

iii

IMPROVING APPLICATION RESPONSE TIMES OF NAND-FLASH BASED

SYSTEMS

by

Sai Krishna Mylavarapu

ARIZONA STATE UNIVERSITY

December 2008

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

iv

IMPROVING APPLICATION RESPONSE TIMES OF NAND-FLASH BASED

SYSTEMS

by

Sai Krishna Mylavarapu

has been approved

November 2008

Graduate Supervisory Committee:

Aviral Shrivastava, Chair

Karamvir Chatha

Rida Bazzi

ACCEPTED BY THE GRADUATE COLLEGE

iii

ABSTRACT

NAND Flash Memories are becoming ubiquitous with attractive features like low power

consumption, compactness and ruggedness. Garbage Collection and Wear Leveling are

two operations carried out by Flash Translation Layers (FTLs) that oversee Flash

memory management. Both of these operations involve valid data movement and block

erasures and are very time consuming, critically affecting application response times. In

addition, since FTLs are unaware of dead data corresponding to deleted files at the file

system level, the above two operations are carried out on dead data as well, resulting in

significant and unnecessary overheads.

This thesis proposes a framework to improve application response times of NAND Flash

based systems by enabling FTLs to understand file system level operations as well as

interpret application characteristics. Proposed methods also achieve significant

improvements in overall Flash management by increasing the longevity of Flash and do

not necessitate any changes to existing system architectures. Experimental results

presented show that, by interpreting and treating dead data at the FTL level and

exploiting idle periods between I/Os in an application to proactively perform small-scale

garbage collections in background, the proposed resource-efficient approach can improve

application response times by 30% and memory write access times by 34.7%, besides

reducing erasures by 29.7% on average.

iv

To My Parents

v

ACKNOWLEDGEMENTS

I would like to thank Siddharth Chaudhuri for helping me out throughout and

acknowledge Dr. Aviral Shrivastava for his guidance and cooperation.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

1.1. NAND Flash Architecture. 1

1.2. NAND Flash Management . 1

1.2.1. Garbage Collection and Wear Leveling Overheads . 2

2 RELATED WORK 5

 2.1. Previous Works on Garbage Collection. 5

2.2. Previous Works on Wear Leveling. 6

2.3. Existing File System Level Works . 7

 3 OPPORTUNITIES TO IMPROVE APPLICATION RESPONSE TIMES. . . 8

 4 THE APPROACH. 10

4.1. SLAC: Application Slack Time based Garbage Collection 10

 4.1.1. Slack Prediction. 11

 4.1.2. Selective Folding. . . . 13

4.2. FSAF: File System Aware FTL. 14

vii

CHAPTER Page

 4.2.1. Dead Data Detection.14

4.2.2. Avoidance of Dead Data Migration 16

4.2.3. Proactive Reclamation . 16

 5 EXPERIMENTAL SETUP . 19

 6 EXPERIMENTAL RESULTS. .21

6.1. Configuring SLAC Parameters 21

6.2. Configuring FSAF Parameters. . . . 22

6.3. Improvement in Application Response Times 23

6.4. Improvement in garbage collections and Erasures 29

6.5. Overheads . 34

7 CONCLUSION AND FURTHER WORK 36

 REFERENCES . 37

viii

LIST OF TABLES

Table Page

I. Effect of dead data on various performance metrics 3

II. Improvement in erasures, garbage collections and folds with both methods applied . 29

III. SLAC: Improvements in number of FTL-triggered garbage collections and

erasures. 31

IV. FSAF: Improvement in erasures, garbage collections and folds. 32

ix

LIST OF FIGURES

Figure Page

1. Fold or Merge operation . 2

2. NAND Flash device delays. 3

3. Slack time available for CellPhone benchmark. 9

4. File deletion in FAT32 File System 9

5. Slack Prediction . 11

6. Selective Folding .14

7. Dead data detection algorithm . 16

8. Proactive reclamation .18

9. Variation in Erasures, Folds and garbage collections against dead page

 count threshold . 22

10. Total application response times for various benchmarks – Greedy vs. COMBO . 26

11. Average memory write-access times for various benchmarks for Greedy

and COMBO ……………………………………………………………………………26

12. Average page-write access times with various garbage collection policies 24

13. Normalized total device delays with various garbage collection policies. 24

14. Total application response times for various benchmarks . 26

15. Average memory write-access times for various benchmarks 26

1

CHAPTER 1

INTRODUCTION

Flash memory is a non-volatile semiconductor memory that can be electrically erased and

reprogrammed. With attractive features like low power consumption, compactness and

ruggedness it is becoming ubiquitous. USB memory sticks, SD cards, Solid State Disks,

MP3 players, Cell phones etc. are some of the well-known applications of the flash

memory technology.

