Bypass Aware Instruction Scheduling for
Register File Power Reduction

Sanghyun Park

Seoul National University, Korea
shparkid@compiler.snu.ac.kr

Alex Nicolau

University of California, Irvine
nicolau@ics.uci.edu

Abstract

Snce register files suffer from some of the highest power
densities within processors, designers have investigated sev-
eral architectural strategies for register file power reduc-
tion, including “ On Demand RF Read” where the register
file is read only if the operand value is not available from
the bypasses. However, we show in this paper that signif-
icant additional reductions in the register file power con-
sumption can be obtained by scheduling instructions so that
they transfer the operands via bypasses, rather than reading
from the register file. Such instruction scheduling requires
the compiler to be cognizant of the bypasses in the proces-
sor pipeline. In this paper, we devel op several bypass aware
instruction scheduling heuristics varying in time complex-
ity, and study their effectiveness on the Intel XScale proces-
sor pipeline running MiBench benchmarks. Our experimen-
tal results show additional power consumption reductions of
up to 26% and on average 12% over and above the register
file power reduction achieved through existing techniques.

Categories and Subject Descriptors D.3.4 [Software]:
Programming Languages—Code Generation, Compilers,
Optimization, Retargetable Compilers

General Terms algorithms, measurement, performance,
experimentation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’06 June 14-16, 2006, Ottawa, Ontario, Canada.
Copyright © 2006 ACM 1-59593-362-X/06/0006 . . . $5.00.

Aviral Shrivastava

University of California, Irvine
aviral@ics.uci.edu

Yunheung Paek

Seoul National University, Korea
ypaek®@ee.snu.ac.kr

Nikil Dutt

University of California, Irvine
dutt@ics.uci.edu

Eugene Earlie

Strategic CAD Labs, Intel
eugene.earlie@intel.com

Keywords Architecture-sensitive Compiler, Bypass-sensitive,
Forwarding Paths, Operation Table, Power Consumption,
Processor Bypasses, Register File, Reservation Table

1. Introduction

Reducing the power consumption of register files is very im-
portant due to two main reasons. The first reason is that reg-
ister files may consume a substantial portion of the power
budget of modern microprocessors [15, 25], therefore reduc-
ing register file power consumption reduces the total pro-
cessor power consumption. For example, in the Motorola
M.CORE architecture, the register file consumes 16% of the
total processor power and 42% of the data path power [6].
Azavedo et al. [2] observed that the register file power may
reach 25% of the total processor power when running em-
bedded applications. This amount would be even higher if
the associated clock tree is taken into account.

The second and the more important reason is that due to
the comparatively small size of the register file, the power
density (power per unit area) of the register file is very high.
In fact, register file is one of the most important hotspots
in some of the commercial processors [4, 7]. As a result
the register file is highly prone to “heat stroke” [9]. “Heat
Stroke” occurs if the temperature of any part of the chip in-
creases beyond a critical limit. Expensive packaging, heat
sinks and other cooling solutions are required to avoid “heat
stroke”. However if a heat stroke occurs, the processor has
to be stopped, and let cool, before it can resume execution.
Since, typically the time it takes to cool is an order of magni-
tude more than the time taken to heat the component, avoid-
ing heat stroke is of utmost importance. Again, since register
file is one of the most important hotspots in the processors,
reducing register file power is crucial to reduce the chances
of a “heat stroke”.

The situation is exacerbated by the trend of increasing
register file power consumption. Modern microarchitectural
techniques, e.g. register renaming, and compilation tech-
niques, e.g. software pipelining, aim to improve the proces-
sor performance. Increase in performance often comes with
more frequent usage of register file, and therefore increased
register file power consumption. In addition, the trend of im-
plementing large register files (e.g. in VLIW processors) is
making the situation worse. Thus register file power reduc-
tion techniques are critically required not only to reduce the
total processor power, but also to avoid possible heat strokes
in processors.

Recognizing the need and importance of reducing reg-
ister file power consumption, several techniques have been
proposed. In particular, Tseng et al. [22] observed that ex-
isting processors perform an anticipatory register file and
bypass read to obtain all the possible values of the source
operand. The decision of which value will be finally used is
made later. They found that on average 36% of the source
operand values are transferred via bypasses in pipelined and
bypassed processors. This implies that 36% of the values
read from the register file are discarded and are never used,
wasting substantial energy. They propose to reduce this reg-
ister file power wastage by first deciding whether the value
from the register file will be used or not. Register file read
is performed only if the value from the register file will be
used. In this paper we call architecture that employ this ar-
chitectural technique as On Demand RF Read architectures.

