
A DYNAMIC CODE MAPPING TECHNIQUE FOR SCRATCHPAD MEMORIES IN

EMBEDDED SYSTEMS

by

Amit Arvind Pabalkar

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

ARIZONA STATE UNIVERSITY

December 2008

A DYNAMIC CODE MAPPING TECHNIQUE FOR SCRATCHPAD MEMORIES IN

EMBEDDED SYSTEMS

by

Amit Arvind Pabalkar

has been approved

October 2008

Graduate Supervisory Committee:

Aviral Shrivastava, Chair
Karamvir Chatha
Partha Dasgupta

ACCEPTED BY THE GRADUATE COLLEGE

ABSTRACT

Design of modern embedded systems has become extremely challenging due to multi-

dimensional and stringent design constraints like performance, cost, weight, power, real-

time, time-to-market and size. Such systems typically feature low power processors coupled

with fast on-chip scratchpad memories (SPMs). Scratchpads are more efficient than caches

in terms of energy consumption, performance, area and timing predictability. However,

unlike caches which manage the program code and data in hardware, the efficient use of

scratchpads requires them to be managed explicitly, usually by the programmer. This

involves deciding which code or data objects should be mapped to SPM, when to bring

them in and where to bring them within the SPM - termed as the mapping process. The

objective is to find a mapping which will minimize the energy consumption and maximize

the performance.

In this work, a fully automated, dynamic code mapping technique for SPMs based

on compiler static analysis is presented, which alleviates the programmer of this burden.

The mapping problem is formulated as a binary integer linear programming problem and a

heuristic is proposed to solve the problem in polynomial time. The heuristic simultaneously

solves the interdependent sub problems of bin size determination and the function-to-region

mapping (SDRM) and prefetches (SDRM-prefetch) code objects to maximize the perfor-

mance. The technique is evaluated for a subset of MiBench applications on a horizontally

split instruction cache and SPM architecture. Compared to a cache-only architecture,

SDRM-prefetch on the split architecture gives an average energy reduction of 32.3%, with

a performance improvement of 5.78%. Moreover, SDRM-prefetch achieves 25.9% energy

reduction compared to the previous known static analysis based mapping heuristic.

iii

To

my family

iv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor and committee chair Dr. Aviral

Shrivastava, without whom this work would have been impossible. I would like to thank

him for those long and sometimes heated discussions we had about almost every detail

of this topic, and for his patience for listening to my arguments. His support, invaluable

guidance and encouragement helped me throughout the completion of my master’s degree

program and my research.

I would also like to thank Dr. Karamvir Chatha and Dr. Partha Dasgupta for the

invaluable guidance they provided me as committee members. I thank my lab colleagues

Jong-eun Lee, Sai Mylavarapu, and Reiley Jeyapaul for the research discussions. Arun,

Khushboo, Rooju and Vivek thanks for the all the wonderful and fun moments, and of

course the technical discussions. Life in the lab would have been boring without your

chatter and jokes.

I would like to acknowledge the Computer Science and Engineering Department for

providing me teaching assistantship and the Consortium of Embedded Systems for provid-

ing me with the financial support in the form of an internship. I would like to thank Intel

Corporations, Chandler and my mentor Dr. Hari Tadepalli for exposure to some cutting

edge technologies, which broadened my engineering as well as research perspective.

I am very grateful to my parents. Without their encouragement it would have been

impossible for me to finish this work. Last but not the least, I would like to express

my heartfelt gratitude for my wife Pashmina, for her unwavering and unflinching support

during my research work. She has been a great source of inspiration in my life.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

I. INTRODUCTION . 1

A. Cache Memory . 1

B. Scratchpad Memory . 2

B.1. SPM Examples . 3

C. Code vs Data . 4

D. Profiling vs Static Analysis . 5

E. Scratchpad Code Mapping Problem . 5

F. Static vs Dynamic Mapping . 6

G. Summary of Contributions . 7

H. Organization of the Thesis . 8

II. RELATED WORKS . 9

A. Architecture . 9

B. Mapping Techniques . 9

B.1. Static Techniques . 10

B.2. Dynamic Techniques . 11

III. GENERIC PROBLEM DEFINITION . 13

IV. OUR APPROACH . 15

A. Overview . 15

vi

CHAPTER Page

B. Granularity of Code Objects . 15

C. Construction of GCCFG . 16

D. GCCFG Weight Assignment . 17

E. Interference Graph Construction . 19

V. ADDRESS ASSIGNMENT . 21

A. Optimal Solution - Binary ILP . 21

B. SDRM Heuristic . 22

VI. SCRATCHPAD OVERLAY MANAGER . 25

VII. RUNTIME PERFORMANCE . 27

A. Performance Overhead . 27

A.1. Scratchpad Manager Overhead . 27

A.2. Branch Prediction Table Overhead 27

A.3. CPU Cycle Stalls . 27

B. Prefetch Aware Mapping . 28

VIII. SETUP AND MODELS . 32

A. Experimental Setup . 32

B. Energy Model . 32

C. Performance Model . 33

D. Benchmarks Used . 34

IX. EXPERIMENTAL RESULTS . 35

A. Cache-only vs Horizontally Split Architecture 35

B. First-Fit vs SDRM for Horizontally Split Architecture 37

vii

CHAPTER Page

C. Performance Overhead . 40

X. CONCLUSION AND FUTURE WORK . 41

REFERENCES . 43

viii

LIST OF TABLES

Table Page

I Interference relationships for the example GCCFG 19

II Overlay table . 25

III Region table . 26

IV SDRM vs SDRM-prefetch . 31

V Energy per access (.13 µm) . 32

VI Details of the benchmark programs . 34

ix

LIST OF FIGURES

Figure Page

1 Memory hierarchy . 1

2 Cache memory organization . 2

3 Scratchpad memory organization . 4

4 Taxonomy of SPM mapping techniques . 10

5 Scratchpad overlay workflow . 15

6 Example code . 16

7 Global call control flow graph . 18

8 Interference graph derived from the GCCFG 20

9 Example code for prefetching . 29

10 Global call control flow graph with c-nodes 29

11 SHA: Energy comparisons between cache only and horizontally split archi-

tecture with SDRM . 35

12 SHA Benchmark: first-fit heuristic with varying number of variable sized

regions . 37

13 Energy comparisons between ILP, SDRM, SDRM-prefetch and first-fit for

various benchmarks . 39

14 Performance improvement: SDRM vs SDRM-prefetch 40

x

I. Introduction

The first generation embedded systems were limited to fixed, single functionality de-

vices like digital watches, calculators, washing machines etc. Modern embedded systems

have evolved into programmable, highly complex, multi-functionality devices including nav-

igation systems, portable music players, gaming consoles, personal digital assistants and

cellular phones. These systems must exhibit high performance while at the same time

consume less power, as they operate on battery. Design of such systems thus becomes

extremely challenging due to multi-dimensional and stringent design constraints including

but not limited to performance, cost, weight, power/energy, real-time, time-to-market, and

size.

Modern embedded processors improve performance by employing memory hierarchies

consisting of caches or scratchpads or both. As shown in Figure 1 a scratchpad is usually

placed at the same level as a L1 cache in the memory hierarchy after the internal CPU

registers.

CPU

SPM

Cache

L2
Cache

RAM

On-chip

Fig. 1. Memory hierarchy

A. Cache Memory

A CPU cache memory is used by the central processing unit of a computer to reduce

the average time to access memory. The CPU cache is a smaller, faster memory which stores

2

copies of the data from the most frequently and recently used main memory locations. As

long as most memory accesses are to the cached memory locations, the average latency of

memory accesses will be closer to the cache latency than to the latency of the main memory.

Figure 2 shows a block diagram of a typical cache which consists of the memory array,

address decoder logic, the column circuitry, the tag array, the tag comparators and muxes.

While caches improve performance by exploiting the spatial and temporal locality of the

application, without any changes to the application itself, these improvements are achieved

through use of tag arrays and comparators which in certain processors like StrongARM,

can consume more than 40% of the total power budget [1].

