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ABSTRACT 

NAND Flash Memories are becoming ubiquitous with attractive features like low power 

consumption, compactness and ruggedness. Garbage Collection and Wear Leveling are 

two operations carried out by Flash Translation Layers (FTLs) that oversee Flash 

memory management. Both of these operations involve valid data movement and block 

erasures and are very time consuming, critically affecting application response times. In 

addition, since FTLs are unaware of dead data corresponding to deleted files at the file 

system level, the above two operations are carried out on dead data as well, resulting in 

significant and unnecessary overheads.  

This thesis proposes a framework to improve application response times of NAND Flash 

based systems by enabling FTLs to understand file system level operations as well as 

interpret application characteristics. Proposed methods also achieve significant 

improvements in overall Flash management by increasing the longevity of Flash and do 

not necessitate any changes to existing system architectures.  Experimental results 

presented show that, by interpreting and treating dead data at the FTL level and 

exploiting idle periods between I/Os in an application to proactively perform small-scale 

garbage collections in background, the proposed resource-efficient approach can improve 

application response times by 30% and memory write access times by 34.7%, besides 

reducing erasures by 29.7% on average. 
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CHAPTER 1 

 

INTRODUCTION 

Flash memory is a non-volatile semiconductor memory that can be electrically erased and 

reprogrammed. With attractive features like low power consumption, compactness and 

ruggedness it is becoming ubiquitous. USB memory sticks, SD cards, Solid State Disks, 

MP3 players, Cell phones etc. are some of the well-known applications of the flash 

memory technology.  

1.1. NAND Flash Architecture 

Flash is organized into blocks and pages. A block is a collection of 32 pages each of 512 

bytes. Each page has a 16 byte out-of-band (OOB) area used for storing metadata. In 

addition to read and write, flash also has erasure operation. Owing to the ―Erase-before-

rewrite‖ characteristic, a re-write to a page is possible only after the erasure of the 

complete block it belongs to, which is an extremely time consuming process. Another 

limitation of flash is endurance: it can only withstand finite number of erasures, typically 

100,000. To hide above characteristics from applications, a dedicated flash management 

module called Flash Translation Layer (FTL) [7] may be employed. The primary 

responsibilities of an FTL are allocation, i.e., logical to physical address translation and 

cleaning, i.e., reclamation of invalid data.  
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typically 100,000. To hide above characteristics from applications, a dedicated Flash 

management module called Flash Translation Layer (FTL) [7] may be employed. The 

primary responsibilities of an FTL are allocation, i.e., logical to physical address 

translation and cleaning, i.e., reclamation of invalid data. 

1.2. NAND Flash Management 

Available blocks in Flash are organized as Primary and Replacement blocks [6]. When a 

page rewrite request arrives, a primary block is assigned a replacement block. When the 

replacement block itself is full, and another rewrite is issued, a fold or merge operation 

needs to be performed, as depicted in Fig. 1. Valid data in old two blocks is consolidated 

and written to a new primary block and the former are freed subsequently. Also, after a   

 

 



2 
 

 
 

 

 

 

 

 

and written to a new primary block and the former are freed subsequently. Also, after a 

series of rewrites, free space in the device falls below a critical limit and needs to be 

regenerated by garbage collecting or reclaiming the invalid data. At the end of this GC 

process, valid data is consolidated into primary blocks. Thus, a GC is a series of forced 

fold operations. On the other hand, WL process involves frequent data shuffling between 

highly erased and least erased blocks to achieve uniform wear. Thus, both GC and WL 

operations involve expensive erasures and data copying, and so are very time and energy 

intensive. Since Flash is not available while carrying out the above operations, 

applications can be potentially stalled, resulting in very poor response time 

characteristics. Especially, it was shown that a GC may take as long as 40sec [12].  

1.2.1. Garbage Collection and Wear Leveling Overheads 

In order to  understand impact of GC and WL operations on application response times, a 

digital camera workload was ran on a 64MB Lexar Flash drive formatted as FAT32 [17] 

and fed resulting traces to Toshiba NAND Flash [21] simulator and measured WL and 

GC overheads. During the scenario a few media files of sizes varying between 2KB and 

32MB were created and deleted. Application response times at various instances are 

plotted in Fig.2. The peak delays at the right extreme of the figure, which critically affect 
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application response times, correspond to instances where a GC is being carried out. 

Table I lists overheads due to wear leveling data belonging to deleted files (dead data), in 

terms of percentage increase in device delay, erasures, average memory write access time 

and folds. 

Previous efforts [2] [8] [9] [11] [15] [16] [18] [22] [23] have focused on improving GC 

and WL efficiency to improve application response times. However, they have not 

directly attempted to minimize, or eliminate automatically triggered, unpredictable and 

lengthy GC delays. Another limitation of previous works can be seen at the file system 

level. Since file systems only mark deleted files at the time of deletion, but not actually 

erase corresponding dead data in Flash, FTL treats dead data as valid until specifically 

overwritten by new file data and carries out useless data migration on the same during 

GC and WL operations, resulting in unnecessary and significant Flash delays. Thus, 

various file systems are shown to be lengthy in response times in the presence of dead 

data [5]. Previous efforts that addressed this issue required significant changes to existing 

file system architecture [5]. 

 

 

 

 

 
 

     Fig.2: NAND Flash device delays 

 

Table I: Effect of dead data on various 

metrics 

Metric 
% increase due 

to dead data 

Device Delays 12 

Erasures 11 

W-AMAT 12 

Folds 14 
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This thesis work proposes an FTL-level framework to improve application response 

times that does not require any interface changes to existing systems.  This is achieved by 

enabling FTL to interpret file system operations and also to understand application 

characteristics. Proposed file system level method, FSAF: File System Aware FTL that 

enables FTL to recognize file deletion dynamically and resource-efficiently and handle 

dead data proactively to significantly reduce GC and WL overheads. This is achieved by 

tracking changes to the file system data structure in Flash, without necessitating any 

changes to existing file systems. The SLAC: Application SLack time Aware Garbage 

Collection scheme proposed understands application timing characteristics dynamically 

and exploits idle times between Flash requests to proactively perform fold operations in 

order to reduce, or even completely eliminate GCs. Also presented along with SLAC is 

an algorithm to perform these proactive fold operations at high efficiency (by minimizing 

the cost of folding) to further improve device delays.  