Although, On Demand RF Read architectures are effec-
tive in reducing the register file power, there is scope for fur-
ther reduction in the register file power consumption in such
architectures by scheduling instructions so that the instruc-
tions read the operands from the bypasses, rather than from
the register file. This requires the compiler to be cognizant of
the bypasses in the processor. In this paper, we propose sev-
eral bypass-aware instruction scheduling techniques aimed
at reducing the register file power consumption.

The main results of this paper are -

e Our experiments on the Intel XScale processor pipeline
with On Demand RF Read, executing benchmarks from
the MiBench suite show that our proposed bypass-aware
compilation techniques can further reduce the register file
power consumption of an architecture already optimized
architecture for register file power consumption by aver-
age 12% and up to 26%.

e Our proposed RFPN2 instruction scheduling is an effec-
tive heuristic to reduce register file power consumption.
RFPN2 can reduce on average 10% register file power,
with minimal performance loss (average 2%), and within
reasonable compilation time.

The next section, Section 2, we do a brief survey of pre-
vious approaches for register file power reduction and show
how our contributions are novel. Section 3 describes the ex-

perimental framework and empirically demonstrates the ef-
fectiveness of On Demand RF Read on the XScale processor
pipeline. Section 4 describes the our bypass-aware compi-
lation approach. Section 5 investigates the scope of regis-
ter file power consumption by intra basic block instruction
scheduling. Section 6 and Section 7 propose and evaluate
two instruction scheduling heuristics with varying time com-
plexities, aimed at reducing register file power consumption.
Finally in Section 8, we summarize our work and present
interesting future dimensions.

2. Related Work

As mentioned before, educing register file power consump-
tion has two-fold importance: first, it reduces the power con-
sumption of the whole processor, and second, it reduces the
chances of “heat stroke”, which can have a catastrophic im-
pact. To start with, [25, 23] evaluate the register file power
consumption and it’s implications. Research on reducing the
register file power consumption can broadly be classified
into two categories: the first set of techniques aim at reduc-
ing the register file power by using less number of registers,
while the second set of techniques aim to reduce the fre-
quency of accesses to the register file.

2.1 Reducethe number of registersrequired

Reducing the number of registers required by an applica-
tion enables the use of smaller register files, and thereby
reduces the register file power consumption. Reducing the
number of registers required by a program has mainly been
a compiler forte. Several instruction scheduling techniques
e.g.[24, 12, 5] have been proposed. Most of these techniques
propose to schedule instructions so as to minimize the num-
ber of overlapping live ranges. In contrast to these compiler
techniques our technique does not reduce the number of reg-
isters that a program uses, but reduces the frequency of reg-
ister file accesses.

Among architectural techniques, [1] propose an interest-
ing mechanism temporarily put the unused registers in a low-
power state, reducing the register file power consumption. In
addition, register renaming techniques e.g. [21] can modify
the register requirements of an application independent of
the compiler. In contrast of these architectural techniques,
we propose a compiler technique that can be used in con-
junction with these architectural techniques

2.2 Reduce number of accessesto register file

Apart from the obvious relationship between the frequency
of accesses to the register file and its power consumption,
reducing the number of accesses to the register file reduces
the power consumption of the register file by enabling the
use of register file with lesser number of ports. Owing to the
quadratic dependence of the register file power on the num-
ber of ports, this is a very attractive option. In addition, re-
ducing the frequency of accesses to the register file decreases

the performance penalty associated with reducing the num-
ber of ports in the register file. Combined, both of these rea-
sons have lead to a wealth of architectural techniques to ex-
ploit this.

For example, [3] suggests the use of hierarchial register
file organization to reduce the register file size, and a banked
organization to reduce the port requirements. [11] observed
that most register lifetimes are short. They propose to buffer
the results between the functional units and the register file.
[17] propose a technique of decoupled renaming to avoiding
bank conflicts in a multi-bank register file. [16] adds small
auxiliary memory structures to reducing the number of read
and write ports. Tseng et al. [22] propose several register file
and pipeline design modifications to reduce the register file
power consumption. However, in this paper, we propose a
compiler technique for register file power reduction.

