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Register File Power Reduction Using
Bypass Sensitive Compiler

Sanghyun Park, Aviral Shrivastava, Nikil Dutt, Alex Nicolau,
Yunheung Paek, and Eugene Earlie

Abstract—This paper explores, develops, and investigates several
bypass-sensitive compilation techniques to reduce the register file power by
reducing the access frequency to the register file. We study the effectiveness
of our techniques on the Intel XScale processor, which is based on the pre-
viously proposed ‘“‘on-demand register fetch read” architectural feature.
Furthermore, we show that our bypass-sensitive compilation technique is
effective on various partial bypass configurations.

Index Terms—Bypass sensitive, compiler, forwarding paths, operation
table, power consumption, register file.

I. INTRODUCTION

Reducing the power consumption of the register files is very impor-
tant due to two main reasons. The first reason is that the register files
may consume a substantial portion of the power budget of modern
microprocessors [1]. Azevedo et al. [2] observed that the register file
power may reach 25% of the total processor power when running
embedded applications. The second, and the more important, reason is
that the register file is one of the most important hotspots in some of the
commercial processors [3], [4]. As a result, the register file is highly
prone to “heat stroke” [5] which occurs if the temperature of any part
of the chip increases beyond a critical limit. If a heat stroke occurs, the
processor has to be stopped and cooled before it can resume execution.
Considering that typically, the time it takes to cool is an order of
magnitude more than the time it takes to heat the component, avoiding
heat stroke is of utmost importance. Again, because the register file
is one of the most important hotspots in the processors, reducing the
register file power is crucial to reduce the chances of a “heat stroke.”
On one side, as the semiconductor technology keeps scaling down,
the leakage power becomes a dominant factor in the total power.
Considering that the leakage power increases exponentially with the
increase of temperature, it is very important to reduce not only the
dynamic power but also the leakage power of the register file.

Recognizing the need and importance of reducing the register
file power consumption, several advanced register file designs and
architectural techniques have been proposed [6]-[8]. In particular,
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Tseng and Asanovic [8] observed that existing processors perform
an anticipatory register file and bypass read to obtain all the possible
values of the source operand. They found that on average, 36% of the
source operand values are transferred via bypasses in the pipelined
and bypassed processors, implying that 36% of the values read from
the register file are discarded and are never used, wasting substantial
energy. They propose to reduce this register file power wastage by first
deciding whether the value from the register file will be used or not
and then read from the register file only if it is necessary. In this paper,
we call the architecture that employs this architectural technique as on-
demand register fetch (RF) read architecture. Goel er al. [9] also used
this architectural feature and proposed a compiler-driven technique to
reduce the register file power consumption of the very long instruction
word processor. However, they cannot support the partially bypassed
processors.

Although the on-demand RF read architectures are effective in
reducing the register file power by reducing the number of the register
file access (rfa), there is a scope for further reduction in the register file
power consumption in such architectures by scheduling instructions so
that the instructions read the operands from the bypasses rather than
from the register file. This requires the compiler to be cognizant of
the bypasses in the processor. Recently, a bypass-sensitive instruction
scheduling mechanism was presented by Shrivastava et al. [10]. They
used operation tables to implement the bypass-sensitive instruction
scheduling mechanism; however, considering that the previous tech-
niques did not consider the impact of bypassing to the register file
power, their techniques were able to reduce the number of access
to the register file by, on average, 0.9%, according to our prelim-
inary experiments. In this paper, we propose several bypass-aware
instruction scheduling techniques aimed at reducing the register file
power consumption by reducing the number of access to the register
file. Our proposed instruction scheduling can reduce, on average,
11.4% and up to 22% accesses to the register file over and above the
on-demand RF read architectures, with a minimal performance loss
(less than 1% on average) and within a reasonable compilation time.
In addition, our bypass-sensitive compilation technique consistently
achieves high degrees of the rfa reductions across various bypass
configurations, demonstrating the usefulness of our technique on any
partially bypassed processor.

II. EXPERIMENTAL FRAMEWORK

We perform our experiments on the Intel XScale architecture. The
design point is the representative of processors targeted at relatively
high-end but low-cost and low-power embedded applications, includ-
ing wireless and handheld devices. We simulate benchmarks from the
MiBench suite because these represent the intended target applications
for the Intel XScale processor. The Intel XScale is a partially bypassed
seven-stage superpipeline, which is implemented in 0.18-pm technol-
ogy and operates at a maximum frequency of 1000 MHz. We modeled
the cycle-accurate simulator of the Intel XScale in great detail, and the
simulator has been validated against the 80200 evaluation board.

