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ABSTRACT
NAND Flash Memories are becoming ubiquitous with attractive features like low power
consumption, compactness and ruggedness. Garbage Collection and Wear Leveling are
two operations carried out by Flash Translation Layers (FTLs) that oversee Flash
memory management. Both of these operations involve valid data movement and block
erasures and are very time consuming, critically affecting application response times. In
addition, since FTLs are unaware of dead data corresponding to deleted files at the file
system level, the above two operations are carried out on dead data as well, resulting in

significant and unnecessary overheads.

This thesis proposes a framework to improve application response times of NAND Flash
based systems by enabling FTLs to understand file system level operations as well as
interpret application characteristics. Proposed methods also achieve significant
improvements in overall Flash management by increasing the longevity of Flash and do
not necessitate any changes to existing system architectures. Experimental results
presented show that, by interpreting and treating dead data at the FTL level and
exploiting idle periods between 1/Os in an application to proactively perform small-scale
garbage collections in background, the proposed resource-efficient approach can improve
application response times by 30% and memory write access times by 34.7%, besides

reducing erasures by 29.7% on average.
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CHAPTER 1

INTRODUCTION

Flash memory is a non-volatile semiconductor memory that can be electrically erased
and reprogrammed. With attractive features like low power consumption, compactness
and ruggedness it is becoming ubiquitous. USB memory sticks, SD cards, Solid State
Disks, MP3 players, Cell phones etc. are some of the well-known applications of the
Flash memory technology.

1.1. NAND Flash Architecture

Flash is organized into blocks and pages. A block is a collection of 32 pages each of 512
bytes. Each page has a 16 byte out-of-band (OOB) area used for storing metadata. In
addition to read and write, Flash also has erasure operation. Owing to the “Erase-before-
rewrite” characteristic, a re-write to a page is possible only after the erasure of the
complete block it belongs to, which is an extremely time consuming process. Another
limitation of Flash is endurance: it can only withstand finite number of erasures,
typically 100,000. To hide above characteristics from applications, a dedicated Flash
management module called Flash Translation Layer (FTL) [7] may be employed. The
primary responsibilities of an FTL are allocation, i.e., logical to physical address
translation and cleaning, i.e., reclamation of invalid data.

1.2. NAND Flash Management

Available blocks in Flash are organized as Primary and Replacement blocks [6]. When a
page rewrite request arrives, a primary block is assigned a replacement block. When the
replacement block itself is full, and another rewrite is issued, a fold or merge operation

needs to be performed, as depicted in Fig. 1. Valid data in old two blocks is consolidated



0 0 0 0 0
1 01,01 1 1 1 0 1
2 5 0 2 0 — 2
3 1 3 1 3
Primary Replacement Primary Replacement Primary
A. Overwrites to 0,1 pages redirected to B, Further overwrite to page O triggering a Merge operation
replacement block Initial primary and replacement blocks are freed.

Fig.1. Fold or Merge operation

and written to a new primary block and the former are freed subsequently. Also, after a
series of rewrites, free space in the device falls below a critical limit and needs to be
regenerated by garbage collecting or reclaiming the invalid data. At the end of this GC
process, valid data is consolidated into primary blocks. Thus, a GC is a series of forced
fold operations. On the other hand, WL process involves frequent data shuffling between
highly erased and least erased blocks to achieve uniform wear. Thus, both GC and WL
operations involve expensive erasures and data copying, and so are very time and energy
intensive. Since Flash is not available while carrying out the above operations,
applications can be potentially stalled, resulting in very poor response time
characteristics. Especially, it was shown that a GC may take as long as 40sec [12].

1.2.1. Garbage Collection and Wear Leveling Overheads

In order to understand impact of GC and WL operations on application response times, a
digital camera workload was ran on a 64MB Lexar Flash drive formatted as FAT32 [17]
and fed resulting traces to Toshiba NAND Flash [21] simulator and measured WL and
GC overheads. During the scenario a few media files of sizes varying between 2KB and
32MB were created and deleted. Application response times at various instances are

plotted in Fig.2. The peak delays at the right extreme of the figure, which critically affect
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application response times, correspond to instances where a GC is being carried out.
Table I lists overheads due to wear leveling data belonging to deleted files (dead data), in
terms of percentage increase in device delay, erasures, average memory write access time
and folds.

Previous efforts [2] [8] [9] [11] [15] [16] [18] [22] [23] have focused on improving GC
and WL efficiency to improve application response times. However, they have not
directly attempted to minimize, or eliminate automatically triggered, unpredictable and
lengthy GC delays. Another limitation of previous works can be seen at the file system
level. Since file systems only mark deleted files at the time of deletion, but not actually
erase corresponding dead data in Flash, FTL treats dead data as valid until specifically
overwritten by new file data and carries out useless data migration on the same during
GC and WL operations, resulting in unnecessary and significant Flash delays. Thus,
various file systems are shown to be lengthy in response times in the presence of dead
data [5]. Previous efforts that addressed this issue required significant changes to existing