Tag Array

Tag
Comparators,

Muxes
Address Decoder

Column
Circuitry
(sense amplifiers,

column mux,
output drivers,

pre-charge logic)

Memory Array

Fig. 2. Cache memory organization

B. Scratchpad Memory

Scratchpad Memory (SPM), also known as tightly couple memory (TCM), local store,

or simply scratchpad, is typically a high speed, low latency internal memory used for

temporary storage of code and/or data, referred to as memory objects. In reference to a

CPU, SPM refers to a special high-speed memory circuit used to hold memory objects with

explicit instructions to move data to and from the main memory, often using DMA based

3

data transfer. A system with scratchpads is a system with Non-Uniform Memory Access

(NUMA) latencies, because the memory access latencies to the different scratchpads and

the main memory vary. Moreover, a system with scratchpad is generally non-coherent; the

scratchpad does not commonly contain a updated copy of data that is stored in the main

memory.

B.1. SPM Examples

• NVIDIA’s 8800 GPU running under CUDA provides 16KiB of Scratchpad per thread-

bundle when being used for gpgpu tasks [2].

• Each SPE’s in CELL BE architecture have its own private local store and relies on

DMA for transfer to/from main memory and the local store. There is no coherence

between the local stores as each processor’s workspace is separate and private.

• SH2, SH4 used is Sega’s consoles lock cachelines to an address outside of the main

memory, for use as a SPM.

• Intel’s IXP1200 and the later processors have scratchpad accessible from both the

microengines and the control, enabling more memory operations in parallel.

As shown in Figure 3 scratchpad memory is a memory array with a decoding and

column circuitry logic and a conspicuous absence of tag array, tag comparators and the

muxes. This model is designed keeping in view that the memory objects are mapped to

the scratchpad in the last stage of the compiler or by the programmer himself. The basic

assumption here is that the scratchpad occupies one distinct part of the memory address

space with the rest of the space occupied by main memory. Thus, we need not check for the

4

Address Decoder

Column
Circuitry
(sense amplifiers,

column mux,
output drivers,

pre-charge logic)

Memory Array

Fig. 3. Scratchpad memory organization

availability of the memory objects in the scratchpad. It reduces the tag comparator and

the signal miss/hit acknowledgement circuitry, which is needed in the cache. This leads to

energy as well as area reduction of a scratchpad compared to a cache.

While previous works have demonstrated that a scratchpad may require on an average

40% less energy and 34% less die area compared to a cache of same size [3], the compiler

is now responsible for managing the contents of the scratchpad. This involves inserting

explicit instructions in the program to move code or data between SPM and the main

memory. A good technique for mapping the program contents onto the scratchpad thus

becomes very critical for efficiently utilizing it with minimal runtime transfer overhead.

C. Code vs Data

During a program execution, the instruction cache is accessed for each instruction

fetch while the data cache is accessed for load and stores instructions only. Additionally,

while data may show more varied accessed pattern, instructions exhibit more predictability

and locality because of their higher execution count and smaller size [4]. Thus data can be

mapped to the main memory (cached) and its performance can improved by techniques like

5

dynamic prefetching. Instructions on the other hand are likely to show more improvements

in performance and energy consumption if mapped to the scratchpad. Therefore, we focus

on developing techniques for mapping code objects to SPM.

D. Profiling vs Static Analysis

Most code mapping techniques for SPM require profiling to find the optimal mapping

of applications. Profiling however, limits their applicability, not only because of the diffi-

culty in obtaining reasonable profiles, but also due to high space and time requirements to

generate a profile. Instead, in this work, we use compile time static analysis to eliminate

profiling and the overhead associated with it. Our static analysis is based on a new data

structure, Global Call Control Flow Graph (GCCFG), which captures the function call se-

quence as well as the control flow information like loops and conditionals. Our GCCFG can

give not only the execution counts (estimated from the control flow) but also the execution

sequences of functions (from control flow, call graph, and call sequence). This makes GC-

CFG more precise than just a call or a control flow graph in modeling the runtime behavior

of an application.

E. Scratchpad Code Mapping Problem

Traditional approaches for SPM utilization breaks down the SPM mapping problem

into two smaller problems.

• Memory assignment or ‘what to map’ : involves partitioning the application code into SPM

mapped and main memory spilled. This division eliminates code segments whose cost of

transfer from memory to SPM is greater than the profit of execution from SPM. However

since our architecture has a direct memory access controller, the transfer cost is negligible

6

and it is always profitable to execute the entire code from the SPM. We therefore do not

consider the ‘what to map’ problem in this work.

• Address assignment or ’where to map’ : involves determining the addresses on the SPM

where the code will be mapped. The focus of this dissertation is on this second problem

F. Static vs Dynamic Mapping

The SPM code mapping techniques can be classified into static and dynamic tech-

niques. In static techniques, SPM is loaded once during program initialization occupying

the entire SPM and the contents do not change during the execution of the program. This

implies that the static techniques need not address the ‘where to map’ issue; they only

solve the ‘what to map’ issue. The reduced utilization of SPM at runtime means less scope

for energy reduction. Dynamic techniques on the other hand, replenishes the contents of

the SPM with different code segments during program execution by overlaying multiple

code segments. For most efficient management, the SPM can be partitioned into bins or

regions and multiple code segments with non-overlapping live ranges should be mapped to

different regions. Thus a dynamic technique for code mapping can be broken down into

• Partition of the SPM into optimal number of regions

• Overlaying the code objects onto the regions

Although previous dynamic approaches viz. first-fit [5] and best-fit [6] have proposed so-

lutions for the second subproblem, none of the above approaches determine the optimal

size and number of regions. These heuristics assume a pre-determined number of regions

and may cause spilling of critical functions to the main memory. In fact, the above two

sub-problems have a cyclic dependency and if solved independently one after another, the

7

combined solution is sub-optimal. In this paper we propose a Simultaneous Determination

of Region and Function-to-Region Mapping (SDRM) technique which solves the two sub-

problems at the same time. Regions are created as each function gets mapped to the SPM

and are resized if the mapped function is greater than the existing region size, without

violating the total size constraints. To compare the optimality of our technique, we also

formulate a binary ILP to solve the code mapping problem. Our experiments using MiBench

benchmark suite indicate that our technique can find near-optimal solution compared to

the ILP solution and it is 25.9% better than the solution obtained by first-fit heuristic.

G. Summary of Contributions

Here we summarize our contributions in this thesis:

• We propose a novel, fine-grained dynamic code mapping technique for scratchpad

that simultaneously solves the independent problems of region size determination

and function to region mapping.

• Our approach is based on static analysis and does not require expensive and pro-

hibitive task of profiling.

• Our approach is purely compiler based and does not require and changes to the

underlying hardware.

• Experiments show that, with our approach, we can achieve an energy reduction of

25.9% compared to previous known approach based on static analysis.

• The prefetching optimization results in a performance improvement of 5.78% in terms

of execution cycles.

8

H. Organization of the Thesis

In Chapter II, we present a detailed discussion of existing SPM mapping techniques,

particulary for mapping code. We present both dynamic techniques and static techniques

based on profiling and static code analysis for mapping code. In Chapter III, we give

a formal problem definition with input, output and the objective function for the code

mapping problem. In Chapter IV we discuss our approach to solve the code mapping

problem. In Chapter V we formulate a binary ILP and present a heuristic as a solution

to the mapping problem. The implementation of the heuristic and the scratchpad overlay

manager is discussed in brief in Chapter VI while Chapter VII details out the performance

overhead and the prefetching technique to minimize the overhead. In Chapter IX, we discuss

our experimental setup, energy and performance models used and a detailed analysis of the

results obtained. Future work and conclusions are described in Chapter X.

II. Related Works

A. Architecture

Horizontally Partitioned or Split Memory Architectures is a popular architecture in

embedded systems. For example, in the Intel XScale, the main cache is 32 KB, and is

augmented by a 2KB mini-cache, which is at the same level of memory hierarchy(L1). In

this work, we also use a horizontally split memory architecture where the larger instruction

cache is divided equally into a smaller instruction cache and a scratchpad.

The authors in [7] propose a horizontal partitioning of memory architectures for energy

reduction. They show that by cleverly allocating the data objects to the smaller cache, a

substantial amount of energy can be saved due to less energy per access of smaller caches.

Our technique builds on the same concept where energy reduction is achieved by allocating

the most used code objects to the scratchpad memory.

The authors in [8] also propose a horizontally partitioned memory subsystem for energy

reduction by introducing a scratchpad and a mini-cache. However their technique uses

an architectural modification where they use an MMU and a microTLB. Our work is a

pure software method and does not require any hardware enhancement and optimization.