Experimental results demonstrate the proposed approach can improve application 

response times by 30% and memory write access times by 34.7%, besides reducing 

erasures by 29.7% on average. Individual results for SLAC and FSAF are also presented: 

SLAC reduces GCs by 80%, besides lowering average write access times and device 

latencies by 20% and the number of erasures by 8%. FSAF improves application 

response times and average write access times by 22% on an average, besides reducing 

erasures by 21.6%. It is also shown that both of the above comprehensive approaches can 

be implemented in a resource-efficient manner, and do not necessitate any interface 

changes. 
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CHAPTER 2 

RELATED WORK 

 

Several works to improve application response times have been proposed so far, by 

attempting to improve the efficiency of GC and WL operations. Also, file system level 

work has been done to handle dead data. It has to be noted that even though there exists a 

lot of work related to GC in programming languages, it cannot be carried over to flash, 

owing to flash characteristics. Also, a real-time GC policy for flash was considered by 

Chang et al. [12]. This method, however, is specific for real-time systems.  

2.1. Previous Works on Garbage Collection 

Works on GC proposed so far for general purpose systems attempt to improve application 

response times by increasing the efficiency of the GC process, as follows. The greedy GC 

approach was investigated by Wu et al. [22]. To reduce GC costs, this method reclaims 

blocks with high dead page counts. This approach performs poorly with high locality of 

reference workloads, as it doesn’t consider hot-cold data segregation. Kawaguchi et al. 

[11] came up with the cost-benefit policy, by considering both utilization and age of 

blocks. They also introduced block-level segregation of hot and cold data (frequently 

updated data is termed hot). Thus, the approach performed well for high locality 

workloads. Cost Age Time (CAT) policy [15] was considered by Chiang et al. that also 

focuses on reducing the wear on the device (increase endurance) apart from addressing 

segregation. The method uses a data redistribution method that works at a fine-grained 

CHAPTER 2 
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work has been done to handle dead data. It has to be noted that even though there exists a 

lot of work related to GC in programming languages, it cannot be carried over to Flash, 

owing to Flash characteristics. Also, a real-time GC policy for Flash was considered by 

Chang et al. [12]. This method, however, is specific for real-time systems.  

2.1. Previous Works on Garbage Collection 

Works on GC proposed so far for general purpose systems attempt to improve 

application response times by increasing the efficiency of the GC process, as follows. 

The greedy GC approach was investigated by Wu et al. [22]. To reduce GC costs, this 

method reclaims blocks with high dead page counts. This approach performs poorly with 

high locality of reference workloads, as it doesn’t consider hot-cold data segregation. 

Kawaguchi et al. [11] came up with the cost-benefit policy, by considering both 

utilization and age of blocks. They also introduced block-level segregation of hot and 

cold data (frequently updated data is termed hot). Thus, the approach performed well for 

high locality workloads. Cost Age Time (CAT) policy [15] was considered by Chiang et 

al. that also focuses on reducing the wear on the device (increase endurance) apart from 

addressing segregation. The method uses a data redistribution method that works at a 

fine-grained page-level for efficient hot-cold data separation. Kim et al. [9] proposed a 

cleaning cost policy, which focuses on lowering costs and evenly utilizing Flash blocks.  
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Wear-leveling is achieved by dynamically separating cold data and hot data and 

periodically moving valid data among blocks. However, it has to be noted that all these 

approaches are device-centric: they do not take the application timing characteristics into 

consideration. In other words, GC may be triggered by FTL at a critical instance when an 

immediate response from Flash is expected. 

A swap-aware GC policy [18] was introduced by Kwon et al. In order to minimize the 

GC time and extend the lifetime of the Flash based swap system, they implemented a new 

Greedy-based policy by considering different swapped out time of the pages. However, 

this approach necessitates a change in the existing system architectures, and is specific to 

few systems.  

2.2. Previous Works on Wear Leveling 

Various approaches based on dynamic wear leveling have been proposed [2] [13] that 

achieves wear leveling by trying to recycle blocks with small erase counts. In such 

approaches, an efficient way to identify hot data (frequently updated data) becomes 

important, and excellent designs were proposed, e.g., [8] [10] [13] [16]. Although 

dynamic wear leveling does have great improvement on wear leveling, the endurance 

improvement is stringently constrained by its nature: That is, blocks of cold data are 

likely to stay intact, regardless of how updates of non-cold data wear out other blocks. In 

other words, updates and recycling of blocks/pages will only happen to blocks that are 

free or occupied by non-cold data, where cold data are infrequently updated data. Static 

wear leveling is orthogonal to dynamic wear leveling. Its objective is to prevent any cold 

data from staying at any block for a long period of time so that wear leveling could be 
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evenly applied to all blocks. Static wear leveling approaches were also pursued [23] to 

treat both non-cold and cold data blocks. These approaches are all again device-centric, 

and do not consider application characteristics while triggering a WL operation. 

2.3. Existing File System Level Works  

To handle dead data, Kim et al. [5] proposed a new file system, MNFS, to achieve 

uniform write response times by carrying out block erasures immediately after file 

deletions. This method necessitates changes to existing system architectures.  

Thus, efforts so far to improve application response times did not take application 

characteristics into account, or necessitate significant system interface changes. 
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CHAPTER 3 

OPPORTUNITIES TO IMPROVE APPLICATION RESPONSE TIMES 

 

 

To explore opportunities to avoid GC delays, we analyzed idle times (slacks) between 

application requests of several benchmarks. Fig.3 plots slacks at each I/O request, 

computed as the time between two subsequent requests of CellPhone benchmark. The 

dark horizontal line represents the time needed for an individual fold operation. One 

important observation we make from this graph is that several I/O requests have slack 

times that will allow fold operations to be performed in background, without any increase 

in the device latency. In other words, there may be significant opportunity to carry out 

regular GC operation in background without affecting application response times. 