file system architecture [5].
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Fig.2: NAND Flash device delays
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This thesis work proposes an FTL-level framework to improve application response
times that does not require any interface changes to existing systems. This is achieved by
enabling FTL to interpret file system operations and also to understand application
characteristics. Proposed file system level method, FSAF: File System Aware FTL that
enables FTL to recognize file deletion dynamically and resource-efficiently and handle
dead data proactively to significantly reduce GC and WL overheads. This is achieved by
tracking changes to the file system data structure in Flash, without necessitating any
changes to existing file systems. The SLAC: Application SLack time Aware Garbage
Collection scheme proposed understands application timing characteristics dynamically
and exploits idle times between Flash requests to proactively perform fold operations in
order to reduce, or even completely eliminate GCs. Also presented along with SLAC is
an algorithm to perform these proactive fold operations at high efficiency (by minimizing
the cost of folding) to further improve device delays.

Experimental results demonstrate the proposed approach can improve application
response times by 30% and memory write access times by 34.7%, besides reducing
erasures by 29.7% on average. Individual results for SLAC and FSAF are also presented:
SLAC reduces GCs by 80%, besides lowering average write access times and device
latencies by 20% and the number of erasures by 8%. FSAF improves application
response times and average write access times by 22% on an average, besides reducing
erasures by 21.6%. It is also shown that both of the above comprehensive approaches can
be implemented in a resource-efficient manner, and do not necessitate any interface

changes.



CHAPTER 2
RELATED WORK

Several works to improve application response times have been proposed so far, by
attempting to improve the efficiency of GC and WL operations. Also, file system level
work has been done to handle dead data. It has to be noted that even though there exists a
lot of work related to GC in programming languages, it cannot be carried over to Flash,
owing to Flash characteristics. Also, a real-time GC policy for Flash was considered by
Chang et al. [12]. This method, however, is specific for real-time systems.

2.1. Previous Works on Garbage Collection

Works on GC proposed so far for general purpose systems attempt to improve
application response times by increasing the efficiency of the GC process, as follows.
The greedy GC approach was investigated by Wu et al. [22]. To reduce GC costs, this
method reclaims blocks with high dead page counts. This approach performs poorly with
high locality of reference workloads, as it doesn’t consider hot-cold data segregation.
Kawaguchi et al. [11] came up with the cost-benefit policy, by considering both
utilization and age of blocks. They also introduced block-level segregation of hot and
cold data (frequently updated data is termed hot). Thus, the approach performed well for
high locality workloads. Cost Age Time (CAT) policy [15] was considered by Chiang et
al. that also focuses on reducing the wear on the device (increase endurance) apart from
addressing segregation. The method uses a data redistribution method that works at a
fine-grained page-level for efficient hot-cold data separation. Kim et al. [9] proposed a

cleaning cost policy, which focuses on lowering costs and evenly utilizing Flash blocks.
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Wear-leveling is achieved by dynamically separating cold data and hot data and
periodically moving valid data among blocks. However, it has to be noted that all these
approaches are device-centric: they do not take the application timing characteristics into
consideration. In other words, GC may be triggered by FTL at a critical instance when an
immediate response from Flash is expected.
A swap-aware GC policy [18] was introduced by Kwon et al. In order to minimize the
GC time and extend the lifetime of the Flash based swap system, they implemented a new
Greedy-based policy by considering different swapped out time of the pages. However,
this approach necessitates a change in the existing system architectures, and is specific to
few systems.
2.2. Previous Works on Wear Leveling
Various approaches based on dynamic wear leveling have been proposed [2] [13] that
achieves wear leveling by trying to recycle blocks with small erase counts. In such
approaches, an efficient way to identify hot data (frequently updated data) becomes
important, and excellent designs were proposed, e.g., [8] [10] [13] [16]. Although
dynamic wear leveling does have great improvement on wear leveling, the endurance
improvement is stringently constrained by its nature: That is, blocks of cold data are
likely to stay intact, regardless of how updates of non-cold data wear out other blocks. In
other words, updates and recycling of blocks/pages will only happen to blocks that are
free or occupied by non-cold data, where cold data are infrequently updated data. Static
wear leveling is orthogonal to dynamic wear leveling. Its objective is to prevent any cold

data from staying at any block for a long period of time so that wear leveling could be
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evenly applied to all blocks. Static wear leveling approaches were also pursued [23] to
treat both non-cold and cold data blocks. These approaches are all again device-centric,
and do not consider application characteristics while triggering a WL operation.

2.3. Existing File System Level Works

To handle dead data, Kim et al. [5] proposed a new file system, MNFS, to achieve
uniform write response times by carrying out block erasures immediately after file
deletions. This method necessitates changes to existing system architectures.

Thus, efforts so far to improve application response times did not take application

characteristics into account, or necessitate significant system interface changes.



CHAPTER 3

OPPORTUNITIES TO IMPROVE APPLICATION RESPONSE TIMES

To explore opportunities to avoid GC delays, idle times (slacks) between application
requests of several benchmarks were analyzed. Fig.3 plots slacks at each 1/O request,
computed as the time between two subsequent requests of CellPhone benchmark. The
dark horizontal line represents the time needed for an individual fold operation. One
important observation we make from this graph is that several 1/0O requests have slack
times that will allow fold operations to be performed in background, without any
increase in the device latency. In other words, there may be significant opportunity to
carry out regular GC operation in background without affecting application response
times.

