
19

A Software Scheme for Multithreading on CGRAs

JARED PAGER, REILEY JEYAPAUL, and AVIRAL SHRIVASTAVA,
Compiler Microarchitecture Lab, Arizona State University

Recent industry trends show a drastic rise in the use of hand-held embedded devices, from everyday appli-
cations to medical (e.g., monitoring devices) and critical defense applications (e.g., sensor nodes). The two
key requirements in the design of such devices are their processing capabilities and battery life. There is
therefore an urgency to build high-performance and power-efficient embedded devices, inspiring researchers
to develop novel system designs for the same. The use of a coprocessor (application-specific hardware) to
offload power-hungry computations is gaining favor among system designers to suit their power budgets. We
propose the use of CGRAs (Coarse-Grained Reconfigurable Arrays) as a power-efficient coprocessor. Though
CGRAs have been widely used for streaming applications, the extensive compiler support required limits its
applicability and use as a general purpose coprocessor. In addition, a CGRA structure can efficiently execute
only one statically scheduled kernel at a time, which is a serious limitation when used as an accelerator to a
multithreaded or multitasking processor. In this work, we envision a multithreaded CGRA where multiple
schedules (or kernels) can be executed simultaneously on the CGRA (as a coprocessor). We propose a com-
prehensive software scheme that transforms the traditionally single-threaded CGRA into a multithreaded
coprocessor to be used as a power-efficient accelerator for multithreaded embedded processors. Our soft-
ware scheme includes (1) a compiler framework that integrates with existing CGRA mapping techniques to
prepare kernels for execution on the multithreaded CGRA and (2) a runtime mechanism that dynamically
schedules multiple kernels (offloaded from the processor) to execute simultaneously on the CGRA copro-
cessor. Our multithreaded CGRA coprocessor implementation thus makes it possible to achieve improved
power-efficient computing in modern multithreaded embedded systems.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream Architectures
(Multiprocessors), Parallel processors; C.1.4 [Processor Architectures]: Parallel Architectures, Mobile
processors; C.3 [Special-Purpose and Application-Based Systems]: Microprocessor/Microcomputer
Applications; C.4 [Performance of Systems]: Design Studies

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: CGRA, multithreading, power efficiency, embedded system, runtime
transformation, scheduling, compiler framework

ACM Reference Format:
Jared Pager, Reiley Jeyapaul, and Aviral Shrivastava. 2015. A software scheme for multithreading on CGRAs.
ACM Trans. Embedd. Comput. Syst. 14, 1, Article 19 (January 2015), 26 pages.
DOI: http://dx.doi.org/10.1145/2638558

This work was partially supported by funding from National Science Foundation grants CCF-0916652 and
CCF-1055094 (CAREER).
Authors’ addresses: J. Pager, R. Jeyapaul, and A. Shrivastava, Compiler Microarchitecture Lab, Arizona
State University, Tempe, Arizona 85281; emails: {jppager, Reiley.Jeyapaul, Aviral.Shrivastava}@asu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1539-9087/2015/01-ART19 $15.00

DOI: http://dx.doi.org/10.1145/2638558

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

http://dx.doi.org/10.1145/2638558
http://dx.doi.org/10.1145/2638558

19:2 J. Pager et al.

1. INTRODUCTION

In recent years, as the time and power budget to process large applications on em-
bedded devices has decreased, the need for power-efficient computing has become
an undeniable reality. Smartphones and tablets today execute multiple applications
(e.g., Facebook updates, multiple email clients, weather updates, news updates, mu-
sic player, etc.) simultaneously, which are all performance- and power-hungry appli-
cations that compete for processor, display, GPU, and network resources. In the at-
tempt to enable and enhance modern mobile computing applications, the battery life
of such devices becomes the limiting factor. Battery size determines the dimensions,
weight, and usability of modern and smart handheld devices. For example, in the
Apple iPhone 4, the battery alone is 40% of the device weight, occupies 36% of the
device volume, and allows only 7 hours (over 3G) of talk time. Here, power efficiency
directly translates into system weight, recharge time, and processing frequency of the
device.

In an application, specific power-hungry code segments (kernels) can be offloaded
into specialized hardware that executes those segments in a power-efficient manner.
For example, media-based SIMD tasks on large chunks of data can be offloaded to
a GPU for power-efficient graphics processing. Such hardware, called accelerators,
improves the performance of the system by allowing the processor core to perform its
tasks while executing the offloaded code faster (and on a low-power architecture). The
Intel MMX unit (OpenCL) and NVIDIA GPU (CUDA) are examples of such accelerators
used in modern computing systems. Coarse-Grained Reconfigurable Arrays (CGRAs)
are extremely power-efficient accelerator processors used as accelerator hardware in
streaming applications [Liang and Huang 2009].

ADRES, a popular CGRA architecture, operates at an efficiency of up to 40MOPS/mW
in the 90nm technology node [Bouwens et al. 2007]. This is compared to the Intel Atom
N550, which provides about 4.6GOPS of computation while consuming a maximum
8.5W of power [Intel-N550 2010] at an efficiency of about 0.54MOPS/mW. On the other
hand, a generalized CGRA architecture has been estimated to be able to achieve power
efficiencies of 10 to 100MOPs/mW [Singh et al. 2000]. In addition, the architecture itself
is very flexible, allowing for quick reconfigurability. This power efficiency of around an
order of magnitude more than that of general-purpose CPUs and flexible reconfigura-
bility is available only in CGRAs, making them an attractive solution for power-efficient
coprocessors to be used in modern embedded systems.

Traditionally, CGRAs have been used for streaming applications in extremely em-
bedded systems (e.g., applications like smart TV, routers, etc.), where computing needs
are more deterministic for a very narrow domain of applications [Liang and Huang
2009]. This contrasts from a general-purpose multitasking embedded system where
any arbitrary task can be run in conjunction with any number of other tasks that are
all dynamically scheduled. In order to apply a CGRA in such multitasking environ-
ments, several tools and capabilities must be made available at both the hardware
and software layers of design. Current and previous research in CGRAs has focused
on the CGRA architecture itself and on compilation techniques to map code (kernels)
on a CGRA architecture to be processed efficiently. Mapping refers to the process of
taking the operations (of a kernel) and placing them spatially and temporally on indi-
vidual compute nodes in the CGRA processor. This process is relatively complicated,
and ongoing research aims to improve the efficiency and effectiveness of such method-
ologies, thereby expanding the applicability of CGRAs to the ever-increasing range of
applications using smart embedded systems. In this, a pertinent research problem ex-
plored has been to improve CGRA utilization by identifying additional parallelization
opportunities within the code. Reduced CGRA utilization (effective number of compute

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

A Software Scheme for Multithreading on CGRAs 19:3

nodes used during kernel computation) translates into power-efficient utilization of the
computing power consumed, and thereby reduced overall power consumption for the
same application processing.

There still exists a growing need for improved tools and capabilities to ensure
widespread use of CGRAs in modern systems. Researchers in the past decade have
developed a wide array of application mapping techniques and an arsenal of CGRA
processor designs to be used as coprocessors for single-threaded embedded systems.
A recent paradigm shift in the embedded computing domain has seen a drift toward
multithreaded programming and possible extraction of parallelism at the thread level,
as in multithreaded and multicore processors (e.g., ARM A9, etc.). Among coprocessors,
the NVIDIA CUDA processor boasts the ability to handle thousands of threads simul-
taneously and deliver hundreds of gigaflops of computation power [CUDA-fermi 2010].
However, to be able to extract this maximum computing potential in such accelerators,
an application mapping framework is required (CUDA framework for NVIDIA GPUs).
If CGRAs were to be used as a coprocessor for a multithreaded system, extensive com-
piler and application mapping support is required. To the best of our knowledge, no
such general framework exists that can enable multithreaded kernels to be accelerated
simultaneously on a single CGRA coprocessor.

In this work, we envision the use of multithreaded CGRAs as a coprocessor (or
accelerator) for general-purpose multithreaded embedded processors and propose a
comprehensive software framework to solve the multithreading limitations in CGRAs’
utilization. Our software framework includes a compilation technique that integrates
with most existing CGRA mapping techniques and a runtime transformation scheme
that enables dynamic scheduling of multiple kernels onto a single CGRA. In this, each
thread executed on the general-purpose processor (GPP) offloads its respective kernels
onto the CGRA for power-efficient execution. Our runtime transformation dynamically
schedules these kernels to execute on the single CGRA simultaneously, ensuring power-
efficient resource utilization. The implemented software framework is experimented
over a cycle-accurate CGRA simulator setup that extracts the system performance
and utilization metrics, which are presented in our experiments. In this work, we
concentrate specifically on achieving maximum possible performance with minimum
CGRA resource utilization (which translates into lower power consumption in the
CGRA), thereby achieving power-efficient multithreading in CGRAs. The developed
features and contributions of this work are:

(1) Compiler Framework: We develop a compiler framework that enables multi-
threading on CGRAs. Our multithreading compiler methodology is essentially a wrap-
per over existing application-to-CGRA mapping compilers specific to the target CGRA
architecture. Our compiler methodology is therefore independent of the underlying
CGRA hardware and is therefore a completely software-only scheme with a broad range
of applicable CGRA architectures.