We also modify the base Intel XScale architecture to implement the
on-demand RF read. We designed the logic to find out whether the
operand is coming from the bypasses and read the register file only
if it is required. We synthesized this logic using Synopsys Design
Compiler-2001.10 and 0.8-um library Isi_10k and linearly scaled the
delay for 0.18-um technology. We synthesized the on-demand RF read
logic for a minimum delay. The delay of the on-demand RF read logic
was 0.8 ns, which is less than 1 ns (cycle time is at 1000 MHz). Thus,
this logic can be comfortably implemented as an extra pipeline stage

0278-0070/$25.00 © 2008 IEEE
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Fig. 1. Experimental framework for instruction scheduling experiments.

just before the RF pipeline stage in the Intel XScale. To estimate
the power consumption of the on-demand RF read logic, we used
Synopsys, and the power consumption of the logic is 756 ©W, which
is negligible (< 1%) as compared with the register file power. Thus,
we do not consider it in our calculations.

As shown in Fig. 1, we first compile the applications using GNU
Compiler Collection (GCC) with all performance optimizations on.
The executable generated is simulated on the Intel XScale cycle-
accurate simulator with on-demand RF read. The simulator gives the
number of execution cycles (ec), which is denoted as ecl, and the
number of rfa, which is denoted as rfal. These numbers are compared
with ec2 and rfa2, which are the results of our bypass-sensitive
scheduling techniques.

Our scheduling technique is applied after GCC generates the as-
sembly code. We generate the operation tables for each assembly
instruction, and then, we schedule the code with the help of the
operation tables and the reconstructed data dependence graph. Con-
sidering that our scheduling techniques are intrabasic block and post-
GCC algorithms, our techniques do not impact the GCC compilation
stages. Although our bypass-sensitive techniques reschedule the as-
sembly code and thus have influence on the performance, the overall
performance degradation is very small because the precise modeling
of the bypasses in operation tables ensures the source operands to be
fetched from bypasses without delays.

III. SCHEDULING FOR RFA REDUCTION

In this section, we perform experiments to estimate the scope of rfa
reduction by instruction scheduling. The functioning of our instruction
scheduling algorithm is very different from the traditional instruction
scheduling algorithms which aim to improve performance. Traditional
performance-oriented instruction scheduling algorithms try to separate
dependent operations as much as possible and insert nondependent
instructions between them. This is done to ensure that even if the
first instruction is blocked (due to data hazard or pipeline hazard),
the dependent instruction does not have to stall. For example, it is
beneficial to separate the load instruction and the instruction that uses
its result in case there is a cache miss; the effective memory latency
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will be reduced by the “distance” between the two instructions. This
technique is popularly known as “load hoisting.”

In contrast, our instruction scheduling technique tries to schedule
dependent instructions close to each other so that they can transfer
the dependent operand through the bypasses. As a result, if the first
instruction is delayed (e.g., because of a cache miss), the memory la-
tency will not be hidden, and there will be performance loss. However,
this performance loss should be small, owing to the high hit rates of
caches and to the fact that separating the dependent instructions hide
only a very small fraction of the memory latency.

A. Scope of RFA Reduction

We first developed an exhaustive scheduling algorithm RFPEX to
see the scope of the rfa reduction. In this algorithm, we try all the
legal permutations of instructions in each basic block and pick the
best performing schedule. Each of the rightmost bars shown in Fig. 3
plots the normalized reduction in the number of access to the register
file. The graphs show that there is a scope of up to 26% and, on
average, 12% rfa reduction by bypass-aware instruction scheduling
techniques. It should be noted that this rfa reduction is an addition
to the 40% reduction that on-demand RF read already achieves and
is obtained without any additional architectural support. It is also
worth mentioning here that even though a 12% rfa reduction may not
significantly reduce the total processor power, it is very important to
reduce the frequency of access to the register file to reduce the chances
of “heat stroke.” Therefore, even a 12% reduction in the usage of the
register file is significant and important.

The rightmost bars shown in Fig. 5 plot the normalized runtime. As
described previously in this section, our technique should only cause
slight performance degradations. The performance improvements that
we see in some benchmarks happen because our bypass-aware com-
piler generates better schedules than GCC, which is unaware of the
bypasses that are present in the Intel XScale [10]. The graph in Fig. 5
shows an average 1.8% performance improvement.