Fig. 4 depicts the file deletion operation in FAT32 file system. When a secondary storage 

like flash is formatted, FAT32 allocates first few sectors to FAT32 table to serve as 

pointers to actual data sectors. When a file is created or modified, the table is updated to 

keep track of allocated /freed sectors of the file. However, when a file is deleted or 

shrunk, the actual data is not erased (this process is termed implicit file deletion). In over-

writable media like hard disks, this poses no problem, as the new file data is simply 

overwritten over dead data. However, because flash doesn’t allow in-place updates, dead 

data resides inside flash until a costly fold or GC operation is triggered to regain free 

space. Whereas, FTL carries out expensive WL operation regularly on dead data blocks. 

Thus, dead data results in significant GC and WL overhead, affecting application 

response times. If FTL can detect dead data dynamically upon file system operations,  
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Fig. 4 depicts the file deletion operation in FAT32 file system. When a secondary storage 

like Flash is formatted, FAT32 allocates first few sectors to FAT32 table to serve as 

pointers to actual data sectors. When a file is created or modified, the table is updated to 

keep track of allocated /freed sectors of the file. However, when a file is deleted or 

shrunk, the actual data is not erased (this process is termed implicit file deletion). In 

over-writable media like hard disks, this poses no problem, as the new file data is simply 

overwritten over dead data. However, because Flash doesn’t allow in-place updates, dead 

data resides inside Flash until a costly fold or GC operation is triggered to regain free 

space. Whereas, FTL carries out expensive WL operation regularly on dead data blocks. 

Thus, dead data results in significant GC and WL overhead, affecting application 

response times. If FTL can detect dead data dynamically upon file system operations, 

we’ll be able to save on related dead data migration costs.           
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CHAPTER 4 

OUR APPROACH 

 

We make two important observations in this work: 

1. If GC is scheduled in the background, we’ll be able to achieve reclamation 

goals without affecting application response times 

2. If we enable FTL to interpret file system operations, we can improve 

application response times without necessitating any changes to existing file 

systems  

To this end, we propose two different solutions to improve application response times 

that are compatible with existing systems. The first method, SLAC: Application SLack 

time Aware Garbage Collection scheme is an application-driven GC framework to carry 

out fine-grained GCs to improve application response times, which also performs 

Selective Folding to increase overall GC efficiency, to further improve response times. 

The second method, FSAF: File System Aware FTL is an FTL-based solution to 

efficiently recognize and also handle dead data dynamically. Even though we have 

chosen to demonstrate our results of FSAF on FAT32 file system, but the method is 

equally applicable to all other file systems that perform implicit file deletions. 

4.1. SLAC: Application Slack Time based Garbage Collection 

At every request to flash, SLAC predicts idle time until next request (termed slack) to 

determine how many folds can be done within the slack and selects blocks for folding 
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that have least cleaning costs to maximize garbage collection efficiency. SLAC 

framework is integrated with the FTL that interfaces the application. 

4.1.1. Slack Prediction 

SLAC has a history-based prediction mechanism to arrive at an estimate of next slack, as 

shown in Fig 5. The goal of slack prediction is not only to arrive at a good estimate of 

slack, but also achieve this at a minimal overhead. Both slack average 𝐷𝑎𝑣𝑔  and 

fluctuation 𝐷𝑑𝑒𝑣  are taken into consideration while performing slack prediction. As read 

and write requests arrive, SLAC maintains a list of last 𝑛 slacks. At every request, 

running-average slack, 𝐷𝑎𝑣𝑔  and a measure of deviation 𝐷𝑑𝑒𝑣   are derived from their old 

values and the latest time stamp. If the deviation 𝐷𝑑𝑒𝑣  is within a small threshold ε, 𝐷𝑎𝑣𝑔  

is projected to be the next slack. If the fluctuation is beyond ε, the last slack 𝑆𝑛  is 

projected as the next slack. The next step is to calculate how many fold operations 

possible during this slack, 𝐹𝑚 , which is calculated as:  

𝐹𝑚 = 𝑆/𝑡𝑓  

Where, 𝑆 = predicted slack and 𝑡𝑓  = time for each fold operation. 
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Fig.5: Slack Prediction. 
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In turn, time for each fold operation, 𝑡𝑓  is calculated as: 

𝑡𝑓 = 2 ∗ 𝑛𝑝 ∗ 𝑡𝑟𝑜 + 𝑛𝑝 ∗ 𝑡𝑟𝑝 + 𝑛𝑝 ∗  𝑡𝑤𝑝 +  𝑡𝑤𝑜  +  2 ∗ 𝑡𝑒   

Where,  

𝑛𝑝  = pages per block, 𝑡𝑟𝑜  = OOB read time, 𝑡𝑤𝑜  = OOB read time, 𝑡𝑟𝑝  = page read time,  

𝑡𝑤𝑝 = page write time, 𝑡𝑒  = block erase time.  

These parameters are taken from the datasheet supplied by the Flash manufacturer. It has 

to be noted that 𝑡𝑓  represents worst case fold time. Depending upon the amount of valid 

data, actual fold time varies.  

The two parameters to tune in this algorithm are 𝑛 and ε. Bursty nature of I/O requests of 

various benchmarks and general purpose workloads suggests that prediction should be 

based upon recent rather than old slack data. This suggests that small values of 𝑛 work 

well. The accuracy of this history-based predictor was explored over a wide range of 𝑛 

and ε. The experimental results show that best prediction happens at 𝑛 = 4 and 𝜀 =

 5000 𝜇𝑠𝑒𝑐. 