However, a disadvantage of our method compared to [8] is that we require source code access

for code insertions and transformations while their technique can work on any binary by

using a post-pass compiler to do the same.

B. Mapping Techniques

As discussed in the previous section, SPM mapping techniques can be classified into

static and dynamic techniques for both code as well as data. In static SPM mapping, the

SPM is initialized with the contents of the program code and data at load time and the

contents do not change during runtime. On the other hand, dynamic SPM mapping is

10

characterized by the fact that the contents of the SPM change during program execution.

Program points where code and/or data are moved between the main memory and SPM

are identified at compile time and additional instructions are inserted at these points to

carry out the movement. Both static and dynamic techniques can be further classified into

techniques that consider only data, only instructions (code) or both. Figure 4 shows the

taxonomy of SPM mapping techniques.

Static Dynamic

Hardware Software

Static AnalysisProfiling

L1 memory

Cache SPM

Data Code

Fig. 4. Taxonomy of SPM mapping techniques

B.1. Static Techniques

Papers [9–16] present static techniques for SPM allocation. Authors in [13] use a

knapsack algorithm for static assignment of code and data objects. Authors in [9] and [10]

propose a dynamic programming approach to select and statically assign code objects to

maximize energy saving. While [9] splits the available SPM into several partitions using

a special hardware, [10] makes use of a post-pass optimizer to modify the code, so that

the program runs on a unified SPM. The static approach in [16] concentrates only on data

objects. In a slightly different approach, authors in [14] present a cache aware scratchpad

allocation algorithm, where the objects with conflicting cache addresses are determined and

statically allocated to SPM. They formulate an ILP to select the optimal set of memory

11

objects. In [11], the authors have proposed a SPM allocation technique independent of the

SPM size. The technique uses profiling information embedded into the application binary to

delay the address assignment of blocks till the application is loaded onto the SPM, making

it independent of the SPM size. The works in [12] and [15] aim at multi-tasking systems.

While authors in [12] propose an API to help the programmer in moving blocks between

main memory and SPM, the authors in [15] presents three sharing strategies: non-saving,

saving and hybrid.

B.2. Dynamic Techniques

While static approaches are easy to formulate, they significantly limit the scope of

energy reduction. Therefore a majority of research [5, 6, 8, 17–22] have focussed on solving

both code and data mapping problem using dynamic techniques. The works in [19] and [20]

focus on data arrays accessed from well-structured loop kernels. The arrays are tiled to

allow only certain parts of an array to be copied to the SPM, thus allowing arrays larger

than SPM size to be mapped to the SPM. Authors in [21] also focus on mapping data

arrays to the SPM. Their technique assign registers to register classes on the basis of their

size, where each register class gets a fixed portion of the SPM. Then using a conflict graph

of live ranges, they propose a graph coloring algorithm which determines the array to be

SPM mapped at a program point.

In this research work, we also propose a dynamic technique, but overlay only code

objects due to greater energy reduction potential. The approach in [22] formulates a binary

ILP to select an optimal set of code blocks and corresponding copy points which minimize

energy consumption. However their approach does not solve the ‘where to map’ problem.

Authors in [17] formulate a mixed ILP to solve the ‘what to map’ as well as ‘where to

12

map’ problem. However the method is sub-optimal since the selected code blocks are copied

even if they are already present in SPM. The research in [6] proposes yet another dynamic

profile SPM allocation technique where the authors give a heuristic for classification of code,

stack and global data into SPM and cache, and a best-fit heuristic to solve the ’where to

map’ problem. However their technique use compaction to minimize fragmentation which

can incur a significant overhead and will be prohibitive in embedded systems. Authors

in [18] propose dynamic profile technique based on concomitance metric, which measures

how temporally related two code blocks are. However their technique does not produce a

running version of SPM-enabled binary.

Except [5] which use static analysis for code objects, all the above techniques use

profiling to find the execution count of objects. A relative advantage of static analysis

over profiling has already been discussed in the previous section. The technique that we

propose is closest to the approach presented by authors in [5]. They formulate an Integer

Linear Programming (ILP) problem to partition the memory objects into SPM and main

memory and then use another ILP to determine the address assignment. Since an ILP is

intractable for large size programs they propose a first-fit heuristic to solve the ‘where to

map’ problem. However, the heuristic in their work use a predetermined number and size

of regions. Since they do not give any details, we assume that these regions are of variable

size found by exploration. In contrast, the technique in our work computes the number

and size of regions while solving the mapping problem itself. We also formulate a binary

ILP and show that our heuristic is near-optimal to the ILP solution. In the next section

we formulate a generic problem definition for the mapping of code to SPM.

III. Generic Problem Definition

INPUT:

• Global Call Control Flow Graph (GCCFG). GCCFG is an ordered directed graph

D=(Vf , Vl, Vi, Vc, E), where each node vf ∈ Vf represents function or F-node, vl ∈ Vl

represents a loop or L-node, vi ∈ Vi represents a conditional or I-node, vc ∈ Vc represents

a computation or C-node and edge ei,j ∈ E 3 vi, vj ∈ Vf
⋃
Vl

⋃
Vi

⋃
Vc is a directed

edge between F-nodes, L-nodes, I-nodes and C-nodes. If vi and vj are both F-nodes, the

edge represents a function call. If either one is a L-node or C-node, the edge represents

a control flow. If either one is a I-node, the edge represents a conditional flow. If both

are L-nodes the edge represents nested control flow. Recursive functions are represented

by edges whose source and destination are the same. The edges of a node are ordered,

i.e. if a node has two children, the left node is called before the right node in the control

flow path of the program. Each F-node is assigned a statically determined weight wi

representing its execution count.

• Set S = {s1, s2...sf}, representing the functions sizes (F-nodes Vf in the GCCFG).

• Espm/access and Ei−cache/access, representing the energy per access for SPM and Instruc-

tion Cache, respectively.

• Embst, energy per burst for the main memory.

• Eovm, energy consumed by instructions in overlay manager code.

OUTPUT:

• Set {S1, S2...Sr}, representing sizes of regions R = {R1, R2....Rr}, such that
∑
Sr ≤

SPMSize.

• Function-to-Region mapping, X[f, r] = 1, if f is mapped to r, s.t.
∑
sf ×X[f, r] ≤ Sr.

14

OBJECTIVE:

Minimize Energy Consumption for the given application. Given the GCCFG

of an application, the objective is to create regions and function-to-region mapping such

that when the application instrumented with this binary is executed on the given SPM,

the total energy consumed is minimized. The total energy consumption is a summation of

Evi
hit, (energy on SPM hit) and Evi

miss (energy on SPM miss) where vi ∈ Vf . While Evi
hit

consists of energy consumed by the overlay manager to check if the function vi is present

in SPM and energy consumed by the execution of the function from SPM, Evi
miss has an

additional energy component for moving the called function vi from main memory to SPM

and then moving the caller function back vj on return. Code is transferred in burstsize of

Nmbst. nhitvi and nmissvi represents the number of hits and misses for the function vi.

The following equations characterizes the objective function

Evi
hit = nhitvi × (Eovm + Espm/access × si)

Evi
miss = nmissvi × (Eovm + Espm/access × si +

Embst × (si + sj)
Nmbst

)

Etotal =
∑

vi∈Vf

(Evi
hit + Evi

miss)

IV. Our Approach

The goal of our approach is to use static analysis to dynamically map application code

to regions on the SPM. Since the two sub-problems viz. region size determination and

function-to-region mapping have a cyclic dependency, solving them independently will lead

to sub-optimal results. Therefore, we require a technique to simultaneously solve the two

sub-problems.

Fig. 5. Scratchpad overlay workflow

A. Overview

Figure 5 depicts the workflow of our scratchpad overlay approach. Static analysis is

applied to the application code to create a Global Call Control Flow Graph (GCCFG).

Weights are assigned to nodes of the GCCFG , which is subsequently transformed into an

Interference Graph (I-Graph). The I-Graph and SPM size are then used as input to an ILP

or SDRM heuristic to determine the number of regions and function-to-region mapping.