(2) Runtime Transformation: We develop a fast runtime transformation algorithm
that performs dynamic scheduling of kernels (offloaded for acceleration) on the multi-
threaded CGRA. The runtime transformation is the second part of our software frame-
work that interacts with the compiler instrumentation set by our compiler framework
during the CGRA compilation phase. Our runtime methodology allows multiple threads
executed on the multithreaded embedded processor to extract acceleration from the
multithreaded CGRA simultaneously, with increased power efficiency.

(3) Performance and Power Analysis of the Multithreaded CGRA: For our experi-
ments, we design a simulation setup that simulates the execution of the CGRA ar-
chitecture considered, including the runtime transformation algorithm implemented,
thereby simulating its multithreaded operation. An analysis of the performance

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

19:4 J. Pager et al.

Fig. 1. A basic CGRA architecture, with processing elements (PEs) connected by a mesh fabric, local data
memory, and local instruction memory. An expanded view of a PE is displayed, showing the input multiplexers
and the register file (RF) structure.

and power consumption in the multithreaded CGRAs is demonstrated through the
evaluation of system runtime and CGRA utilization (which improves by 2.8 times
when multithreading is enabled). CGRA utilization is a metric that measures the ef-
fective number of CGRA nodes used per cycle, which is a measure of the amount of
useful energy consumed during CGRA operation for that application. Improved CGRA
utilization means reduced power consumption.

(4) Detailed Case Study on CGRA Multithreading: We perform design space explo-
ration over the parameters involved in the design of a multithreaded CGRA and also
present an optimal system design configuration for increased performance and power
efficiency. In summary, our results indicate that in a heavily threaded environment,
the system with a multithreaded CGRA (1) shows increased performance by almost
3.5times when compared to a single-threaded CGRA and (2) is over 20 times faster
than an identical system with only a CPU and no CGRA accelerator.

2. BACKGROUND AND TERMINOLOGY

2.1. CGRA Architecture Is Simple and Power Efficient

The CGRA architecture is best seen as a class of architectures. Several distinct pro-
cessors, such as MorphoSys [Singh et al. 2000], ADRES [Mei et al. 2007], RSPA [Kim
et al. 2005], and KressArray [Hartenstein and Kress 1995], have been presented over
the years, all of which are best classed as CGRAs. Hartenstein [2001] gives a com-
prehensive summary of many different CGRA architectures. If a general description
for CGRAs were to be given, it would be to describe them as a grid of simple process-
ing elements (PEs) placed on a meshed communication network (Figure 1). Each PE
contains a rotating register file, and some or all of the PEs have access to a bank of
local memory, buffered from the main system memory. Each PE can perform simple
operations (such as shift, multiply, add/subtract, bitwise operations, etc.), and some
architectures allow for more complex operations (such as CGRA Express [Park et al.
2009]). The interconnect network can be described as one in which neighboring PEs
(on all four sides) can communicate with each other through a multiplexer at the input
of each PE. The memory bus from the local memory to the PEs usually operates in a
similar manner. Which of the multiplexed inputs to use in a computation is configured
by the instructions mapped to the PEs. Instruction memory is traversed serially using
a counter, and upon reaching the end of the instructions, the counter is reset. This is
indicative of the typical operating environment for CGRAs, which is generally a small
loop kernel executed multiple times. The CGRA is responsible for copying data and
instructions to and from the main memory.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

A Software Scheme for Multithreading on CGRAs 19:5

Fig. 2. A basic example of mapping on a CGRA. (a) DFG from a kernel of MPEG2. (b) The DFG mapped
onto the CGRA. (c) In order to correctly map the kernel, it must be unrolled and software pipelined.

2.2. Mapping a Kernel onto the CGRA Is Complex

An example of the mapping process is shown in Figure 2. Figure 2(a) describes the
DFG (Dataflow Graph) of the MPEG2 kernel (of a loop), where the shaded nodes are
load/store operations. In order to extract maximum possible parallelism, the loop is
unrolled and software pipelined to allow for one full iteration of the loop kernel to com-
plete execution at the end of every clock cycle. The CGRA mapping process involves two
key components: (1) Spatial Mapping (Figure 2(b)), where the nodes to execute on the
CGRA are mapped to their respective PEs, based on the data interaction with neigh-
boring nodes and the connectivity allowed by the CGRA network, and (2) Temporal
Mapping (Figure 2(c)), where the time that a particular node (of a particular iteration
from the unrolled loop kernel) is scheduled to be mapped on its respective location on
the CGRA.

2.2.1. Terminology Used. Code eligible for acceleration on a CGRA is referred to as a
kernel (often the innermost loop code in a nested loop). The process in which instructions
of the kernel are assigned specific time slots and PEs on a CGRA is called mapping.
When mapped onto a CGRA, the iteration interval (II) is the number of cycles it takes
to complete a single iteration of the kernel. A complete mapping is referred to as a
schedule. Since a CGRA is statically scheduled and its memory stored in a CGRA
memory buffer, performance directly increases as the II decreases.

Optimizing Schedules: The goal of all mapping algorithms should be to minimize
the II, which improves performance by reducing the total number of cycles required to
execute the kernel. An ideal case would be when an n iteration kernel (or loop) mapped
onto a CGRA takes exactly n cycles to complete execution; where (Iteration Interval)
II = 1. The minimum II for a mapping is limited by both resource constraints and
recurrence constraints (of the kernel).

Resource Constraint: To define resource constraints, we can state that for a kernel
that has x nodes and a CGRA that has y PEs, if x = 4 × y, then the II cannot be less
than 4. In other words, if the number of nodes in a kernel is n times the number of
available PEs, ideally only four nodes of the kernel can be executed in each cycle, and
the kernel will require a minimum of y cycles for its execution. In this, the mapping
and minimum II are limited by the available PEs in the CGRA. Another resource
constraint is the number of data memory ports available to each PE, which limits the
data communication bandwidth to the PEs and therefore affects the execution time of
the kernel.

Recurrence Constraint: A recurrence constraint is illustrated in Figure 3. A simple
DFG is shown in Figure 3(a), along with its mapping to the CGRA in Figure 3(b). In
Figure 3(c), the DFG is unrolled once and mapped to the CGRA Figure 3(d). In the
first case (Figure 3(b)), a single iteration of the loop is executed every two cycles; in the
second case (Figure 3(d)), two iterations are executed every four cycles, for an effective
II = 2, for both cases. For this DFG, the lowest achievable II is 2, for any CGRA size.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

19:6 J. Pager et al.

Fig. 3. The DFG in (a) is mapped to a 2 × 2 CGRA in (b) with an II of 2. DFG is unrolled once in (c) and
mapped in (d) with an II of 4, for an effective II of 2.

Instructions-per-Clock (IPC): This is a metric to quantify performance of a multi-
threaded application on a CGRA (and directly correlates to throughput). When multiple
threads are executed on a multithreaded CGRA, the utilization of the CGRA becomes
an addition of each individual thread, up to at best 100%. The IPC of the CGRA is
then additive of the IPC of each individual thread. In this article, we use this metric to
demonstrate the effectiveness of the CGRA in its role as a multithreaded coprocessor
to improve system performance.

3. MOTIVATION

In this article, the primary objective is to enable multithreading on CGRAs and allow
for the use of CGRAs as power-efficient coprocessors to general-purpose processors. On
analysis of CGRA usage and kernel mapping methodologies over different programs
and different CGRA configurations, we observe a key by-product of enabling multi-
threading: reduced CGRA utilization’. In this section, we illustrate this by-product
and motivate the design of our paging technique and runtime transformation to en-
able multithreading in CGRAs, with our eventual motive of power-efficient embedded
computing in mind.

Let us consider a loop kernel L, compiled into two different schedules (S1 and S2)
with an II of 3 each. Schedule S1 uses 24 PEs to execute in the CGRA, while schedule
S2 uses 12 PEs. Considering the number of PEs used in the computation, we can
conclude that schedule S2 is more power efficient, since in S1, though the II is the
same, the remainder of the PEs will be used for routing data and will also consume
active power. For a CGRA in the single-thread mode, no other schedule can execute
on the CGRA and therefore all the PEs must remain active. Some modified CGRA
architectures (and corresponding mapping techniques) support confining unused PEs
into segments such that the unused PEs can be switched off, thus saving on power. In
the multithreaded mode, such unused PEs can be used to allow another schedule to
execute alongside the first, thereby motivating for the possibility of using the CGRA
in the multithreaded mode. In this example, schedule S1 using 24 PEs has a higher
CGRA utilization (effective number of PEs used for execution) than that of schedule
S2 using 12 PEs, where both accomplish the same amount of computation in the same
amount of time (same iteration interval).