Fig. 4 depicts the file deletion operation in FAT32 file system. When a secondary storage
like Flash is formatted, FAT32 allocates first few sectors to FAT32 table to serve as
pointers to actual data sectors. When a file is created or modified, the table is updated to
keep track of allocated /freed sectors of the file. However, when a file is deleted or
shrunk, the actual data is not erased (this process is termed implicit file deletion). In
over-writable media like hard disks, this poses no problem, as the new file data is simply
overwritten over dead data. However, because Flash doesn’t allow in-place updates, dead
data resides inside Flash until a costly fold or GC operation is triggered to regain free
space. Whereas, FTL carries out expensive WL operation regularly on dead data blocks.
Thus, dead data results in significant GC and WL overhead, affecting application

response times. If FTL can detect dead data dynamically upon file system operations,



we will be able to save on related dead data migration costs.
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CHAPTER 4
THE APPROACH
Two important intuitions are:

1. If GC is scheduled in the background, we will be able to achieve reclamation goals

without affecting application response times

2. If we enable FTL to interpret file system operations, we can improve application

response times without necessitating any changes to existing file systems

To this end, two different solutions to improve application response times are proposed
that are compatible with existing systems. The first method, SLAC: Application SLack
time Aware Garbage Collection scheme is an application-driven GC framework to carry
out fine-grained GCs to improve application response times, which also performs
Selective Folding to increase overall GC efficiency, to further improve response times.
The second method, FSAF: File System Aware FTL is an FTL-based solution to
efficiently recognize and also handle dead data dynamically. Even though results of
FSAF are demonstrated on FAT32 file system, the method is equally applicable to all

other file systems that perform implicit file deletions.
4.1. SLAC: Application Slack Time based Garbage Collection

At every request to Flash, SLAC predicts idle time until next request (termed slack) to

determine how many folds can be done within the slack and selects blocks for folding
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that have least cleaning costs to maximize garbage collection efficiency. SLAC
framework is integrated with the FTL that interfaces the application.

4.1.1. Slack Prediction

SLAC has a history-based prediction mechanism to arrive at an estimate of next slack, as
shown in Fig 5. The goal of slack prediction is not only to arrive at a good estimate of
slack, but also achieve this at a minimal overhead. Both slack average D,,, and
fluctuation D, are taken into consideration while performing slack prediction. As read
and write requests arrive, SLAC maintains a list of last n slacks. At every request,
running-average slack, D,,, and a measure of deviation Dg,, are derived from their old
values and the latest time stamp. If the deviation Dy, is within a small threshold €, Dy,
is projected to be the next slack. If the fluctuation is beyond ¢ the last slack S, is
projected as the next slack. The next step is to calculate how many fold operations
possible during this slack, E,,, which is calculated as:

Fn, =5/t

Where, S = predicted slack and ¢, = time for each fold operation.

slack_prediction:

th ) —
1. Computethe n" slack from time stamps: S = (tn _tn—l)

1
2. Derive new Davg = Davgold — (lS1 -s, | *—)
n

1
*

avg

3. Compute D, = Z‘Si -D

4. IfS, <t :return ZERO
5. 1If D
6. If Dy,

Vv

ey <& andS_ >t :return Davg

>é& andS, >1 :retun$,

Fig.5: Slack Prediction.
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In turn, time for each fold operation, ¢, is calculated as:
tr =2%n, xt,, + ny xt., + np*(twp + two)-i- 2xt,

Where,
n, = pages per block, t,, = OOB read time, t,,, = OOB read time, t,,, = page read time,
twy = Page write time, t, = block erase time.
These parameters are taken from the datasheet supplied by the Flash manufacturer. It has
to be noted that ¢; represents worst case fold time. Depending upon the amount of valid
data, actual fold time varies.
The two parameters to tune in this algorithm are n and &. Bursty nature of 1/0 requests of
various benchmarks and general purpose workloads suggests that prediction should be
based upon recent rather than old slack data. This suggests that small values of n work
well. The accuracy of this history-based predictor was explored over a wide range of n
and ¢. The experimental results show that best prediction happens at n =4 and € =
5000 usec.
Even though SLAC can be equipped with other slack prediction mechanisms as in [4]
care needs to be taken about their resource overheads. As shown in the experimental
results, the algorithm in Fig. 5 achieves good prediction at a minimal resource overhead.
An important aspect of SLAC is that it automatically switches off issuing selective folds
at higher request-arrival rates. In such cases, underlying FTL automatically triggers
garbage collection when the free space in the device falls below a critical limit. This

makes sure that SLAC never worsens application response times.



