
SDRM: Simultaneous Determination of Regions
and Function-to-Region Mapping

for Scratchpad Memories?

Amit Pabalkar, Aviral Shrivastava, Arun Kannan and Jongeun Lee

Department of Computer Science and Engineering,
Arizona State University, Tempe, AZ 85281

{amit.pabalkar,aviral.shrivastava,
arun.kannan,jongeun.lee}@asu.edu

Abstract. Many programmable embedded systems feature low power processors
coupled with fast compiler controlled on-chip scratchpad memories (SPMs) to
reduce their energy consumption. SPMs are more efficient than caches in terms
of energy consumption, performance, area and timing predictability. However,
unlike caches SPMs need explicit management by software, the quality of
which can impact the performance of SPM based systems. In this paper, we
present a fully-automated, dynamic code overlaying technique for SPMs based
on pure static analysis. Static analysis is less restrictive than profiling and can
be easily extended to general compiler framework where the time consuming
and expensive task of profiling may not be feasible. The SPM code mapping
problem is harder than bin packing problem, which is NP-complete. Therefore we
formulate the SPM code mapping as a binary integer linear programming problem
and also propose a heuristic, determining simultaneously the region (bin) sizes
as well as the function-to-region mapping. To the best of our knowledge, this
is the first heuristic which simultaneously solves the interdependent problems
of region size determination and the function-to-region mapping. We evaluate
our approach for a set of MiBench applications on a horizontally split I-cache
and SPM architecture (HSA). Compared to a cache-only architecture (COA),
the HSA gives an average energy reduction of 35%, with minimal performance
degradation. For the HSA, we also compare the energy results from our proposed
SDRM heuristic against a previous static analysis based mapping heuristic and
observe an average 27% energy reduction.

Key words: Compilers, Code overlay, Static code analysis, Scratchpad memory.

1 Introduction

The first generation embedded systems were limited to fixed, single functionality
devices like digital watches, calculators, coffee makers etc. Modern embedded systems
have evolved into programmable, highly complex, multi-functionality devices including
portable music players, gaming consoles, PDAs, GPSs and cellular phones. These
systems must exhibit high performance while at the same time consume less power,
? This work was partially funded by grants from Microsoft, Raytheon and Startdust Foundation.

as they operate on battery. Design of such systems thus becomes extremely challenging
due to multi-dimensional and stringent design constraints.

Modern embedded processors increase performance by employing memory hier-
archies consisting of caches or scratchpads or both. Caches improve performance by
exploiting the spatial and temporal locality in the application, without any changes
to the application itself. However, these improvements are achieved through use
of tag arrays, comparators and management logic which in certain processors like
StrongARM, can consume more than 40% of the total power budget [5].

Scratchpad Memories (SPM) on the other hand are devoid of power hungry tag
arrays and comparators. Compared to caches they consume less energy per access and
occupy smaller on-chip area. While previous works have demonstrated that a SPM may
require on an average 40% less energy and 34% less die area compared to a cache of
same size [3], the compiler is now responsible for managing the SPM contents. This
involves inserting explicit instructions in the program to move code or data between
SPM and the main memory. A good technique for mapping the program contents onto
SPM thus becomes very critical for efficiently utilizing the SPM with minimal runtime
transfer overhead. Since code exhibits more locality than data, mapping code should
provide us with more power reduction. Therefore, in this work we focus on mapping
application code onto the SPM.

Most code mapping techniques for SPMs require profiling to find the optimal
mapping of applications. Profiling however, limits their applicability, not only because
of the difficulty in obtaining reasonable profiles, but also due to high space and time
requirements to generate a profile. Instead, in this work, we use compile time static
analysis to eliminate profiling and the overhead associated with it. Our static analysis
is based on a new data structure, Global Call Control Flow Graph (GCCFG), which
captures the function call sequence as well as the control flow information like loops
and conditionals. Our GCCFG can give not only the execution counts (estimated from
the control flow) but also the execution sequences of functions (from control flow, call
graph, and call sequence). This makes GCCFG more precise than just a call or a control
flow graph in modeling the runtime behavior of an application.