The internal details of the mapping for many kernels show that a large number of PEs
actually are idle or not usefully utilized much of the time. The number of PEs that are
idle or are not usefully utilized for an iteration of a kernel is given by II×Utilization×
CGRASize − IPC, where IPC is equal to the number of operations performed in each
iteration of the kernel (for a given kernel, IPC is constant). Multithreading allows
decreasing the number of unutilized PEs by reducing CGRA utilization of an individual
schedule. The PEs not used by one schedule can be used by other schedules for an overall

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

A Software Scheme for Multithreading on CGRAs 19:7

higher IPC and throughput. The quantity of useful CGRA utilization differs from one
schedule to the other, which is the focal point in our motivation for the implementation
of our developed software framework.

4. RELATED WORK

4.1. CGRA Mapping

Due to the uniqueness of CGRA architectures, advanced techniques for performing
operations on a CGRA have been developed [Park et al. 2009b; Yoon et al. 2008]. The
process of taking a piece of code and modifying it to run on a CGRA is known as
mapping. This process involves (1) generating a DFG and software pipelining using
modulo scheduling to map the DFG of the kernel onto the CGRA [Rau 1994] and
(2) generating a prologue (and epilogue) to prepare (and finalize) data used by the
kernel (executed on the CGRA). Since CGRA designs widely vary, architecture-specific
mapping algorithms have been developed; for example, the ADRES [Mei et al. 2005]
architecture uses DRESC [Mei et al. 2002, 2003], the RaPiD [Ebeling et al. 1997] uses
SPR [Friedman et al. 2009], and CGRA express [Park et al. 2009b] uses modified EMS
[Park et al. 2008].

4.2. Multithreading on CGRAs

Multithreading on CGRAs is a relatively new concept. In this work, the ability to
allow multiple unrelated thread kernels to execute simultaneously on the CGRA is
defined as multithreading ability of a CGRA. These threads can be either spawned of
the same parent process or completely independent processes. One work that allows
several kernels to be executed simultaneously is Polymorphic Pipeline Arrays (PPAs)
proposed by Park et al. [2009a]. The CGRA consists of physically separate cores (each
containing four PEs with additional customized hardware), which are allocated to
the kernels. These kernels, however, must all be compiled together at compile time
and are generally “pipelines” of a greater task. Thus, the kernels are related by data
dependencies. At runtime, depending on the dataset, the individual kernels can be
apportioned cores as needed by data demands. This technique enables a thread-related
dynamic multithreading framework.

Over the years, researchers have recognized the low CGRA utilization of individual
schedules and developed techniques to either improve the same or introduce hardware
mechanisms to reduce active PE energy consumption [Kim et al. 2010]. Since the
II has a possible minimum, useful utilization must have a maximum for any given
kernel. Multithreading enables CGRAs to take advantage of thread-level parallelism
in addition to instruction-level parallelism, and therefore maximize CGRA utilization
and eventually the power efficiency of the system. Hamzeh et al. [2012] and Hamzeh
et al. [2013] develop a recompilation-based heuristic to increase the applicability of
CGRA-based parallel computation on a wide range of applications.

Another closely related work attempts to enable multithreading on the ADRES ar-
chitecture. The ADRES architecture seeks to create a complete processor packaged
with a CGRA. It is best seen as a CGRA with a subsection able to run as a VLIW
processor. While running in VLIW mode, the rest of the CGRA sits idle. However,
ADRES can seamlessly switch to a CGRA mode from VLIW mode and back again.
The authors recognize that as ADRES increases in size, performance does not scale
as well. Therefore, they propose partitioning ADRES to allow multiple threads to run
simultaneously. This partitioning is accomplished manually and is runtime static (the
partitioning could possibly be done automatically but would remain runtime static).
While the authors only showed enabling running two related threads, the technique
could presumably be expanded to enable a runtime-static generalized multithreading.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

19:8 J. Pager et al.

Fig. 4. Overview of our multithreading CGRA framework is described with details on the workflow involved
in the application and use of our framework for a multithreaded system coupled with a multithreaded
CGRA coprocessor. The components developed as part of our framework are indicated as shaded blocks:
(a) multithreading instrumentation wrapper of the CGRA compiler, and (b) runtime transformation in the
mapping of kernel code to the multithreaded CGRA coprocessor.

5. OUR MULTITHREADING FRAMEWORK

There are several ways in which multithreading can be enabled in CGRAs without
modifying the hardware. However, only a few ways are readily conceivable. Due to
the complexity of the CGRA mappings (which can be viewed themselves as DFGs), no
naive modifications to the mapping can guarantee a working schedule. It is possible to
combine two separate DFGs and map them simultaneously together, but this is imprac-
tical at runtime and not flexible enough to be done statically. Instead, a form of hard
multiplexing should be executed, either in time or in space. Little, if any, performance
gains can be gleaned from time multiplexing (this is true because a schedule uses all
cycles to execute, but not all PEs), so this work creates a method of space multiplexing.
This allows for a software-focused solution that does not require specialized hardware.
The key idea of our framework is to create schedules that can be quickly transformed at
runtime to run on different portions of the CGRA as needed [Shrivastava et al. 2011].

5.1. Overview

Figure 4 describes our multithreading framework with specific details on the internals
of the CGRA compiler and the multithreaded system. During the compilation stage
of the application, specific portions are identified that are eligible for acceleration on
the CGRA (hereby named kernels), and the rest is annotated as serial code. The serial
portion of the application is compiled by the general-purpose processor (GPP) compiler
specific to the target processor, and the kernel portions are compiled by the CGRA
compiler. In our framework, the CGRA compiler that maps the kernels to the CGRA
coprocessor is coupled with the multithreaded instrumentation setup, which packs
the mapping into pages, making it conducive for the runtime transformation for easy
scheduling on the multithreaded CGRA. The two compiled portions of the application
are assembled into a binary to be executed in the multithreaded system. While the ap-
plication executes on the processor, the kernels are offloaded to the coprocessor through
the runtime transformation setup, which schedules the kernels to execute on available
pages of the multithreaded CGRA.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

A Software Scheme for Multithreading on CGRAs 19:9

Fig. 5. (a) An example of possible page divisions. Note that transforms for the first division (a1) are slightly
more complex than the second (a2). This is explained in Section 5.5.2. (b) An illustration of page-level dataflow
that the compiler is allowed to generate.

5.2. CGRA Hardware Specification

5.2.1. Connection Topologies. The multithreading framework presented requires a uni-
form and symmetric connection topology. This can be as simple as the one shown in
Figure 5, or perhaps more complex. This requirement exists because the CGRA will
be conceptually divided into sections called pages by the compiler, and connections be-
tween pages must by identical (thus ensuring truly dynamic threading). These pages
will then become the objects of transformation.

5.2.2. Register Requirements. In order to fully utilize our multithreading framework,
registers must be present and reserved only for multithreading use. A limited form of
multithreading is possible without registers, but this work does not present results for
this architecture configuration.

5.3. Compilation Constraints

The majority of the preparation for our multithreading process happens during the
compilation phase. This is because the compiler is responsible for producing schedules
that can quickly be transformed at runtime and also maintain high performance (low
II) and power efficiency (high CGRA utilization). The compiler targets a CGRA but
views it as pages. These pages are identical to each other and possible arrangements
are shown in Figure 5(a).

5.3.1. Dataflow Constraints. At a high level, data can be seen to flow between and within
pages. Since transformations will be performed at the granularity of pages, the compiler
need only limit dataflow at the page level to ensure a fast transformation. This is done
by allowing data to flow to either the same or the next page in the next time (cycle),
forming a ring of pages. This is the same as saying a page can only have dependencies
from either the same or previous page of the previous time (cycle). This restriction is
illustrated in Figure 5(b). It will be shown later in Section 6.1 that this restriction
does not degrade kernel performance. This dataflow constraint can be implemented by
modifying the connection topology the compiler assumes the CGRA has.

5.3.2. Register Constraints. If the CGRA provides registers, the compiler must not use
these registers during mapping, as they will be used for the runtime transformation. If
a register is needed, the compiler can use global registers (often implemented simply
as local memory) for these cases. Many mapping algorithms [Dimitroulakos et al. 2009,
2005; Hatanaka and Bagherzadeh 2007; Park et al. 2006, 2008; Yoon et al. 2008] do
not use local registers well in practice.