RFPEX is an exhaustive algorithm and has an exponential time
complexity. It takes hours to compile most benchmarks, and it could
not schedule the benchmarks “susan” and “rijndael” in two days. As
a result, we investigate simpler scheduling heuristics in the following
sections.

B. RFPN Scheduling

Fig. 2 shows our RFPN scheduling algorithm. This is a greedy
algorithm utilized to schedule instructions within a basic block. U is
the ordered set of unscheduled instructions, whereas S is the ordered
set of scheduled instructions. Initially U is full, whereas S = ¢
(line 01). In each iteration of a “while loop” (lines 02-12), one
instruction is selected from U and moved to S (line 13) until U is
empty and S contains all the instructions. Finally, the ordered set of
scheduled instructions S is returned (line 13). In each iteration of
the while loop, the set of instructions that are ready to be scheduled
is computed first, using the data dependence information (line 03).
We term the set of instructions that can be scheduled next as the
frontier set . For each instruction in the frontier set F', the function
OTGetInstrCost is used to find out how many source operands will be
transferred via bypasses if the instruction is scheduled next (line 06).
The “for loop” (lines 04—10) does this.

The leftmost bars shown in Fig. 3 plot the normalized number of
rfa, and each of the leftmost bars shown in Fig. 5 plots the normalized
ec. The graphs show that there is up to 13.7%, and an average 5.8%,
rfa reduction, with less than 1% performance loss. It takes only a few
seconds to compile for each application. Next, we investigate more
complicated heuristics to achieve more reduction in the number of rfa.
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Heuristic RFPN(BasicBlock U)

01: S=¢

02: while (U # ¢)

03: F = getNextInstructions(S,U)
/* get best next instruction */

04:  maxCost =0, maxCostInstr = ¢
05: foreach (f € F)

06: cost = OT GetInstrCost(S, f)
07: if (cost > mazxCost)

08: maxCost = cost, maxCostInstr = f

09: endIf

10:  endFor

11: S + = maxCostinstr, U — = maxCostInstr
12: endWhile

13: return S

Fig. 2. Heuristic RFPN.
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Fig. 3. Normalized rfa.

Heuristic RFPN2(BasicBlock U)

01: S=¢

02: while (U # ¢)

03: F = getNextInstructions(S,U)
/* Find the best next instr */

04:  maxzCost =0, maxCostInstr = ¢
05: foreach (f € F)

06: S =8S+fU =U-Ff

/* Assuming f, find the best schedule by RFPN*/
07: while (U’ # ¢)

08: F' = getNextInstructions(S’,U’)

09: maxzCost’ = 0, maxCostInstr’ = ¢

10: foreach (f' € F')

11: cost’ = OTGetInstrCost(S', f')

12: if (cost’ > maxCost’)

13: mazCost’ = cost’, maxCostInstr’ = f’
14: endIf

15: endFor

16: S'+ = mazCostInstr’', U — = maxCostInstr’

17: endWhile

/* Assuming f, S’ is the best schedule */
18: cost = OTGetScheduleCost(S")
19: if (cost > maxCost)

20: maxCost = cost, maxCostInstr = f
21: endIf
22:  endFor

/* maxCostInstr is the best next Instr */

23: S+ = maxCostinstr,U— = maxCostInstr
24: endWhile

25: return S

Fig. 4. Heuristic RFPN2.

C. RFPN2 Scheduling

Next, we propose and evaluate the RFPN2 scheduling algorithm
shown in Fig. 4. This algorithm takes U as input, which is the ordered
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Fig. 5. Normalized execution time.

set of unscheduled instructions, reorders them in S, which is the
ordered set of scheduled instructions, and returns it. Initially, U is
full, whereas S = ¢ (line 01). In each iteration of the while loop
(lines 02-24), the set of instructions that are ready to be scheduled,
or the frontier set F', is first computed by using the data dependence
information (line 03). Each instruction (f € F) is chosen, and a
schedule is generated (lines 07—17), which is very similar to the greedy
heuristic RFPN in Fig. 2. All the schedules are then compared by
using operation tables (line 18) to find out which schedule results in
the highest number of operands being transferred via bypasses (lines
18-21). The first instruction of the best schedule (maxCostlnstr) is
chosen, added to .S, and removed from U (line 23). Finally, S, which
is the ordered set of scheduled instructions, is returned (line 25).