Even though SLAC can be equipped with other slack prediction mechanisms as in [4] 

care needs to be taken about their resource overheads. As shown in the experimental 

results, the algorithm in Fig. 5 achieves good prediction at a minimal resource overhead.  

An important aspect of SLAC is that it automatically switches off issuing selective folds 

at higher request-arrival rates. In such cases, underlying FTL automatically triggers 

garbage collection when the free space in the device falls below a critical limit. This 

makes sure that SLAC never worsens application response times. 
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4.1.2. Selective Folding 

Once 𝐹𝑚 , the possible number of folds is determined, selective folding algorithm chooses 

blocks to fold from available blocks. In order to improve overall garbage collection 

efficiency, we have to identify blocks with minimal cleaning costs. Costs associated with 

a fold operation are because of erasures and valid data copying.  In a fold operation, two 

erasures are a necessity, and so we need to concentrate on reducing the valid data copying 

cost. This is minimized when the dead page count in a block is maximum, i.e., when 

minimum valid data needs to be copied. In addition, SLAC makes sure that the selected 

blocks are also hot, i.e. updated frequently. Thus, folds that will anyway be triggered in 

the near future are performed in the slack, eliminating any need for application stalls.  

The selective folding algorithm is presented in Fig 6. After 𝐹𝑑  is determined, i.e. blocks 

that give maximum garbage collection efficiency are known, we need to see if all these 

folds can be carried out within the predicted slack. If allowed number of folds 𝐹𝑚  exceeds 

𝐹𝑑 , all the blocks in 𝐿𝑕  are folded. On the other hand, if there are more foldable blocks 

than are allowed (𝐹𝑚 <  𝐹𝑑), SLAC sorts the list of hot blocks 𝐿𝑕  and returns the list of 

𝐹𝑚  blocks from the sorted list. 

One threshold to tune here is the dead page count 𝑑𝑇𝑕 . Higher values of 𝑑𝑇𝑕  allow for 

very efficient garbage collection but lesser number of folds at a slack, whereas lower 

values mean vice versa. Since higher garbage collection efficiency means lesser number 

of block erasures and block copying overhead, it is intuitive to go for a higher value of  
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𝑑𝑇𝑕 . The experimental results also confirm this intuition, as shown in experimental 

section. By setting 𝑑𝑇𝑕  to 32 dead pages, SLAC executes only at highest efficiency 

achievable by the FTL’s garbage collection policy. On the other hand, sorting needed in 

step 5a of Fig.5 is eliminated, because all blocks contain equal number (32) of dead 

pages. Also, unlike the other garbage collection policies, SLAC employs scanning rather 

than sorting of blocks based on dead page count, reducing the algorithmic overhead 

considerably. Whereas other garbage collection policies sort the whole block list every 

time for performing garbage collection, SLAC employs scanning, and might only have to 

sort a relatively small list 𝐿𝑕  of blocks if 𝐹𝑚 <  𝐹𝑑 . 

4.2. FSAF: File System Aware FTL 

FSAF monitors write requests to FAT32 table to interpret any deleted data dynamically, 

subsequently optimizing GC and WL algorithms accordingly. Also, depending upon the 

size of dead content and the Flash utilization, proactive dead data reclamation is carried 

out.  

4.2.1. Dead Data Detection 

Dead data detection is carried out by FSAF dynamically as files are deleted by the 

application. Since the file system does not share any information with the FTL regarding 

selective_folding: 

1. Determine the list L of blocks with  
dead page count  > Thd  

2. Extract the list hL of hot blocks from L  
3. dF = | hL | 
4. If m dF F , return hL  
5. If m dF F : 

a. ( )'h hL sort L  
b. Return first mF elements of 'hL  

 

Fig. 6: Selective Folding. 
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file management, the only way we can interpret file system information at FTL is by 

understanding the formatting of Flash and keep track of changes to the file system data 

structure residing on Flash. The goal of dead data detection is to carry out this process 

efficiently without affecting performance.  

The format of Flash can be understood by reading the first sector on Flash, called Master 

Boot Record (MBR) and the first sector in the file system called FAT32 Volume ID. The 

𝐿𝐵𝐴_𝐵𝑒𝑔𝑖𝑛 field of the MBR reveals the location of the FAT32 Volume ID sector. 

Subsequently, the location of the FAT32 table can be determined as follows: 

𝐹𝐴𝑇32_𝐵𝑒𝑔𝑖𝑛_𝑆𝑒𝑐𝑡𝑜𝑟 =  𝐿𝐵𝐴_𝐵𝑒𝑔𝑖𝑛 +  𝐵𝑃𝐵_𝑅𝑠𝑣𝑑𝑆𝑒𝑐𝐶𝑛𝑡 

The size of the FAT32 table is given by the field 𝐵𝑃𝐵_𝐹𝐴𝑇𝑆𝑧32. Both 

𝐵𝑃𝐵_𝑅𝑠𝑣𝑑𝑆𝑒𝑐𝐶𝑛𝑡 and 𝐵𝑃𝐵_𝐹𝐴𝑇𝑆𝑧32 are read from the FAT32 Volume ID sector. 

Once the size and location of the FAT32 table are determined, dead sectors can be 

recognized by monitoring writes to the table. FAT32 stores the pointer to each data sector 

allocated to a particular file in corresponding locations in the FAT32 table. To delete a 

particular file, all the pointers to data sectors are freed up by zeroing out their content. In 

other words, dead sectors resulting from shrinking or deleting a file can be found out by 

reading corresponding pointers prior to their zeroing out. If all the sectors in a block are 

dead, the whole block is marked as dead. Thus, FSAF needs to maintain a buffer for 

reading FAT32 table sector before it is zeroed out by the file system. Fig. 7 depicts the 

algorithm. 
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4.2.2. Avoidance of Dead Data Migration 

Once dead sectors are recognized, GC and WL algorithms are instructed to avoid copying 

their content during regular operation of Flash. Thus, dead data migration is avoided 

during valid data copy occurring while carrying out GC and WL operations. 