Traditional approaches for SPM utilization breaks down the SPM mapping problem
into two smaller problems. The first problem, termed as memory assignment or ‘what
to map’ involves partitioning the application code into SPM mapped and main memory
spilled. This division eliminates code segments whose cost of transfer from memory to
SPM is greater than the profit of execution from SPM. However since our architecture
has a direct memory access controller, the transfer cost is negligible and it is always
profitable to execute the entire code from the SPM. We therefore do not consider the
‘what to map’ problem in this work. The focus of this work is the second problem,
termed as address assignment or ’where to map’ which involves determining the
addresses on the SPM where the code will be mapped.

Code mapping techniques for SPM can be classified into static and dynamic
techniques. In static techniques, SPM is loaded once during program initialization
occupying the entire SPM and the contents do not change during the execution of
the program. This implies that the static techniques need not address the ‘where to
map’ issue; they only solve the ‘what to map’ issue. The reduced utilization of SPM

at runtime means less scope for energy reduction. Dynamic techniques on the other
hand, replenishes the contents of the SPM with different code segments during program
execution by overlaying multiple code segments. For most efficient management,
the SPM can be partitioned into bins or regions and multiple code segments with
non-overlapping live ranges should be mapped to different regions. Thus a dynamic
technique for code mapping can be broken down into
1. Partition of the SPM into optimal number of regions
2. Overlaying the code objects onto the regions

Although previous dynamic approaches viz. first-fit [11] and best-fit [10] have proposed
solutions for the second subproblem, none of the above approaches determine the
optimal size and number of regions. These heuristics assume a pre-determined number
of regions and may cause spilling of critical functions to the main memory. In fact, the
above two sub-problems have a cyclic dependency and if solved independently one after
another, the combined solution is sub-optimal. In this paper we propose a Simultaneous
Determination of Region and Function-to-Region Mapping (SDRM) technique which
solves the two subproblems at the same time. Regions are created as each function gets
mapped to the SPM and are resized if the mapped function is greater than the existing
region size, without violating the total size constraints. To compare the optimality of
our technique, we also formulate a binary ILP to solve the code mapping problem.
Our experiments using MiBench benchmark suite indicate that our technique can find
near-optimal solutions compared to the ILP solutions and they are 27% better than the
solution obtained by first-fit heuristic.

2 Related Work

As discussed in the previous section, SPM mapping techniques can be classified into
static and dynamic techniques for both code and data. Papers [1, 2, 8] present static
techniques for SPM allocation. While authors in [8] use a knapsack algorithm for static
assignment of code and data objects, authors in [1] propose a dynamic programming
approach to select and statically assign code objects to maximize energy saving. The
static approach in [2] concentrates only on data objects.

While static approaches are easy to formulate, they significantly limit the scope of
energy reduction. Therefore a majority of research [4, 9–11] have focussed on solving
both code and data mapping problem using dynamic techniques. In this research work,
we also propose a dynamic technique, but overlay only code objects due to greater
energy reduction potential.

The approach in [9] formulates a binary ILP to select an optimal set of code blocks
and corresponding copy points which minimize energy consumption. However their
approach does not solve the ‘where to map’ problem. The authors in [4] propose another
dynamic technique for systems with virtual memory, where the page fault exception
mechanism of MMU is used to copy code blocks to SPM on demand. However this
technique dictates some hardware enhancement. On the contrary our technique is a pure
software method and does not impose any architectural changes. The research in [10]
proposes yet another dynamic profile SPM allocation technique where the authors give
a heuristic for classification of code, stack and global data into SPM and cache, and

a best-fit heuristic to solve the ‘where to map’ problem. However their technique use
compaction to minimize fragmentation which can incur a significant overhead and can
be prohibitive in embedded systems.

Except [11], which use static analysis for code objects, all the above techniques use
profiling to find the execution count of objects. A relative advantage of static analysis
over profiling has already been discussed in the previous section. The technique that
we propose is closest to the approach presented by authors in [11]. They formulate an
Integer Linear Programming (ILP) problem to partition the memory objects into SPM
and main memory and then use another ILP to determine the address assignment. Since
an ILP is intractable for large size programs they propose a first-fit heuristic to solve
the ‘where to map’ problem. However, the heuristic in their work use a predetermined
number and size of regions. In contrast, the technique in our work computes the number
and size of regions while solving the mapping problem itself. We also formulate a binary
ILP and show that our heuristic is near-optimal to the ILP solution. In the next section
we formulate a generic problem definition for the mapping of code to SPM.