1.1. NAND Flash Architecture

Flash is organized into blocks and pages. A block is a collection of 32 pages each of 512

bytes. Each page has a 16 byte out-of-band (OOB) area used for storing metadata. In

addition to read and write, flash also has erasure operation. Owing to the ―Erase-before-

rewrite‖ characteristic, a re-write to a page is possible only after the erasure of the

complete block it belongs to, which is an extremely time consuming process. Another

limitation of flash is endurance: it can only withstand finite number of erasures, typically

100,000. To hide above characteristics from applications, a dedicated flash management

module called Flash Translation Layer (FTL) [7] may be employed. The primary

responsibilities of an FTL are allocation, i.e., logical to physical address translation and

cleaning, i.e., reclamation of invalid data.

3

0

1

2

1

0

1

0
0,1,0,1

Primary Replacement

A. Overwrites to 0,1 pages redirected to

replacement block

3

0

1

2

Primary

0

3

0

1

2

1

0

1

0

Primary Replacement

B. Further overwrite to page 0 triggering a Merge operation.

Initial primary and replacement blocks are freed.

Fig.1. Fold or Merge operation

CHAPTER 1

INTRODUCTION

Flash memory is a non-volatile semiconductor memory that can be electrically erased

and reprogrammed. With attractive features like low power consumption, compactness

and ruggedness it is becoming ubiquitous. USB memory sticks, SD cards, Solid State

Disks, MP3 players, Cell phones etc. are some of the well-known applications of the

Flash memory technology.

1.1. NAND Flash Architecture

Flash is organized into blocks and pages. A block is a collection of 32 pages each of 512

bytes. Each page has a 16 byte out-of-band (OOB) area used for storing metadata. In

addition to read and write, Flash also has erasure operation. Owing to the ―Erase-before-

rewrite‖ characteristic, a re-write to a page is possible only after the erasure of the

complete block it belongs to, which is an extremely time consuming process. Another

limitation of Flash is endurance: it can only withstand finite number of erasures,

typically 100,000. To hide above characteristics from applications, a dedicated Flash

management module called Flash Translation Layer (FTL) [7] may be employed. The

primary responsibilities of an FTL are allocation, i.e., logical to physical address

translation and cleaning, i.e., reclamation of invalid data.

1.2. NAND Flash Management

Available blocks in Flash are organized as Primary and Replacement blocks [6]. When a

page rewrite request arrives, a primary block is assigned a replacement block. When the

replacement block itself is full, and another rewrite is issued, a fold or merge operation

needs to be performed, as depicted in Fig. 1. Valid data in old two blocks is consolidated

and written to a new primary block and the former are freed subsequently. Also, after a

2

and written to a new primary block and the former are freed subsequently. Also, after a

series of rewrites, free space in the device falls below a critical limit and needs to be

regenerated by garbage collecting or reclaiming the invalid data. At the end of this GC

process, valid data is consolidated into primary blocks. Thus, a GC is a series of forced

fold operations. On the other hand, WL process involves frequent data shuffling between

highly erased and least erased blocks to achieve uniform wear. Thus, both GC and WL

operations involve expensive erasures and data copying, and so are very time and energy

intensive. Since Flash is not available while carrying out the above operations,

applications can be potentially stalled, resulting in very poor response time

characteristics. Especially, it was shown that a GC may take as long as 40sec [12].

1.2.1. Garbage Collection and Wear Leveling Overheads

In order to understand impact of GC and WL operations on application response times, a

digital camera workload was ran on a 64MB Lexar Flash drive formatted as FAT32 [17]

and fed resulting traces to Toshiba NAND Flash [21] simulator and measured WL and

GC overheads. During the scenario a few media files of sizes varying between 2KB and

32MB were created and deleted. Application response times at various instances are

plotted in Fig.2. The peak delays at the right extreme of the figure, which critically affect

3

0

1

2

Primary

0

3

0

1

2

1

0

1

0

Primary Replacement

B. Further overwrite to page 0 triggering a Merge operation.

Initial primary and replacement blocks are freed.

3

0

1

2

1

0

1

0
0,1,0,1

Primary Replacement

A. Overwrites to 0,1 pages redirected to

replacement block

Fig.1. Fold or Merge operation

3

application response times, correspond to instances where a GC is being carried out.

Table I lists overheads due to wear leveling data belonging to deleted files (dead data), in

terms of percentage increase in device delay, erasures, average memory write access time

and folds.