5.3.3. Two-Hop Constraints. The PE connectivity within the CGRA, based on the hard-
ware constraints established, can be translated into the two-hop constraint in the com-
piler. For example, in the page-divided CGRA (as in Figure 5(b)), page P2 can transfer

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

19:10 J. Pager et al.

data to P1, P2, or P3. Conversely, P2 can only receive data from these pages, which
is the hardware restriction on the CGRA paging mechanism. Our software restriction
is to remove one of these connections such that P2 can send/receive data to/from P2
and P3 only. Therefore, if nodes mapped to page P2 in time t are placed on page P4
in hardware, its dependent nodes must be placed in P3 or P4 of time t − 1. In this,
the number of hops between P2 and P4 is two, which defines the two-hop constraint.
This constraint relates only to the correctness of the computation upon scheduling on
the pages and does not affect the performance of the system. There is a negligible
performance impact owing to the software restriction, which we show is negligible in
our experimental results.

5.4. Problem Definition

Given a schedule P mapped to the CGRA structure with the compile-time con-
straints, reschedule the application at page-level granularity to a CGRA with
equal or fewer number of pages.

5.4.1. Input. Schedule P for a CGRA with N pages. Suppose the II of the mapping is
IIp. The mapping is specified as

P = {p(n,t) : 0 ≤ n < N, 0 ≤ t < IIp},
where p(n,t) represents the set of operations that will be performed on page n at time
t. The constraint on the mapping is that the operations in p(n,t) are dependent through
the interconnect (ring topology) from p(n−1,t−1) or the same page p(n,t−1).

5.4.2. Output. Schedule Q onto M pages of the CGRA. The new schedule can be speci-
fied as

Q = {q(n′,t′) : 0 ≤ n′ < M, 0 ≤ t′ < IIq},
where q(n′,t′) represents the operations that will be performed on page n′ at time t′.

5.4.3. Constraints. The first constraint is that no two pages in P must be mapped to
the same page in Q in the same time index t. If p(n,t) ∈ P is mapped to q(x′,t′) ∈ Q, we
denote it by p(n,t) → q(x′,t′). Thus, if p(n1,t1) → q(x′

1,t′
1) and p(n2,t2) → q(x′

2,t′
2), then if n1 �= n2

and t1 �= t2, then x′
1 �= x′

2 and t′
1 �= t′

2.
The other constraint is that the mapping Q must not break any of the dependencies

in P. Thus, for each n, t, if p(n,t) → q(x1,t1), p(n−1,t−1) → q(x2,t2), and p(n,t−1) → q(x3,t3), the
constraints are as follows:

(1) (x2 − 1 ≤ x1 ≤ x2 + 1) & t1 > t2
(2) (x3 − 1 ≤ x1 ≤ x3 + 1) & t1 > t3
(3) x1, x2, x3 < M

5.4.4. Objective. Clearly the objective of the mapping is to minimize the II of the
schedule Q, IIq. If the II of the original mapping P is IIp, then IIq ≥ IIp × � N

M	 by
resource constraints.

5.5. Fast Runtime Transformation

It can be verified that the constraints placed on the compiler will produce a schedule P
that meets the problem definition. In addition, it can also be verified that the hardware
requirements listed can execute a schedule Q.

This transformation serves the following purposes:
(1) First, having the ability to shrink schedules allows schedules to be sized to fit in

unused portions of the CGRA at runtime.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

A Software Scheme for Multithreading on CGRAs 19:11

(2) The second is less obvious and involves how recurrence constraints can be mapped
using this framework. They can be mapped either entirely within a single page or along
the page ring. The ring topology presented to the compiler is adjustable. For example,
a CGRA with only four pages can handle schedules compiled for a ring topology of four,
three, two, or one page(s). This allows the ring to be sized according to the size of the
recurrence cycle. However, a transform of N pages to N pages must be performed.

What is left is an algorithm to perform this transformation, given as T (P) → Q. The
given algorithm is the Pagemaster Transformation(PT), which runs in time linear to
the number of pages in the transformed schedule.

5.5.1. Transforming a Schedule. The PT handles transforming a schedule in two distinct
stages. The first stage is an initialization stage, in which the first iteration of all pages
in P are placed in Q. The second stage involves scheduling the remaining pages from
P in Q.

Initialization Stage. For any schedule, any arbitrary page must be placed in q0,0. If
this page is given by pn,0, then pn,1 and p(n+1)mod(N),1 are the two successor pages that
have dependencies on pn,0. These two pages have two other dependencies p(n−1)mod(N),0
and p(n+1)mod(N),0. These two pages must be placed next in Q in order to maintain
the two-hop constraint from the problem definition. This will produce the following
schedule:

—pn,0 → q0,0
—p(n−1)mod(N),0 → q1,0
—p(n+1)mod(N),0 → q2,0

Using this same argument, the remaining portion of P can be scheduled in Q. Since Q
can have fewer pages than P, not all pages of P may be scheduled in the first iteration
of Q. In the case where an entire iteration of Q can be filled with pages from P (i.e., the
second iteration of Q can be filled entirely if 2 × M ≤ N), the same pattern established
as before is followed, wrapping at the edges of the schedule. However, in the case
where an entire iteration of Q cannot be filled with the remaining pages from the first
iteration of P (i.e., (N)mod(M) �= 0), pages are scheduled tailing vertically (ascending
numerically) along the edge of the structure.

Filling Remaining Schedule. To place the remaining pages in P, Algorithm 1 is used.
The algorithm is called for each page in an iteration of P and then for subsequent
iterations in P. This is done so that findDependencyColumns() can be optimized to run
in constant time, as dependency columns can be estimated. Since dependencies can be
at most two hops apart, there exist three possible cases for dependencies.
Case 1: The dependencies are two hops apart: This is the most common case, and
there exists only one page column that pn,t can be scheduled, (d1 + d2)/2.
Case 2: The dependencies are a single hop apart: This case can only happen if
one of the dependencies is on the edge. In this case, the page is scheduled on the edge
based on the availability, in such a way that the two-hop constraint is not violated.
Case 3: The dependencies are in the same page column: This case is created
when scheduling pages are tailing in the initiation phase (if not, then Case 2 becomes
a fallback). This becomes a recurring case. Therefore, the page is scheduled where the
previous times of the current page have not already been scheduled.

5.5.2. Page Mirroring. While performing transformations (or when placing pages in the
new locations), they cannot be simply translated. Instead, they must be mirrored. This
mirroring is illustrated in Figure 6. This mirroring is only necessary when a page is

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

19:12 J. Pager et al.

Fig. 6. (a) Due to the page divisions, page mirroring must be performed. Pages must be “folded” along dotted
axes when moving locations of the page. (b) Page divisions here allow pages to be translated when moving
locations. This is illustrated by the straight arrows.

ALGORITHM 1: PlacePage(pn,t, Q) outputs Q
Data: d1 is the column location of pn−1,t−1

d2 is the column location of pn,t−1
t1 is the next available time in the column being placed in after thetime pn−1,t−1 and pn,t−1
have executed in Q

d1, d2 ← f indDependencyColumns()
switch d1 do

case (d2 ± 2) /* Two hops apart */
pn,t → q(d1+d2)/2,t1

case (d2 ± 1) /* One hop apart */
if (d1 = 0 or d2 = 0) then

pn,t → q0,t1
else if (d1 = M − 1 or d2 = M − 1) then

pn,t → qM−1,t1
end

case (d2) /* Zero hops apart */
if (d1 − 1 has less pages scheduled in it) then

pn,t → qd1−1,t1
else if (d1 + 1 has less pages scheduled) then

pn,t → qd1+1,t1
end

endsw
endsw

translated across an axis and the page width (in number of PEs) is greater than 1.
Thus, it is not necessary to perform mirroring on any pages in Figure 5(a2).

5.6. Example Transforms

Two examples are shown to illustrate the nuances in their implementation of both the
complete framework and our Pagemaster Algorithm.

5.6.1. Example One: Mapping to Transform. The first example shows the process of map-
ping a DFG with the compiler restrictions and then transforming that same mapping
to run on a single page. For this example, the mapping (described in Section 2.2 and
shown in Figure 2) is used. The first step in the framework is to apply the compiler
dataflow restrictions. This is shown in Figure 7(a). While not always the case, in this
example, the mapping already satisfies the restrictions, as shown in Figure 7(b). This
shows the completed mapping and becomes Schedule P from the problem definition.
The next step is to transform to a Schedule Q using the Pagemaster Algorithm.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

A Software Scheme for Multithreading on CGRAs 19:13

Fig. 7. Application of the multithreading framework from mapping to transform. To illustrate the page
mirroring principle more clearly, node text is underlined and the number is suffixed by a decimal and then
mirrored appropriately.

In this example, the transform performed is from three pages (as the mapping only
needs three pages) to a one-page configuration. This is shown in Figure 7. Here, the
pages are mirrored in order to maintain correct internal page mappings. Arrows in
Figure 7 indicate how the original dataflow (that was to the next page) is modified to
return to the same page. For example, node 6 normally passed data to the right—node
7. However, node 7 will now execute on the same page as that in node 6, so data just
needs to be passed through an output buffer to node 7.