Although compilers may influence the frequency of ac-
cesses to the register file by optimizations like dead code
elimination, or register spilling etc., there has been no work
in instruction scheduling targeted to reduce the frequency of
accesses to register file. This is mostly because most exist-
ing processors read the register file anticipatorily. They read
all the source operands from the register file, as well as the
bypasses, regardless of whether or not they will be used. The
decision of which value will be used is done later. In such a
case, there is no scope of reducing the frequency of access
to register file simply by instruction scheduling.

2.3 On Demand RF Read

Recently On Demand RF Read architecture was proposed by
Tseng at al. in [22]. They propose to first compute whether
the source operand value is present in the bypasses or not.
Register file is then read if and only if the operand value
from the register file will be used. They found that on a
single issue MIPS-I11 architecture, running benchmarks from
Speclnt95, 36% of operand values come from bypasses. Park
et al. [17] also analyzed the this architectural feature and
reported that on 8-issue SimpleScalar architecture, running
benchmarks from SpecInt2K, 50-70% operand values come
from bypasses.

Both [22], and [17] have evaluated and found this archi-
tectural feature effective in reducing the register file power
consumption. Such an architecture provides an opportunity
for the compiler to affect the number of access to the regis-
ter file by reordering the instructions, and thus further reduce
the register file power beyond what is achieved by the archi-
tectural technique alone.

2.4 Bypass Aware Compilation

Despite the possibility of reducing the number of accesses to
the register file in On Demand RF Read architectures, no in-
struction scheduling techniques have been proposed till now.
This is because, instruction scheduling to enable instruc-
tions to obtain their operands from the bypasses (instead of
the register file), necessitates a bypass-aware compiler. Re-

cently a bypass-sensitive instruction scheduling mechanism
was presented by Shrivastava et al. in [20]. They used Op-
eration Tables to implement bypass-sensitive scheduling in
order to generate better performing code for partially by-
passed processors. We employ the same Operation Table
based approach to detect whether an operand is being trans-
ferred via bypass or not, and develop bypass-aware instruc-
tion scheduling technique for register file power reduction.
Our instruction scheduling techniques can effectively per-
form instruction scheduling even for partially bypassed pro-
Cessors.

3. On Demand RF Read

Application
Executable
XScale with
On Demand RF Read
ecl rfpl ec2¢ ‘ rfp2

Register File Power Reduction = (rfpl-rfp2)/rfpl
Performance Improvement = (ecl - ec2)/ecl

Figure 1. Experimental Framework to establish the effec-
tiveness of On Demand RF Read

In this section, we describe our experimental setup, and
empirically establish the effectiveness of On Demand RF
Read architectural technique on the Intel XScale processor.

We perform our experiments on the Intel XScale archi-
tecture [14]. The design point is representative of proces-
sors targeted at relatively high-end, but low-cost, low-power
embedded applications, including wireless and handheld de-
vices. We simulate benchmarks from the MiBench suite [8],
since these represent the intended target applications for
the Intel XScale processor. The Intel XScale is a partially
bypassed, 7-stage superpipeline, which is implemented in
0.18 u technology, and operates at a maximum frequency
of 1000 MHz.

As shown in Figure 1, we compile the applications us-
ing a GCC cross compiler for the Intel XScale, with all the
performance optimizations turned on. The executable gen-
erated (in Figure 1) is then simulated on our cycle accurate
simulator of the Intel XScale. The cycle accurate simulator
structurally models the XScale pipeline in great detail, and
has been validated against the 80200 evaluation board [13].
The simulator gives ecl, the number of execution cycles, and
rfal, the number of register file accesses, for the whole ap-
plication.

The power model for the RF is generated using eCACTI
cache power models [18], assuming a 0.18 p technology.

We modified CACTI so that it can estimate the access time,
energy, and area of small memory structures such as a multi-
ported register files, which do not require the tags found
in cache memories. CACTI provides us with ae, dynamic
energy per RF access. The register file power consumption
rfpl is computed as r fpl = 2<xrfal

As shown in Figure 1, we modify the base Intel XScale
architecture to implement On Demand RF Read. We de-
signed the logic to find out whether the operand is coming
from the bypasses, and read register file only if it is required.
We synthesized this logic using Synopsys Design Compiler-
2001.10 [10] and 0.8 p library Isi 10k, and linearly scaled
the delay for 0.18 i technology. We synthesized the On De-
mand RF Read logic for minimum delay. The delay of the
On Demand RF Read logic was 0.8 ns, which is less than
1 ns (cycle time at 1000 MHz). Thus this logic can be com-
fortably implemented as an extra pipeline stage, just before
the Register Fetch (RF) pipeline stage in the Intel XScale.