13
4.1.2. Selective Folding
Once E,,, the possible number of folds is determined, selective folding algorithm chooses
blocks to fold from available blocks. In order to improve overall garbage collection
efficiency, we have to identify blocks with minimal cleaning costs. Costs associated with
a fold operation are because of erasures and valid data copying. In a fold operation, two
erasures are a necessity, and so we need to concentrate on reducing the valid data copying
cost. This is minimized when the dead page count in a block is maximum, i.e., when
minimum valid data needs to be copied. In addition, SLAC makes sure that the selected
blocks are also hot, i.e. updated frequently. Thus, folds that will anyway be triggered in
the near future are performed in the slack, eliminating any need for application stalls.
The selective folding algorithm is presented in Fig 6. After F, is determined, i.e. blocks
that give maximum garbage collection efficiency are known, we need to see if all these
folds can be carried out within the predicted slack. If allowed number of folds F,, exceeds
F,, all the blocks in L, are folded. On the other hand, if there are more foldable blocks
than are allowed (F,, < F,;), SLAC sorts the list of hot blocks L, and returns the list of
E,, blocks from the sorted list.
One threshold to tune here is the dead page count d;;. Higher values of d;;, allow for
very efficient garbage collection but lesser number of folds at a slack, whereas lower
values mean vice versa. Since higher garbage collection efficiency means lesser number

of block erasures and block copying overhead, it is intuitive to go for a higher value of
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selective_folding:

1. Determine the list L of blocks with

dead page count > dm

Extract It_he list Ln of hot blocks from L

d=|Lh]|

If Fo > Fg , return Ln

If Fn < Fd .
a L' =sort(Ls) .
b. Return first Fmelements of Ln

aprwN

Fig. 6: Selective Folding.

dry,. The experimental results also confirm this intuition, as shown in experimental
section. By setting dr, to 32 dead pages, SLAC executes only at highest efficiency
achievable by the FTL’s garbage collection policy. On the other hand, sorting needed in
step 5a of Fig.5 is eliminated, because all blocks contain equal number (32) of dead
pages. Also, unlike the other garbage collection policies, SLAC employs scanning rather
than sorting of blocks based on dead page count, reducing the algorithmic overhead
considerably. Whereas other garbage collection policies sort the whole block list every
time for performing garbage collection, SLAC employs scanning, and might only have to
sort a relatively small list L, of blocks if E,, < F;.

4.2. FSAF: File System Aware FTL
FSAF monitors write requests to FAT32 table to interpret any deleted data dynamically,

subsequently optimizing GC and WL algorithms accordingly. Also, depending upon the
size of dead content and the Flash utilization, proactive dead data reclamation is carried
out.

4.2.1. Dead Data Detection

Dead data detection is carried out by FSAF dynamically as files are deleted by the

application. Since the file system does not share any information with the FTL regarding
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file management, the only way we can interpret file system information at FTL is by
understanding the formatting of Flash and keep track of changes to the file system data
structure residing on Flash. The goal of dead data detection is to carry out this process
efficiently without affecting performance.

The format of Flash can be understood by reading the first sector on Flash, called Master
Boot Record (MBR) and the first sector in the file system called FAT32 VVolume ID. The
LBA_Begin field of the MBR reveals the location of the FAT32 Volume ID sector.
Subsequently, the location of the FAT32 table can be determined as follows:
FAT32_Begin_Sector = LBA_Begin + BPB_RsvdSecCnt
The size of the FAT32 table is given by the field BPB_FATSz32. Both
BPB_RsvdSecCnt and BPB_FATSz32 are read from the FAT32 Volume ID sector.
Once the size and location of the FAT32 table are determined, dead sectors can be
recognized by monitoring writes to the table. FAT32 stores the pointer to each data sector
allocated to a particular file in corresponding locations in the FAT32 table. To delete a
particular file, all the pointers to data sectors are freed up by zeroing out their content. In
other words, dead sectors resulting from shrinking or deleting a file can be found out by
reading corresponding pointers prior to their zeroing out. If all the sectors in a block are
dead, the whole block is marked as dead. Thus, FSAF needs to maintain a buffer for
reading FAT32 table sector before it is zeroed out by the file system. Fig. 7 depicts the

algorithm.
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dead_data_detection():

1. Calculate size and location of FAT32 Table by
reading MBR and FAT32 Volume ID sectors

2. Monitor writes to FAT32 Table

3. If a sector pointer is being zeroed out, mark
corresponding sector as dead

4. Mark a block as dead if all the sectors in the

block are dead

Fig. 7 Dead data detection algorithm.
4.2.2. Avoidance of Dead Data Migration
Once dead sectors are recognized, GC and WL algorithms are instructed to avoid copying
their content during regular operation of Flash. Thus, dead data migration is avoided
during valid data copy occurring while carrying out GC and WL operations.
4.2.3. Proactive Reclamation
When larger files or files occupying contiguous sectors are deleted, dead data occupies
complete blocks. Since these blocks do not contain any valid data, they can be reclaimed
without any copying costs, unlike blocks that require valid data copy during normal
folding operation. Thus, reclaiming such blocks is inherently a highly efficient operation
in comparison to a forced fold operation during a GC. Thus, when the free space in Flash
falls below a critical threshold, instead of proceeding with costly GC operation, dead
blocks can be reclaimed to delay or avoid GC by regenerating free space dynamically.
However, application response times still might suffer when all the dead data is reclaimed
together, owing to costly erasure operations. In order to avoid this, proactive reclamation
of dead blocks is taken up. FTL triggers GC higher Flash utilizations [11], i.e., when the

free space in the device is below a critical limit, and continues folding until free space
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reaches another threshold. In other words, to avoid delays due to GC, free space in the
device should be kept above the GC threshold. So, dead block reclamation should be
scheduled when Flash utilization is reasonably high, but not high enough to trigger a GC
operation. On the other hand, number of dead blocks proactively reclaimed must be as
small as possible, as expensive erasure operations can impact application response times.
Yet another important factor to be taken into consideration is the amount of dead data in
Flash - this decides whether or not proactive reclamations need to be run.