3 Problem Definition

INPUT:
– Global Call Control Flow Graph (GCCFG). GCCFG is an ordered directed graph

D=(Vf , Vl, Vi, E), where each node vf ∈ Vf represents function or F-node, vl ∈ Vl

represents a loop or L-node, vi ∈ Vi represents a conditional or I-node and edge
ei,j ∈ E 3 vi, vj ∈ Vf

⋃
Vl

⋃
Vi is a directed edge between F-nodes, L-nodes and

I-nodes. If vi and vj are both F-nodes, the edge represents a function call. If either
one is a L-node, the edge represents a control flow. If either one is a I-node, the edge
represents a conditional flow. If both are L-nodes the edge represents nested control
flow. Recursive functions are represented by edges whose source and destination are
the same. The edges of a node are ordered, i.e. if a node has two children, the left node
is called before the right node in the control flow path of the program. Each F-node
is assigned a statically determined weight wi representing its execution count.

– Set S = {s1, s2...sf}, representing the functions sizes (F-nodes Vf in the GCCFG).
– Espm/access and Ei−cache/access, representing the energy per access for SPM and

Instruction Cache, respectively.
– Embst, energy per burst for the main memory.
– Eovm, energy consumed by instructions in overlay manager code.
OUTPUT:
– Set {S1, S2...Sr}, representing sizes of regions R = {R1, R2....Rr}, s.t.

∑
Sr ≤

SPMSize.
– Function-to-Region mapping, X[f, r] = 1, if f is mapped to region r, s.t.

∑
sf ×

X[f, r] ≤ Sr.
OBJECTIVE:

Minimize Energy Consumption for the given application. Given the GCCFG of
an application, the objective is to create regions and function-to-region mapping such
that when the application instrumented with this binary is executed on the given SPM,
the total energy consumed is minimized. The total energy consumption is a summation
of Evi

hit, (energy on SPM hit) and Evi
miss (energy on SPM miss) where vi ∈ Vf . While

Evi

hit consists of energy consumed by the overlay manager to check if the function vi

is present in SPM and energy consumed by the execution of the function from SPM,
Evi

miss has an additional energy component for moving the called function vi from
main memory to SPM and then moving the caller function back vj on return. Code is
transferred in burstsize of Nmbst. nhitvi and nmissvi represents the number of hits and
misses for the function vi. The following equations characterizes the objective function

Evi
hit = nhitvi × (Eovm + Espm/access × si) (1)

Evi
miss = nmissvi × (Eovm + Espm/access × si +

Embst × (si + sj)

Nmbst
) (2)

Etotal =
∑

vi∈Vf

(Evi
hit + Evi

miss) (3)

4 Our Approach

The goal of our approach is to use static analysis to dynamically map application code
to regions on the SPM. Since the two sub-problems viz. region size determination and
function-to-region mapping have a cyclic dependency, solving them independently will
lead to sub-optimal results. Therefore, we require a technique to simultaneously solve
the two sub-problems.

4.1 Overview

We first apply static code analysis to create a Global Call Control Flow Graph
(GCCFG). Weights are assigned to nodes of the GCCFG , which is then transformed
into an Interference Graph (I-Graph). The I-Graph and SPM size are then used as input
to an ILP or SDRM heuristic to determine the number of regions and function-to-region
mapping. The construction of GCCFG, weight assignment and I-Graph are explained
in the following subsections with the help of an example shown in Figure 1(a).

MAIN () F2 ()
F1() FOR
FOR F6 ()

F2 () F3 ()
END FOR WHILE

END MAIN F4 ()
END WHILE

F5 (condition) END FOR
IF (condition) IF ()

…… F5 ()
ELSE ELSE

F5(condition) F1()
END IF END IF

END F5 END F2

(a) Example Code

main

F1

F2

L1

F3

L2

L3

F4

F6

F5

Q = 10
R = 2

1

100 100 1000

20

10 I 1

F1 I 2

T

F F
10

(b) Global Call Control Flow Graph

Fig. 1. Construction of GCCFG

4.2 Construction of GCCFG

The GCCFG is an extension of the traditional Control Flow Graph (CFG) which is
a representation of all paths that might be traversed through a function during its
execution. A CFG is constructed for each function in the program and then all the
CFGs are combined into a GCCFG in two passes. In the first pass the basic blocks are
scanned for presence of loops (back edges in a dominator tree), conditional statements
(fork and join points) and function calls (branch and link instructions). The basic blocks
containing a loop header are labeled as L-node, those containing a fork point are labeled
as I-node and the ones containing a function call are labeled as F-node.