We also used Synopsys to estimate the power consump-
tion of the On Demand RF Read logic. The power consump-
tion of the logic is 756 pW, which is negligible (< 1%) as
compared to the register file power, so we do not consider it
in our calculations.

We modified our XScale cycle accurate simulator (in
Figure 1) with an extra pipeline stage before Register Fetch
(RF), and simulate the generated executables to obtain ec2,
the number of execution cycles, and r fr1, the number of
register file reads. The register file power, r fp2, is computed
using the same formulas.

The on Demand RF Read architecture reduces the regis-
ter file power consumption by 40%, with only 1% loss in
performance. Thus, On Demand RF Read is an effective ar-
chitectural feature to reduce the RF power. In the next sec-
tions we develop instruction scheduling algorithms for this
architecture, and demonstrate their effectiveness on an al-
ready optimized architecture.

4. Bypass-Aware Compilation

Although On Demand RF Read is an effective architectural
technique to reduce the register file power consumption in
processors, in such architectures, there is scope for further
reducing the register file power consumption by scheduling
the instructions so that the value of their source operands are
present in the bypasses. Since the register file is read only
when the source operand value is not present in the bypasses,
such scheduling can reduce the register file usage and there-
fore reduce register file power consumption. However, this
requires the compiler to know exactly when an instruction
bypasses the results, which source operands can read them,
and when the result is written back in the register file. In
architectures that have all the possible bypasses i.e., com-
pletely bypassed, two numbers (11,13 | l1,12 € I, and 0 <
l1 < lg) are required for each operation; where [, is the num-
ber of cycles after issuing the instruction, the result is com-

puted, and [5 is the number of cycles after issuing the instruc-
tion, the result is written in the register file. In a completely
bypassed processor, the result of an instruction is available
to every source operand in cycle [iff [; < | < I5. When
[< 1, the result cannot be used, and when [> [, the result
is available from the register file, until it is overwritten.

Although complete bypassing is superior for perfor-
mance, it results in significant increase in the power con-
sumption, area, and wiring complexity of the processor [19].
Owing to their stricter power, cost and complexity con-
straints, partial bypassing is more popular in embedded pro-
cessors. In processors with partial bypassing, the analysis
described in the previous paragraph becomes much more
complex.

Shrivastava et al. [20] proposed the concept of Operation
Table to perform bypass-sensitive instruction scheduling. An
Operation Tables defines all the resources and registers that
an operation uses in each cycle of its execution. It also
defines which and when the operands are read, written and
bypassed, to detect both the resource and data hazards in a
given schedule of instructions.

To drive our instruction scheduling algorithms, we use
a cost function, OTGetInstrCost(S, f), which should give
us the number of operands of instruction f that are read
from bypasses, when f is scheduled as a next instruction
in an already existing partial schedule S. A partial schedule
here means an ordered list of instructions. We modify the
operation AddOperation in [20] to do this. Another cost
function that our algorithms need is OTGetScheduleCost(S),
which provides us the number of operands transferred by
bypasses in the whole schedule. This is simply computed by
repeatedly using OTGetInstrCost(S, f), for each instruction
of the schedule.

In the next sections, we will use these cost functions to
drive our instruction scheduling techniques aimed at reduc-
ing register file power consumption.

5. Scope of RF Power Reduction
5.1 Experimental Framework

Now we perform experiments to estimate the scope of reg-
ister file power reduction by intra-basic block instruction
scheduling. As shown in Figure 2, first we compile the appli-
cations using GCC with all performance optimizations on.
The executable generated is simulated on the Intel XScale
Cycle Accurate Simulator with On Demand RF Read. The
simulator gives the number of execution cycles, ecl, and the
register file power, r fp1.

