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Abstract—Despite the potential of autonomous vehicles (AV) to improve
traffic efficiency and safety, many studies have shown that traffic acci-
dents in a hybrid traffic environment (where both AV and human-driven
vehicles (HVs) are present) are inevitable because of the unpredictability
of HVs. Given that eliminating accidents is impossible, an achievable goal
is to design AVs in a way so that they will not be blamed for any accident
in which they are involved in. In this paper, we propose BlaFT Rules –
or Blame-Free hybrid Traffic motion planning Rules. An AV following
BlaFT Rules is designed to be cooperative with HVs as well as other AVs,
and will not be blamed for accidents in a structured road environment.
We provide proofs that no accidents will happen if all AVs are using a
BlaFT Rules conforming motion planner, and that an AV using BlaFT
Rules will be blame-free even if it is involved in a collision in hybrid
traffic. We implemented a motion planning algorithm that conforms to
BlaFT Rules called BlaFT. We instantiated scores of BlaFT controlled
AVs and HVs in an urban roadscape loop in the SUMO simulator and
show that over time that as the percentage of BlaFT vehicles increases,
the traffic becomes safer even with HVs involved. Adding BlaFT vehicles
increases the efficiency of traffic as a whole by up to 34% over HVs
alone.

I. INTRODUCTION

With recent advances in machine learning, sensor accuracy, and
edge-computing, Autonomous Vehicles (AVs) are getting closer to
becoming a reality. Improvements in safety, traffic efficiency, and
accessibility are being touted as benefits of the technology. However,
before we reach the often-imagined world of all AVs, there is
likely to be a long transition period where autonomous vehicles
have to operate along-with human-driven vehicles (HVs). These HVs
introduce complications to the environment that an AV operates in,
namely non-determinism in their driving patterns and even the need
to occasionally avoid accidents that can be entirely caused by the
negligence of the human drivers. Ideally, we would like to build AVs
that can avoid all accidents. However, several studies have shown that
it is not possible for an AV to avoid all accidents in hybrid traffic
where AVs and HVs co-exist due to the nature of these HVs [1]. Let
us consider a simple example situation where an AV is traveling on
a multi-lane street. There is a vehicle immediately ahead of our ego
AV, and another vehicle immediately to the left and right of the ego
AV, and finally, a vehicle following close behind the ego AV as well.
The vehicles to the left of the AV begins encroaching into the ego
AVs lane such that the ego vehicle must choose between hitting the
vehicle to the right of it or waiting for this encroaching vehicle to
strike it (see Fig. 1). It can be seen here that the unpredictable nature
of HVs can cause a crash despite an AVs best attempts to avoid one.
Because accidents are unavoidable in a hybrid environment, Shalev
et al. argued that AVs should do their best to avoid the unavoidable
accidents to be exempted from the blame [2]. This idea of a blame-
free AV has been explored in various ways. As Gliess et. al argue
that AVs cannot take blame in an accident as they have no concept of
punishment, and there was an atmosphere of skepticism at the time
that AV manufacturers should be responsible for the accident [3].
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Fig. 1: Surrounding human driven vehicles (in grey) can crash into
an AV (in blue) and the AV cannot avoid all accidents. The best an
AV can do is not to be blamed for any accident it is involved in.

However, in March 2022, Mercedes-Benz broke the hesitation within
AV industry and announced that they will accept legal responsibility
for their autonomous driving system by volunteering the company to
take the crash blame [4]. This move by Mercedes is a major break
from previous incidents where the manufacturer pits the blame for its
faulty autonomous system entirely on the driver [5]–[7]. Therefore
building an AV software that will not be blamed for an accident will
be very valuable to manufacturers taking on the liability for collisions
of their AVs as will not have to suffer any legal issues as long as
their code itself is blame free and another agent causes the crash. But
first we must define what blame means.

To restate the US Law Second torts, § 454 on the matter of blame
in a collision: injurers are liable for accident damages if any of the
two conditions are satisfied. First, of course, the injurer must have
acted negligently – that is, he must have exercised less than “due
care” (negligence), or secondly, the injurer’s negligence must have
caused the accident (causation). Based on this, [8] concludes that
to avoid blame for an accident in which a vehicle is involved, it
must prove that i) the vehicle did not cause the accident (causation),
AND ii) it did its “due diligence” to avoid the accident (negligence).
Geistfeld et. al argue that the US Law of Torts can and should be
easily applied to AVs with minor modifications to federal law [9]. In
this paper, we seek to further the idea of blame-free AVs by codifying
the US Law of Torts blame definition into a general set of rules for
motion planning algorithms. The intention is for any motion planning
algorithm to be able to follow these rules, and as a proof of concept
we create a motion planner that conforms to our set of rules. Thus,
this paper makes the following contributions:

• We propose a novel set of motion planning rules: an autonomous
vehicle that conforms to our ‘Blame-Free hybrid Traffic Rules’
(BlaFT Rules) fully observes the blame-free conditions in US
Law of Torts.