Not shown in Figure 7 is the additional register usage. For example, normally node
1 passed data to node 3 in the next time iteration. However, node 3 will not execute in
the next time iteration, so the data must be stored in a register. This is the case for all
such situations. Figure 7 clearly shows the general nature of the multithreading that
is enabled. This schedule is completely unaffected by whatever else is scheduled to the
other sections of the CGRA. It runs independently in its allocated space on the CGRA.

5.6.2. Example Two: Advanced Transform. The second example shows a generalized ap-
plication of the transformation algorithm. Here, the precise internal page mappings
are not exposed. Part of the strength of the framework is that the transform works
regardless of what the internal page mappings are. In this example, a schedule P of
six pages is transformed to a schedule Q of four pages. This is shown in Figure 8.

We will now see how all the page dependencies are filled. Dotted arrows indicate how
previous page dependencies are fulfilled, while solid arrows indicate how the same
page dependencies are fulfilled. Small boxes with an “r” indicate registers that must be
used. As can be seen in Figure 8, no more than two register sets are needed for a page
at any cycle of the mapping. Generalized, the most register sets needed by any set of
pages is equal to the number of pages in P, minus the number of pages in Q. Bracketed
in the figure are pages scheduled during the initialization phase using the tailing
method described. These pages are given a light shade behind them. When another
page series crosses this boundary, registers must be used to fulfill a page dependency.
Excluding this intersection, dataflow follows a regular pattern, as can be seen in the
figure. The pattern must be continued for the looping nature of the kernel to work
correctly.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

19:14 J. Pager et al.

Fig. 8. Shown is a transform of six pages to four pages. Pages with light text are pages scheduled during
the initialization phase. The two pages bracketed were schedules using the tailing method. Pages with the
darkest background and no shading behind them are those scheduled using Case 1 described in Section 5.5.1.
Pages with a lighter background and italicized are scheduled with Case 3. Those with a white background
are scheduled with Case 2.

An exception to Case 2/Case 3 described in Section 5.5.1 is seen with p5,1. While
it appears that this page should be scheduled following Case 3, it is scheduled using
Case 2. This is because this page is not a tailing page.

5.7. Implementation Details

In this article, the underlying mapping algorithm used in our experiments is EMS
(Edge-centric Modulo Scheduling) [Park et al. 2008]. The CGRA PEs were divided as
shown in Figure 5. The caveat of this division is that a transform must always be
performed when scheduling onto the CGRA, whether the schedule is to be shrunk or
not. A transform of T (P) → Q, where Q has as many pages as P, works just as any
other transform except no registers are required. This is not expected to cause any
performance degradation, as a transform would have to be performed for any schedule
compiled using fewer pages than the original structure. These transforms are necessary
to remove the necessity of a hardware connection from the last page to the first page,
which the compiler assumed was present.

The advantage to using this division method is that transforms themselves become
simpler, as explained in Section 5.5.2. In this, the hardware only supports one load/store
operation on each bus each clock cycle. By mapping pages to a single load bus, the
process of compilation becomes simpler.

6. ANALYSIS AND RESULTS

To analyze the multithreading framework, a few quantifying metrics need to be identi-
fied. First, the mode of operation needs to be identified. There are two cases, one where
only a single thread accesses the CGRA and one where multiple threads access the
CGRA. In the case where only a single thread accesses the CGRA, such as when the
user is running only a single thread on the system, the performance of the modified
schedule can easily be compared with the original unmodified case by comparing the II
of each. In the case of multiple threads accessing the CGRA, a more complete analysis
that incorporates the effective CGRA utilization and system throughput in the mul-
tithreaded mode is performed. The cost of the framework is any performance lost for

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

A Software Scheme for Multithreading on CGRAs 19:15

Table I. Benchmark List

Benchmark Abbreviation

Banded Linear Equations BLEs
First Difference First Dif
General Linear Recurrence Equations 1 GLREs 1
General Linear Recurrence Equations 2 GLREs 2
General Linear Recurrence Equations 3 GLREs 3
Hydro Fragment HF
Matrix-Matrix Multiplication M-M Mul
MPEG2 Form Pred MPEG2 FP
Swim Calc 1 Swim 1
Swim Calc 2 Swim 2
Tri-Diagonal Elimination TDE

Abbreviations for benchmarks used in this work and in the
graphs presented.

single-threaded environments and the benefits of the framework are any performance
improvements for multithreaded environments.

6.1. Small Cost in Single-Threaded Performance

To determine single-threaded performance, the Iteration Interval of a schedule needs
to be compared. An identical kernel with a lower II has a higher throughput when
compared to one of a higher II. This is true for all kernels. We experimented with
over 20 benchmarks (refer to Table I for abbreviations used) to analyze the effect of
the restrictions imposed in the multithreading framework. Shown in Figure 9 are
the compilation results for the benchmark set normalized to the performance of the
original, unmodified compiler. Three CGRA sizes of 4 × 4, 6 × 6, and 8 × 8 are shown.
The average performance for the benchmarks for different CGRA sizes indicate that
the restrictions have little effect on the II (less than 1% difference on average) in the
general case for a correctly chosen PE page size. It should be noted here that the CGRA
architecture targeted requires two PEs in the same column at the same time in order
to perform a store operation, preventing a page size of two from obtaining a solution
for every benchmark.

6.2. Multithreading Increases Overall CGRA Utilization and Benefits Performance

To analyze multithreading performance, a metric besides the II must be used. Useful
utilization and limitations of single-threaded mapping are explained in Section 2.2 and
Section 3. By introducing the concept of space multiplexing to allow multithreading
and the ability to compile for subportions of the CGRA, useful utilization becomes
an important target metric. Therefore, minimizing II remains the primary goal, but
maximizing utilization becomes an additional goal. By minimizing the number of active
PEs used for computations in the mapping of a kernel (for the same II), CGRA hardware
utilization is maximized, and power-efficient use of the CGRA is achieved, and thereby
reduced system power consumption.

6.2.1. A Page Size of Four PEs Minimizes Individual Thread Utilization. To capture the effec-
tiveness of a mapping, performance per page was measured. For example, a given CGRA
has a set number of “page executions” per cycle. In the case of a 4 × 4 CGRA with a
page size of two PEs, this value is eight. That is to say, eight different pages of instruc-
tions can be executed each cycle. If it were assumed that a schedule could be expanded
instead of shrunk, the time it takes to complete one iteration of the kernel is equal to
the number of pages the mapping used, divided by the number of page executions per

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

19:16 J. Pager et al.

Fig. 9. Performance of benchmarks compiled for different CGRA configurations and sizes. Performance is
the inverse of the II. Performance is normalized to that of the original compiler. It can be seen that for a
page size of four PEs, the constrained compiler can achieve almost equal performance to that of the original
compiler.

Fig. 10. Average performance per page for an average of all benchmarks across different-size CGRAs.
Performance is inversely proportional to total utilization. A larger number indicates a higher-quality
mapping. This indicates that a page size of four PEs/page has the best utilization for this set of
benchmarks.

cycle multiplied by the II. The inverse of this is performance per page. The results of
these calculations are shown in Figure 10. As can be seen, the average performance
per page (for the set of benchmarks experimented) is slightly higher for a page size of
four PEs compared to that of two PEs and significantly greater when compared to a
page size of eight PEs.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

A Software Scheme for Multithreading on CGRAs 19:17

Fig. 11. Speedup of a multithreaded CGRA using paging over that of a single-threaded CGRA when running
at maximum theoretical throughput for different page sizes and CGRA sizes. This indicates that a page size
of four is expected to achieve the most speedup under multithreaded loads.

6.2.2. Improved CGRA Utilization of an Individual Thread Increases Throughput (IPC). Once
efficiency is determined, throughput performance becomes proportional to the number
of threads being accelerated. There exists a case where the CGRA is executing as many
threads as possible, and threads appear only as other threads complete. In this case,
the CGRA is running at maximum efficiency and throughput performance. This case is
determined by the schedules running on the CGRA, the CGRA size, and the page size
used in the CGRA. At this point, it is possible to obtain the CGRA-side acceleration
factor for enabling multithreading for this set of benchmarks, disregarding any other
factors. These speedups compared to a single-threaded CGRA are shown in Figure 11.
In the best case, performance increases by over 280%. Note the similarities in trends to
Figure 10. This trend indicates that in a system, a page size of four PEs/page should be
expected to perform the best in multithreading mode. In addition, as seen in Figure 9,
a page size of four PEs/page is expected to perform the best in a single-threaded
environment also. This makes a page size of four PEs the preferred size and is used
during the case study.