4.2.3. Proactive Reclamation 

When larger files or files occupying contiguous sectors are deleted, dead data occupies 

complete blocks. Since these blocks do not contain any valid data, they can be reclaimed 

without any copying costs, unlike blocks that require valid data copy during normal 

folding operation. Thus, reclaiming such blocks is inherently a highly efficient operation 

in comparison to a forced fold operation during a GC. Thus, when the free space in Flash 

falls below a critical threshold, instead of proceeding with costly GC operation, dead 

blocks can be reclaimed to delay or avoid GC by regenerating free space dynamically.  

However, application response times still might suffer when all the dead data is reclaimed 

together, owing to costly erasure operations. In order to avoid this, proactive reclamation 

of dead blocks is taken up. FTL triggers GC higher Flash utilizations [11], i.e., when the 

free space in the device is below a critical limit, and continues folding until free space 

dead_data_detection(): 

1. Calculate size and location of FAT32 Table by 

reading MBR and FAT32 Volume ID sectors 

2. Monitor writes to FAT32 Table 

3. If a sector pointer is being zeroed out, mark 

corresponding sector as dead 

4. Mark a block as dead if all the sectors in the 

block are dead 

Fig. 7 Dead data detection algorithm. 
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reaches another threshold. In other words, to avoid delays due to GC, free space in the 

device should be kept above the GC threshold. So, dead block reclamation should be 

scheduled when Flash utilization is reasonably high, but not high enough to trigger a GC 

operation. On the other hand, number of dead blocks proactively reclaimed must be as 

small as possible, as expensive erasure operations can impact application response times. 

Yet another important factor to be taken into consideration is the amount of dead data in 

Flash - this decides whether or not proactive reclamations need to be run. 

The proactive reclamation algorithm is as presented in Fig. 8. We first check whether the 

dead content is greater than a threshold δ. If not, GC and WL are informed to avoid 

useless dead data migration by marking dead sectors. If dead content is greater than δ, we 

check whether system utilization is higher than μ, i.e. whether at least μ percentage of 

blocks is already used. In such a case, we proceed to reclaim dead blocks proactively 

apart from avoiding dead data migration. Thus, dead block reclamation proceeds until 

number of dead blocks reach another threshold Δ.  

Even though proactive reclamation improves application response times by avoiding or 

delaying costly GC operation, it should be scheduled in such a way that application stall 

time is minimal (since proactive reclamation is a series of erase operations, it can be time 

consuming). In other words, parameters δ, μ and Δ should be carefully configured such 

that reclamation is highly efficient. Large values for δ and μ avoid frequent reclamation, 

but might impose a lot of reclamation activity. Small values for Δ mean smaller 

reclamation activity, but frequent triggers for reclamation. To arrive at reasonable values 

for these parameters, the effect of varying these parameters on various performance 
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metrics was explored, as presented in the next section. The results confirm the intuition at 

best performance is achieved at high values of δ and μ low values of Δ. 
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Fig. 8: Proactive Reclamation 

. 



19 
 

 
 

CHAPTER 5 

EXPERIMENTAL SETUP 

 

 

 

We used trace-driven approach for the experimentation. Several benchmarks with 

different slack-time characteristics and localities of reference were used for trace 

collection on a PC running on Linux 2.6.18. Benchmarks were run from a FAT-32 

formatted flash USB stick connected to the PC and usbmon utility [25] was used to 

extract the timing, sector and request type information from USB traffic, forming the 

application trace. The collected traces were fed to a simulated Toshiba NAND Flash [21]. 

We realized log-based NFTL [9] on top of it and implemented Greedy [22] and Cost-

benefit [11] GC policies. CAT [15] policy was not considered, as the original paper was 

proposed for page-mapped implementation, which is not viable for flash sizes of today. 

SLAC was finally integrated with the setup.  

We used various benchmarks to evaluate our approaches. MP3 and MPEG benchmarks 

were obtained by running different media files and issuing writes to flash simultaneously. 

Other benchmarks, JPEG, and MAD were taken from MiBench. Also, other file system 

benchmarks simulating Event Recorder, Fax and Cell Phone were also run on the 

experimental setup. For evaluating FSAF, we chose benchmarks that represent most 

frequently encountered file system scenarios on removable flash storage media such as 

SD cards in applications like digital cameras, mp3 players, digital camcorders and 

memory sticks:  
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Trace-driven approach was used for the experimentation. Several benchmarks with 

different slack-time characteristics and localities of reference were used for trace 

collection on a PC running on Linux 2.6.18. Benchmarks were run from a FAT-32 

formatted Flash USB stick connected to the PC and usbmon utility [25] was used to 

extract the timing, sector and request type information from USB traffic, forming the 

application trace. The collected traces were fed to a simulated Toshiba NAND Flash [21]. 

Log-based NFTL [9] was realized on top of it and implemented Greedy [22] and Cost-

benefit [11] GC policies. CAT [15] policy was not considered, as the original paper was 

proposed for page-mapped implementation, which is not viable for Flash sizes of today. 

SLAC was finally integrated with the setup.  