For our bypass-aware instruction scheduling, we first
compile the benchmarks using the GCC cross compiler with
the same high performance options to obtain the assembly
code. The generated assembly is the input to our instruction
scheduling algorithms. We read the assembly file, generate
the instruction list, control flow graph, data flow graph and

Application

RFP
Scheduling
Assembly

Assembly

Executable Executable
XScale with XScale with
On Demand RF Read On Demand RF Read
ecﬂ rfpl e02¢ ¢ rfp2

Register File Power Reduction = (rfp1-rfp2)/rfpl
Performance Improvement = (ecl - ec2)/ecl

Figure2. Experimental Framework for instruction schedul-
ing experiments

other compiler data structures. We then perform instruction
scheduling at a basic block level.

We try all the legal permutations of instructions, allowed
by the data dependencies. We use the function OTGetSched-
uleCost(S) to estimate the number of source operands that
will be available from the bypasses. The schedule that max-
imizes the cost is chosen. such scheduling is performed for
each basic block. The transformed assembly file is assem-
bled and linked by the GCC compiler and executable is gen-
erated. The executable is simulated on the same Intel XS-
cale Cycle Accurate Simulator with On Demand RF Read.
The simulator gives the runtime, ec2, and register file power

rfp2.

5.2 Instruction Scheduling

The functioning of our instruction scheduling algorithm is
very different from traditional instruction scheduling algo-
rithms which aim to improve performance. Tradtional per-
formance oriented instruction scheduling algorithms try to
separate dependent operations as much as possible, and in-
sert non-dependent instructions in between them. This is
done to ensure that even if the first instruction is blocked
(due to data hazard or pipeline hazard), the dependent in-
struction does not have to stall. For example it is beneficial
to separate the load instruction and the instruction that uses
its result - in case there is a cache miss, the effective mem-
ory latency will be reduced by the “distance” between the
two instructions. This technique is popularly known as “load
hoisting”.

In contrast, our instruction scheduling technique tries to
schedule dependent instuctions close to each other so that
they can transfer the dependent operand through the by-
passes. As a result, if the first instruction is delayed (e.g.
because of a cache miss), the memory latency will not be
hidden and there will be a performance loss. However this
performance loss should be small owing to the high hit rates
of caches, and the fact that separating the dependent instruc-
tions hide only a very small fraction of the memory latency.

5.3 Effectiveness

30.0%

‘RF Power Reduction (RFPEX)‘

25.0% -

20.0% -

15.0% -

10.0% -

5.0% A
0.0% T T T T
e

& WO e
as® @\NO@\,(S e)
o~

" a
‘d\\"o““ d\\‘“s“

200

Figure 3. Reduction in RF Power Consumption

8.0%

Performance Improvement (RFPEX)‘

6.0%

4.0% A

2.0%

o & S

-2.0%

-4.0%

Figure 4. Performance Improvement

Figure 3 plots the percentage reduction in register file
power The graphs show that there is scope of up to 26%,
and average 12% register file power reduction by bypass-
aware instruction scheduling techniques. It should be noted
that these register file power reduction is in addition to the
40% reduction that On Demand RF Read already achieves,
and are obtained without any additional architectural sup-
port. It is also worth mentioning here that even though 12%
register file power reduction may not reduce the total pro-
cessor power significanty, it is very important to reduce the
register file power to reduce the chances of “heat stroke”.
Therefore even 12% register file power reduction is signifi-
cant and important.

Figure 4 plots the percentage reduction in runtime, or
performance improvements. As described previously in this
section, our technique should only cause slight peformance
degradations. The performance improvements that we see
in some benchmarks is because our bypass-aware compiler,
generates better schedules than GCC, which is unaware of
the bypasses present in the Intel XScale [20]. The graph in
Figure 4 shows an average 1.4% performance improvement.

Our scheduling does not consider inter-basic block ef-
fects. Considering those should decrease the register file us-
age at the basic block boundaries, and thereby further reduce
the register file power consumption. However, there is def-
initely much scope of register file power reduction via in-
struction scheduling.

RFPEX is an exhaustive algorithm, and has exponential
time complexity. It takes hours to compile for most bench-
marks, and it could not schedule the benchmarks susan and
rijndael in two days. As a result in the next two sections, we
investigate simpler scheduling heuristics.