If a function is called inside a loop, the corresponding F-node is joined to the loop
header L-node with an edge. L-nodes representing nested loops, if any, are also joined.
F-nodes not inside any loop are joined to the first node of the CFG. The first node, F-
nodes , L-nodes and corresponding edges are retained, while all other nodes and edges
are removed. Essentially this step trims the CFG, while retaining the control flow and
call flow information. In this paper we assume that both paths, i.e. T and F edges, of
a I-node will be executed, which is very similar to branch predication [7]. Therefore,
although the GCCFG contain the I-nodes, the interference graph construction algorithm
in Section 4.4 does not consider the presence of I-Nodes to determine the interference
relationships between the F-nodes.

In the second pass, all CFGs are merged by combining each F-node with the first
node of the corresponding CFG. Recursive functions are joined by a dashed edge. The
merge ensures that strict ordering is maintained between the CFGs, i.e. if two functions
are called one after another, the first function is a left child and the other function is a
right child of the caller function. Thus the GCCFG is an approximate representation of
the runtime execution flow of the program.

4.3 GCCFG Weight Assignment

For all F-nodes vf ∈ Vf of GCCFG, weights wf , defaulting to unity, are assigned.
The GCCFG in traversed in a top-down fashion. When an L-node is encountered, the
weights of all descendent F-nodes are multiplied by a fixed quantum, Loop Factor Q.
This ensures that a function which is called inside a deeply nested loop will receive a
greater weight than other functions. For an F-node representing recursive function, the
weight of the node is multiplied by a different fixed quantum, Recursive Factor R. This
ensures that a recursive function will receive a greater weight than non-recursive ones.
For the example shown in Figure 1(b), we choose Q = 10 and R = 2.

4.4 Interference Graph Construction

The weighted GCCFG has to be augmented considering the fact that if one function
calls another function mapped to same region, then they will swap each other out during
the function call and return back. Also if two functions mapped to same region are
called one after another in the same nested level, then they will thrash excessively.
Such functions are said to be interfering with one another and the GCCFG is not
adequate to capture these interfering relationships. We transform the GCCFG into an

Algorithm 1 CONSTRUCT-IGRAPH (GCCFG = (Vf ,Vl,E))
1: for vi = v1 to (vf

⋃
vl) do

2: for vj = vi to (vf

⋃
vl) do

3: node = least-common-ancestor(vi ,vj)
4: if (node == main) then
5: relation(vi, vj) = NULL ; cost [vi,vj] = 0;
6: else if (node == L-Node) then
7: relation(vi,vj) = callee-callee-in-loop ; cost [vi,vj] = (si + sj) ×MIN (wi, wj)
8: else if (node == (vk 6= {vi, vj})) then
9: relation(vi,vj) = callee-callee-no-loop ; cost [vi,vj] = (si + sj) ×MIN (wi, wj)

10: else if (node == vi ‖ node == vj) then
11: if (L-node in path from vi to vj) then
12: relation(vi, vj) = caller-callee-in-loop ; cost [vi,vj] = (si + sj) × wj

13: else
14: relation(vi, vj) = caller-callee-no-loop ; cost [vi,vj] = (si + sj) × wj

15: end if
16: end if
17: end for
18: end for

I-Graph as outlined in Algorithm 1. Figure 2(a) shows the interference relationships and
Figure 2(b) depicts the corresponding I-Graph between different nodes for the example
GCCFG in Figure 1(b). In the next section we discuss an ILP and a heuristic which
takes the nodes and the cost from the I-Graph as input and determines the region as
well as the node (function)-to-region mapping.