The construction of GCCFG, GCCFG weight assignment and I-Graph are explained in the

following subsections with the help of an example code shown in Figure 6

B. Granularity of Code Objects

Due to small size of typical scratchpads, smaller sized code objects would lead to better

mapping and hence greater benefits of scratchpad mapping. One way of achieving this is

16

MAIN () F2 ()
F1() FOR
FOR F6 ()

F2 () F3 ()
END FOR WHILE

END MAIN F4 ()
END WHILE

F5 (condition) END FOR
IF (condition) IF ()

…… F5 ()
ELSE ELSE

F5(condition) F1()
END IF END IF

END F5 END F2

Fig. 6. Example code

to consider code at the granularity of basic blocks. However, since we instrument the code

by inserting function calls to the scratchpad manager, such a small granularity is likely

to impact performance due to overhead of additional function calls. The other drawback

is that the ILP formulation proposed becomes intractable as the number of code objects

increases. The other way of obtaining small code objects is to outline function calls [23].

However, due to high implementation cost of both the above methods, we in this work

operate at the granularity of function calls.

C. Construction of GCCFG

The GCCFG is an extension of the traditional Control Flow Graph (CFG) which is a

representation of all paths that might be traversed through a function during its execution.

A CFG is constructed for each function in the program and then all the CFGs are combined

into a GCCFG in two passes. In the first pass the basic blocks are scanned for presence of

loops (back edges in a dominator tree), conditional statements (fork and join points) and

function calls (branch and link instructions). The basic blocks containing a loop header

are labeled as L-node, those containing a fork point are labeled as I-node and the ones

17

containing a function call are labeled as F-node. The GCCFG also contains computation

nodes or C-nodes, which will be introduced and discussed in detail in Section B.

If a function is called inside a loop, the corresponding F-node is joined to the loop

header L-node with an edge. L-nodes representing nested loops, if any, are also joined.

F-nodes not inside any loop are joined to the first node of the CFG. The first node, F-

nodes , L-nodes and corresponding edges are retained, while all other nodes and edges are

removed. Essentially this step trims the CFG, while retaining the control flow and call flow

information. In this paper we assume that both paths, i.e. T and F edges, of a I-node will be

executed, which is very similar to branch predication [24]. Therefore, although the GCCFG

contain the I-nodes, the interference graph construction algorithm in Section E does not

consider the presence of I-Nodes to determine the interference relationships between the

F-nodes.

In the second pass, all CFGs are merged by combining each F-node with the first node

of the corresponding CFG. Recursive functions are joined by a dashed edge. The merge

ensures that strict ordering is maintained between the CFGs, i.e. if two functions are called

one after another, the first function is a left child and the other function is a right child

of the caller function. Thus the GCCFG is an approximate representation of the runtime

execution flow of the program.

D. GCCFG Weight Assignment

For all F-nodes vf ∈ Vf of GCCFG, weights wf , defaulting to unity, are assigned. The

GCCFG in traversed in a top-down fashion. When an L-node is encountered, the weights

of all descendent F-nodes are multiplied by a fixed quantum, Loop Factor Q. This ensures

that a function which is called inside a deeply nested loop will receive a greater weight than

18

main

F1

F2

L1

F3

L2

L3

F4

F6

F5

Q = 10
R = 2

1

100 100 1000

20

10

F1 I2

I1
T

F F10

Fig. 7. Global call control flow graph

other functions. For an F-node representing recursive function, the weight of the node is

multiplied by a different fixed quantum, Recursive Factor R. This ensures that a recursive

function will receive a greater weight than non-recursive ones. For the GCCFG shown in

Figure 7, we choose Q = 10 and R = 2.

Algorithm 1 Construct-IGraph (GCCFG = (Vf ,Vl,E))

1: for vi = v1 to (vf
⋃
vl) do

2: for vj = vi to (vf
⋃
vl) do

3: node = least-common-ancestor(vi,vj)
4: if (node == main) then
5: relation(vi, vj) = NULL ; coste [vi,vj] = 0;
6: else if (node == L-Node) then
7: relation(vi,vj) = callee-callee-in-loop ; coste [vi,vj] = (si + sj) × MIN (wi, wj)
8: else if (node == (vk 6= {vi, vj})) then
9: relation(vi,vj) = callee-callee-no-loop ; coste [vi,vj] = (si + sj) × MIN (wi, wj)

10: else if (node == vi ‖ node == vj) then
11: if (L-node in path from vi to vj) then
12: relation(vi, vj) = caller-callee-in-loop ; coste [vi,vj] = (si + sj) × wj

13: else
14: relation(vi, vj) = caller-callee-no-loop ; coste [vi,vj] = (si + sj) × wj

15: end if
16: end if
17: end for
18: end for

19

E. Interference Graph Construction

The weighted GCCFG has to be augmented considering the fact that if one function

calls another function mapped to same region, then they will swap each other out during

the function call and return back. Also if two functions mapped to same region are called

one after another in the same nested level, then they will thrash excessively. Such functions

are said to be interfering with one another and the GCCFG is not adequate to capture these

interfering relationships.

TABLE I
Interference relationships for the example GCCFG

NODE NODE INTERFERENCE RELATION
F2 F3 caller-callee-in-loop
F2 F4 caller-callee-in-loop
F2 F5 caller-callee-no-loop
F2 F6 caller-callee-in-loop
F3 F4 callee-callee-in-loop
F3 F6 callee-callee-in-loop
F4 F6 callee-callee-in-loop
F1 F2 caller-callee-in-loop

As outlined in Algorithm 1, we transform the GCCFG into an I-Graph I = (Vf , E
′),

where each node vi ∈ Vf is an F-node from the GCCFG and each edge eij ∈ E′ con-

nects a pair of interfering F-nodes or L-nodes. For all pair of nodes (vi, vj), we find the

least-common-ancestor (LCA) using Tarjan’s least common ancestors algorithm [25]. The

ancestor may or may not be either of vi and vj . For example, the LCA of F6 and F2 is F2

itself, while the LCA of F6 and F3 is L2. If the ancestor is the main function, it means

that both viandvj are called directly by main, not within any loop and we ignore such

function pairs. If the LCA is neither vi nor vj , then the interference relationship is of type

callee-callee-x, where x is either ”in-loop” (6–7) if the LCA is a L-node or its is ”no-loop” if

20

the LCA is another F-node (8–9). In both cases, the cost function given by the summation

of their size multiplied by the minimum of their weights from the GCCFG. This is because,

for callee-callee relationships, the number of times such functions will always swap each

other out is determined by the lower of their execution frequencies.

Table I shows the interference relationships and Figure 8 depicts the corresponding

I-Graph between different nodes for the example GCCFG in Figure 7. In the next section

we discuss an ILP and a heuristic which takes the nodes and the cost from the I-Graph as

input and determines the region as well as the node (function)-to-region mapping.

F1(4)

F2(2)

F4(1)

F5(4)

F6(4)

F3(3)

3000

120

400

700

600

500

500

60

Fig. 8. Interference graph derived from the GCCFG

V. Address Assignment

The problem of mapping functions-to-regions is a harder problem than the bin packing

problem as the size of regions or bins is not fixed and each function (item to be placed in

a bin) has an associated cost. Therefore we propose a binary ILP and a heuristic to solve

the ‘where to map’ problem.

A. Optimal Solution - Binary ILP

The input to the ILP is the I-Graph I = (Vf , E
′) constructed in Section E with si

representing the size of node vi ∈ Vf and a cost[vi, vj] associated with each edge (vi, vj).

The output of the ILP is the function-to-region mapping MAP : Vf → R, where R is the

set of regions created. We define a binary integer variable X[vi, r] such that

X[vi, r] =

1, if vi is mapped to region r in SPM

0, otherwise

The cost of a region is the cost of placing two or more interfering nodes in the

same region. The total cost is the summation of the cost of each region. The objective

function to be minimized is the total cost of the interference graph which is given by (V.1)

and subject to the constraints (V.2) and (V.3)

Minimize
∑

(vi,vj)∈E′

X[vi, r]×X[vj , r]× cost[vi, vj], ∀r ∈ R (V.1)

∑
r∈R

max
vi∈Vf

(X[vi, r]× si) ≤ SPMSize (V.2)

∑
r∈R

X[vi, r] = 1, ∀vi ∈ Vf (V.3)

The first constraint (V.2) ensures that the sum of the sizes of all regions doesn’t exceed

the SPM size. The size of a region is the size of the largest function mapped to the

region. Although the MAX function used above makes the constraint non-linear, it is

22

linearized during implementation by making sure that all possible combinations of regions

and functions mapped to the SPM does not exceed its size. The second constraint (V.3)

ensures that a function is not mapped to more than one region. Because of the presence of

two variables X[vi, r] and X[vj , r] in (V.1), the objective function is non-linear and cannot

be modeled using integer linear programming. To make the above function linear, a new

binary variable U[vi,vj,r] is introduced where

U [vi, vj , r] =

1, if both vi and vj are mapped to same region r

0, otherwise

U [vi, vj , r] ≥ X[vi, r] +X[vj , r]− 1

U [vi, vj , r] ≤
X[vi, r] +X[vj , r]

2

Thus, the linear form of objective function in (V.1) becomes

Minimize
∑

(vi,vj)∈E′

U [vi, vj , r]× cost[vi, vj], ∀r ∈ R (V.4)

Since solving ILP may require prohibitively large computation resources, we propose a

heuristic to solve the ‘where to map’ problem.