Various benchmarks were used to evaluate the approach. MP3 and MPEG benchmarks 

were obtained by running different media files and issuing writes to Flash 

simultaneously. Other benchmarks, JPEG, and MAD were taken from MiBench. Also, 

other file system benchmarks simulating Event Recorder, Fax and Cell Phone were also 

run on the experimental setup. For evaluating FSAF, benchmarks those benchmarks  that 

represent most frequently encountered file system scenarios on removable Flash storage 

media such as SD cards in applications like digital cameras, mp3 players, digital 

camcorders and memory sticks: 
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s1: Huge sized file creation and deletion 

s2: Medium sized file creation and deletion 

s3: Small sized file creation and deletion 

In order to simulate real-world scenarios, Flash was brought to 80% utilization and the 

size of Flash for each benchmark was set to 64 MB. FTL was configured to start GC 

when the number of free blocks falls below 10% of total number of blocks and stop GC 

as soon as percent free blocks reaches 20% of total number of blocks. WL is triggered 

whenever the difference between maximum and minimum erase counts of blocks exceeds 

15. The size of files used in various scenarios was varied between 32MB to 2KB. 
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CHAPTER 6 

EXPERIMENTAL RESULTS 

 

 

6.1. Configuring SLAC Parameters 

The parameters of 𝑛 (number of samples) and ε (fluctuation threshold) need to be 

configured to run SLAC. We ran slack prediction algorithm with various values 𝑛 of for 

all the benchmarks, and found that our intuition of smaller values of 𝑛 performing better 

than larger values. The reason behind this can be explained as follows. Since future 

samples tend to be influenced more by recent past, we can follow the application patterns 

closely with 𝑛 as small as possible, but big enough to accommodate fluctuations in the 

recent sample data. 

After performing various experiments, we fixed 𝑛 at 4 and ε at 5000 μsec. We also 

evaluated other prediction approaches like weighted moving average, with recent samples 

assigned higher weights than the older.  Certainly more sophisticated approaches as in [4] 

can be taken up, which will enhance slack prediction, but come with a higher algorithmic 

and resource overheads.  Owing to the lack of space, related the experimental results are 

not shown. 

To determine the best value for the dead count threshold, 𝑑𝑇𝑕  we plotted the variation in 

the number of erasures, folds and FTL-triggered garbage collections against various 

threshold values, for SLAC implementation on Greedy and Cost-benefit policies. Fig. 9 

depicts the sample experimental results for the CellPhone benchmark. We observed when 
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samples tend to be influenced more by recent past, we can follow the application patterns 

closely with 𝑛 as small as possible, but big enough to accommodate fluctuations in the 

recent sample data. 

After performing various experiments, we fixed 𝑛 at 4 and ε at 5000 μsec. Other 

prediction approaches were evaluated like weighted moving average, with recent samples 

assigned higher weights than the older.  Certainly more sophisticated approaches as in [4] 

can be taken up, which will enhance slack prediction, but come with a higher algorithmic 

and resource overheads.   

To determine the best value for the dead count threshold, 𝑑𝑇𝑕  the variation in the number 

of erasures, folds and FTL-triggered garbage collections against various threshold values 

was plotted, for SLAC implementation on Greedy and Cost-benefit policies. Fig. 9 

depicts the sample experimental results for the CellPhone benchmark. It was observed  
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when 𝑑𝑇𝑕  was increased from 2 to 32, erasures and folds drop significantly. However, 

since higher threshold allows lesser folds during slack, we see an increase in the number 

of FTL-triggered garbage collections with higher 𝑑𝑇𝑕 . This concurs with the hypothesis 

of increasing garbage collection efficiency with the increasing values of 𝑑𝑇𝑕 . Thus, it was 

set to 32, i.e. hot blocks only with dead page count equal to 32 are considered by SLAC 

for folding. From the specification [21], fold time 𝑡𝑓  was calculated to be 20128 usec. 

6.2. Configuring FSAF Parameters 

The parameters δ, μ and Δ need to be configured to run FSAF. Proactive reclamation 

algorithm was ran with various values of δ and μ for all the benchmarks, and results 

supported the intuition that higher values for these parameters result in higher 

performance. By setting these to high as possible, proactive reclamation is triggered only 

when the system is low in free space, but runs frequently enough to generate sufficient 

Fig.9. Variation in Erasures, Folds and garbage collections against dead page count 

threshold 
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free space. Thus, δ was set to 0.2 and μ to 0.85, i.e. when the dead data size exceeds 20% 

of the total space and system utilization is 85%, proactive reclamation is triggered. 

To determine the best value for Δ, it was observed variation in the total application 

response times, number of erasures, and garbage collections against various sizes of 

reclaimed dead data, represented by δ` ( = (δ – Δ)). Owing to lack of space, related 

results were omitted. It was observed that when δ` was increased from 0 to 0.18, Flash 

delays and erasures decrease initially and increase afterwards, as the reclamation activity 

increases. However, number of garbage collections remains the same. Thus, δ` needs to 

be set to a small positive value. This concurs with the hypothesis that small values for δ` 

are better than large values. So, Δ was set to 0.18. 

In essence, FSAF is configured to proactively reclaim dead data as soon as dead content 

becomes more than 20% of the total Flash size when Flash utilization is greater than 

85%, and reclaims 2% of dead blocks at each invocation. 

6.3. Improvement in Application Response Times 

Fig. 10 shows application response times of different benchmarks for Greedy as well as 

the combined approach (COMBO) that includes both FSAF and SLAC techniques. 

Depending upon the timing characteristics as well as the deleted file content, we see that 

different benchmarks differ in their total application response times. Fig. 11 shows 

average page write access times for each benchmark, for Greedy and COMBO 

approaches. By detecting dead data dynamically and scheduling GCs in the background, 

we see that COMBO achieves significant reduction in both application response times  
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and page write access times. 
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In order to understand the above composite gains in detail, presented are individual 

results and discussion. Fig.12 depicts the average page write access times for each 

benchmark. Each of the histogram for a benchmark represents Greedy, SLAC-Greedy, 

Cost-benefit and SLAC-Cost-benefit policies respectively. An average of benchmarks for 

each of these methods is also presented. As per the specification [21], a page write is 

supposed to take 400 usec, but we see that, in reality the values are much higher. The 

reason behind this behavior is the delays associated with garbage collection operations. It 

has to be noted that the effect of garbage collection overhead becomes even more 

pronounced at higher Flash utilizations. One can see from Fig.12 that SLAC 

implementations of Greedy and Cost-benefit policies show improvement over the normal 