6. RFPN Scheduling

Heuristic RFPN(BasicBlock U)
01:S=¢

02: while (U # ¢)

03: F = getNextInstructions(S,U)

[* get best next instruction */

04: maxCost =0

05: maxCostInstr = ¢

06: foreach (f € F)

07: cost = OT GetInstrCost(S, f)
08: if (cost > maxCost)

09: maxCost = cost

10: maxCostInstr = f

11 endlf

12: endFor

13: S+ = maxCostinstr, U — = maxCostInstr
14: endWhile

15:return S

Figure5. Heuristic RFPN

Figure 5 shows our RFPN scheduling algorithm. This is
a greedy algorithm to schedule instructions within a basic
block. U is the ordered set of unscheduled instructions, while
S is the ordered set of scheduled instructions. Initially U
is full, while S = ¢ (line 01). In each iteration of while-
loop (lines 02-14), one instruction is selected from U and
moved to S (line 13), until U is empty and .S contains all the
instructions. Finally the ordered set of scheduled instructions
S is returned (line 15). In each iteration of the while-loop,
first the set of instructions, that are ready to be scheduled

is computed using the data dependency information (line
03). We term the set of instructions that can be scheduled
next as the frontier set F'. For each instruction in the frontier
set F, the function OTGetInstrCost is used to find out how
many source operands will be transferred via bypasses if the
instruction is scheduled next (line 07). The for-loop, (lines
04-12) does this.

16.0%

‘RF Power Reduction (RFPN)‘

14.0%

12.0%

10.0% — —

8.0% -
6.0% -

4.0% + —

. H H H
0.0% T T T T — T T T T T

> 3 3 > 2 & o @
§ & F S E S &
& < O & & & S < < & > &
RS & & N S & @ & & & &
AN N S & & > 2
§e §@ X \)afzr & & g s
S S 2 3 RN &

5.0%

0.0% -

g
&

-5.0%d &
S

-10.0%

-15.0% -

-20.0%

Figure7. Performance Improvement

Figure 6 plots the percentage reduction in register file
power, r fp, and Figure 7 plots the percentage improvement
in performance, percentage increase in execution cycles (ec).
The graphs show that there is an average 6% register file
power reduction, at 3.5% performance loss. It takes only a
few seconds to compile for each application. Next we inves-
tigate more complicated heuristics to achieve more reduction
in the register file power consumption.

7. RFPN2 Scheduling

Next we propose and evaluate RFPN2 scheduling algorithm
described in Figure 8. This algorithm takes as input U, the
ordered set of unscheduled instructions, reorders them in S,
the ordered set of scheduled instructions, and returns it. Ini-
tially U is full, while S = ¢ (line 01). In each iteration of
the while-loop (lines 02-28), first the set of instructions that

Heuristic RFPN2(BasicBlock U)
01:S=¢

02: while (U # ¢)

03: F = getNeatInstructions(S,U)

/* Find the best next instr */

04: maxCost =0

05: maxCostInstr = ¢

06: foreach (f € F)

07: S'=8S+f,U=U-Ff

/* Assuming f, find the best schedule by RFPN */
08: while (U’ # ¢)

09: F' = getNextInstructions(S’',U’)
10: maxCost’ =0

11: maxCostInstr’ = ¢

12: foreach (f' € F’)

13: cost’ = OT'GetInstrCost(S’, f')
14: if (cost’ > maxCost’)

15: maxCost’ = cost’

16: maxCostInstr’ = f'

17: endlf

18: endFor

19: S'+ = maxCostInstr’, U'— = maxCostInstr’

20: endWhile

/* Assuming f, S’ is the best schedule */
21: cost = OT'GetScheduleCost(S’)

22: if (cost > maxCost)
23: mazxCost = cost
24: mazxCostInstr = f
25: end|f

26: endFor

/* maxCostlnstr is the best next Instr */

27. S+ = maxCostinstr,U— = maxCostInstr
28: endWhile

29:return S

Figure8. Heuristic RFPN2

are ready to be scheduled, or (the frontier set), F, is com-
puted using the data dependency information (line 03). Each
instruction (f € F) is chosen and a schedule is generated
(lines 08-20), much like the greedy heuristic RFPN in Fig-
ure 5. All the schedules are then compared using OTs (line
21) to find out which schedule results in highest number of
operands being transferred via bypasses (lines 21-26. The
first instruction of the best schedule (maxCostInstr)is cho-
sen, and added to S, and removed from U (line 27). Finally
S, the ordered set of scheduled instructions is returned (line
29).