NODE NODE INTERFERENCE RELATION

F2 F3 caller-callee-in-loop

F2 F4 caller-callee-in-loop

F2 F5 caller-callee-no-loop

F2 F6 caller-callee-in-loop

F3 F4 callee-callee-in-loop

F3 F6 callee-callee-in-loop

F4 F6 callee-callee-in-loop

F1 F2 caller-callee-in-loop

(a) Interference Relationships for the
example GCCFG

F1(4)

F2(2)

F4(1)

F5(4)

F6(4)

F3(3)

3000

120

400

700

600

500

500

60

(b) Interference Graph derived from the
GCCFG

Fig. 2. Construction of I-Graph

5 Address Assignment: Where To Map

The problem of mapping functions-to-regions is a harder problem than the bin packing
problem as the size of regions or bins is not fixed and each function (item to be placed
in a bin) has an associated cost. Therefore, we propose a binary ILP and a heuristic to
solve the ‘where to map’ problem.

5.1 Optimal Solution: Binary ILP

The input to the ILP is the I-Graph I = (Vf , E′) constructed in previous section with
si representing the size of node vi ∈ Vf and a cost[vi, vj] associated with each edge
(vi, vj). The output of the ILP is the function-to-region mapping MAP : Vf → R,
where R is the set of regions created. We define a binary integer variable X[vi, r] which
is set to 1 if vi is mapped to region r in SPM and set to 0 otherwise.

The cost of a region is the cost of placing two or more interfering nodes in the
same region. The total cost is the summation of the cost of each region. The objective
function to be minimized is the total cost of the interference graph which is given by
(4) and subject to the constraints (5) and (6).

Minimize
∑

(vi,vj)∈E′

X[vi, r]×X[vj , r]× cost[vi, vj], ∀r ∈ R (4)

∑
r∈R

max
vi∈Vf

(X[vi, r]× si) ≤ SPMSize (5)∑
r∈R

X[vi, r] = 1, ∀vi ∈ Vf (6)

The first constraint (5) ensures that the sum of the sizes of all regions doesn’t exceed the
SPM size. The size of a region is the size of the largest function mapped to the region.
Although the max function used above makes the constraint non-linear, it is linearized
during implementation by making sure that all possible combinations of regions and
functions mapped to the SPM does not exceed its size. The second constraint (6) ensures
that a function is not mapped to more than one region. Because of the presence of two
variables X[vi, r] and X[vj , r] in (4), the objective function is non-linear and cannot
be modeled using LP. To make the above function linear, we introduce a new binary
variable U[vi,vj ,r] which is set to 1 if both vi and vj are mapped to same region r and
set to 0 otherwise. The linearized objective function is given by equation (7).

U [vi, vj , r] ≥ X[vi, r] + X[vj , r]− 1

U [vi, vj , r] ≤
X[vi, r] + X[vj , r]

2

Minimize
∑

(vi,vj)∈E′

U [vi, vj , r]× cost[vi, vj], ∀r ∈ R (7)

Since solving ILP may require prohibitively large computation resources, in the next
section we propose a heuristic to solve the ‘where to map’ problem.

5.2 SDRM Heuristic

Our heuristic is based on the following observation. If two functions are joined by an
edge in the I-Graph, then mapping them to the same region will incur a cost equal
to the edge weight. The total cost of a region is the summation of edge weights of
all such interfering functions. Algorithm 2 outlines the mapping procedure. The
routine Overlay-I-Graph maps nodes of the I-Graph for the given size of the SPM.
The output is the array R representing region sizes and array node-address representing
the function-to-region mapping.. Line (3) sorts the edges of I-Graph in decreasing order

Algorithm 2 SDRM Heuristic
Overlay-I-Graph(I-Graph,SPM-Size) Determine-Region(Function vk)
global int num regions = 0 global int size remaining = SPM-Size
global array address[]

1: R[]: array of integer (size)
2: node-address[]: array of integers
3: sort-decreasing(E′)
4: for all e=(vi,vj) in E′ do
5: for vk = vi, vj ; vk ≤ SPM-Size do
6: if (node-address[vk]==NULL) then
7: r = Determine-Region(vk)
8: node-address[vk] = address[r]
9: R[r] = max(R[r], size(vk))