Previous efforts [2] [8] [9] [11] [15] [16] [18] [22] [23] have focused on improving GC

and WL efficiency to improve application response times. However, they have not

directly attempted to minimize, or eliminate automatically triggered, unpredictable and

lengthy GC delays. Another limitation of previous works can be seen at the file system

level. Since file systems only mark deleted files at the time of deletion, but not actually

erase corresponding dead data in Flash, FTL treats dead data as valid until specifically

overwritten by new file data and carries out useless data migration on the same during

GC and WL operations, resulting in unnecessary and significant Flash delays. Thus,

various file systems are shown to be lengthy in response times in the presence of dead

data [5]. Previous efforts that addressed this issue required significant changes to existing

file system architecture [5].

 Fig.2: NAND Flash device delays

Table I: Effect of dead data on various

metrics

Metric
% increase due

to dead data

Device Delays 12

Erasures 11

W-AMAT 12

Folds 14

4

This thesis work proposes an FTL-level framework to improve application response

times that does not require any interface changes to existing systems. This is achieved by

enabling FTL to interpret file system operations and also to understand application

characteristics. Proposed file system level method, FSAF: File System Aware FTL that

enables FTL to recognize file deletion dynamically and resource-efficiently and handle

dead data proactively to significantly reduce GC and WL overheads. This is achieved by

tracking changes to the file system data structure in Flash, without necessitating any

changes to existing file systems. The SLAC: Application SLack time Aware Garbage

Collection scheme proposed understands application timing characteristics dynamically

and exploits idle times between Flash requests to proactively perform fold operations in

order to reduce, or even completely eliminate GCs. Also presented along with SLAC is

an algorithm to perform these proactive fold operations at high efficiency (by minimizing

the cost of folding) to further improve device delays.

Experimental results demonstrate the proposed approach can improve application

response times by 30% and memory write access times by 34.7%, besides reducing

erasures by 29.7% on average. Individual results for SLAC and FSAF are also presented:

SLAC reduces GCs by 80%, besides lowering average write access times and device

latencies by 20% and the number of erasures by 8%. FSAF improves application

response times and average write access times by 22% on an average, besides reducing

erasures by 21.6%. It is also shown that both of the above comprehensive approaches can

be implemented in a resource-efficient manner, and do not necessitate any interface

changes.

5

CHAPTER 2

RELATED WORK

Several works to improve application response times have been proposed so far, by

attempting to improve the efficiency of GC and WL operations. Also, file system level

work has been done to handle dead data. It has to be noted that even though there exists a

lot of work related to GC in programming languages, it cannot be carried over to flash,

owing to flash characteristics. Also, a real-time GC policy for flash was considered by

Chang et al. [12]. This method, however, is specific for real-time systems.

2.1. Previous Works on Garbage Collection

Works on GC proposed so far for general purpose systems attempt to improve application

response times by increasing the efficiency of the GC process, as follows. The greedy GC

approach was investigated by Wu et al. [22]. To reduce GC costs, this method reclaims

blocks with high dead page counts. This approach performs poorly with high locality of

reference workloads, as it doesn’t consider hot-cold data segregation. Kawaguchi et al.

[11] came up with the cost-benefit policy, by considering both utilization and age of

blocks. They also introduced block-level segregation of hot and cold data (frequently

updated data is termed hot). Thus, the approach performed well for high locality

workloads. Cost Age Time (CAT) policy [15] was considered by Chiang et al. that also

focuses on reducing the wear on the device (increase endurance) apart from addressing

segregation. The method uses a data redistribution method that works at a fine-grained

CHAPTER 2

RELATED WORK

Several works to improve application response times have been proposed so far, by

attempting to improve the efficiency of GC and WL operations. Also, file system level

work has been done to handle dead data. It has to be noted that even though there exists a

lot of work related to GC in programming languages, it cannot be carried over to Flash,

owing to Flash characteristics. Also, a real-time GC policy for Flash was considered by

Chang et al. [12]. This method, however, is specific for real-time systems.

2.1. Previous Works on Garbage Collection

Works on GC proposed so far for general purpose systems attempt to improve

application response times by increasing the efficiency of the GC process, as follows.

The greedy GC approach was investigated by Wu et al. [22]. To reduce GC costs, this

method reclaims blocks with high dead page counts. This approach performs poorly with

high locality of reference workloads, as it doesn’t consider hot-cold data segregation.

Kawaguchi et al. [11] came up with the cost-benefit policy, by considering both

utilization and age of blocks. They also introduced block-level segregation of hot and

cold data (frequently updated data is termed hot). Thus, the approach performed well for

high locality workloads. Cost Age Time (CAT) policy [15] was considered by Chiang et

al. that also focuses on reducing the wear on the device (increase endurance) apart from

addressing segregation. The method uses a data redistribution method that works at a

fine-grained page-level for efficient hot-cold data separation. Kim et al. [9] proposed a

cleaning cost policy, which focuses on lowering costs and evenly utilizing Flash blocks.