Figure 9 plots the percentage reduction in register file
power, r fp, and Figure 10 plots the percentage improvement

25.0%

RF Power Reduction (RFPN2)

20.0% —

15.0%

10.0% +

5.0% — —’» —
0.0% : : : : M : : : : :

3 &
& 0@ ob@ é(o é((o . \Qq & <§'6 o&z, obe (9(s© e
& & 9 & & & & 9 O & 4 &
& & & & S S 8 & & & <
AN o & S 2 2 2 & v
@ & 2 2 R 2 q N
& S S & & &7
RN Cid 3 RN S
B B & N

Figure9. Reduction in RF Power Consumption

5.0%
‘Performance Improvement (RFPNZ)‘

0.0% -‘.‘ : , : : : : ‘I‘-‘
: o o Iy o o
& & S N AR N & 9 S 5 3 o.
9 S LSEE o SHEE » f o°lo"?° & &
SHUNCINCAER & N &
MR e S & & F & v
I S NS & & Q7
5.0 ¥ O & @ N S &
© 3 B

-10.0% -

-15.0%

-20.0%

Figure 10. Performance Improvement

in performance, or percentage increase in execution cycles
(ec). On an average, RFPN2 is able to reduce the register
file power by 10.5%, at a minimal 2% loss of performance.
It takes of the order of only a few minutes to compile for
each application. We think that RFPN2 is a good “overall”
heuristic.

8. Summary and Future Work

Register file power consumption has been widely recog-
nized as a very important problem, not only to reduce the
total power consumption of processor, but also to prevent
“heat strokes”. Consequently, register file power reduc-
tion has received a lot of research focus. On Demand RF
Read is an architectural technique that reduces register file
power consumption by reading registers only if the source
operand value is not present in the bypasses. In this pa-
per, we demonstrated that in architectures that employ this
feature, there is scope for further register file power reduc-
tion by scheduling instructions so that they transfer operand
values via bypasses, instead of reading them from the reg-
ister file. This requires the compiler to be aware of the by-
passes present/absent in the processor pipeline. As a result
in this paper we proposed several bypass-aware instruction

scheduling techniques aimed at register file power reduc-
tion. Our experiments on the Intel XScale processor pipeline
with On Demand RF Read, running MiBench benchmarks
show that up to 26% and on average 12% register file power
can be reduced. Further, one of our scheduling techniques
RFPN2 is an effective heuristic to reduce the register file
power consumption (10% on average) without much loss in
performance (2% on average), and within reasonable com-
pilation time.

Note that this reduction in the register file power adds
up with that achieved by the hardware alone. Also even
though 12% register file power reduction may translate into
only a very small fraction of the total processor power con-
sumption, the significance and importance of the register
file power reduction lies in reducing the chances of “heat
stroke”.

Although even within basic block scheduling results in
significant reduction in register file power consumption, we
plan to investigate more sophisticated loop scheduling algo-
rithms to fully explore the scope of register file power re-
duction by instruction scheduling. Other interesting dimen-
sions of this work include reducing the number of read ports
in the register file, and customizing processor bypasses to
reduce both the bypasses as well as the register file power
consumption.

9. Acknowledgements

This work was partially funded by Intel Corporation, UC
Micro (03-028), SRC (Contract 2003-HJ-1111), and NSF
(Grants CCR-0203813 and CCR-0205712), MIC (Min-
istry of Information and Communication),Korea, under the
ITRC (Inofrmation Technology Research Center) support
program supervised by the IITA(Institute of Information
Technology Assessment) (1ITA-2005-C1090-0502-0031),
MoST(M103BY010004- 05B2501-00411), IP/SOC, KRF
contract D00191,Korea Ministry of Information and Com-
munication under Grant A1100-0501-0004.

References

[1] J. L. Ayala, A. Veidenbaum, and M. López-Vallejo.
Power-aware compilation for register file energy reduction.
Int. J. Parallel Program., 31(6):451-467, 2003.

[2] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Duitt,
A. Veidenbaum, and A. Nicolau. Profile-based dynamic
voltage scheduling using program checkpoints in the copper
framework, 2002.

[3] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi.
Reducing the complexity of the register file in dynamic
superscalar processors. In MICRO 34: Proceedings of
the 34th annual ACM/IEEE international symposium on
Microarchitecture, pages 237-248, Washington, DC, USA,
2001. IEEE Computer Society.

