following (LF) mode, or in the lane changing (LC) mode.

To begin with, BlaFT in LC-mode does not allow the overlap
between its LE and RE, whenever its LE overlaps with other vehicle’s



Fig. 9: BlaFT (blue car) in LC-mode. If LE (white shade) overlaps
with the other(grey car)’s estimated RE (shallow green shade), it
does not overcome the LE. Due to this, the BlaFT in LC-mode
does not allow the REs (thick green shades) to overlap.

estimated RE (Fig. 9). And BlaFT does not enter the target lane until
the overlap disappears. This prevents the overlap between the RE of
ego vehicle and real RE of the other vehicle in the target lane (Eq.
(21)).

∀c : c ̸= ego ∧ ¬
〈
REk+1

ego ∩ LEk+1
ego

〉
→ ∀c : c ̸= ego ∧ ¬

〈
REk+1

ego ∩REk+1
c

〉 (21)

Since the ego vehicle’s RE and the other vehicle’s RE never
overlap with each other, their CEs also do not overlap. Thus, the
lane-changing process satisfies Eq. (22).

∀c : c ̸= ego ∧ ¬
〈
CEk+1

ego ∩ CEk+1
c

〉
↔ safek+1

(22)

Fig. 10: LF-mode AVs in BlaFT-only traffic. As collision areas are
detected within RE ∩ ¬CE (red shades, upper), AVs are able to
avoid them by braking (dashed boxes, lower).

However, if BlaFT is in LF-mode in BlaFT-only traffic, all
possible opponents can be in three categories: opponent from the
adjacent lane(s), an opponent from behind, and from the front. First,
if one or more opponents come from the adjacent lanes, following
the previous discussion, they do not allow the RE overlap. Second,
the last remaining scenarios are the opponents are in the same lane
as depicted in Fig. 10. In this case, BlaFT is able to avoid the RE
overlap with the front car by maintaining enough distance.

∀c : c ̸= ego ∧
〈(
REk

ego ∩ ¬CEk
ego

)
∩REk

c

〉
↔ ∀c : c ̸= ego ∧ ¬

〈
REk+1

ego ∩ R̂E
k+1

c

〉
→ ∀c : c ̸= ego ∧ ¬

〈
CEk+1

ego ∩ CEk+1
c

〉
↔ safek+1

(23)

As a consequence of the induction, BlaFT satisfies ‘safe’ state at
every time step in BlaFT-only traffic.

Lemma 1. If a vehicle suddenly appears in ‘REego ∩ ¬CEego’ of
a BlaFT, then BlaFT will be able to avoid crashing with it.

Proof. The maximum length of overlapped area between the RE of
ego vehicle and RE of the other vehicle is the distance that AV
maneuvers during the time of ‘ρ’, while accelerating with ‘aacc,max.’

Fig. 11: BlaFT (blue car) is in LF-mode in the hybrid traffic. It
is safe from the front car (the rightmost red rectangle) by lemma
1. When it comes to the other vehicles from adjacent lane and the
behind (the remaining red ones), BlaFT has the right-of-way. For
this reason, if the accident came from the adjacent lane(s) or behind,
BlaFT remains blame-free.

And it is less than the crash distance ‘dc’ (see Eq. (24)). Thus, if
the collision area was outside the CE at ‘t = k’, then ego vehicle
is possible to avoid the accident by braking between 0 to maximum
at ‘t = k + 1’.

0 ≤ v · ρ+
1

2
aacc,max · ρ2 < dc (24)

B. Blame Proof

Theorem 2. If BlaFT starts the driving from a blame-free state,
then BlaFT will always maintain blame-free state.

Proof. We will show that at any time k, ego vehicle is in safe state
or crash ∧ROWego state. In fact:

∀c : c ̸= ego ∧ safe ∨
(
crash ∧ROWego

)
(25)

Base Case (t = 0): We assume that the base case is true by the
assumption in the theorem – that we start from a blame-free
state. This implies that the ego AV is in the state either safe or
crash ∧ROWego.
Inductive Hypothesis (t = k): At some time step t = k, we assume
CEego does not overlap with CEc or CEego overlaps with CEc

while ego possesses the right-of-way ‘ROWego.’ Thus:

∀k ≥ 0,∀c : c ̸= ego ∧ ¬
〈
CEk

ego ∧ CEk
c

〉
∨
(〈

CEk
ego ∧ CEk

c

〉
∧ROW k

ego

) (26)

Inductive Step (t = k + 1): Now, we prove the Eq. (26) at the time
step t = k + 1. We divide the proof by the modes of BlaFT – i.e.,
whether the ego vehicle is in the lane following (LF) mode, or in the
lane changing (LC) mode.