6

Wear-leveling is achieved by dynamically separating cold data and hot data and

periodically moving valid data among blocks. However, it has to be noted that all these

approaches are device-centric: they do not take the application timing characteristics into

consideration. In other words, GC may be triggered by FTL at a critical instance when an

immediate response from Flash is expected.

A swap-aware GC policy [18] was introduced by Kwon et al. In order to minimize the

GC time and extend the lifetime of the Flash based swap system, they implemented a new

Greedy-based policy by considering different swapped out time of the pages. However,

this approach necessitates a change in the existing system architectures, and is specific to

few systems.

2.2. Previous Works on Wear Leveling

Various approaches based on dynamic wear leveling have been proposed [2] [13] that

achieves wear leveling by trying to recycle blocks with small erase counts. In such

approaches, an efficient way to identify hot data (frequently updated data) becomes

important, and excellent designs were proposed, e.g., [8] [10] [13] [16]. Although

dynamic wear leveling does have great improvement on wear leveling, the endurance

improvement is stringently constrained by its nature: That is, blocks of cold data are

likely to stay intact, regardless of how updates of non-cold data wear out other blocks. In

other words, updates and recycling of blocks/pages will only happen to blocks that are

free or occupied by non-cold data, where cold data are infrequently updated data. Static

wear leveling is orthogonal to dynamic wear leveling. Its objective is to prevent any cold

data from staying at any block for a long period of time so that wear leveling could be

7

evenly applied to all blocks. Static wear leveling approaches were also pursued [23] to

treat both non-cold and cold data blocks. These approaches are all again device-centric,

and do not consider application characteristics while triggering a WL operation.

2.3. Existing File System Level Works

To handle dead data, Kim et al. [5] proposed a new file system, MNFS, to achieve

uniform write response times by carrying out block erasures immediately after file

deletions. This method necessitates changes to existing system architectures.

Thus, efforts so far to improve application response times did not take application

characteristics into account, or necessitate significant system interface changes.

8

CHAPTER 3

OPPORTUNITIES TO IMPROVE APPLICATION RESPONSE TIMES

To explore opportunities to avoid GC delays, we analyzed idle times (slacks) between

application requests of several benchmarks. Fig.3 plots slacks at each I/O request,

computed as the time between two subsequent requests of CellPhone benchmark. The

dark horizontal line represents the time needed for an individual fold operation. One

important observation we make from this graph is that several I/O requests have slack

times that will allow fold operations to be performed in background, without any increase

in the device latency. In other words, there may be significant opportunity to carry out

regular GC operation in background without affecting application response times.

Fig. 4 depicts the file deletion operation in FAT32 file system. When a secondary storage

like flash is formatted, FAT32 allocates first few sectors to FAT32 table to serve as

pointers to actual data sectors. When a file is created or modified, the table is updated to

keep track of allocated /freed sectors of the file. However, when a file is deleted or

shrunk, the actual data is not erased (this process is termed implicit file deletion). In over-

writable media like hard disks, this poses no problem, as the new file data is simply

overwritten over dead data. However, because flash doesn’t allow in-place updates, dead

data resides inside flash until a costly fold or GC operation is triggered to regain free

space. Whereas, FTL carries out expensive WL operation regularly on dead data blocks.

Thus, dead data results in significant GC and WL overhead, affecting application

response times. If FTL can detect dead data dynamically upon file system operations,

CHAPTER 3

OPPORTUNITIES TO IMPROVE APPLICATION RESPONSE TIMES

To explore opportunities to avoid GC delays, idle times (slacks) between application

requests of several benchmarks were analyzed. Fig.3 plots slacks at each I/O request,

computed as the time between two subsequent requests of CellPhone benchmark. The

dark horizontal line represents the time needed for an individual fold operation. One

important observation we make from this graph is that several I/O requests have slack

times that will allow fold operations to be performed in background, without any

increase in the device latency. In other words, there may be significant opportunity to

carry out regular GC operation in background without affecting application response

times.

Fig. 4 depicts the file deletion operation in FAT32 file system. When a secondary storage

like Flash is formatted, FAT32 allocates first few sectors to FAT32 table to serve as

pointers to actual data sectors. When a file is created or modified, the table is updated to

keep track of allocated /freed sectors of the file. However, when a file is deleted or

shrunk, the actual data is not erased (this process is termed implicit file deletion). In

over-writable media like hard disks, this poses no problem, as the new file data is simply

overwritten over dead data. However, because Flash doesn’t allow in-place updates, dead

data resides inside Flash until a costly fold or GC operation is triggered to regain free

space. Whereas, FTL carries out expensive WL operation regularly on dead data blocks.