B. SDRM Heuristic

Our heuristic is based on the following observation. If two functions are joined by

an edge in the I-Graph, then mapping them to the same region will incur a cost equal to

the edge weight. The total cost of a region is the summation of edge weights of all such

interfering functions. Algorithm 2 outlines the mapping procedure.

The routine Overlay-I-Graph in in Algorithm 2 maps nodes (functions) of the Inter-

ference Graph for the given size of the scratchpad. The output is the array R representing

23

Algorithm 2 SDRM: Overlay-I-Graph (I-Graph,SPM-Size)

1: R[]: array of integer (size)
2: node-address[]: array of integers
3: sort-decreasing(E′)
4: for all e = (vi,vj) in E′ do
5: for vk = vi, vj ; vk ≤ SPM-Size do
6: if (node-address[vk] == NULL) then
7: r = Determine-Region(vk)
8: node-address[vk] = address[r]
9: R[r] = max(R[r], size(vk))

10: end if
11: end for
12: end for
13: return R and node-address

region sizes and array node-address representing the start address of each function. The

start address of a function is the address of the region to which it is mapped and thus rep-

resents the function-to-region mapping. Line (3) sorts the edges of I-Graph in decreasing

order of their weights and node pairs connected by these edges are considered for mapping

in this order. This ensures that the most interfering nodes are placed in separate regions of

scratchpad if not constrained by the SPM size. It then calls the routine Determine-Region

in Algorithm 3 to find the region mapping for all unmapped nodes (4–7) and updates the

corresponding node address and region size after the node is mapped (8–9).

The routine Determine-Region determines the region for each unmapped node. It first

checks if the node can be mapped to an existing region such that there is no interference

with already mapped nodes in that region (1–6). If it cannot be mapped to an existing

region, it checks if the node can be allocated to the remaining space, thereby creating a

new region (7–10). If the remaining space is not enough to allocate the new node, the

heuristic finds and existing region so that the cost of the region after overlaying the node

is minimum (12). The cost of a region is defined as the summation of interference cost of

24

Algorithm 3 SDRM: Determine-Region (Function vk)

1: global int num regions = 0
2: global int size remaining = SPM-Size
3: array address[]
4: for all r in R, starting with least cost do
5: find r, s.t. e = (vk,vj) /∈ E′, vj = MAP(r)
6: if (found r) then
7: return r
8: end if
9: end for

10: if (size(vk) ≤ size remaining) then
11: r = ++num regions
12: address[r] = SPM-Size - size remaining
13: size remaining - = size(vk)
14: else
15: find r, s.t. cost of placing vk to r is min
16: end if
17: return r

all nodes mapped to that region. The total cost is the summation of cost of all regions

created by the heuristic.

a. Worst-Case Complexity Analysis

In the worst case, all nodes or functions of the application will interfere with one

another, thus having a complexity O(E′). Moreover the computation of the cost function

will involve checking every node, complexity O(Vf). Hence the overall worst-case runtime

complexity of the heuristic is O(Vf × E′).

VI. Scratchpad Overlay Manager

The last step in the mapping process involves instrumenting the code with the mapping

information obtained from ILP or SDRM and linking this information with the code of the

SPM overlay manager (SOVM). The mapping information for each function consists of

• the region number to which the function is mapped

• start address of the region which becomes the address of the function in SPM and

also called virtual memory address of VMA

• address of the function in main memory also called logical memory address or LMA

• size of the function

TABLE II
Overlay table

Function ID Region VMA LMA Size
1 0 0x30000 0xA00000 0x100
2 0 0x30000 0xA00100 0x200
3 1 0x30200 0xA00300 0x1000
4 1 0x30200 0xA01300 0x300
5 2 0x31200 0xA01600 0x500

The overlay manager is responsible for keeping a track of every function call and its

return. The manager code maintains two data structures, the region table and the overlay

table. The overlay table as shown in Table II is filled with the mapping information during

the linking phase. The region table as shown in Table III keeps a track of all functions

which currently reside in various regions of SPM. Every function is assigned a unique

identification number during the linking process. Each function call and return statement

in the application code is replaced by a stub function call to the overlay manager, with the

function id and its arguments passed as arguments to the overlay manager. The manager

26

looks up the region table to determine if the callee function (during function call) or the

caller function (during function return) is currently mapped to an SPM region. If yes,

then the manager simply jumps to the first instruction in the target function with the

passed arguments for function calls or jumps to the caller function with the return value

as argument for function returns. If no, then manager uses the function id to look up the

overlay table to find the VMA, LMA and size of the function. It issues DMA instructions

to transfer the function code from main memory to SPM. Note that since we are dealing

with code, the contents of the SPM region can simply be overwritten with the new function

code and need not be copied back to the main memory.

TABLE III
Region table

Region Function ID
0 1
1 4
2 5

VII. Runtime Performance

A. Performance Overhead

The overall performance penalty is a summation of various factors as described in the

following subsections.

A.1. Scratchpad Manager Overhead

The SOVM and its data are mapped to the main memory to reduce the mapping

pressure on the heuristic. Since the SOVM instructions are fetched from the instruction

cache and its associated data structures are fetched from the data cache, we might see

some runtime performance degradation. Our experiments show that the degradation due

to SOVM instructions and data is minimal.

A.2. Branch Prediction Table Overhead

The architecture used for the purpose of our experiments employs a branch target

buffer (BTB) table for branch prediction. The target of a branch instruction is stored in

the BTB table and this target value used for subsequent invocations of the same branch

instruction, thereby saving precious cycles. However, this prediction scheme requires that

each time an overlayed function is transferred from main memory to SPM, the table has to

be flushed. This is essential, otherwise branch instructions will jump to invalid addresses

from the previous overlayed functions, thereby crashing the application. The flushing of

the table contributes to the performance penalty, albeit by a small amount.

A.3. CPU Cycle Stalls

A major contributor to the overall performance penalty is due to processor stalls during

transfer of code blocks from main memory to SPM. The command to transfer code blocks

is on demand; i.e. the code blocks are not transferred to SPM until they are required for

execution. Consequently, the SOVM cannot transfer program control to the first instruction

28

in the overlayed function until the entire function is transferred. The processor must

therefore stall till the transfer command completes and this contributes to the major portion

of the penalty. The processor stalls can be avoided if the overlayed functions can be

prefetched into the SPM, rather than fetching them when they are absolutely required.

The next section discusses a pre-fetch based algorithm which reduces the performance

penalty.

B. Prefetch Aware Mapping

In the previous section Section A, we discussed that processor stalls during code trans-

fers contributes significantly to the performance overhead. As we shall discuss in Section C,

the average performance degradation is around 2.08% for the SDRM technique on the split

architecture compared to the performance on the instruction cache only architecture. One

way to reduce the number of stalls is to prefetch the overlayed functions into the SPM

regions, instead of fetching on demand. Since our architecture uses a direct memory access

engine, the processor can continue executing the instructions of the current function while

the next function to be called is prefetched, thereby effectively overlapping the processing

and communication time.

To identify such prefetch opportunities in a program, we introduce additional nodes

in the GCCFG representing computations, the C-nodes. Such nodes are characterized by

the computation time in cycles which is determined statically. This is done by summing

the cycles required by each instruction in the C-node. If the C-node contains a loop, then

we multiply the aggregate cycle time of such instructions with a fixed quantum C equal to

10. The computation time is thus a conservative approximation and does not account for

processor stall cycles due to hazards, cache misses or other factors. Figure 9 shows a sample

29

MAIN () F2 ()
F1() FOR
FOR computations..

F2 () F6 ()
END FOR computations..