First, same as the safety proof, BlaFT in LC-mode satisfies the
state ‘safek+1.’ When BlaFT is in LF-mode, there are three possible
cases that its RE overlap: from the front or behind in the same lane,
or from the adjacent lanes (Fig. 11). If BlaFT’s REego ∩ ¬CEego

overlaps with either the front one or the one from the adjacent lane(s),
BlaFT is safek+1 by the Lemma 1. However, in the state CEego ∩
REc from behind or adjacent lane(s), BlaFT always has a right-
of-way (ROWego). And all these facts are summarized in Eq. (27).
Following Eq. (27), BlaFT in LF-mode is blame-free at every time
step.

∀c : c ̸= ego ∧ safek ∨
(〈
CEk

ego ∩REk
c

〉
∧ROWego

)
→ ∀c : c ̸= ego ∧ safek+1 ∨

(
crashk+1 ∧ROWego

)
↔ blame-freek+1

(27)

As a consequence of the induction, BlaFT satisfies ‘blame-free’
state at every time step in hybrid traffic.



Fig. 12: BlaFT SUMO simulation set-up. Physical specifications of road environment and vehicles are designated by SUMO setup files.
Then, by interfacing the python codes to SUMO simulator using ‘TraCI’, we enabled the AVs to collect the traffic scene information and
react to the surrounding environment. At the same time vehicles react to the environment at the current time step and the whole traffic scene
is updated and goes for the next time step, the results are accumulated on the output file.

TABLE I: Naturalistic driving parameters

Types ρ
[s]

adec,res
[m/s2]

aacc,max

[m/s2]
adec,max

[m/s2]
l × w

[m×m]
AV 0.1 2.0 ˜7.0 1.8

(4.1) 7.0 5.0× 1.8HV
(worst-case)

0.2
(0.5)

3.6
(4.1)

VI. EXPERIMENTS

In this section, we empirically evaluate how BlaFT affects traffic
in terms of ‘safety’ and ‘efficiency.’ To do this, we have implemented
BlaFT within SUMO simulator. The overall simulation set-ups and
procedures are demonstrated in Fig. 12. First, we created a road
environment conducive to infinite driving. Then, to simulate real-
world traffic flow in the simulator, every vehicle in the simulation
followed the naturalistic driving parameters (see table I). We enabled
AVs in the simulation to conduct its motion planning by BlaFT
algorithm, and AV’s states are updated by simulation loop. The
updated states are transferred to SUMO simulator by ‘TraCI’, which
interfaces the python codes and the simulator. On the other hand,
‘Krauss car-following model’ is applied by SUMO simulator to
control HVs to drive in a human-like way [38], [39]. At the last
step of the procedures, the whole traffic scene is updated at every
time step by applying new states of the vehicles.

We have modified the HV’s velocity to follow a normal distribution
that averaged the speed limit vlimit such that they occasionally make
mistakes and cause a collision, e.g., vHV ∼ N (vlimit, 1). To make
BlaFT safe from the misunderstanding of other’s true specifications,
it assumes the other vehicle’s ‘ρ’, ‘adec,res’, and ‘aacc,max’ to be the
worst-case ones as the parameters in parentheses in table I. We also
set that AV’s adec,res varies in the range 2.0 ∼ 7.0m/s2 for each
experiment since AV can freely choose the deceleration rate below
the maximum deceleration rate as adec,res.

We then perform a simulation with a set ratio of HVs to AVs that
are running BlaFT (e.g., 0:30, 5:25, etc.). Our simulation takes 30
vehicles, and we set the speed limit vlimit to either 12m/s or 25m/s
to assume the typical city and highway driving for each. To check
the average results, experiments of 30-minute duration are done 10
times for each data point. To check the safety and efficiency, we
recorded two statistics using the existing analysis tools in SUMO,
which are the number of collisions, and the delayed time of each
vehicle. Furthermore, we automatically checked which vehicle is
to be blamed whenever the collision happened, using an embedded
collision tool in SUMO.