10: end if
11: end for
12: end for
13: return R and node-address

1: for all r in R, starting with least cost do
2: find r, s.t. e = (vk,vj) /∈ E′, vj = MAP(r)
3: if (found r) then
4: return r
5: end if
6: end for
7: if (size(vk) ≤ size remaining) then
8: r = ++num regions
9: address[r] = SPM-Size - size remaining

10: size remaining - = size(vk)
11: else
12: find r, s.t. cost of placing vk to r is min
13: end if
14: return r

of their weights. This ensures that the most interfering nodes are placed in separate non-
overlapping regions of SPM if not constrained by the SPM size. It then calls the routine
Determine-Region to find the region mapping for all unmapped nodes (4–7) and updates
the corresponding region size after the node is mapped (8–9).

The routine Determine-Region determines the region for each unmapped node. It
first checks if the node can be mapped to an existing region such that there is no
interference with already mapped nodes in that region (1–6). If not, it checks if the node
can be assigned to the remaining space, thereby creating a new region (7–10). Otherwise
it finds an existing region such that the cost of the region after overlaying the node is
minimum (12). In the worst case, all nodes will interfere with one another, complexity
O(E′). Moreover the computation of the cost function will involve checking every
node, complexity O(Vf). Hence the runtime complexity of the algorithm is O(Vf ×E′).

6 Scratchpad Overlay Manager

The final step in the mapping process involves instrumenting the code with the mapping
information obtained from SDRM or ILP and linking it with the SPM overlay manager
(SOVM). The SOVM is responsible for keeping a track of function call and return
during program execution. It has two data structures, the overlay table and region table.
The overlay is filled with the mapping information during linking phase. The region
table is used to keep a track of all functions currently residing in each region of SPM.
Each function call and return statement in the application code is replaced by a stub
function call to the SOVM. If the called function is not currently residing in SPM, the
SOVM issues a direct memory access (DMA) command to transfer the function from
main memory. The SOVM manager code then transfers the program control to the first

Table 1. Energy Model

Size(KB) SPM(nJ) 4-way Cache(nJ) Size(KB) SPM(nJ) 4-way Cache(nJ)

0.5 0.107 0.534 4 0.145 0.551
1 0.128 0.538 8 0.173 0.564
2 0.134 0.542 16 0.206 0.587

instruction in the overlayed function. The SOVM and its data are mapped to the main
memory to reduce the mapping pressure on the heuristic. Since the SOVM instructions
and its associated data structures are fetched from the cache, we might see some runtime
performance degradation. Our experiments show that the degradation is minimal.

7 Experimental Setup

The instrumented binary is executed on a cycle accurate simulator that models an Intel
XScale processor. The simulator has been augmented to model an on-chip SPM at the
same level as instruction cache. The system modeled has a 32 KB instruction cache, 32
KB data cache, and a SPM, the size of which can be selected by the system designer.
The simulator models a low power 32MB SDRAM from Micron as the main memory.
The SPM is physically addressed and incoherent with the main memory subsystem. We
perform our experiments on a set of embedded applications from [6]. The applications
used and their respective code sizes are dijkstra(1588), patricia(2904), rijndael(21050),
sha(2376), susan(46808), fft(4688), adpcm(1436), blowfish(9308). The per access
energy numbers for SPM and I-Cache are given in table 1.

8 Results

8.1 First-Fit vs SDRM

In this section we present a comparison of total energy consumption between the ILP,
SDRM and the first-fit heuristic for various benchmarks. For first-fit we assume that
the SPM is divided into variable sized regions (Experimentally we found that variable-
sized region gives better results than equal-sized region). The previous approach does
not precisely state a way of finding these region sizes. To be unbiased, we performed an
exploration for various sizes and number of regions. For example, for x bytes of SPM,
we divided it into x/2, x/4, x/8,... x/r, where the value of r was found by exploration.
The regions were considered in the same order for allocation. Figure 3(a) show the first-
fit energy consumption trend for sha as we explore the number of regions for a 2KB
SPM. As shown in the graph, there is an optimal number of regions (r = 3) in first-fit, at
which the energy consumption is minimum. For smaller number of regions (r < 3), not
all interfering functions can be mapped, since the number of such functions is higher
than the number of regions. Some functions are spilled to main memory, resulting in
a higher energy consumption. As we increase the number of regions, more functions
will be overlayed and the energy consumption decreases, reaching a local minimum