7. CASE STUDY: MULTITHREADED CGRA COPROCESSOR IN AN EMBEDDED SYSTEM

7.1. Influential System Parameters

7.1.1. Direct Memory Access (DMA) Issues. An issue of extreme importance is whether
the time to set up an initial DMA buffer for the CGRA, to execute the schedule on
the CGRA, and then execute a DMA memory transfer back to the processor, will be
less than that of the code executing on the processor alone. In addition, a single DMA
channel (one in each direction, to and from the CGRA) may inhibit the efficiency of
such multithreading on the CGRA. This is because if the time to transfer the initial
data from the buffer to the CGRA is greater than the time to execute the kernels on
the CGRA, no two threads can ever be executed on the CGRA simultaneously. In our
simulation setup, we model the impact of such DMA architecture configurations accu-
rately and study its system-level impact on a multithreaded CGRA coprocessor-based
system.

7.1.2. Transform Time. When scheduling kernels to a CGRA in multithreading mode,
there is a finite time involved if the kernel needs to be shrunk before execution when
the number of available pages is less than that required by the schedule at hand.
This transformation must be performed in the CPU and is linear in relation to the
length of the schedule. Therefore, a scheduling policy should be chosen that does not
unduly burden the CPU with unnecessary transformations, either of to-be-run (future)
schedules or currently running schedules. CPU time required for such transformations
can easily be hidden by scheduling them in parallel with DMA transfers.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

19:18 J. Pager et al.

7.2. Experimental Setup

7.2.1. Multithreaded CGRA Simulation Overview. To analyze and experiment on our pro-
posed multithreaded CGRA framework, we model through simulation the ADRES-like
CGRA architecture (Figure 1) together with the associated hardware blocks to exe-
cute a mapped kernel on the CGRA coprocessor (using Gem5 to model the CPU). To
simulate the multithreaded mode, multiple instances of a random selection of CGRA
benchmarks are composed to execute together, where the proportion of code run on
the CGRA versus that on the CPU is a predefined 75% CGRA and 25% CPU. Figure 4
describes an overview of the compiler framework that performs this functionality.

A thread is to run on either the CPU or the CGRA. For our experiments, we perform
actual simulations of the code executing on the CGRA. When on the CPU, the execution
is as that of a general Intel multicore architecture configuration. While on the CGRA, a
series of checks are performed to determine if the mapping for the kernel can actually
be scheduled on the CGRA by considering the current state of the CGRA and the
nature of the threads currently mapped onto the CGRA. The CGRA configuration files,
instruction and data memory, are loaded onto the CGRA buffers through the DMA
by means of CPU subroutines. The evaluated performance is relative to a CPU-only
execution of 16-thread configuration, where the resource and memory constraints are
modeled accurately (as they are deterministic systems). The CGRA execution time is
determined by the difference between initial DMA transfer (to the CGRA from CPU)
and DMA transfer back (CGRA to CPU).

7.2.2. System Configurations. Based onf this analysis, three different systems were mod-
eled and benchmarked. In each system, the CGRA clock speed, DMA bandwidth, and
CPU clock speed are modified.

(1) DMA-constrained dual CPU system: System with a CGRA clock speed of 350MHz,
two CPUs running at 800MHz, and a DMA bandwidth of 300MB/s in each direction

(2) DMA-constrained quad-core CPU system: System with a CGRA clock speed of
500MHz, four CPUs running at 1.8GHz, and a DMA bandwidth of 1GB/s in each
direction

(3) Non-DMA-constrained quad-core CPU system: System with a CGRA clock speed of
500MHz, four CPUs running at 2.5GHz, and a DMA bandwidth of 8GB/s in each
direction

(4) Optimized dual-core CPU system: System with a CGRA clock speed of 600MHz,
dual CPUs running at 800MHz, and a DMA bandwidth of 4GB/s in each direction.
This system is discussed in Section 7.6.

In our experiments, the key parameters that are varied to study their impact on the
system-level performance are as follows:

(1) Thread Count: By varying the number of threads run on the system (one, two, four,
eight, or 16), the effect of sharing a single CGRA resource can be identified. These
results help identify resource limitations, whether runtime is constrained by the
execution ability of the CGRA or some other resource.

(2) Kernel Need: How often a thread is executing a loop kernel (chosen from the 20
benchmarked) compared to serial code (low, medium, or high, defined as 50%, 75%,
or 87.5% likely to execute on the CGRA).

(3) Page Size: The number of PEs/page (two, four, or eight). By varying this metric, it
can be determined whether a preferred page size of four PEs is optimal for this set
of benchmarks.

(4) CGRA Size: The size of the CGRA used (4 × 4, 6 × 6, or 8 × 8). By varying this
metric, it will be seen that current mapping implementations are able to provide

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

A Software Scheme for Multithreading on CGRAs 19:19

meager gains by increasing CGRA size, and therefore the need for multithreading
will be seen. The variation in the CGRA utilization across CGRA sizes for the
compiler framework can establish the impact on power efficiency achievable.

(5) Pipelining: Whether successive kernels can operate on the previous kernel’s data
(either enabled or disabled).

7.3. Setup for Case Study Analysis

To perform case study analysis, various interdependent system parameters are grouped
and certain classifications are made to help study their system-level impacts.

7.3.1. System-Level Modeling. In a system, based on the availability of hardware re-
sources, system stalls and performance penalties will be incurred. We model the (ac-
tive and stalled) usage of the hardware resources accurately based on their individual
configurations. Based on the coprocessor usage of the applications, the following clas-
sifications are made:

(1) CPU Only: This system has no CGRAs. Therefore, all code must be run on the
CPUs.

(2) Single-CGRA System: This system has a single CGRA with a single DMA channel
and 64KB of data memory.

(3) Many-CGRA System: This system has as many CGRAs as threads, but only a single
DMA channel and 64KB of shared data memory. This system models the expected
maximum performance potential for a CGRA system.

(4) Paging CGRA System: This system has a single CGRA with the ability to multi-
thread using paging and a single DMA channel and 64KB of data memory. Schedule
transform times are modeled.

7.3.2. CPU - Coprocessor Simulation Procedure. To understand the simulation procedure,
the execution of a single thread (containing both serial and CGRA code) is explained
as follows. If the next code section is to be executed on the CPU, it is either scheduled
to an available CPU or stalled until one becomes available. On the other hand, if it is
to be offloaded to the coprocessor, the following steps are performed:

1. Data Memory (DMEM) Check: An initial buffer must be set up such that room for
the results of the kernel are reserved in the data memory buffer. If there is not sufficient
space on the buffer, the thread must be stalled. The initial buffer size is determined by
examining the current DMA load (by running thread kernels) and sized in such a way
that the schedule (to be mapped) can begin execution on the CGRA while the DMA
is still active. This is made possible by overlapped execution (double-buffering). This
calculation involves allocating space on the DMA buffer proportional to the number of
pages allotted on the CGRA and the data needs of the kernel mapped.

2. DMA Check: Kernel instructions must also be DMA’d to instruction memory. If
there is not enough available DMA bandwidth, the thread is stalled until enough band-
width is available. For a single-threaded CGRA, DMA of a thread’s data cannot begin
until the currently running thread completes. Schedule transforms can be performed
during this DMA time.

3. CGRA Check: Once a thread’s initial buffer and instructions are loaded, execution
can begin on the CGRA. If no pages are open for execution in the case of a paging
CGRA, the thread is stalled before DMA begins.

4. CGRA Scheduling: A thread can now be scheduled on the CGRA. Once execution
completes on the CGRA, CGRA pages and data memory used for buffering are released,
but the result memory used is held until data can be DMA’d back. If multiple threads

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

19:20 J. Pager et al.

Fig. 12. Relative runtime of systems using either a CPU or a single-threaded CGRA. For each system,
runtimes are normalized to the runtime of the CPU-only system of 16 threads. It is seen that a single-
threaded CGRA decreases or achieves equal runtime for a small number of threads but begins to suffer as
compared to simply running on a CPU when more threads are added.

complete around the same time, threads DMA data back in a serial fashion on a first
come, first serve basis. Once this DMA completes, all data memory for the thread is
released.

7.4. Multithreading Performance Results

7.4.1. CPU-Only Results Show the Benefits of Multithreading. While CGRA execution time
is entirely deterministic, the general-purpose processor is rather nondeterministic.
Factors such as thread scheduling policy, benchmark optimizations, cache misses, and
so forth can greatly change runtime on the CPU. In our experiments, worst-case CPU
execution times are considered in order to not bias the results in favor of the proposed
technique.

Figure 12 shows runtime differences between CPU-only execution and that using
a single single-threaded CGRA for varying the number of threads. These graphs
illustrate the limitations of a single-threaded CGRA. While runtime for a single-
threaded CGRA is less in a dual CPU DMA-constrained system, the benefits of multiple
CPUs and therefore their multithreading ability are seen in the DMA-constrained and
non-DMA-constrained quad-core systems. As process technology improves, finding a

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

A Software Scheme for Multithreading on CGRAs 19:21

Fig. 13. Relative runtime of systems using a single-threaded CGRA of varying sizes. For each system,
runtimes are normalized to that of a 4 × 4 CGRA and 16 threads. It is seen that in single-threaded mode,
runtime is not decreased by increasing CGRA size.

quad-core CPU in an embedded system will not be uncommon [ARM-A9 2009]. It can
also be seen that as DMA bandwidth increases, CGRA usage is able to increase. This
trend will prove important, which will be shown in later tests.