Each bar shown in the middle of Fig. 3 plots the normalized
rfa frequency, which is denoted as rfa, and the corresponding bars
shown in Fig. 5 plot the normalized ec. On an average, RFPN2 is
able to reduce the number of access to the register file by up to
22%, with an average of 11.4%, which is at a 1% minimal loss of
performance. It takes the order of only a few minutes to compile for
each application. We think that RFPN2 is a good “overall” heuristic.
It is worth mentioning in this paper that our heuristics have no impact
on the energy, considering that they have minimal overhead on the
performance.

IV. RF POWER ESTIMATION

Due to the continuous technology scaling, the contribution of leak-
age power in the register file power is increasing. The leakage in the
register file is high, not only because of the nanoscale gate dimension,
but also because of its high operating temperature. As mentioned
before, if the register file heats up past the critical temperature limit,
a thermal emergency called heat stroke occurs, and the processor has
to be stopped to let it cool. This concept, which is very similar to the
stop-and-go policy proposed in [11], incurs significant performance
degradation to ensure a safe operating temperature. Considering that
the temperature and thus the leakage power become increasingly
important portions of the total power of a chip, in this section, we
model both the dynamic and leakage powers of the register file and
demonstrate the effectiveness of our technique.

We model the register file in HotSpot as a single block. In addition,
we model the exponential dependence of leakage power on the tem-
perature using PTScalar.

Fig. 6 shows the normalized power consumption of the register
file when we use the RFPN, RFPN2, and RFPEX algorithms. This
graph shows that our heuristic RFPN2 can achieve, on average, a 10%
reduction each in the register file power. Note that the power reduction
in Fig. 6 is in addition to the reduction that the on-demand RF read
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Fig. 6. Normalized power consumption (dynamic+-static) of the register file.
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Fig. 7. Normalized static power consumption of the register file.

already achieves. In the architecture without the on-demand RF read
technique, RFPN2 can achieve a 46.7% register file power reduction.

To clearly show the impact of our techniques on the leakage power,
Fig. 7 shows the normalized static power consumption of the register
file. The first observation from this graph is that our heuristic RFPN2
can reduce the leakage power by up to 32% and, on average, 7.3%.
The second, and more interesting, observation is that the trend of the
leakage power reduction on some of the benchmarks is not similar
to that of the rfa reduction. For example, there is no leakage power
reduction for gsort and susan benchmarks in Fig. 7, although the
number of access is reduced by almost 10%, as shown in Fig. 3. This
is because the temperature drops slower when it is below the critical
temperature, and faster when it is beyond the critical temperature
[12]. For the benchmarks mentioned above, the application size is
quite small, and they do not heat the register file beyond the critical
temperature. Thus, the reduction in the rfa is mostly used only for the
dynamic power. However, for the rijndael benchmarks, they execute
for long periods and heat the register file substantially. Therefore, our
technique significantly reduces the temperature and the leakage power
of the register file. Note that the normalized reduction for rijndael in
the leakage power is greater than that of the rfa due to the exponential
dependence of the leakage power on the temperature.

V. RFA REDUCTION ACROSS BYPASS CONFIGURATIONS

In this section, we explore the effectiveness of our bypass-sensitive
compilation techniques in reducing the register file power consumption
by reducing the access frequency to the register file on various bypass
configurations.

We perform our experiments by modifying the bypass configuration
on the Intel XScale processor. The Intel XScale has seven pipeline
stages that can generate a bypass, the X1, X2, XWB, M2, Mx (referred
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to as MWB in this paper), D2, and DWB pipeline stages. The bypasses
from these stages come to the RF stage. In the RF stage, up to four
operands can be read in a cycle. Thus, in the XScale pipeline, there
can be, at most, 7 x 4 = 28 different bypasses, and there can be 228
possible bypass configurations. Although our approach can model each
of these bypass configurations, it is clearly not possible to explore
all of these bypass configurations. For our experiments, we explore
several interesting bypass configurations from a processor architect’s
perspective. We assume that if a pipeline unit generates a bypass, then
it will be available to all the four source operands in the RF stage.
That is, if a stage bypasses, all the four operands can read the result,
whereas if a stage does not bypass, none of the four operands can read
the result. This constraint restrains the bypass space to just 27 = 128
configurations. The configurations can be represented (encoded) by
(into) a 7-b binary number. Each bit in the encoding indicates whether
there are bypass connections from the corresponding pipeline stage in
the ordered tuple (DWB, D2, MWB, M2, XWB, X2, and X1).