The proactive reclamation algorithm is as presented in Fig. 8. We first check whether the
dead content is greater than a threshold ¢. If not, GC and WL are informed to avoid
useless dead data migration by marking dead sectors. If dead content is greater than ¢, we
check whether system utilization is higher than w, i.e. whether at least x percentage of
blocks is already used. In such a case, we proceed to reclaim dead blocks proactively
apart from avoiding dead data migration. Thus, dead block reclamation proceeds until
number of dead blocks reach another threshold 4.

Even though proactive reclamation improves application response times by avoiding or
delaying costly GC operation, it should be scheduled in such a way that application stall
time is minimal (since proactive reclamation is a series of erase operations, it can be time
consuming). In other words, parameters J, « and 4 should be carefully configured such
that reclamation is highly efficient. Large values for ¢ and x avoid frequent reclamation,
but might impose a lot of reclamation activity. Small values for 4 mean smaller
reclamation activity, but frequent triggers for reclamation. To arrive at reasonable values

for these parameters, the effect of varying these parameters on various performance
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metrics was explored, as presented in the next section. The results confirm the intuition at

best performance is achieved at high values of § and « low values of 4.

A 4

Small dead

content Large dead

content

Utilization
greater than
GC threshold

YES

Fig. 8: Proactive Reclamation



CHAPTER 5

EXPERIMENTAL SETUP

Trace-driven approach was used for the experimentation. Several benchmarks with
different slack-time characteristics and localities of reference were used for trace
collection on a PC running on Linux 2.6.18. Benchmarks were run from a FAT-32
formatted Flash USB stick connected to the PC and usbmon utility [25] was used to
extract the timing, sector and request type information from USB traffic, forming the
application trace. The collected traces were fed to a simulated Toshiba NAND Flash [21].
Log-based NFTL [9] was realized on top of it and implemented Greedy [22] and Cost-
benefit [11] GC policies. CAT [15] policy was not considered, as the original paper was
proposed for page-mapped implementation, which is not viable for Flash sizes of today.
SLAC was finally integrated with the setup.

Various benchmarks were used to evaluate the approach. MP3 and MPEG benchmarks
were obtained by running different media files and issuing writes to Flash
simultaneously. Other benchmarks, JPEG, and MAD were taken from MiBench. Also,
other file system benchmarks simulating Event Recorder, Fax and Cell Phone were also
run on the experimental setup. For evaluating FSAF, benchmarks those benchmarks that
represent most frequently encountered file system scenarios on removable Flash storage
media such as SD cards in applications like digital cameras, mp3 players, digital

camcorders and memory sticks:
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s1: Huge sized file creation and deletion
s2: Medium sized file creation and deletion
s3: Small sized file creation and deletion
In order to simulate real-world scenarios, Flash was brought to 80% utilization and the
size of Flash for each benchmark was set to 64 MB. FTL was configured to start GC
when the number of free blocks falls below 10% of total number of blocks and stop GC
as soon as percent free blocks reaches 20% of total number of blocks. WL is triggered
whenever the difference between maximum and minimum erase counts of blocks exceeds

15. The size of files used in various scenarios was varied between 32MB to 2KB.



CHAPTER 6

EXPERIMENTAL RESULTS

6.1. Configuring SLAC Parameters

The parameters of n (number of samples) and € (fluctuation threshold) need to be
configured to run SLAC. Slack prediction algorithm was ran with various values n of for
all the benchmarks, and found that the intuition of smaller values of n performing better
than larger values. The reason behind this can be explained as follows. Since future
samples tend to be influenced more by recent past, we can follow the application patterns
closely with n as small as possible, but big enough to accommodate fluctuations in the
recent sample data.

After performing various experiments, we fixed n at 4 and € at 5000 psec. Other
prediction approaches were evaluated like weighted moving average, with recent samples
assigned higher weights than the older. Certainly more sophisticated approaches as in [4]
can be taken up, which will enhance slack prediction, but come with a higher algorithmic
and resource overheads.

To determine the best value for the dead count threshold, d;, the variation in the number
of erasures, folds and FTL-triggered garbage collections against various threshold values
was plotted, for SLAC implementation on Greedy and Cost-benefit policies. Fig. 9

depicts the sample experimental results for the CellPhone benchmark. It was observed
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Fig.9. Variation in Erasures, Folds and garbage collections against dead page count

when dr, was increased from 2 to 32, erasures and folds drop significantly. However,
since higher threshold allows lesser folds during slack, we see an increase in the number
of FTL-triggered garbage collections with higher dr,. This concurs with the hypothesis
of increasing garbage collection efficiency with the increasing values of d;,. Thus, it was
set to 32, i.e. hot blocks only with dead page count equal to 32 are considered by SLAC
for folding. From the specification [21], fold time ¢, was calculated to be 20128 usec.