Thus, dead data results in significant GC and WL overhead, affecting application

response times. If FTL can detect dead data dynamically upon file system operations,

we’ll be able to save on related dead data migration costs.

9

we will be able to save on related dead data migration costs.

FAT32

Table

Actual

data

sectors

Before file deletion After file deletion

FREE OCCUPIED

Fig.3: Slack time available for CellPhone benchmark

Fig.4: File deletion in FAT32 File System

10

CHAPTER 4

OUR APPROACH

We make two important observations in this work:

1. If GC is scheduled in the background, we’ll be able to achieve reclamation

goals without affecting application response times

2. If we enable FTL to interpret file system operations, we can improve

application response times without necessitating any changes to existing file

systems

To this end, we propose two different solutions to improve application response times

that are compatible with existing systems. The first method, SLAC: Application SLack

time Aware Garbage Collection scheme is an application-driven GC framework to carry

out fine-grained GCs to improve application response times, which also performs

Selective Folding to increase overall GC efficiency, to further improve response times.

The second method, FSAF: File System Aware FTL is an FTL-based solution to

efficiently recognize and also handle dead data dynamically. Even though we have

chosen to demonstrate our results of FSAF on FAT32 file system, but the method is

equally applicable to all other file systems that perform implicit file deletions.

4.1. SLAC: Application Slack Time based Garbage Collection

At every request to flash, SLAC predicts idle time until next request (termed slack) to

determine how many folds can be done within the slack and selects blocks for folding

CHAPTER 4

THE APPROACH

Two important intuitions are:

1. If GC is scheduled in the background, we will be able to achieve reclamation goals

without affecting application response times

2. If we enable FTL to interpret file system operations, we can improve application

response times without necessitating any changes to existing file systems

To this end, two different solutions to improve application response times are proposed

that are compatible with existing systems. The first method, SLAC: Application SLack

time Aware Garbage Collection scheme is an application-driven GC framework to carry

out fine-grained GCs to improve application response times, which also performs

Selective Folding to increase overall GC efficiency, to further improve response times.

The second method, FSAF: File System Aware FTL is an FTL-based solution to

efficiently recognize and also handle dead data dynamically. Even though results of

FSAF are demonstrated on FAT32 file system, the method is equally applicable to all

other file systems that perform implicit file deletions.

4.1. SLAC: Application Slack Time based Garbage Collection

At every request to Flash, SLAC predicts idle time until next request (termed slack) to

determine how many folds can be done within the slack and selects blocks for folding

11

that have least cleaning costs to maximize garbage collection efficiency. SLAC

framework is integrated with the FTL that interfaces the application.

4.1.1. Slack Prediction

SLAC has a history-based prediction mechanism to arrive at an estimate of next slack, as

shown in Fig 5. The goal of slack prediction is not only to arrive at a good estimate of

slack, but also achieve this at a minimal overhead. Both slack average 𝐷𝑎𝑣𝑔 and

fluctuation 𝐷𝑑𝑒𝑣 are taken into consideration while performing slack prediction. As read

and write requests arrive, SLAC maintains a list of last 𝑛 slacks. At every request,

running-average slack, 𝐷𝑎𝑣𝑔 and a measure of deviation 𝐷𝑑𝑒𝑣 are derived from their old

values and the latest time stamp. If the deviation 𝐷𝑑𝑒𝑣 is within a small threshold ε, 𝐷𝑎𝑣𝑔

is projected to be the next slack. If the fluctuation is beyond ε, the last slack 𝑆𝑛 is

projected as the next slack. The next step is to calculate how many fold operations

possible during this slack, 𝐹𝑚 , which is calculated as:

𝐹𝑚 = 𝑆/𝑡𝑓

Where, 𝑆 = predicted slack and 𝑡𝑓 = time for each fold operation.

slack_prediction:

1. Compute the
th

n slack from time stamps: 1
()

n n n
s t t




2. Derive new 1

1
()avg avgOld n

n

D D s s   

3. Compute
1

1n

i

dev i avg
n

D Ds


  

4. If
n f

s t : return ZERO

5. If dev
D  and

n f
s t : return avgD

6. If dev
D  and

n f
s t : return

n
s

Fig.5: Slack Prediction.

12

In turn, time for each fold operation, 𝑡𝑓 is calculated as:

𝑡𝑓 = 2 ∗ 𝑛𝑝 ∗ 𝑡𝑟𝑜 + 𝑛𝑝 ∗ 𝑡𝑟𝑝 + 𝑛𝑝 ∗ 𝑡𝑤𝑝 + 𝑡𝑤𝑜 + 2 ∗ 𝑡𝑒

Where,

𝑛𝑝 = pages per block, 𝑡𝑟𝑜 = OOB read time, 𝑡𝑤𝑜 = OOB read time, 𝑡𝑟𝑝 = page read time,

𝑡𝑤𝑝 = page write time, 𝑡𝑒 = block erase time.