• We propose a ‘Blame-Free hybrid Traffic motion planning
algorithm’ (BlaFT) that conforms to our BlaFT Rules. BlaFT
is also a framework aimed to integrate existing sensing and
collision avoidance maneuver (CAM) techniques which share
I/O types.

• We provide safety proof that shows there is no accident in all-
BlaFT traffic.

• We provide blame proof that shows an AV with our BlaFT is
never be blamed for accident in hybrid traffic.

Furthermore, to demonstrate the benefits of BlaFT Rules on safety



and efficiency aspects, we implemented hybrid traffic simulation in
an urban roadscape loop in the Simulated Urban Mobility (SUMO)
traffic simulator [10]. We implemented our BlaFT within the SUMO
simulator. In the simulation, we intentionally designed HVs to drive
in unsafe ways to cause accidents. Adjusting the ratio of BlaFT
conforming AVs to HVs from 0% to 100%, we observe i) as
BlaFTAV-to-HV ratio increases, the number of collisions linearly
decreases, reaching no collisions when all the vehicles are BlaFT
vehicles; and ii) adding BlaFT AVs actually increases the efficiency
of the traffic by eliminating the chaotic behavior of HVs by up to
34% as compared to HV-only traffic.

II. RELATED WORK

A. Safety Proofs for Autonomous Driving

As AVs are becoming more prevalent and real-world traffic trans-
forms from HV-only traffic to hybrid traffic, issues of whether AVs
and HVs can drive together in the same road has been raised [11],
[12]. To make hybrid driving possible, Nyholm et al. and Roald et
al. suggest that AVs need to predict the other vehicle’s behaviors
by estimating the externally measurable physical states, regardless of
whether the other vehicle is an HV or AV [12]. On the other side,
since HVs cannot distinguish if another vehicle is an AV or HV,
an AV’s driving should be indistinguishable from an HV to prevent
disturbance to current traffic safety. And Matthias et al. shows in
simulation that AVs drive in human-like manner and they reduced
90% of accidents with a relatively small response time [13]. However,
despite the fact that traffic will be ‘safer’ with more AVs, Riedmaier
et al. points out that public commercialization of AV is still a long
way off, because whether AV is always safe in traffic has not been
proved yet [14].

To address this challenge, Shalev et al. and Hilscher et al. sug-
gest safety proofs that show in what condition AVs are free from
the collision [1], [2]. First, Shalev et al. propose Responsibility-
Sensitive-Safety (RSS) rules state that AVs should drive carefully
by making sure AVs observe a conservative longitudinal and lateral
safe distances to other vehicles and decide proper Right-Of-Way
(ROW) among multiple vehicles [2]. And the authors prove by
induction that the AV longitudinal headway distance rule they propose
guarantees the safety in lane following case [2]. However, Shalev et
al.’s approach and proofs ignored the limited lane width and ROW
decisions in current traffic, and that can cause their driving to be
blamed for accidents during lane changing and merging. Meanwhile,
to prove lateral safety, Hilscher et al. provide formal expressions for
fully autonomous driving in multi-lane traffic [1]. Distinguishing the
driver’s behaviors to be lane-following (LF) and lane-changing (LC),
the authors prove that lateral safety between LF and LC is possible
whenever LC maintains the reserved space in the target lane to be
empty [1]. However, it still admits that lateral safety is only possible
when both LF and LC participating in LC process are equipped
with the same motion planner, and they explicitly understand the
other’s driving (or only for AV-only traffic). In other words, these
disprove that both AVs and HVs are unsafe because of unidentifiable
ROW decisions during the space-sharing conflict and the use of
heterogeneous motion planning methods.