6.2. Configuring FSAF Parameters

The parameters J, ¢ and 4 need to be configured to run FSAF. Proactive reclamation
algorithm was ran with various values of 6 and p for all the benchmarks, and results
supported the intuition that higher values for these parameters result in higher
performance. By setting these to high as possible, proactive reclamation is triggered only

when the system is low in free space, but runs frequently enough to generate sufficient
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free space. Thus, 6 was set to 0.2 and p to 0.85, i.e. when the dead data size exceeds 20%
of the total space and system utilization is 85%, proactive reclamation is triggered.
To determine the best value for 4, it was observed variation in the total application
response times, number of erasures, and garbage collections against various sizes of
reclaimed dead data, represented by 6° ( = (0 — 4)). Owing to lack of space, related
results were omitted. It was observed that when 6" was increased from 0 to 0.18, Flash
delays and erasures decrease initially and increase afterwards, as the reclamation activity
increases. However, number of garbage collections remains the same. Thus, ¢ needs to
be set to a small positive value. This concurs with the hypothesis that small values for 6°
are better than large values. So, 4 was set to 0.18.
In essence, FSAF is configured to proactively reclaim dead data as soon as dead content
becomes more than 20% of the total Flash size when Flash utilization is greater than
85%, and reclaims 2% of dead blocks at each invocation.

6.3. Improvement in Application Response Times

Fig. 10 shows application response times of different benchmarks for Greedy as well as
the combined approach (COMBO) that includes both FSAF and SLAC techniques.
Depending upon the timing characteristics as well as the deleted file content, we see that
different benchmarks differ in their total application response times. Fig. 11 shows
average page write access times for each benchmark, for Greedy and COMBO
approaches. By detecting dead data dynamically and scheduling GCs in the background,

we see that COMBO achieves significant reduction in both application response times



and page write access times.
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In order to understand the above composite gains in detail, presented are individual
results and discussion. Fig.12 depicts the average page write access times for each
benchmark. Each of the histogram for a benchmark represents Greedy, SLAC-Greedy,
Cost-benefit and SLAC-Cost-benefit policies respectively. An average of benchmarks for
each of these methods is also presented. As per the specification [21], a page write is
supposed to take 400 usec, but we see that, in reality the values are much higher. The
reason behind this behavior is the delays associated with garbage collection operations. It
has to be noted that the effect of garbage collection overhead becomes even more
pronounced at higher Flash utilizations. One can see from Fig.12 that SLAC
implementations of Greedy and Cost-benefit policies show improvement over the normal
Greedy and Cost-benefit garbage collection policies. This is because, by carrying out
garbage collection activity in the background and also selectively folding, SLAC policy
significantly decreases write access times compared to Greedy and Cost-benefit
implementations. From Fig. 12, we can also observe variation in the average write access
time across benchmarks. This is majorly because of two reasons: variation in the locality
of reference and difference in the slack times available to each benchmark. We observe
that maximum gains can be obtained when a benchmark exhibits sequential write access
patterns, also with a reasonable slack. MP3 benchmark, thus gains maximum by as much
as 51% with SLAC. On the contrary, gains are less when there is no slack. However, we
see that SLAC achieves 18.2% improvement on the average. It is important to know that
additional writes and reads to pages and OOBs are issued by the FTL itself during the

process of folding while copying valid pages. In other words, application-issued writes
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trigger FTL to issue more writes during the process of folding. Since SLAC always folds

blocks with minimum cleaning costs, the above delays are also reduced automatically,

contributing to the reduction of Flash access times.
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Total device delays for each benchmark and also the benchmark average are given in
Fig.13, after normalizing to Greedy method. The total device delay includes delays
incurred due to reads, writes as well as garbage collections. We can observe that
improvements in device delays after employing SLAC are similar to improvements in
write access times. This is because of the fact that read access times of Flash are much
lower than write access times, and also because reads are normally cached. Thus, SLAC
aims at reducing write access times.
FSAF results are presented here. Fig.14 depicts total application response times for each
of the benchmark for both greedy and FSAF approaches. We observe that the FSAF
approach improves response times by 22% on the average, and 32% for the scenario s2
compared to the greedy approach. From Fig. 14, we can observe that there is a variation
in the total response times for different scenarios, owing to the content and distribution.
We observe that maximum gains can be obtained when dead data occupies contiguous
rather than randomly distributed sectors, as in the scenario s2. However, we see that
FSAF achieves 22% improvement on the average.
It has to be noted that the total device delay includes delays incurred due to reads, writes
issued by the application as well as those issued during carrying out garbage collection
and wear leveling activity. When file system issues reads and writes and folding and wear
leveling are triggered, additional writes and reads to pages and OOBs are issued by the
FTL during the process of valid data copying. In other words, total writes carried out are
more than application-issued writes. Since FSAF always avoids dead data migration and