A few trends are to be noted here. First, it should be noticed that total CPU ac-
tive time for a CGRA system is minimal (less than 5%) for all systems. This indicates
that the CPU does not greatly change runtime in these cases. Instead, DMA band-
width and CGRA accessibility are more crucial. It will be seen in later sections that a
multithreaded paging CGRA significantly increases accessibility.

7.4.2. Increasing CGRA Size Benefits Only Multithreaded CGRAs. As long as the CGRA is
single-threaded, increasing CGRA size does not decrease runtime significantly and,
in some cases, it can even increase runtime due to the increase in instruction size
(Figure 13).

Figure 14 compares a single-threaded CGRA to that of a paging CGRA for differ-
ent sizes in a non-DMA-constrained system. Sixteen threads are used. Performance
(inverse to runtime) for a paging CGRA follows almost exactly the trend seen in

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

19:22 J. Pager et al.

Fig. 14. Runtime of different CGRA sizes for a single-threaded CGRA versus a paging CGRA in a non-DMA-
constrained system running 16 threads. The runtime is normalized to a single-threaded 4 × 4 CGRA. It is
seen that by allowing multithreading, larger CGRA structures are more effectively utilized and decrease
runtime.

Figure 11. This illustrates much of the wasted computation potential by not allow-
ing multithreading.

7.4.3. Increasing Threads Highlight DMA Needs of CGRA. To illustrate the impact of the
number of threads on CGRA accesses, a CGRA size of 8 × 8 was used, allowing for the
most multithreading potential when paging is enabled (Figure 15). In DMA-constrained
systems, a paging CGRA can achieve the same runtime as that of many-CGRA systems.
An unintended benefit of paging for DMA-constrained systems is that by shrinking the
instruction size, by not loading instructions for unused pages, DMA time is decreased.
In the non-DMA-constrained system, paging provides near-ideal runtime improve-
ments compared to that of many-CGRA systems. It should also be noted that the CPU
time used during the transformation of threads is insignificant (it accounts for less
than 2% of total CPU time, or a 60% increase in CPU active time). Thus, by slightly
increasing CPU usage, runtime equal to that of 16 CGRAs is obtained using only a
single page-enabled CGRA.

7.5. Summary of Case Study Analysis

Figure 16 shows the average stall times of each thread for given resources in differ-
ent scenarios. The stall times are from the benchmarks shown in Figure 15 using 16
threads. A few important characteristics are seen of DMA-constrained systems. Lim-
iting DMA bandwidth has a twofold effect for multithreaded systems: (1) the initial
buffer size must be larger, and (2) completed schedules’ data reside in data memory
longer. These two effects cause data memory to become full and require threads to be
stalled more often. As seen in the non-DMA-constrained quad-core system, this prob-
lem is mitigated by increasing DMA bandwidth. These stall times confirm the results
seen in Figure 15, where a many-CGRA system and a paging CGRA system provide
equal runtime in DMA-constrained systems, as both of these systems stall on the re-
sources identical in both systems. In the non-DMA-constrained system, it is seen that
a paging CGRA is able to achieve maximum throughput and threads begin to stall
waiting for CGRA availability.

7.6. Optimal System Design: Sufficient DMA Bandwidth Is Required

Based onf the previous case study analysis, an optimal system is designed. The goal
here is to configure an embedded system, with a multithreaded CGRA as a coprocessor,
in such a way that maximum system power efficiency is achieved. In this, the limita-
tions and bottlenecks identified from our analysis have been optimized for a best-case
scenario. This gives the system designer information on possible implementation of

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

A Software Scheme for Multithreading on CGRAs 19:23

Fig. 15. Relative runtime for systems with a single-threaded CGRA versus many CGRAs versus a multi-
threaded paging CGRA. For each system, runtimes are normalized to that of a single-threaded CGRA and
16 threads. It can be seen that for DMA-constrained systems, a paging CGRA achieves equal runtime to that
of many CGRAs and near-equal runtime to that of many CGRAs.

Fig. 16. Average time of total runtime each thread spent stalled as a percent of total runtime using an
8 × 8 CGRA. It is seen that a single-threaded CGRA becomes a bottleneck, and not until sufficient DMA
bandwidth is available does a paging CGRA become a bottleneck.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

19:24 J. Pager et al.

Fig. 17. Relative runtime of non-DMA-constrained quad-core system versus optimized system for a bench-
mark with 16 threads. Runtime is normalized to the optimized system. It is seen that the optimized system
provides near-equal runtime to the non-DMA-constrained quad-core system while removing bottlenecks and
being more efficient.

Fig. 18. Overview of optimized system runtime. Runtime is normalized to 16 threads of a 6 × 6 CGRA.
Various trends are present due to the optimization of this system, the most important being a decrease in
runtime as CGRA size increases.

our multithreaded CGRA framework. The proposed system attempts to achieve simi-
lar runtimes to that of the non-DMA-constrained quad-core system for 16 threads. This
system has an 8 × 8 CGRA clocked at 600MHz with dual CPUs at 800MHz and a DMA
bandwidth of 4GB/s in each direction.

7.6.1. Performance Results. Results in Figure 17(a) show that the runtimes for both
systems are within 3% of each other, where the stall times for each resource are also
indicated. This system thus has minimal distributed stall times across all resources.

7.6.2. Overall System-Level Trends. The overall system statistics for the optimized sys-
tem are shown in Figure 18. In this we observe the following trends:

(1) As threads increase, it becomes clear that a larger CGRA size is beneficial (as
noted by decreased runtimes). In this case, thread-level parallelism is much easier
to exploit than instruction-level parallelism.

(2) When the number of threads is doubled, if the runtime is less than two times, the
CGRA is not at maximum throughput. Therefore, between thread counts of four
and eight, a CGRA size of 4 × 4 reaches maximum throughput, while for thread
counts of eight and 16, a CGRA size of 6 × 6 reaches maximum throughput.

(3) When the maximum throughput is reached, the runtimes between different thread
counts become close to the ratio of number of pages each CGRA size has. For
example, a 4 × 4 CGRA has four pages and a 6 × 6 CGRA has nine pages. Therefore,

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

A Software Scheme for Multithreading on CGRAs 19:25

a 6 × 6 CGRA should have more than double the multithreading ability of a 4 ×
4 CGRA, which is close to simulation results. These are the same trends identified
in Section 6.2.2.

(4) This system shows a decrease in runtime using a multithreaded CGRA compared
to a single-threaded CGRA for a highly threaded environment of almost 350%.

(5) This system is nearly 20 times faster than the same system running the workload
using only the CPU.

8. CONCLUSION

The use of power-efficient coprocessors lowers the overall energy consumption of the
system. We identify CGRA as an attractive candidate for a coprocessor, which has
a power efficiency of around two orders of magnitude greater than that of a CPU
(40MOPS/mW for a CGRA compared to 0.54MOPS/mW for an Intel chip). A key limita-
tion in the use of such CGRAs is the lack of a means to offload multiple kernels simul-
taneously from multiple threads, as most modern processors in embedded devices are
multithreaded. We propose a novel paging-based compiler framework that integrates
with most CGRA mapping techniques to enable multithreading in the CGRA. A fast
runtime transformation is developed that uses the compiled application and allows for
a flexible means to allow a varied number of schedules to be simultaneously executed
on the CGRA. This method involves a mirroring and page-shrinking technique that al-
lows for efficient utilization of the CGRA hardware, and thus achieves power-efficient
application acceleration using the coprocessor. In this work, we analyze the influence of
various design parameters on an embedded system implemented with a multithreaded
CGRA coprocessor through a detailed case study. With the help of analysis from our
study, we configure an optimal system that efficiently utilizes such a CGRA coprocessor
and thereby demonstrates improved power-efficient embedded computing.

REFERENCES

ARM-A9. 2009. ARM-A9 Datasheet. Retrieved from http://www.arm.com/files/pdf/ARMCortexA-9Processors.
pdf.

F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev. 2007. Architectural exploration of the ADRES
coarse-grained reconfigurable array. In ARC’07. 1–13. http://dl.acm.org/citation.cfm?id=1764631.
1764633.

CUDA-fermi 2010. Tesla S2050 GPU Computing System. Retrieved from http://www.nvidia.com/docs/IO/
43395/NV-DS-Tesla-S2050-june10-final-LORES.pdf.