0

200

400

600

800

1000

1200

1400

3 1 2 3 4 5 6 7

First-Fit Heuristic
EN

ER
G

Y
 C

O
N

SU
M

P
TI

O
N

 in
 u

 J

SDRM

Number of Regions

1190

1192

1194

1196

1198

1 2 3 4 5 6 7

(a) SHA Benchmark: first-fit heuristic with
varying number of variable sized regions

0

50

100

150

200

250

300

350

400
FirstFit SDRM

EN
ER

G
Y

in
 µ

 J
%

 E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

 N
o

rm
al

iz
e

d
 t

o
 IL

P

1024

2048

16384

2048

4096

4096

1024

8192

(b) Energy Comparisons between ILP,
SDRM and first-fit for various benchmarks

Fig. 3. First-Fit vs SDRM

at (r = 3). However, if we compare this value with the first bar which indicates the
energy consumption from SDRM mapping, it is significantly higher. The reason is that
the critical function for sha does not fit into any region of the SPM, corroborating
our argument that pre-determining the number of regions does not lead to optimal
solution. Further increase in number of regions (r > 3) fragments the SPM into smaller
sized regions. As large sized functions cannot fit, this again results in spilling of such
functions to the main memory which causes a rise in energy consumption. On further
increase (r > 4), the SPM gets more fragmented, but the mapping does not change and
there is no change in energy consumption.

To the best of our knowledge, none of the previous approaches have demonstrated
any technique for finding the optimal number of regions at which the energy con-
sumption would be minimal. The only way to find this number is by exploration of
the entire solution space by varying the number and size of regions. The search space
can be reduced by smart exploration techniques, but only up to a limited extent as the
exploration process is a time consuming task involving recompilation and execution
of program every time. The SDRM technique proposed does not incur this expense
as it simultaneously finds the optimal number of regions and their sizes while solving
the mapping problem. The first bar in the graph shows the energy results obtained by
SDRM for a 2KB SPM. SDRM divides the SPM into three variable sized regions and
exhibit a 69% energy reduction compared to first-fit which divides the SPM into three
variable sized but pre-determined regions.

Figure 3(b) shows the comparison of energy consumption between SDRM and
first-fit heuristic for various benchmarks, normalized to the ILP energy values. The
optimal number and size of the regions for first-fit are found by exploration as discussed
previously. From the figure, we observe that the energy for SDRM is always close to
100%, indicating that the solution obtained from the SDRM heuristic is close to the
optimal ILP solution. Moreover, the maximum energy reduction is observed for sha,
where the first-fit performs poorly, as the most critical region does not even fit into any
region. On the other hand, since the SDRM does not predetermine the region sizes, the
critical functions are always mapped to some region of the SPM. On an average we
observe a 27% energy reduction for SDRM compared to the first-fit technique.

0

200

400

600

800

1000

1200

1400

1600

1800

Scratchpad Size (bytes)

I-CACHE: 2x bytes I-CACHE:x bytes , SPM:x bytes

1024512 2048 4096 8192 16384

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 in

 µ
 J

Fig. 4. SHA: Energy comparisons between COA and HSA SDRM

8.2 Cache-only vs Horizontally Split Architecture

In this experiment, we compare our mapping technique for a HSA against a COA. The
COA architecture consists of 2x bytes of I-cache while the HSA consists of x bytes of
SPM and x bytes of I-cache. Figure 4 shows how the HSA architecture with SDRM
technique performs in comparison with a COA for sha benchmark.

For small sizes of SPM, the critical functions do not fit into the SPM at all and
are spilled to cache. Hence there is no significant difference between a COA and a
HSA. As we increase the size to 2048 bytes, all functions can fit into the SPM, and
the functions would need to be overlayed as the aggregate size of 2376 bytes for sha is
greater than 2048 bytes. At this size of SPM, we see a significant reduction in energy
as all the code is fetched and executed from the SPM instead of the I-cache. At a larger
size of 4096 bytes, all the functions can be mapped onto the SPM without any overlay,
which means no calls to the SPM overlay manager and no runtime overhead due to
DMA transfer instructions. We should therefore have observed a further decrease in
energy consumption. However, since we assume a model in table 1 where the energy
per access for SPM increases with size, we observe an increase in energy consumption
with increasing size of SPM. For sha benchmark the HSA shows a reduction of 77%
compared to the COA. The average reduction is 35% across all benchmarks.