Fig. 13: The number of collisions by AV ratio.

A. Safety Evaluation

To evaluate the safety of BlaFT, we checked the number of
collisions as AV-ratio differs. Whenever vehicles engaged in accident,
they are teleported automatically to different random points on the
track by SUMO so that they can continue driving from there.
Therefore there at always 30 vehicles present in the simulation.

Fig. 13, shows the the number of collisions decreased linearly,
as ratio of the number of BlaFT versus the number of HVs was
increased. When the ratio became 100%, the number of collision
reduced to zero. And this was common in both of the velocities tested
(12m/s, 25m/s). The linear decrease of the number of collisions
came from the fact that BlaFT maintains the response distance and
reacts properly to any sudden danger. In fact, the collisions go downs
slightly more than linearly near the end of the graph. This is an
extra benefit of the BlaFT vehicles driving less aggressively and
therefore keeping the HV vehicles behind them slightly safer as well
by having predictable acceleration and movement. The safety (e.g.
collision count) does not seem significantly depend on the required
deceleration rate or the length of RE of BlaFT. It is important to
note that vehicles driven by BlaFT are never at fault for an accident
according to any USA crash standards in this simulation especially
the US Law of Torts, no matter the ratio.

B. Efficiency Evaluation

The efficiency is evaluated by the average delayed time as AV-
ratio differs. The delayed time is the amount of time loss while
braking to avoid the crash compared to the pure arrival time with
target velocity. The result is depicted in a Fig. 14. First, as BlaFT
ratio is increased, the average delayed time decreased with both of the
maximum velocities. This is due to the safe driving of BlaFT, since



Fig. 14: Average delayed time by AV ratio.

it reduces the accidents which cause the multiple vehicles’ delayed
time to increase.

Furthermore, when it comes to the slower traffic where the speed
limit is 12m/s, it shows that there was no significant impact of the re-
quired braking rate or the length of RE on the average delay. However,
in the faster traffic where its speed limit is 25m/s, BlaFT resulted in
the larger delayed times compared to the slower traffic. Also, when
the response deceleration rate was at a minimum (2.0m/s2), the delay
did not change significantly compared to HV-only traffic. However,
with other response deceleration rates (4.5m/s2, 7.0m/s2), they
showed 25% and 34% decrease in delayed time.

These results comes from the fact that the delayed time is affected
by the ‘length of RE.’ First, in the slow traffic, BlaFT maintains
the shorter RE compared to the ones in the fast traffic. However,
as the traffic gets faster and the area of RE gets wider, BlaFT has
more chances of RE overlap and this leads to the frequent braking.
However, BlaFT can reduce the length of RE by increasing the
response deceleration rate up to maximum deceleration rate. Then,
BlaFT is able to maintain a shorter RE even in the faster traffic.
In fact, the whole traffic has more chances of being efficient if
BlaFT uses a more rapid braking to avoid the collision area and
thus maintains a shorter RE.

VII. CONCLUSION

In this paper, we proposed ‘Blame-Free hybrid Traffic Rules
(BlaFT Rules)’ and our motion planning algorithm implementation
of these rules for AVs cooperating with human drivers (BlaFT).
Additionally, we have provided a set of equations so that the rules
can be used to apply blame when there is a crash and sensor
data available. We prove both mathematically and empirically via
simulation that an AV using BlaFT (conforming to BlaFT Rules) will
neither be the cause of an accident nor be blamed for an accident that
does involve it. However, there is a limitation that BlaFT maintains
‘over-conservative’ safe distances because it does not consider the
cooperation among the multiple drivers but instead is focused on
being blame-free. Thus, we leave the question to future researchers
how much blame that AVs have to endure while enhancing the
cooperation among heterogeneous drivers to make overall traffic more
efficient. Furthermore, in the future we would like to further explore
parameters of BlaFT such as the Response Envelope deceleration
rate and other heuristics for choosing a more optimal path that still
conforms to the safety and blame constraints but will be less likely
to cause traffic delays.
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