directly reclaims dead blocks, device delays are reduced, contributing to the reduction of
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Flash access times and hence application response times.
Fig. 15 depicts average memory write access times (W-AMAT) for different scenarios
for both greedy and FSAF approaches. We can observe that improvements in W-AMAT
after employing FSAF are similar to improvements in response times. This is because of
the fact that read access times of Flash are much lower than write access times, and also
because reads are normally cached. The variation in the average write access time across
benchmarks is owing to dead data content.
It has to be noted that the response times suffer majorly at higher Flash utilizations when
garbage collection operations are triggered out to regenerate free space. So, if enough
free space can be generated at higher utilizations, we can delay or even avoid costly
garbage collections. FSAF achieves the same by dead data reclamation at higher
utilizations. On the other hand, wear leveling overhead because of dead data, which is

incurred at all Flash utilizations, is avoided by FSAF by avoiding dead data migration.
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Table Il presents the number of garbage collections, erasures and folds for each

benchmark, for both Greedy and COMBO approaches. We see that COMBO

significantly reduces garbage collections, folds and erasures, essentially contributing both

to improved response times as well as increased Flash life time. Presented are individual

results and discussion for SLAC and FSAF approaches also, to see how each method

improves Flash management.

TABLE II: Improvement in erasures, garbage collections and folds with both methods

applied
Erasures GCs Folds

Gre

Bench- | Gree- | COM- | %Decre | Gree | COM- | %Decre - COM | %Decre

mark dy BO -ase dy BO -ase edy | -BO -ase
229

sl 4907 | 4211 14.18 10 0 100.00 4 1560 32.00
124

s2 2631 | 1324 49.68 11 1 90.91 9 597 52.20
254

s3 5384 | 3219 40.21 25 5 80.00 1 1563 38.49
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Table Il provides improvements with respect to the number of FTL-triggered garbage
collections and erasures for all approaches, for each benchmark for SLAC. The most
important observation from this table is that, on an average, FTL-triggered garbage
collections reduce by 80%. This means the elimination of most of the undesirable peaks
in the device response times depicted in Fig.2. Benchmarks MAD and MPEG were not
considered in the calculation of the average: the percent improvement is high but number
of garbage collections before and after employing SLAC is very small. Table Il also
provides number of erasures for each method. These results underline another important
benefit of employing SLAC approach: the reduction in the number of erasures. Erasures
determine the life time of a Flash and by reducing them we can achieve longer Flash life
times. Reduced number of erasures also means significant energy reduction, as an erasure
is the costliest of all Flash memory operations.
Benefits of SLAC approach can be understood by observing the way a normal FTL
performs garbage collection. An FTL triggers garbage collection upon free block count
reaching certain critical threshold. At such an instance, blocks are sorted by a metric
decided by the garbage collection policy, and are subsequently reclaimed in the sorted
order until enough free blocks are generated. For example, in Greedy approach, blocks
are sorted by their dead page count, where as in Cost-benefit approach, they are sorted by
cost-benefit value. Because of this, the cost of each fold operation may be different.
SLAC, on the other hand, picks up blocks only with maximum benefits (whose dead page
count is dry), doing away with costly sorting operation. The benefits associated manifest

themselves in the reduction of the number of erasures, and improved garbage collection
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FTL-
triggered Erasures FTL-triggered Erasures
GCs GCs
SLA
Gr | SLAC | Gr | SLAC | %De C- | %De
Bench- | eed - eed - creas | Cost- | SLAC- | Cost- | Cost- | creas
mark | y | Greed | y | Greed e benef | Cost- benef | benef e
y y it benefit it it
CellPh 50
one 23 14 20 | 5000 | 0.4 28 12 5020 | 5000 | 0.4
Event
Record 33
er 14 13 45 | 3288 1.7 17 14 3343 | 3318 | 0.75
11 76
Fax 1 19 59 | 7292 | 479 | 111 19 7659 | 7292 | 4.79
14
JPEG | 21 6 49 | 1410 | 2.69 | 26 7 1449 | 1423 | 1.79
13 28.3 28.3
MAD | 2 0 4 96 6 2 0 134 96 6
26 335
MPEG | 38 7 47 | 2581 | 2.49 1 0 1756 | 1315 4
25
41 2541 | 2505
MP3 | 78 0 4 | 25078 | 1.32 | 97 0 4 6 1.41

efficiency by reducing number of writes and reads during folding. However, one can

observe that the reduction in the number of erasures is much less compared to the

reduction in number of garbage collections. This is because of the fact that even though

some FTL-triggered garbage collections are taken up in the slack, essentially the same

amount of cleaning activity needs to be performed in both of the approaches.

It has to be noted that SLAC gains are heavily dependent upon the timing or slack

characteristics of applications. When there is no slack, no micro garbage collections can
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be performed. For example, the Event recorder benchmark is very write intensive: it
records event data to Flash upon sudden influx of events. Continuous writes to the Flash
in such cases trigger FTL to perform garbage collections automatically. Thus, we can see
that improvement is less for event recorder with SLAC approach. This also explains why
SLAC may not eliminate all FTL-triggered garbage collections. However, it has to be
noted that SLAC does not worsen response times: it stops performing micro-garbage

collections as soon as it detects very high request rates.