These parameters are taken from the datasheet supplied by the Flash manufacturer. It has

to be noted that 𝑡𝑓 represents worst case fold time. Depending upon the amount of valid

data, actual fold time varies.

The two parameters to tune in this algorithm are 𝑛 and ε. Bursty nature of I/O requests of

various benchmarks and general purpose workloads suggests that prediction should be

based upon recent rather than old slack data. This suggests that small values of 𝑛 work

well. The accuracy of this history-based predictor was explored over a wide range of 𝑛

and ε. The experimental results show that best prediction happens at 𝑛 = 4 and 𝜀 =

 5000 𝜇𝑠𝑒𝑐.

Even though SLAC can be equipped with other slack prediction mechanisms as in [4]

care needs to be taken about their resource overheads. As shown in the experimental

results, the algorithm in Fig. 5 achieves good prediction at a minimal resource overhead.

An important aspect of SLAC is that it automatically switches off issuing selective folds

at higher request-arrival rates. In such cases, underlying FTL automatically triggers

garbage collection when the free space in the device falls below a critical limit. This

makes sure that SLAC never worsens application response times.

13

4.1.2. Selective Folding

Once 𝐹𝑚 , the possible number of folds is determined, selective folding algorithm chooses

blocks to fold from available blocks. In order to improve overall garbage collection

efficiency, we have to identify blocks with minimal cleaning costs. Costs associated with

a fold operation are because of erasures and valid data copying. In a fold operation, two

erasures are a necessity, and so we need to concentrate on reducing the valid data copying

cost. This is minimized when the dead page count in a block is maximum, i.e., when

minimum valid data needs to be copied. In addition, SLAC makes sure that the selected

blocks are also hot, i.e. updated frequently. Thus, folds that will anyway be triggered in

the near future are performed in the slack, eliminating any need for application stalls.

The selective folding algorithm is presented in Fig 6. After 𝐹𝑑 is determined, i.e. blocks

that give maximum garbage collection efficiency are known, we need to see if all these

folds can be carried out within the predicted slack. If allowed number of folds 𝐹𝑚 exceeds

𝐹𝑑 , all the blocks in 𝐿𝑕 are folded. On the other hand, if there are more foldable blocks

than are allowed (𝐹𝑚 < 𝐹𝑑), SLAC sorts the list of hot blocks 𝐿𝑕 and returns the list of

𝐹𝑚 blocks from the sorted list.

One threshold to tune here is the dead page count 𝑑𝑇𝑕 . Higher values of 𝑑𝑇𝑕 allow for

very efficient garbage collection but lesser number of folds at a slack, whereas lower

values mean vice versa. Since higher garbage collection efficiency means lesser number

of block erasures and block copying overhead, it is intuitive to go for a higher value of

14

𝑑𝑇𝑕 . The experimental results also confirm this intuition, as shown in experimental

section. By setting 𝑑𝑇𝑕 to 32 dead pages, SLAC executes only at highest efficiency

achievable by the FTL’s garbage collection policy. On the other hand, sorting needed in

step 5a of Fig.5 is eliminated, because all blocks contain equal number (32) of dead

pages. Also, unlike the other garbage collection policies, SLAC employs scanning rather

than sorting of blocks based on dead page count, reducing the algorithmic overhead

considerably. Whereas other garbage collection policies sort the whole block list every

time for performing garbage collection, SLAC employs scanning, and might only have to

sort a relatively small list 𝐿𝑕 of blocks if 𝐹𝑚 < 𝐹𝑑 .

4.2. FSAF: File System Aware FTL

FSAF monitors write requests to FAT32 table to interpret any deleted data dynamically,

subsequently optimizing GC and WL algorithms accordingly. Also, depending upon the

size of dead content and the Flash utilization, proactive dead data reclamation is carried

out.

4.2.1. Dead Data Detection

Dead data detection is carried out by FSAF dynamically as files are deleted by the

application. Since the file system does not share any information with the FTL regarding

selective_folding:

1. Determine the list L of blocks with
dead page count > Thd

2. Extract the list hL of hot blocks from L
3. dF = | hL |
4. If m dF F , return hL
5. If m dF F :

a. ()'h hL sort L
b. Return first mF elements of 'hL

Fig. 6: Selective Folding.

15

file management, the only way we can interpret file system information at FTL is by

understanding the formatting of Flash and keep track of changes to the file system data

structure residing on Flash. The goal of dead data detection is to carry out this process

efficiently without affecting performance.