G. Dimitroulakos, S. Georgiopoulos, M. D. Galanis, and C. E. Goutis. 2009. Resource aware mapping on
coarse grained reconfigurable arrays. Microprocess. Microsyst. 33, 2 (2009), 91–105. DOI:http://dx.doi.
org/10.1016/j.micpro.2008.07.002

G. Dimitroulakos, M. D. Galanis, and C. E. Goutis. 2005. A compiler method for memory-conscious
mapping of applications on coarse-grained reconfigurable architectures. In 19th IEEE International
Parallel and Distributed Processing Symposium. IEEE Computer Society, Washington, DC, USA, 4.
DOI:http://dx.doi.org/10.1109/IPDPS.2005.8

C. Ebeling, D. C. Cronquist, P. Franklin, J. Secosky, and S. G. Berg. 1997. Mapping applications to the
RaPiD configurable architecture. In FCCM’97. IEEE Computer Society, 106–115. DOI:http://dx.doi.org/
10.1109/FPGA.1997.624610

S. Friedman, A. Carroll, B. Van Essen, B. Ylvisaker, C. Ebeling, and S. Hauck. 2009. SPR: An architecture-
adaptive CGRA mapping tool. In FPGA’09. ACM, New York, NY, USA, 191–200. DOI:http://dx.doi.org/
10.1145/1508128.1508158

M. Hamzeh, A. Shrivastava, and S. Vrudhula. 2012. EPIMap: Using epimorphism to map applications on
CGRAs. In DAC’12. ACM, 1284–1291. DOI:http://dx.doi.org/10.1145/2228360.2228600

M. Hamzeh, A. Shrivastava, and S. Vrudhula. 2013. REGIMap: Register-aware application mapping on
coarse-grained reconfigurable architectures (CGRAs). In Proceedings of the 50th Annual Design Au-
tomation Conference (DAC’13). ACM, New York, NY, USA, Article 18, 10 pages. DOI:http://dx.doi.org/
10.1145/2463209.2488756

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://dl.acm.org/citation.cfm?id=1764631.1764633
http://dl.acm.org/citation.cfm?id=1764631.1764633
http://www.nvidia.com/docs/IO/43395/NV-DS-Tesla-S2050-june10-final-LORES.pdf
http://www.nvidia.com/docs/IO/43395/NV-DS-Tesla-S2050-june10-final-LORES.pdf
http://dx.doi.org/10.1016/j.micpro.2008.07.002
http://dx.doi.org/10.1016/j.micpro.2008.07.002
http://dx.doi.org/10.1109/IPDPS.2005.8
http://dx.doi.org/10.1109/FPGA.1997.624610
http://dx.doi.org/10.1109/FPGA.1997.624610
http://dx.doi.org/10.1145/1508128.1508158
http://dx.doi.org/10.1145/1508128.1508158
http://dx.doi.org/10.1145/2228360.2228600
http://dx.doi.org/10.1145/2463209.2488756
http://dx.doi.org/10.1145/2463209.2488756

19:26 J. Pager et al.

R. Hartenstein. 2001. A decade of reconfigurable computing: A visionary retrospective. In DATE’01. IEEE
Press.

R. W. Hartenstein and R. Kress. 1995. A datapath synthesis system for the reconfigurable data-
path architecture. In ASP-DAC’95. ACM, New York, NY, USA, Article 77. DOI:http://dx.doi.org/
10.1145/224818.224959

A. Hatanaka and N. Bagherzadeh. 2007. A modulo scheduling algorithm for a coarse-grain reconfigurable
array template. In IPDPS’07. 1–8. DOI:http://dx.doi.org/10.1109/IPDPS.2007.370371

Intel-N550. 2010. Intel N550 Datasheet. Retrieved from http://ark.intel.com/products/50154/Intel-Atom-
Processor-N550-(1M-Cache-1_50-GHz).

Y. Kim, M. Kiemb, C. Park, J. Jung, and K. Choi. 2005. Resource sharing and pipelining in coarse-grained re-
configurable architecture for domain-specific optimization. In DATE’05. IEEE Computer Society, Wash-
ington, DC, USA, 12–17. DOI:http://dx.doi.org/10.1109/DATE.2005.260

Y. Kim, R. N. Mahapatra, and K. Choi. 2010. Design space exploration for efficient resource utilization in
coarse-grained reconfigurable architecture. In Transactions on VLSI Systems. IEEE Press.

C. Liang and X. Huang. 2009. SmartCell: An energy efficient coarse-grained reconfigurable architecture
for stream-based applications. EURASIP J. Embedded Syst. 2009, Article 1 (Jan. 2009), [15] pages.
DOI:http://dx.doi.org/10.1155/2009/518659

B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins. 2002. DRESC: A retargetable
compiler for coarse-grained reconfigurable architectures. In FTP’02. 166–173. DOI:http://dx.doi.org/
10.1109/FPT.2002.1188678

B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins. 2003. Exploiting loop-level parallelism
on coarse-grained reconfigurable architectures using modulo scheduling. In DATE’03. IEEE Computer
Society. 296–301. DOI:http://dx.doi.org/10.1109/DATE.2003.1253623

B. Mei, F.-J. Veredas, and B. Masschelein. 2005. Mapping an H.264/AVC decoder onto the ADRES reconfig-
urable architecture. In International Conference on Field Programmable Logic and Applications, 2005.
622–625. DOI:http://dx.doi.org/10.1109/FPL.2005.1515799

B. Mei, M. Berekovic, and J.-Y. Mignolet. 2007. ADRES & DRESC: Architecture and compiler for coarse-grain
reconfigurable processors. In Fine- and Coarse-Grain Reconfigurable Computing, S. Vassiliadis and D.
Soudris (Eds.). Springer Netherlands, 255–297. DOI:http://dx.doi.org/10.1007/978-1-4020-6505-76

H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-S Kim. 2008. Edge-centric modulo scheduling
for coarse-grained reconfigurable architectures. In PACT’08. ACM, New York, NY, USA, 166–176.
DOI:http://dx.doi.org/10.1145/1454115.1454140

H. Park, Y. Park, and S. Mahlke. 2009a. Polymorphic pipeline array: A flexible multicore accelerator with
virtualized execution for mobile multimedia applications. In MICRO 42. ACM, New York, NY, USA,
370–380. DOI:http://dx.doi.org/10.1145/1669112.1669160

H. Park, K. Fan, M. Kudlur, and S. Mahlke. 2006. Modulo graph embedding: Mapping applications onto
coarse-grained reconfigurable architectures. In CASES’06. ACM, 136–146.

Y. Park, H. Park, and S. Mahlke. 2009b. CGRA express: Accelerating execution using dynamic operation fu-
sion. In CASES’09. ACM, New York, NY, USA, 271–280. DOI:http://dx.doi.org/10.1145/1629395.1629433

Y. Park, H. Park, and S. A. Mahlke. 2009. CGRA express: Accelerating execution using dynamic operation
fusion. In CASES’09. 271–280.

B. Ramakrishna Rau. 1994. Iterative modulo scheduling: An algorithm for software pipelining loops. In
MICRO 27. ACM.

A. Shrivastava, J. Pager, R. Jeyapaul, M. H., and S. Vrudhula. 2011. Enabling multithreading on CGRAs. In
ICPP’11. IEEE Computer Society, 255–264. DOI:http://dx.doi.org/10.1109/ICPP.2011.77

H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. Chaves Filho. 2000. MorphoSys: An
integrated reconfigurable system for data-parallel and computation-intensive applications. IEEE Trans.
Comput. 49, 5 (May 2000), 465–481. DOI:http://dx.doi.org/10.1109/12.859540

J. W. Yoon, J. W. Yoon, A. Shrivastava, S. Park, M. Ahn, R. Jeyapaul, and Y. Paek. 2008. SPKM: A novel graph
drawing based algorithm for application mapping onto coarse-grained reconfigurable architectures. In
DAC’08. 776–782. DOI:http://dx.doi.org/10.1109/ASPDAC.2008.4484056

Received December 2011; revised April 2014; accepted June 2014

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 19, Publication date: January 2015.

http://dx.doi.org/10.1145/224818.224959
http://dx.doi.org/10.1145/224818.224959
http://dx.doi.org/10.1109/IPDPS.2007.370371
http://ark.intel.com/products/50154/Intel-Atom-Processor-N550-(1M-Cache-150-GHz)
http://ark.intel.com/products/50154/Intel-Atom-Processor-N550-(1M-Cache-150-GHz)
http://dx.doi.org/10.1109/DATE.2005.260
http://dx.doi.org/10.1155/2009/518659
http://dx.doi.org/10.1109/FPT.2002.1188678
http://dx.doi.org/10.1109/FPT.2002.1188678
http://dx.doi.org/10.1109/DATE.2003.1253623
http://dx.doi.org/10.1109/FPL.2005.1515799
http://dx.doi.org/10.1007/978-1-4020-6505-76
http://dx.doi.org/10.1145/1454115.1454140
http://dx.doi.org/10.1145/1669112.1669160
http://dx.doi.org/10.1145/1629395.1629433
http://dx.doi.org/10.1109/ICPP.2011.77
http://dx.doi.org/10.1109/12.859540
http://dx.doi.org/10.1109/ASPDAC.2008.4484056