Table IV provides improvements with FSAF with respect to the number of garbage
collections, erasures and folds for each benchmark, for both greedy and FSAF methods.
The most important observation from this table is that, on an average, FSAF reduces
number of erasures by 21.6%, by avoiding erasures associated with wear leveling dead
data. Since erasures determine the life expectancy of Flash, endurance is proportionally
improved. Reduced number of erasures also means significant energy reduction, as an

erasure is the costliest of all Flash memory operations.

Table IV: FSAF: Improvement in erasures, garbage collections and folds

Erasures GCs Folds
Bench- | Gree- | FSA | %Decre- | Gree | FSA | %Decre- | Gree- | FSA | %Decre-
mark dy F ase dy F ase dy F ase

434 197

sl 4907 7 11.41 10 7 30.00 2294 9 13.73
176

s2 2631 0 33.11 11 5 54.55 1249 | 792 36.59
429 197

s3 5384 3 20.26 25 14 44.00 2541 6 22.24
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Also, garbage collections are also reduced by 43% on the average compared to greedy
method. This is achieved by generating enough free space in the device by performing
proactive reclamation. In other words, this means the elimination of undesirable peaks in
the device response times depicted in Fig.2. Similarly, folds are reduced by employing
FSAF. By reclaiming dead blocks proactively, FSAF eliminates the need for creating

replacement blocks for dead blocks, and thus, unnecessary fold operations are eliminated.

It has to be noted that FSAF approach also results in lesser algorithmic overhead. An FTL
triggers garbage collection upon free block count reaching certain critical threshold. At
such an instance, blocks are sorted by a metric decided by the garbage collection policy,
and are subsequently reclaimed in the sorted order until enough free blocks are generated.
For example, in Greedy approach, blocks are sorted by their dead page count. FSAF, on
the other hand directly erases dead blocks, i.e., blocks only with maximum benefits,
doing away with costly sorting operation. The benefits associated manifest themselves in
the reduction of the number of erasures, and improved garbage collection efficiency by

reducing number of writes and reads during folding.

It has to be noted that FSAF gains are heavily dependent upon the dead data content and
distribution. However, since FSAF naturally switches to regular wear leveling and
garbage collection operations when there is no dead data, its performance is at least as

good as the normal case.
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6.5. Overheads
In SLAC, the overhead associated with slack prediction is O(n), arising mainly from the
calculation of Dy,,,. Since n is set to a very small value, it is clear that the overhead is
minimal. Selective folding uses FTL’s block list, and may need to maintain a very small
list of blocks to be folded in the slack. It also needs to scan blocks, which is an 0(k)
operation, where is k the number of blocks. However, it has to be noted that by carrying
out efficient folds in slack, selective folding reduces or eliminate the garbage collection
burden on the FTL, so as to decrease the overall garbage collection overhead. Also, by
setting dr,, to 32, we eliminate the need of any sorting activity during selective folding.
The overhead associated with FSAF comes from dead data detection and proactive
reclamation. To detect dead data, FSAF needs to monitor writes to only three sections of
Flash: the MBR, Volume ID and the FAT32 table itself. By reading and storing MBR and
Volume ID at every format time, need for constructing formatting information at every
Flash plug-in is eliminated. To detect which sector is being deleted, FSAF needs to
maintain a buffer of size of maximum one sector. Also, finding out which sector is being
deleted is an O(s) operation, where s is the number of sector pointers stored in a single
sector of the FAT32 table. Subsequent addition and deletion from the dead data list are all
0(1) operations. Thus, algorithmic overhead introduced by FSAF is only O(s) per write.
Since typically there are only 128 pointers per sector, this overhead is very minimal.
Proactive reclamation, on the other hand, reduces the overall overhead on the system.

Since proactive reclamation executes at a higher efficiency than a normal garbage
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collection operation and also eliminates or delays regular garbage collections, effectively

system overhead is significantly reduced.



CHAPTER 7

CONCLUSION AND FURTHER WORK

This work proposed a new FTL-based framework for improving application response
times and overall Flash management that is consistent with the current system interfaces.
The first method, SLAC breaks up lengthy GC operations into chunks and carries out the
same efficiently, so as to achieve significant improvements in application response times,
average write access times and the number of erasures. The second approach is a novel
method to impart the awareness of file system operations at the FTL level, without
changing any existing file system architectures. By being able to detect and treat dead
data efficiently at the FTL level, this method achieves significant improvements in
application response times, average write access times as well as erasures.

This approach can be carried over to Multi-Level Cell (MLC) NAND Flash based
applications. By storing two bits per NAND cell, MLC Flashes offer higher densities, but
perform poorer compared to basic Single-Level Cell (SLC) counterparts, owing to higher
Flash management overheads in garbage collection, wear leveling and also error
detection and correction. Also, the former have lesser life times. MLC Flashes can be
targeted for broader range of applications by extending the proposed approach to

improve their performance and life time.
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