END MAIN F3 ()
F3 () WHILE

… F4 ()
END F3 END WHILE
F4() END FOR

… computations..
END F4 F5 ()
F5() END F2
END F5

Fig. 9. Example code for prefetching

main

F1

F2

L1

F3

L2

L3

F4

F6

F5

Q = 10
C = 10

1

100

100

1000

10

10

10

C3

C1

C2

Fig. 10. Global call control flow graph with c-nodes

code with computation instructions and Figure 10 shows the corresponding GCCFG with

the C-nodes C1, C2 and C3.

Prefetching is beneficial only if there is more than one node mapped to a region, the

nodes have callee-callee-in-loop relationship and the nodes are the same nested level. For

callee-callee-no-loop relationship, prefetching is a one time act and there is no benefit in

analysis of the corresponding region containing such nodes. Moreover, prefetching is not

possible for regions containing caller-callee-in-loop or caller-callee-no-loop relationships, as

the prefetched code will overwrite the currently executing code and crash the application.

30

For the GCCFG in Figure 10, F6 and F3 has callee-callee-in-loop relationship. Thus we

can insert prefetching code at the start of C1 and at the start of C2. F3 and F4 also has a

callee-callee-in-loop relation but note that F4 is called inside the loop L3 and is not at the

same nested level as F3. Hence once we fetch F4, there is no point prefetching it every time

as it will just overwrite the code and consume more energy due to extra writes to SPM.

Having identified such nodes with prefetching opportunities, we derive the following

cost function for performance penalty for such nodes. The section Section C gives the

formula for deriving latencycycles/byte.

costp[vi, vj] = (si + sj)×min(wi, wj)× latencycycles/byte

− (Ci + Cj) (VII.1)

For nodes which are not prefetched, the Ci or Cj is nil and the performance penalty which

is a function of the size of the functions and their weights will be maximum. The energy

cost coste is determined by the Algorithm 1. The total interference cost is defined as the

product of performance cost cost p and the energy cost cost e and is given as input to the

ILP and the SDRM heuristic.

cost[vi, vj] = coste[vi, vj]× costp[vi, vj] (VII.2)

The SDRM heuristic using the new cost function is termed as SDRM-prefetch. However,

for the same size of scratchpad, the SDRM-prefetch may result in a lesser energy reduction

compared to SDRM heuristic. Consider the GCCFG in Figure 10 and suppose a possible

mapping given by SDRM in Table V(a). Now because of the C-nodes C1 and C2, and

the callee-callee-in-loop relation between F3 and F6, the SDRM-prefetch mapping will

generate the mapping shown in Table V(b). While the performance will improve because

31

TABLE IV
SDRM vs SDRM-prefetch

Region Function ID
0 F2,F1
1 F4,F5
2 F3
3 F6

(a) SDRM mapping

Region Function ID
0 F2,F1
1 F4
2 F3,F6
3 F5

(b) SDRM-prefetch map-
ping

of prefetching of F3 and F6, every fetch of F3 and F6 will now cause additional SPM

writes and this will lead to more energy consumption and hence lower reduction. If the

SDRM-prefetch does not change the mapping, then the energy reduction will be same as

that of SDRM heuristic with at least some performance improvement. Thus there is always

a tradeoff between energy reduction and the performance improvement. As we shall see

in Section IX, while the tradeoff is not very large for our benchmark applications, they

might be substantial for other applications and hence prefetching becomes a major design

decision.

VIII. Setup and Models

A. Experimental Setup

The instrumented binary is executed on the cycle-accurate simple-scalar simulator [26]

modeling ARMv5TE instruction set. The details of the instruction set can be obtained

from [27]. The simulator has been modified to model an on-chip SPM at same level as the

level 1 instruction cache. The system modeled has a 16KB L1 direct mapped instruction

cache, 16KB 4-way set associative data cache and a SPM, the size of which can be selected

by the system designer. The size is typically changed by writing to a 32 bit register. The

SPM is designed to be used as part of the physical map of the system, and is not backed

by a level of external memory with the same physical addresses. The L1 instruction cache

and the SPM are incoherent i.e. the memory locations are contained either in the SPM or

the cache, not in both. The simulator models a low power 32MB SDRAM from Micron,

MT48V8M32LF [7], as the main memory.

B. Energy Model

TABLE V
Energy per access (.13 µm)

Size(KB) SPM(nJ) 4-way Cache(nJ)
0.5 0.107 0.534
1 0.128 0.538
2 0.134 0.542
4 0.145 0.551
8 0.173 0.564
16 0.206 0.587

We compare only the memory subsystem energy since the processor energy overhead

of our technique is very negligible (The overhead in terms of performance is reported in

Section C). The energy figures for SPM and I-Cache are given in Table V. We assume

EIC−READ/ACCESS and EIC−WRITE/ACCESS to be equal. The energy per memory burst

33

EMBST is 32.5 nJ [7]. The total energy ETOTAL consumed by the memory system is given

by the following equations.

ETOTAL = ESPM + EI−CACHE + ETOTAL MEM

ESPM = NSPM × ESPM/ACCESS

EI−CACHE = EIC−READ/ACCESS × {NIC−HITS

+NIC−MISSES}+ EIC−WRITE/ACCESS

× 8×NIC−MISSES

ETOTAL−MEM = ECACHE−MEM + EDMA

ECACHE−MEM = EMBST ×NIC−MISSES

EDMA = (NDMA−BLOCK × EMBST × 4)

C. Performance Model

The performance of the application is given by the total simulation time in cycles. This

simulation time also includes the processor stalls due to non-prefetched DMA instructions.

The L1 cache and SPM access latency is 1 cycle each. We assume a non-pipelined main

memory model and transfer data in chunks determined by the memory access bus width

equal to 64 bits. The transfer takes place in chunks, where the first chunk takes 18 cycles

and the rest of the chunks take 2 cycles each. The total latency is the summation of all the

chunks. The effective latency per byte is the ratio of total memory latency and blk size,

where blk size is the number of bytes to be transferred by the overlay manager from main

memory to SPM. The main memory access latency is given by the following set of equations.

34

mem lat[0] = 18 [first chunk]

mem lat[1] = 2 [inter chunk]

chunks =
blk size+ (bus width− 1)

bus width

total lat = mem lat[0] +mem lat[1]× (chunks− 1)

latency cycles/byte =
total lat

blk size

D. Benchmarks Used

TABLE VI
Details of the benchmark programs

Benchmark Size(Bytes) Description
Dijkstra 1588 Shortest Path(network)
Patricia 2904 Routing(network)
Rijndael 21050 Encryption(security)

SHA 2376 Message Digest(security)
Susan 46808 Edge Detection(automotive)
FFT 4688 Signal Processing(telecom)

ADPCM 1436 Audio Compression(telecom)
Blowfish 9308 Cipher(security)

The ARM architecture is popular in handheld media devices and therefore we perform

our experiments on a set applications from the MiBench suite [28]. Table VI presents the

applications used, along with their respective code sizes. The reported size does not include

the scratchpad overlay manager (SOVM) size and shared libraries as they are not subject

to our code overlaying.

IX. Experimental Results

A. Cache-only vs Horizontally Split Architecture

0

200

400

600

800

1000

1200

1400

1600

1800

Scratchpad Size (bytes)

I-CACHE: 2x bytes I-CACHE:x bytes , SPM:x bytes

1024512 2048 4096 8192 16384

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 in

 µ
 J

Fig. 11. SHA: Energy comparisons between cache only and horizontally split architecture
with SDRM

In this section, we compare our mapping technique for the horizontally split architec-

ture against the cache-only architecture. The cache only architecture consists of 2x bytes

of instruction cache while split architecture consists of x bytes of scratchpad and x bytes

of instruction cache, where the size of x is varied from 512 bytes to 16384 bytes. Figure 11

shows how the cache only architecture performs in comparison with the split architecture

with SDRM technique for sha benchmark. Note that although we present the results for

only sha, similar trends are observed for other benchmarks as well, the only difference being

that the trough of split-SDRM curve depends on the optimal size of scratchpad for that

particular benchmark.

For small sizes of scratchpad, the critical functions do not fit into the SPM at all and

are spilled to cache. Hence there is no significant difference between the cache only and

the split architecture. As we increase the size to 2048 bytes, all functions can fit into the

scratchpad, and the functions would need to be overlayed as the aggregate size of 2376 bytes

36

for sha is greater than 2048 bytes. At this size of scratchpad, we see a significant reduction

in energy as all the program code is fetched and executed from the scratchpad instead

of the instruction cache. At a larger size of 4096 bytes, all the functions can be mapped

onto the SPM at distinct addresses without any overlay. Thus there are no calls to the

SPM overlay manager and no runtime performance degradation due to memory transfers.