Greedy and Cost-benefit garbage collection policies.  This is because, by carrying out 

garbage collection activity in the background and also selectively folding, SLAC policy 

significantly decreases write access times compared to Greedy and Cost-benefit 

implementations. From Fig. 12, we can also observe variation in the average write access 

time across benchmarks. This is majorly because of two reasons: variation in the locality 

of reference and difference in the slack times available to each benchmark. We observe 

that maximum gains can be obtained when a benchmark exhibits sequential write access 

patterns, also with a reasonable slack. MP3 benchmark, thus gains maximum by as much 

as 51% with SLAC. On the contrary, gains are less when there is no slack. However, we 

see that SLAC achieves 18.2% improvement on the average. It is important to know that 

additional writes and reads to pages and OOBs are issued by the FTL itself during the 

process of folding while copying valid pages. In other words, application-issued writes 
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trigger FTL to issue more writes during the process of folding. Since SLAC always folds 

blocks with minimum cleaning costs, the above delays are also reduced automatically, 

contributing to the reduction of Flash access times. 
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Fig.12. Average page-write access times with various garbage collection policies 

Fig.13. Normalized total device delays with various garbage collection policies. 
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Total device delays for each benchmark and also the benchmark average are given in 

Fig.13, after normalizing to Greedy method. The total device delay includes delays 

incurred due to reads, writes as well as garbage collections. We can observe that 

improvements in device delays after employing SLAC are similar to improvements in 

write access times. This is because of the fact that read access times of Flash are much 

lower than write access times, and also because reads are normally cached. Thus, SLAC 

aims at reducing write access times.  

FSAF results are presented here. Fig.14 depicts total application response times for each 

of the benchmark for both greedy and FSAF approaches. We observe that the FSAF 

approach improves response times by 22% on the average, and 32% for the scenario s2 

compared to the greedy approach. From Fig. 14, we can observe that there is a variation 

in the total response times for different scenarios, owing to the content and distribution. 

We observe that maximum gains can be obtained when dead data occupies contiguous 

rather than randomly distributed sectors, as in the scenario s2. However, we see that 

FSAF achieves 22% improvement on the average.  

It has to be noted that the total device delay includes delays incurred due to reads, writes 

issued by the application as well as those issued during carrying out garbage collection 

and wear leveling activity. When file system issues reads and writes and folding and wear 

leveling are triggered, additional writes and reads to pages and OOBs are issued by the 

FTL during the process of valid data copying. In other words, total writes carried out are 

more than application-issued writes. Since FSAF always avoids dead data migration and 

directly reclaims dead blocks, device delays are reduced, contributing to the reduction of 
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Flash access times and hence application response times. 

Fig. 15 depicts average memory write access times (W-AMAT) for different scenarios 

for both greedy and FSAF approaches. We can observe that improvements in W-AMAT 

after employing FSAF are similar to improvements in response times. This is because of 

the fact that read access times of Flash are much lower than write access times, and also 

because reads are normally cached. The variation in the average write access time across 

benchmarks is owing to dead data content. 

It has to be noted that the response times suffer majorly at higher Flash utilizations when 

garbage collection operations are triggered out to regenerate free space. So, if enough 

free space can be generated at higher utilizations, we can delay or even avoid costly 

garbage collections. FSAF achieves the same by dead data reclamation at higher 

utilizations. On the other hand, wear leveling overhead because of dead data, which is 

incurred at all Flash utilizations, is avoided by FSAF by avoiding dead data migration. 
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6.4. Improvement in GCs and Erasures 

Table II presents the number of garbage collections, erasures and folds for each 

benchmark, for both Greedy and COMBO approaches. We see that COMBO 

significantly reduces garbage collections, folds and erasures, essentially contributing both 

to improved response times as well as increased Flash life time. Presented are individual 

results and discussion for SLAC and FSAF approaches also, to see how each method 

improves Flash management. 
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TABLE II: Improvement in erasures, garbage collections and folds with both methods 

applied 
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Fig.15: Average memory write-access times for various benchmarks 
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Table III provides improvements with respect to the number of FTL-triggered garbage 

collections and erasures for all approaches, for each benchmark for SLAC.  The most 

important observation from this table is that, on an average, FTL-triggered garbage 

collections reduce by 80%. This means the elimination of most of the undesirable peaks 

in the device response times depicted in Fig.2. Benchmarks MAD and MPEG were not 

considered in the calculation of the average: the percent improvement is high but number 

of garbage collections before and after employing SLAC is very small. Table II also 

provides number of erasures for each method. These results underline another important 

benefit of employing SLAC approach: the reduction in the number of erasures. Erasures 

determine the life time of a Flash and by reducing them we can achieve longer Flash life 

times. Reduced number of erasures also means significant energy reduction, as an erasure 

is the costliest of all Flash memory operations.  

Benefits of SLAC approach can be understood by observing the way a normal FTL 

performs garbage collection. An FTL triggers garbage collection upon free block count 

reaching certain critical threshold. At such an instance, blocks are sorted by a metric 

decided by the garbage collection policy, and are subsequently reclaimed in the sorted 

order until enough free blocks are generated. For example, in Greedy approach, blocks 

are sorted by their dead page count, where as in Cost-benefit approach, they are sorted by 

cost-benefit value. Because of this, the cost of each fold operation may be different. 

SLAC, on the other hand, picks up blocks only with maximum benefits (whose dead page 

count is 𝑑𝑇𝑕 ), doing away with costly sorting operation. The benefits associated manifest 

themselves in the reduction of the number of erasures, and improved garbage collection  
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efficiency by reducing number of writes and reads during folding. However, one can 

observe that the reduction in the number of erasures is much less compared to the 

reduction in number of garbage collections. This is because of the fact that even though 

some FTL-triggered garbage collections are taken up in the slack, essentially the same 

amount of cleaning activity needs to be performed in both of the approaches. 