This experiment demonstrates the effectiveness of a split memory subsystem
architecture when supported by an intelligent mapping technique like SDRM. In other
words, given an architecture with only an instruction cache, we can always reduce the
energy consumption by splitting the power hungry instruction cache equally into a SPM
and a smaller instruction cache. A pure compiler technique like SDRM can then be used,
requiring just a simple recompilation of the application, with no profiling overhead.

8.3 Performance Overhead

Since the SOVM code is fetched and executed from the I-cache, there is a performance
penalty in terms of runtime cycles due to the extra instructions. One way to reduce this
overhead would be to map the SOVM code to the SPM instead of cache. However,
this would mean less space available to map the functions themselves resulting in a

potential spill of some critical functions to the cache, which means a greater energy
consumption. An additional penalty is incurred due to clearing of the branch target
buffer table, each time an overlayed function is transferred from main memory to SPM.
This is essential, otherwise branch instructions would jump to invalid addresses from
the previous overlayed function, thereby crashing the application. There is also an
additional penalty due to stalls during code transfer from main memory to SPM. We
observe an average performance degradation of 1.9% across all benchmarks.

9 Conclusion

In this paper, we presented a fully-automated, dynamic, code overlaying technique
based on pure compiler analysis for energy reduction for on-chip scratchpad memories
in embedded processors. We formulated an ILP which gives an optimal solution and
a heuristic which gives a near-optimal solution and simultaneously addresses both
the important issues of region size determination and function-to-region mapping.
The proposed technique and HSA architecture succeeds in achieving a greater energy
reduction against a previous approach and a unified instruction COA architecture,
respectively. Compared to the best performing previously known heuristic our approach
achieves an average energy reduction of 27% with an average performance degradation
of just 1.9%. We also demonstrated that by splitting the I-cache into equal sized smaller
I-cache and SPM and using a pure compiler technique like SDRM, we can always
reduce the total energy consumption. This paves the path of reducing the memory
subsystem energy even in general purpose processors employing the split architecture.

References

1. F. Angiolini, F. Menichelli, A. Ferrero, L. Benini, and M. Olivieri. A post-compiler approach
to scratchpad mapping of code. In Proc. CASES, pages 259-267, 2004.

2. O. Avissar, R. Barua, and D. Stewart. An optimal memory allocation scheme for scratch-pad-
based embedded systems. Trans. on Embedded Computing Sys., 1(1):6-26, 2002.

3. R. Banakar, S. Steinke, et al. Scratchpad memory: design alternative for cache on-chip
memory in embedded systems. In Proc. CODES, pages 73-78, 2002.

4. B. Egger, J. Lee, and H. Shin. Scratchpad memory management for portable systems with a
memory management unit. In Proc. EMSOFT, pages 321-330, 2006.

5. J. Montanaro, R. T. Witek, et al. A 160-mhz, 32-b, 0.5-w cmos risc microprocessor. Digital
Tech. J., 9(1):49-62, 1997.

6. M. Guthaus, J. Ringenberg, et al. Mibench: A free, commercially representative embedded
benchmark suite. Workshop on Workload Characterization, pages 3-14, 2 Dec. 2001.

7. J. E. Smith. A study of branch prediction strategies. In Proc. ISCA, pages 135-148, 1981.
8. S. Steinke, L.Wehmeyer, B. Lee, and P. Marwedel. Assigning program and data objects to

scratchpad for energy reduction. In Proc. DATE, page 409, 2002.
9. S. Steinke, N. Grunwald, et al. Reducing energy consumption by dynamic copying of

instructions onto onchip memory. In Proc. ISSS, pages 213-218, 2002.
10. S. Udayakumaran, A. Dominguez, et al. Dynamic allocation for scratch-pad memory using

compile-time decisions. Trans. on Embedded Computing Sys., 5(2):472-511, 2006.
11. M. Verma and P. Marwedel. Overlay techniques for scratchpad memories in low power

embedded processors. IEEE Trans. on VLSI, 14(8):802-815, Aug. 2006.