We should therefore have observed a further decrease in energy consumption. However,

since we assume a energy model where the energy per access for SPM increases with size,

table V, we observe an increase in the total energy consumption with increasing size of

the scratchpad memory. As shown in Figure 11 for sha benchmark, the split architecture

shows a reduction of 77% compared to the cache only architecture and the reduction is

maximum at 2048 bytes. Across all the benchmarks, SDRM exhibits an average energy

reduction of 35% while SDRM-prefetch exhibits an average energy reduction of 32.3%, at

their respective optimal SPM sizes. The performance impact is discussed in Section C.

This experiment demonstrates the effectiveness of a split memory subsystem architec-

ture when supported by an intelligent mapping technique like SDRM. It shows that, given

an architecture with only an instruction cache, we can always reduce the energy consump-

tion by splitting the power hungry instruction cache equally into a scratchpad memory and

a smaller instruction cache. The small SPM and the instruction cache will also have a

lesser area overhead compared to the original cache. Given such a split architecture, we

can then use a pure compiler technique like SDRM requiring just a simple recompilation

of the application, with no profiling overhead.

37

0

200

400

600

800

1000

1200

1400

3 1 2 3 4 5 6 7

First-Fit Heuristic

EN
ER

G
Y

 C
O

N
SU

M
P

TI
O

N
 in

 u
 J

SDRM

Number of Regions

1190

1192

1194

1196

1198

1 2 3 4 5 6 7

Fig. 12. SHA Benchmark: first-fit heuristic with varying number of variable sized regions

B. First-Fit vs SDRM for Horizontally Split Architecture

In this section we compare the total energy consumption of the split architecture

between the ILP, SDRM and the first-fit heuristic for various benchmarks. For the first-fit

heuristic we assume that the scratchpad is divided into variable sized regions (We found,

experimentally that regions of variable size gives better results than equal sized regions).

The previous approach does not precisely state a way of finding these region sizes. To

be unbiased towards first-fit heuristic, we performed an exhaustive exploration for various

sizes and number of regions. For example, for x bytes of SPM, we divided it into x/2, x/4,

x/8,... x/r, where the value of r was found by exploration. Allocation to the regions was

performed in decreasing order of the region size. Figure 12 demonstrates the first-fit energy

consumption trend for sha as we explore the number of regions for a 2KB scratchpad.

As shown in the graph, there is an optimal number of regions (r = 3) for first-fit, at

which the energy consumption is minimum. For smaller number of regions (r < 3), not all

interfering functions can be mapped, since the number of such functions is higher than the

number of regions. Some functions are spilled to main memory, resulting in a higher energy

38

consumption due to higher energy per access of the instruction cache. As we increase the

number of regions, more functions will be overlayed and the energy consumption decreases,

reaching a local minimum at (r = 3). However, if we compare this value with the first

bar which indicates the energy consumption for SDRM mapping, it is significantly higher.

The reason is that the critical function for sha does not fit into any region of the SPM,

corroborating our argument that pre-determining the number of regions does not lead to

optimal solution. Further increase in number of regions (r > 3) fragments the SPM into

smaller sized regions. As large sized functions cannot fit, this again results in spilling of

such functions to the main memory which causes a rise in energy consumption. On further

increase (r > 4), the SPM gets more fragmented, but the mapping does not change and

there is no change in energy consumption.

To the best of our knowledge, none of the previous approaches have demonstrated any

technique for finding the optimal number of regions at which the energy consumption would

be minimal. The only way to find this number is by exploration of the entire solution space

by varying the number and size of regions. The search space can be reduced by smart

exploration techniques, but only up to a limited extent as the exploration process is a

time consuming task involving recompilation and execution of program every time. The

SDRM technique proposed in this paper does not incur this exploration overhead since

it simultaneously finds the optimal number of regions and their sizes while solving the

mapping problem itself. The first bar in the graph shows the energy results obtained

by SDRM for a 2KB scratchpad. The SDRM technique divides the scratchpad into three

variable sized regions and exhibit a 69% energy reduction compared to first-fit which divides

the SPM into three variable sized but pre-determined regions.

39

0

50

100

150

200

250

300

350

400

First-Fit SDRM SDRM-PREFETCH

EN
ER

G
Y

in
 µ

 J
%

 E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

 N
o

rm
al

iz
e

d
 t

o
 I

LP

1024

16384

2048

4096
4096

1024
8192

2048

Fig. 13. Energy comparisons between ILP, SDRM, SDRM-prefetch and first-fit for various
benchmarks

Figure 13 shows the comparison of energy consumption between SDRM, SDRM-

prefetch and first-fit heuristic for various benchmarks from Table VI. The energy results

are normalized to the ILP energy results. The optimal number and size of the regions for

first-fit are found by exploration as discussed previously. From the graphs, we observe that

the energy for SDRM is always close to 100%, indicating that the solution obtained from

the SDRM heuristic is close to the optimal ILP solution. Moreover, the maximum energy

reduction is observed for sha, where the first-fit performs poorly, as the most critical region

does not even fit into any region. On the other hand, since the SDRM does not prede-

termine the region sizes, the critical functions are always mapped to some region of the

SPM as long as the size of the SPM is greater than the size of the largest function in the

benchmark. On an average we observe a 25.9% energy reduction for SDRM compared to

the first-fit technique. The SDRM-prefetch technique results in a lesser energy reduction

compared to SDRM, but as discussed in Section C, it achieves much better performance

improvement. On an average, SDRM-prefetch results in 22% energy reduction compared

to the first-fit technique.

40

C. Performance Overhead

-5

0

5

10

15
SDRM
SDRM-PREFETCH

EN
ER

G
Y

in
 µ

 J
%

 R
u

n
ti

m
e

 Im
p

ro
ve

m
e

n
t

Fig. 14. Performance improvement: SDRM vs SDRM-prefetch

As discussed in Section A, a major contributor to the performance degradation of

SDRM overlayed code is the processor stalls during code transfer from main memory to

the SPM. To minimize the performance degradation and potentially turn it into a perfor-

mance enhancement, we modified the cost function to be aware of prefetching opportu-

nities in the program and fed the new cost to SDRM to obtain a new mapping denoted

by SDRM-prefetch. Figure 14 shows the comparison between plain SDRM and SDRM-

prefetch mappings on a split architecture, normalized to the performance of the instruction

cache only architecture. While the average performance degradation is 2.08% for SDRM,

SDRM-prefetch exhibits an average performance improvement of 5.78%. Note that we do

not see any improvements in rijndael and susan corners as there are virtually no prefetching

opportunities in these benchmarks.

X. Conclusion and Future Work

In this paper, we presented a fully-automated, dynamic, code overlaying technique

based on pure compiler analysis for energy reduction for on-chip scratchpad memories in

embedded processors. We formulated an ILP which gives an optimal solution and a heuris-

tic which gives a near-optimal solution and simultaneously addresses both the important

issues of region size determination and function-to-region mapping. The proposed tech-

nique and split architecture succeeds in achieving a greater energy reduction against a

previous approach and a unified instruction cache only architecture, respectively. Com-

pared to the best performing previously known heuristic our approach achieves an average

energy reduction of 25.9%.

We also demonstrated that by splitting the I-cache into equal sized smaller I-cache

and SPM and using a pure compiler technique like SDRM, we can always reduce the total

energy consumption. Our experiments show this reduction to be 35% with a performance

degradation of just 2.08%. We also introduced a prefetch aware technique SDRM-prefetch,

which turns the performance degradation into a performance improvement by trading off a

small amount of energy reduction. By using the SDRM-prefetch on the split architectures,

we achieve an average energy reduction if 32.3% and an average performance improvement

of 5.78%.

We have many directions for future work. In this work, our static analysis assumes

predication when dealing with conditional statements, i.e. both the branches of a if state-

ment and all cases of a switch statement will be executed with equal probabilities. This lim-

its the energy reduction and performance enhancement and better results can be achieved

if a more accurate analysis can be done. Our work also assumes that the scratchpad size

should be atleast as large as the size of the largest function in the program. This limitation

42

can be removed if functions can be outlined and some analysis can be done to find out the

degree of outlining. Another focus area to reduce energy would be to bank the available

SPM and use compile time inserted instructions to put unwanted banks to sleep. We also

plan to enhance our compiler technique for using scratchpads in a multi-tasking environ-

ment where sharing the SPM among different processes to reduce context switch overhead

would be a challenge.