[4] J. Deeney. Thermal modeling and measurement of large high
power silicon devices with asymmetric power distribution. In

International Symposium on Microelectronics, 2002.

[5] A. Eichenberger and E. Davidson. Stage scheduling: A
technique to reduce the register requirements of a modulo
schedule. In Proceedings of MICRO, pages 338-349, 1995.

[6] D. R. Gonzales. Micro-RISC architecture for the wireless
market. |EEE Micro, 19(4):30-37, 1999.

[7]1 S. H. Gunther, F. Binns, D. M. Carmean, and J. C. Hall. The
impact of increasing microprocessor power consumption. In
Intel Technology Journal, 2001.

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. MiBench: A free, commercially
representative embedded benchmark suite. In |EEE Workshop
in workload characterization, 2001.

[9] J. Hasan, A. Jalote, T. Vijaykumar, and C. Brodley. Heat
stroke: Power-density-based denial of service in smt. In
In Proceedings of International Symposium on High-
Performance Computer Architecture, 2005.

[10] http://www.synopsys.com/products/logic/design_compiler.html.
Synopsys Design Compiler, 2001.

[11] Z. Hu and M. Martonosi. Reducing register file power
consumption by exploiting value lifetime.

[12] R. Huff. Lifetime-sensitive modulo scheduling. In Proceed-
ings of the SGPLAN Conference on Programming Language
Design and Implementation, pages 258-267, 1993.

[13] Intel Corporation, http://www.intel.com/design/iio/manuals
/273411.htm. Intel 80200 Processor based on Intel XScale
Microarchitecture.

[14] Intel Corporation, http://www.intel.com/design/intelxscale/
273473.htm. Intel XScale(R) Core: Developer’s Manual.

[15] A. Kalambur and M. J. Irwin. An extended addressing
mode for low power. In ISLPED ’97: Proceedings of the
1997 international symposium on Low power electronics and
design, pages 208-213, New York, NY, USA, 1997. ACM
Press.

[16] N. S. Kim and T. Mudge. Reducing register ports using
delayed write-back queues and operand pre-fetch. In ICS
'03: Proceedings of the 17th annual international conference
on Supercomputing, pages 172-182, New York, NY, USA,
2003. ACM Press.

[17] 1. Park, M. D. Powell, and T. N. Vijaykumar. Reducing
register ports for higher speed and lower energy. In MICRO
35: Proceedings of the 35th annual ACM/IEEE international
symposium on Microarchitecture, pages 171-182, Los
Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[18] P. Shivakumar and N. Jouppi. Cacti 3.0: An integrated cache
timing, power, and area model. In WRL Technical Report
2001/2, 2001.

[19] A. Shrivastava, N. Dutt, A. Nicolau, and E. Earlie. Pbex-
plore: A framework for compiler-in-the-loop exploration of
partial bypassing in embedded processors. In DATE ’05:
Proceedings of the conference on Design, Automation and
Test in Europe, pages 1264-1269, Washington, DC, USA,
2005. IEEE Computer Society.

[20] A. Shrivastava, E. Earlie, N. Dutt, and A. Nicolau. Op-
eration tables for scheduling in the presence of incom-
plete bypassing. In CODES+ISSS ’'04: Proceedings of
the 2nd |EEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, pages 194-199,
New York, NY, USA, 2004. ACM Press.

[21] R. M. Tomasulo. An efficient algorithm for exploiting
multiple arithmetic units. 1BM Journal of Research and
Development, 11(1), 1967.

[22] J. H. Tseng and K. Asanovic. Energy-efficient register access.
In SBCCI '00: Proceedings of the 13th symposium on Inte-
grated circuits and systems design, page 377, Washington,
DC, USA, 2000. IEEE Computer Society.

[23] L. Wehmeyer, M. K. Jain, S. Steinke, P. Marwedel, and
M. Balakrishnan. Analysis of the influence of register file
size on energy consumption, code size, and execution time.
|EEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 20(11):1329-1337, 2001.

[24] H.-S. Yun and J. Kim. Power-aware modulo scheduling for
high-performance vliw, 2001.

[25] V. Zyuban and P. Kogge. The energy complexity of register
files. In ISLPED ’98: Proceedings of the 1998 international
symposium on Low power electronics and design, pages 305—
310, New York, NY, USA, 1998. ACM Press.