B. Blame Attribution for Collisions Involving Autonomous Vehicle(s)

Since an accident in hybrid traffic is always possible, the best
AV (or AV manufacturer) can do for the unpredictable accident is
to avoid blame [15]. To be blame-free, the current law requires
the victim to prove that they did not cause an accident (causation)

AND did their best to avoid or mitigate the crash damage (due
diligence) so that no one else can make a counterargument [8]. In
HV-only traffic, the driver’s blame is subjectively determined by
the investigations and reasoning in court because it is impossible
to prove an individual human’s decisions and driving behavior.
On the other hand, when it comes to AV’s blame for accidents,
a wide social consensus has been studied and confirmed that AV
manufacturers should be blamed for accidents when the autonomous
agent is driving the vehicle [4], [16]–[18]. Unlike the mysterious
nature of the typical human driver’s thought process, AV’s decision
making should be transparent (traceable and reversible) so that it
contributes to passengers’ increased trust on AV system and promote
clear blame discrimination [19]–[21]. Nevertheless, to the best of
our knowledge, no AV blame criteria currently exists, so it is hard to
decide if AV manufacturers should be blamed and bear the cost for
an unpredictable accident.

C. Challenges in Existing Motion Planning Methods

Macroscopically, there are two approaches to AV motion planning:
end-to-end machine learning and modular-based approach [22]. First,
end-to-end machine learning methods have the benefit of having the
flexibly to deal with any scenario [21], [23], however, it suffers
from a ‘black-box’ problem so that AV’s exact decision process is
untraceable and cannot be estimated in a stochastic way [21]–[23].
Thus, a motion planner should adopt the modular-based approach to
clarify blame. However, if the modular-based methods don’t take care
of every traffic scenario, the missing scenarios might incur an accident
[14]. Plus, as Laurene et al. criticize, each modular-based method is
developed independently so they focus on different kinds of scenarios
(e.g., car following, lane changing, emergency, etc.), and there are
gaps in use cases such as communication methods, I/O types, and
driving appetite [24]–[27]. Therefore, these limitations make it hard
to assess the safety of the existing modular-based approaches with a
unified standard [23], [24].

On the other hand, to enable ‘safer’ autonomous driving in hybrid
traffic, Markkula et. al. and Wang et. al. emphasizes successful
and implicit interaction between AV and HV for space-sharing
conflict [12], [26], [28]. To achieve this, recent studies have widely
introduced game-theoretic methods to anticipate the other driver’s
vague intentions and make AVs adapt to them [27], [29]–[31]. But
this approach cannot provide any safety or blame guarantee due to
the inherently probabilistic nature of reward functions. Furthermore,
collision avoidance and mitigation (CAM) algorithms with time-to-
collision metrics have been introduced to assess risk and prevent the
accident in time [32]–[35]. However, not just because hybrid traffic
is not safe but also because safety concepts are irrelevantly defined
from other works, the spatio-temporal collision decision points differ
from each other or are even unclear. Thus, we want to conclude
that existing methods fail to provide blame solution for autonomous
driving. Rather, we a need blame-free motion planning method that
is applicable in all scenarios.

III. BLAFT RULES

In this section, we define safety envelopes, ‘safe’, ‘crash’, and
‘blame-free’ states that are used to set up BlaFT Rules.

A. Safety Envelopes

To start with, we define two levels of braking for a vehicle. The
first one is adec;max – which is the ‘maximum braking’ of the vehicle,
and it can be referred to by the manufacturer’s vehicle specification.
And the second one is adec;res – which is the ‘response braking’ that



Fig. 2: Vehicles are in safe state (upper case), if vehicles’ REs
(green shade) do not overlap, or the REs overlap but CEs (blue
shade) do not. This is because both vehicles can avoid accident by
proper braking. However, if the CEs overlap, vehicles are in a crash
state (bottom case) and the accident will be unavoidable even with
the maximum braking.

the vehicle seeks to apply if it senses danger. To be more specific
about the latter one, it is a target braking threshold that HVs in a
hybrid environment expect other vehicles to apply typically. Next, we
define the vehicle’s stopping distances w.r.t. the adec;max as dc using
Eq. (1) and adec;res as dr using Eq. (2). (Note that these equations
consider ‘sense-to-actuation time’ (�).) We assume the worst case is
that the vehicle accelerates at the maximum rate during �. Thus we
can calculate the stopping distance for both terms as follows:

dc = v � �+
1

2
aacc;max � �2 +

(v + � � aacc;max)2

2adec;max
(1)

dr = v � �+
1

2
aacc;max � �2 +

(v + � � aacc;max)2

2adec;res
(2)

Crash and Response Envelope: Corresponding to these two brak-
ing and two stopping distances, we define two trajectory envelopes for
a vehicle. The Crash Envelope (CE) – of length dc, and the Response
Envelope (RE) – of length dr , and the width equal to the width of
the vehicle w. Using the lane-based coordinate system from [2], we
define CE and RE as:

CE = ft(Y ) + � � w(Y ) � t⊥(Y )jY 2 [Ytail; Yhead + dc]; � 2 [�1=2]g (3)

RE = ft(Y ) + � � w(Y ) � t⊥(Y )jY 2 [Ytail; Yhead + dr]; � 2 [�1=2]g (4)

where the Y -axis is the curve of the center line of the trajectory
of the vehicle, starting from Ytail to Yhead. t(Y ) is the trajectory of
the vehicle in the direction of the center line of the lane, and w is
the width of the vehicle. The parameters � 2 [�1=2] allow all the
points around the trajectory line within the width of the vehicle to
be included in the envelope.

One key idea in the driving algorithm of the AV is that at each
time-step (of � time), if the AV senses another vehicle’s estimated
trajectory to overlap with the RE, then the AV will update its motion
plan to avoid the overlap. If another vehicle’s estimated trajectory
overlaps with the CE of the AV, then the accident may be unavoidable.
Fig. 2 shows depictions of the possible RE and CE overlap scenarios.

B. Safe and Crash States

From the perspective of an AV, now we can define its state w.r.t.
another vehicle at the moment in time as a crash state, safe state, or
blame-free state. First, an AV is in a crash state with another vehicle
if the (Crash Envelope) CE of the other vehicle overlaps with the CE
of the AV. As depicted in Fig. 2, this is because not just the colliding
vehicles’ trajectories are overlapped but also they are not able to stop
before the collision point even with ‘adec;max.’ (We discussed this
with Eq. (1) and (3).) On the contrary, if the vehicles are not in a
crash state, we define them as a safe state. This is because the AV

can avoid the accident by merely slowing down with less than the
maximum deceleration rate while following the route. Thus:

crash � 8c : c 6= ego ^


CEc \ CEego

�
(5)

safe � :crash (6)

C. Blame-free State

To determine whether an AV is to be blamed or not, we follow
Kahan et al.’s two blame conditions, causation, and negligence [8].
As per Kahan et al., a vehicle will be blamed for an accident if
it caused the accident (causation) OR if it could have avoided the
accident (negligence) [8]. Thus:

blame-free � safe _
�
crash ^ :causation ^ :negligent

�
(7)

Causation is determined by Right-of-Way (ROW). Thus, we define
that a vehicle without ROW is the cause of an accident. ROW
is determined from the structured road rules, such as a stop sign
indicating that the ego vehicle would not have the ROW when
merging. (Please refer to Fig. 3.)

causationego � :ROWego (8)

Next, we define a collision to be not negligent whenever the
‘crash’ condition appears with no prior warning. In other words,
if the collision happened and it was predictable for a driver, then
the driver was ‘negligent’ for the accident. In terms of the envelopes
we define, this means the RE area of the other vehicle did not pass
through AV’s RE in at least the previous time step. Therefore the AV
never had a chance to react to the potential collision and avoid it.

negligentego � 8c : c 6= ego

^
D�
REego \ :CEego

�
\REc

E (9)

By substituting Eq. (8) and (9) into Eq. (7), we derive an Eq. (10).
It concludes that an AV is blame-free whenever it is not engaged
in the accident(safe) or proves it had the ROW against the other car
‘c’ for the accident (crash ^ROWego).

blame-free � safe _
�
crash ^ROWego

^ :

�
REego \ :CEego

�
\REc

��
$ safe _

�
crash ^ROWego

� (10)

IV. BLAFT ALGORITHM

Fig. 4 outlines BlaFT – A ‘Blame-Free’ motion planning algorithm
which works in hybrid Traffic. BlaFT is a motion planning algorithm
and runs at a high frequency and conforms to BlaFT Rules. And a
relatively infrequent routing algorithm runs concurrently on the top
of this motion planning algorithm and provides the context for the
motion planning algorithm – specifically, it provides it with the set
of waypoints (WP ) to follow towards the destination (dst).

A. Behavior Decision

An AV may want to change the lane for various reasons, such
as following its route to the destination, optimizing the time of
travel/fuel efficiency, or even avoiding accidents. Thus, as the first
step of the algorithm, BlaFT decides whether it plans to continue
on the current lane (Lane Following or LF), or it plans to change its
lane (Lane Changing or LC).

Before the decision, BlaFT creates a Behavior Line (BL) as a
behavior criterion. As expressed in an Eq. (11), BL is the vertical
line which is ‘dblink’ distant alongside the planned trajectory (t(Y ))