REFERENCES

[1] James Montanaro, Richard T. Witek, Krishna Anne, Andrew J. Black, Elizabeth M.
Cooper, Daniel W. Dobberpuhl, Paul M. Donahue, Jim Eno, Gregory W. Hoeppner,
David Kruckemyer, Thomas H. Lee, Peter C. M. Lin, Liam Madden, Daniel Murray,
Mark H. Pearce, Sribalan Santhanam, Kathryn J. Snyder, Ray Stephany, Gullu, and
Stephen C. Thierauf, “A 160-mhz, 32-b, 0.5-w cmos risc microprocessor,” Digital
Tech. J., vol. 9, no. 1, pp. 49–62, 1997.

[2] “Scratchpad RAM,” http://en.wikipedia.org/wiki/Scratchpad RAM.

[3] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and Peter Mar-
wedel, “Scratchpad memory: design alternative for cache on-chip memory in em-
bedded systems,” CODES ’02: Proceedings of the 10th International Symposium on
Hardware/software Codesign, pp. 73–78, 2002.

[4] Ann Gordon-Ross, Susan Cotterell, and Frank Vahid, “Tiny instruction caches for low
power embedded systems,” Trans. on Embedded Computing Systems, vol. 2, no. 4, pp.
449–481, 2003.

[5] Manish Verma. and Peter Marwedel, “Overlay techniques for scratchpad memories in
low power embedded processors,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 14, no. 8, pp. 802–815, Aug. 2006.

[6] Sumesh Udayakumaran, Angel Dominguez, and Rajeev Barua, “Dynamic allocation
for scratch-pad memory using compile-time decisions,” Trans. on Embedded Computing
Systems, vol. 5, no. 2, pp. 472–511, 2006.

[7] Aviral Shrivastava, Ilya Issenin, and Nikil Dutt, “Compilation techniques for energy
reduction in horizontally partitioned cache architectures,” CASES ’05: Proceedings
of the 2005 International Conference on Compilers, Architectures and Synthesis for
Embedded Systems, pp. 90–96, 2005.

[8] Bernhard Egger, Jaejin Lee, and Heonshik Shin, “Scratchpad memory management
for portable systems with a memory management unit,” EMSOFT ’06: Proceedings of
the 6th ACM & IEEE International Conference on Embedded Software, pp. 321–330,
2006.

[9] Federico Angiolini, Luca Benini, and Alberto Caprara, “Polynomial-time algorithm for
on-chip scratchpad memory partitioning,” CASES ’03: Proceedings of the 2003 Inter-
national Conference on Compilers, Architecture and Synthesis for Embedded Systems,
pp. 318–326, 2003.

[10] Federico Angiolini, Francesco Menichelli, Alberto Ferrero, Luca Benini, and Mauro
Olivieri, “A post-compiler approach to scratchpad mapping of code,” CASES ’04:

44

Proceedings of the 2004 International Conference on Compilers, Architecture, and Syn-
thesis for Embedded Systems, pp. 259–267, 2004.

[11] Nghi Nguyen, Angel Dominguez, and Rajeev Barua, “Scratch-pad memory alloca-
tion without compiler support for java applications,” CASES ’07: Proceedings of the
2007 International Conference on Compilers, Architecture, and Synthesis for Embed-
ded Systems, pp. 85–94, 2007.

[12] Poletti Francesco, Paul Marchal, David Atienza, Luca Benini, Francky Catthoor, and
Jose M. Mendias, “An integrated hardware/software approach for run-time scratch-
pad management,” DAC ’04: Proceedings of the 41st Annual Conference on Design
Automation, pp. 238–243, 2004.

[13] Stephan Steinke, Lars Wehmeyer, Bo-Sik Lee, and Peter Marwedel, “Assigning pro-
gram and data objects to scratchpad for energy reduction,” DATE ’02: Proceedings
of the Conference on Design, Automation and Test in Europe, p. 409, 2002.

[14] Manish Verma, Lars Wehmeyer, and Peter Marwedel, “Cache-aware scratchpad allo-
cation algorithm,” DATE ’04: Proceedings of the conference on Design, automation
and test in Europe, p. 21264, 2004.

[15] M. Verma, K. Petzold, L. Wehmeyer, H. Falk, and P. Marwedel, “Scratchpad sharing
strategies for multiprocess embedded systems: a first approach,” 3rd Workshop on
Embedded Systems for Real-Time Multimedia, pp. 115–120, Sept. 2005.

[16] Oren Avissar, Rajeev Barua, and Dave Stewart, “An optimal memory allocation
scheme for scratch-pad-based embedded systems,” Trans. on Embedded Computing
Systems, vol. 1, no. 1, pp. 6–26, 2002.

[17] Bernhard Egger, Chihun Kim, Choonki Jang, Yoonsung Nam, Jaejin Lee, and
Sang Lyul Min, “A dynamic code placement technique for scratchpad memory using
postpass optimization,” CASES ’06: Proceedings of the 2006 International Conference
on Compilers, Architecture and Synthesis for Embedded Systems, pp. 223–233, 2006.

[18] Andhi Janapsatya, Aleksandar Ignjatović, and Sri Parameswaran, “A novel instruction
scratchpad memory optimization method based on concomitance metric,” ASP-DAC
’06: Proceedings of the 2006 Conference on Asia South Pacific Design Automation,
pp. 612–617, 2006.

[19] Mahmut Kandemir and et al., “Dynamic management of scratch-pad memory space,”
DAC ’01: Proceedings of the 38th Conference on Design Automation, pp. 690–695,
2001.

45

[20] Mahmut Kandemir and Alok Choudhary, “Compiler-directed scratch pad memory
hierarchy design and management,” DAC ’02: Proceedings of the 39th Conference on
Design Automation, pp. 628–633, 2002.

[21] Lian Li, Lin Gao, and Jingling Xue, “Memory coloring: A compiler approach for
scratchpad memory management,” PACT ’05: Proceedings of the 14th International
Conference on Parallel Architectures and Compilation Techniques, pp. 329–338, 2005.

[22] Stefan Steinke, Nils Grunwald, Lars Wehmeyer, Rajeshwari Banakar, M. Balakrish-
nan, and Peter Marwedel, “Reducing energy consumption by dynamic copying of
instructions onto onchip memory,” ISSS ’02: Proceedings of the 15th International
Symposium on System Synthesis, pp. 213–218, 2002.

[23] Peng Zhao and J.N. Amaral, “Function outlining and partial inlining,” 17th Interna-
tional Symposium on Computer Architecture and High Performance Computing, pp.
101–108, Oct. 2005.

[24] James Smith, “A study of branch prediction strategies,” ISCA ’81: Proceedings of the
8th Annual Symposium on Computer Architecture, pp. 135–148, 1981.

[25] Harold N. Gabow and Robert Endre Tarjan, “A linear-time algorithm for a special
case of disjoint set union,” STOC ’83: Proceedings of the Fifteenth Annual ACM
Symposium on Theory of computing, pp. 246–251, 1983.

[26] “Simplescalar Simulator,” http://www.simplescalar.com.

[27] “ARMv5 ARM Architecture version 5 (ARMv5TE),” http://www.arm.com.

[28] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown,
“Mibench: A free, commercially representative embedded benchmark suite,” IEEE
International Workshop on Workload Characterization, pp. 3–14, 2 Dec. 2001.

[29] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, Compilers: Princi-
ples, Techniques, and Tools (2nd Edition), Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2006.

[30] Steven S. Muchnick, Advanced compiler design and implementation, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1997.

[31] Alexandre Eichenberger, John O’Brien, and et al., “Using advanced compiler technol-
ogy to exploit the performance of the Cell Broadband Engine Architecture,” 2006.

46

[32] Lars Wehmeyer and Peter Marwedel, “Influence of onchip scratchpad memories on
wcet prediction,” 2004.

[33] Manish Verma, Lars Wehmeyer, and Peter Marwedel, “Dynamic overlay of scratch-
pad memory for energy minimization,” CODES+ISSS ’04: Proceedings of the 2nd
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and Sys-
tem Synthesis, pp. 104–109, 2004.