The format of Flash can be understood by reading the first sector on Flash, called Master

Boot Record (MBR) and the first sector in the file system called FAT32 Volume ID. The

𝐿𝐵𝐴_𝐵𝑒𝑔𝑖𝑛 field of the MBR reveals the location of the FAT32 Volume ID sector.

Subsequently, the location of the FAT32 table can be determined as follows:

𝐹𝐴𝑇32_𝐵𝑒𝑔𝑖𝑛_𝑆𝑒𝑐𝑡𝑜𝑟 = 𝐿𝐵𝐴_𝐵𝑒𝑔𝑖𝑛 + 𝐵𝑃𝐵_𝑅𝑠𝑣𝑑𝑆𝑒𝑐𝐶𝑛𝑡

The size of the FAT32 table is given by the field 𝐵𝑃𝐵_𝐹𝐴𝑇𝑆𝑧32. Both

𝐵𝑃𝐵_𝑅𝑠𝑣𝑑𝑆𝑒𝑐𝐶𝑛𝑡 and 𝐵𝑃𝐵_𝐹𝐴𝑇𝑆𝑧32 are read from the FAT32 Volume ID sector.

Once the size and location of the FAT32 table are determined, dead sectors can be

recognized by monitoring writes to the table. FAT32 stores the pointer to each data sector

allocated to a particular file in corresponding locations in the FAT32 table. To delete a

particular file, all the pointers to data sectors are freed up by zeroing out their content. In

other words, dead sectors resulting from shrinking or deleting a file can be found out by

reading corresponding pointers prior to their zeroing out. If all the sectors in a block are

dead, the whole block is marked as dead. Thus, FSAF needs to maintain a buffer for

reading FAT32 table sector before it is zeroed out by the file system. Fig. 7 depicts the

algorithm.

16

4.2.2. Avoidance of Dead Data Migration

Once dead sectors are recognized, GC and WL algorithms are instructed to avoid copying

their content during regular operation of Flash. Thus, dead data migration is avoided

during valid data copy occurring while carrying out GC and WL operations.

4.2.3. Proactive Reclamation

When larger files or files occupying contiguous sectors are deleted, dead data occupies

complete blocks. Since these blocks do not contain any valid data, they can be reclaimed

without any copying costs, unlike blocks that require valid data copy during normal

folding operation. Thus, reclaiming such blocks is inherently a highly efficient operation

in comparison to a forced fold operation during a GC. Thus, when the free space in Flash

falls below a critical threshold, instead of proceeding with costly GC operation, dead

blocks can be reclaimed to delay or avoid GC by regenerating free space dynamically.

However, application response times still might suffer when all the dead data is reclaimed

together, owing to costly erasure operations. In order to avoid this, proactive reclamation

of dead blocks is taken up. FTL triggers GC higher Flash utilizations [11], i.e., when the

free space in the device is below a critical limit, and continues folding until free space

dead_data_detection():

1. Calculate size and location of FAT32 Table by

reading MBR and FAT32 Volume ID sectors

2. Monitor writes to FAT32 Table

3. If a sector pointer is being zeroed out, mark

corresponding sector as dead

4. Mark a block as dead if all the sectors in the

block are dead

Fig. 7 Dead data detection algorithm.

17

reaches another threshold. In other words, to avoid delays due to GC, free space in the

device should be kept above the GC threshold. So, dead block reclamation should be

scheduled when Flash utilization is reasonably high, but not high enough to trigger a GC

operation. On the other hand, number of dead blocks proactively reclaimed must be as

small as possible, as expensive erasure operations can impact application response times.

Yet another important factor to be taken into consideration is the amount of dead data in

Flash - this decides whether or not proactive reclamations need to be run.

The proactive reclamation algorithm is as presented in Fig. 8. We first check whether the

dead content is greater than a threshold δ. If not, GC and WL are informed to avoid

useless dead data migration by marking dead sectors. If dead content is greater than δ, we

check whether system utilization is higher than μ, i.e. whether at least μ percentage of

blocks is already used. In such a case, we proceed to reclaim dead blocks proactively

apart from avoiding dead data migration. Thus, dead block reclamation proceeds until

number of dead blocks reach another threshold Δ.

Even though proactive reclamation improves application response times by avoiding or

delaying costly GC operation, it should be scheduled in such a way that application stall

time is minimal (since proactive reclamation is a series of erase operations, it can be time

consuming). In other words, parameters δ, μ and Δ should be carefully configured such

that reclamation is highly efficient. Large values for δ and μ avoid frequent reclamation,

but might impose a lot of reclamation activity. Small values for Δ mean smaller

reclamation activity, but frequent triggers for reclamation. To arrive at reasonable values

for these parameters, the effect of varying these parameters on various performance

18

metrics was explored, as presented in the next section. The results confirm the intuition at

best performance is achieved at high values of δ and μ low values of Δ.