It has to be noted that SLAC gains are heavily dependent upon the timing or slack 

characteristics of applications. When there is no slack, no micro garbage collections can  
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TABLE II. SLAC: Improvements in number of FTL-triggered garbage 

collections and erasures 
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be performed. For example, the Event recorder benchmark is very write intensive: it 

records event data to Flash upon sudden influx of events. Continuous writes to the Flash 

in such cases trigger FTL to perform garbage collections automatically. Thus, we can see 

that improvement is less for event recorder with SLAC approach. This also explains why 

SLAC may not eliminate all FTL-triggered garbage collections. However, it has to be 

noted that SLAC does not worsen response times: it stops performing micro-garbage 

collections as soon as it detects very high request rates. 

Table IV provides improvements with FSAF with respect to the number of garbage 

collections, erasures and folds for each benchmark, for both greedy and FSAF methods. 

The most important observation from this table is that, on an average, FSAF reduces 

number of erasures by 21.6%, by avoiding erasures associated with wear leveling dead 

data. Since erasures determine the life expectancy of Flash, endurance is proportionally 

improved. Reduced number of erasures also means significant energy reduction, as an 

erasure is the costliest of all Flash memory operations.  
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Table IV: FSAF: Improvement in erasures, garbage collections and folds 
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Also, garbage collections are also reduced by 43% on the average compared to greedy 

method. This is achieved by generating enough free space in the device by performing 

proactive reclamation. In other words, this means the elimination of undesirable peaks in 

the device response times depicted in Fig.2. Similarly, folds are reduced by employing 

FSAF. By reclaiming dead blocks proactively, FSAF eliminates the need for creating 

replacement blocks for dead blocks, and thus, unnecessary fold operations are eliminated.  

It has to be noted that FSAF approach also results in lesser algorithmic overhead. An FTL 

triggers garbage collection upon free block count reaching certain critical threshold. At 

such an instance, blocks are sorted by a metric decided by the garbage collection policy, 

and are subsequently reclaimed in the sorted order until enough free blocks are generated. 

For example, in Greedy approach, blocks are sorted by their dead page count. FSAF, on 

the other hand directly erases dead blocks, i.e., blocks only with maximum benefits, 

doing away with costly sorting operation. The benefits associated manifest themselves in 

the reduction of the number of erasures, and improved garbage collection efficiency by 

reducing number of writes and reads during folding.  

It has to be noted that FSAF gains are heavily dependent upon the dead data content and 

distribution. However, since FSAF naturally switches to regular wear leveling and 

garbage collection operations when there is no dead data, its performance is at least as 

good as the normal case.  
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6.5. Overheads 

In SLAC, the overhead associated with slack prediction is 𝑂(𝑛), arising mainly from the 

calculation of 𝐷𝑑𝑒𝑣 . Since 𝑛 is set to a very small value, it is clear that the overhead is 

minimal. Selective folding uses FTL’s block list, and may need to maintain a very small 

list of blocks to be folded in the slack. It also needs to scan blocks, which is an  𝑂 𝑘  

operation, where is 𝑘 the number of blocks. However, it has to be noted that by carrying 

out efficient folds in slack, selective folding reduces or eliminate the garbage collection 

burden on the FTL, so as to decrease the overall garbage collection overhead. Also, by 

setting 𝑑𝑇𝑕  to 32, we eliminate the need of any sorting activity during selective folding. 

The overhead associated with FSAF comes from dead data detection and proactive 

reclamation. To detect dead data, FSAF needs to monitor writes to only three sections of 

Flash: the MBR, Volume ID and the FAT32 table itself. By reading and storing MBR and 

Volume ID at every format time, need for constructing formatting information at every 

Flash plug-in is eliminated. To detect which sector is being deleted, FSAF needs to 

maintain a buffer of size of maximum one sector. Also, finding out which sector is being 

deleted is an 𝑂(𝑠) operation, where 𝑠 is the number of sector pointers stored in a single 

sector of the FAT32 table. Subsequent addition and deletion from the dead data list are all 

𝑂(1) operations. Thus, algorithmic overhead introduced by FSAF is only 𝑂(𝑠) per write. 

Since typically there are only 128 pointers per sector, this overhead is very minimal. 

Proactive reclamation, on the other hand, reduces the overall overhead on the system. 

Since proactive reclamation executes at a higher efficiency than a normal garbage 
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collection operation and also eliminates or delays regular garbage collections, effectively 

system overhead is significantly reduced. 
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CHAPTER 7 

 

CONCLUSION  

 

 

This work proposed a new FTL-based framework for improving application response 

times and overall flash management that is consistent with the current system interfaces. 

The first method, SLAC breaks up lengthy GC operations into chunks and carries out the 

same efficiently, so as to achieve significant improvements in application response times, 

average write access times and the number of erasures. The second approach is a novel 

method to impart the awareness of file system operations at the FTL level, without 

changing any existing file system architectures. By being able to detect and treat dead 

data efficiently at the FTL level, this method achieves significant improvements in 

application response times, average write access times as well as erasures. 

CHAPTER 7 

 

CONCLUSION AND FURTHER WORK 

 

 

This work proposed a new FTL-based framework for improving application response 

times and overall Flash management that is consistent with the current system interfaces. 

The first method, SLAC breaks up lengthy GC operations into chunks and carries out the 

same efficiently, so as to achieve significant improvements in application response times, 

average write access times and the number of erasures. The second approach is a novel 

method to impart the awareness of file system operations at the FTL level, without 

changing any existing file system architectures. By being able to detect and treat dead 

data efficiently at the FTL level, this method achieves significant improvements in 

application response times, average write access times as well as erasures. 

This approach can be carried over to Multi-Level Cell (MLC) NAND Flash based 

applications. By storing two bits per NAND cell, MLC Flashes offer higher densities, but 

perform poorer compared to basic Single-Level Cell (SLC) counterparts, owing to higher 

Flash management overheads in garbage collection, wear leveling and also error 

detection and correction. Also, the former have lesser life times. MLC Flashes can be 

targeted for broader range of applications by extending the proposed approach to 

improve their performance and life time. 
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