Fig. 8 shows the percentage reduction of the number of access to
the register file achieved by our RFPN2 scheduling technique over
a bitcount benchmark. The bars in the graph represent how many
accesses RFPN2 can reduce on the on-demand RF read architecture
for each bypass configuration. We can make an important observation
from this graph. That is, there is no bar which has a negative value,
indicating that our technique consistently achieves good rfa reduction
even if we change the bypass configuration. In fact, the reduction in
the number of access to the register file for a bypass configuration
shows up to 14.4% and, on average, 9%, implying the effectiveness
and usability of our technique for partially bypassed processors. The
second observation is that the reduction in the number of the rfa
varies a lot throughout the bypass configurations. For example, design
point 1 in Fig. 8 has a (0101111), configuration, which represents
a configuration which bypasses from D2, M2, XWB, X2, and XI.
Furthermore, design point 2 has a (0101000)» configuration, which
contains bypasses from D2 and M2. The difference between these
two design points indicates that RFPN2 can generate more power-
efficient code for bitcount benchmark if bypasses from the X pipeline
stages are present. We can reduce the number of rfa within +2%
variations in the performance (from 2% reduction to 2% improvement
of performance). We observed the similar trend in the case of the other
benchmarks that we used.

VI. SUMMARY AND FUTURE WORK

Register file power consumption has been widely recognized as a
very important issue, not only to reduce the total power consumption
of processor, but also to prevent “heat strokes.” In this paper, we



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 6, JUNE 2008

demonstrated that in on-demand RF read architectures, there is scope
for further rfa reduction and proposed several bypass-aware instruction
scheduling techniques aimed at reducing the number of access to the
register file. Our experiments on the Intel XScale processor pipeline
with on-demand RF read running MiBench benchmarks show that
up to 26% and, on average, 12% rfa can be reduced. Further, one of
our scheduling techniques, which is RFPN2, is an effective heuristic
to reduce the number of rfa (11.4% on average) without much loss
in performance (less than 1% on average) and within a reasonable
compilation time. We have demonstrated that our compilation tech-
nique consistently reduces the number of the rfa on various bypass
configurations.
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Abstract—This paper presents a finite-state machine (FSM) reengineer-
ing method that enhances the FSM synthesis by reconstructing a function-
ally equivalent but topologically different FSM based on the optimization
objective. This method enables the FSM synthesis algorithms to explore
a set of functionally equivalent FSMs and obtain better solutions than
those in the original FSM. To demonstrate the effectiveness of the proposed
method, we apply it to popular power- and area-driven FSM synthesis
algorithms, respectively. Our method achieves an average of 5.5% power
reduction and 2.7% area reduction, respectively, on 25 Microelectronics
Center of North Carolina (MCNC) FSM benchmarks, where the proposed
method is applicable. This is a significant performance improvement for
the power- and area-driven FSM synthesis algorithms being used. Our
method has a negligible run-time overhead, and it maintains the quality
of the synthesis solutions.

Index Terms—TFinite-state machine (FSM) encoding, power minimiza-
tion, sequential logic synthesis, state splitting.

I. INTRODUCTION

Finite-state machine (FSM) synthesis is a well-studied problem. It
consists of state minimization (SM) and state encoding (SE) proce-
dures. SM finds a functionally equivalent FSM that has the minimum
number of states. SE assigns distinct binary codes to each state of
the FSM such that the sequential circuit modeled by the FSM can be
efficient in terms of area, performance, and/or power.

The SM problem can be optimally solved in completely specified
FSMs [6], and there are standard approaches to solving the SM
problem in incompletely specified machines [9]. On the other hand,
there have been many techniques to solve the SE problem based on
different optimization objectives and implementation technologies.

In area-driven FSM synthesis, De Micheli et al. proposed an SE
algorithm to minimize area in a programmable logic array imple-
mentation by generating a minimum (multivalued) symbolic cover of
the FSM followed by a step of satisfying the encoding constraints
[13]. Successive extensions also introduced output constraints and
more efficient algorithms to satisfy the input and output encoding
constraints [18], [19]. MUSTANG [3] is one of the earliest state
encoding techniques for multilevel logic minimization; it assigns a
weight to each pair of symbols and gives adjacent codes to pairs of
states with large weight. JEDI [11] adopts a weighted graph model
similar to the one in MUSTANG, but it uses a simulated annealing
algorithm to perform the embedding. Instead, MUSE [4] and MIS-MV
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