Avoid copying DEAD

sectors at fold time

Monitor WRITES to FAT32

table

dead content

< δ ?

Conduct a

Proactive

Reclamation

Update DEAD SECTOR

physical map

u > μ ?

Recognize DEAD sectors

Utilization

greater than

GC threshold

NOYESSmall dead

content Large dead

content

dead

content <

 Δ ?

YESNO

Fig. 8: Proactive Reclamation

.

19

CHAPTER 5

EXPERIMENTAL SETUP

We used trace-driven approach for the experimentation. Several benchmarks with

different slack-time characteristics and localities of reference were used for trace

collection on a PC running on Linux 2.6.18. Benchmarks were run from a FAT-32

formatted flash USB stick connected to the PC and usbmon utility [25] was used to

extract the timing, sector and request type information from USB traffic, forming the

application trace. The collected traces were fed to a simulated Toshiba NAND Flash [21].

We realized log-based NFTL [9] on top of it and implemented Greedy [22] and Cost-

benefit [11] GC policies. CAT [15] policy was not considered, as the original paper was

proposed for page-mapped implementation, which is not viable for flash sizes of today.

SLAC was finally integrated with the setup.

We used various benchmarks to evaluate our approaches. MP3 and MPEG benchmarks

were obtained by running different media files and issuing writes to flash simultaneously.

Other benchmarks, JPEG, and MAD were taken from MiBench. Also, other file system

benchmarks simulating Event Recorder, Fax and Cell Phone were also run on the

experimental setup. For evaluating FSAF, we chose benchmarks that represent most

frequently encountered file system scenarios on removable flash storage media such as

SD cards in applications like digital cameras, mp3 players, digital camcorders and

memory sticks:

CHAPTER 5

EXPERIMENTAL SETUP

Trace-driven approach was used for the experimentation. Several benchmarks with

different slack-time characteristics and localities of reference were used for trace

collection on a PC running on Linux 2.6.18. Benchmarks were run from a FAT-32

formatted Flash USB stick connected to the PC and usbmon utility [25] was used to

extract the timing, sector and request type information from USB traffic, forming the

application trace. The collected traces were fed to a simulated Toshiba NAND Flash [21].

Log-based NFTL [9] was realized on top of it and implemented Greedy [22] and Cost-

benefit [11] GC policies. CAT [15] policy was not considered, as the original paper was

proposed for page-mapped implementation, which is not viable for Flash sizes of today.

SLAC was finally integrated with the setup.

Various benchmarks were used to evaluate the approach. MP3 and MPEG benchmarks

were obtained by running different media files and issuing writes to Flash

simultaneously. Other benchmarks, JPEG, and MAD were taken from MiBench. Also,

other file system benchmarks simulating Event Recorder, Fax and Cell Phone were also

run on the experimental setup. For evaluating FSAF, benchmarks those benchmarks that

represent most frequently encountered file system scenarios on removable Flash storage

media such as SD cards in applications like digital cameras, mp3 players, digital

camcorders and memory sticks:

20

s1: Huge sized file creation and deletion

s2: Medium sized file creation and deletion

s3: Small sized file creation and deletion

In order to simulate real-world scenarios, Flash was brought to 80% utilization and the

size of Flash for each benchmark was set to 64 MB. FTL was configured to start GC

when the number of free blocks falls below 10% of total number of blocks and stop GC

as soon as percent free blocks reaches 20% of total number of blocks. WL is triggered

whenever the difference between maximum and minimum erase counts of blocks exceeds

15. The size of files used in various scenarios was varied between 32MB to 2KB.

21

CHAPTER 6

EXPERIMENTAL RESULTS

6.1. Configuring SLAC Parameters

The parameters of 𝑛 (number of samples) and ε (fluctuation threshold) need to be

configured to run SLAC. We ran slack prediction algorithm with various values 𝑛 of for

all the benchmarks, and found that our intuition of smaller values of 𝑛 performing better

than larger values. The reason behind this can be explained as follows. Since future

samples tend to be influenced more by recent past, we can follow the application patterns

closely with 𝑛 as small as possible, but big enough to accommodate fluctuations in the

recent sample data.

After performing various experiments, we fixed 𝑛 at 4 and ε at 5000 μsec. We also

evaluated other prediction approaches like weighted moving average, with recent samples

assigned higher weights than the older. Certainly more sophisticated approaches as in [4]

can be taken up, which will enhance slack prediction, but come with a higher algorithmic

and resource overheads. Owing to the lack of space, related the experimental results are

not shown.

To determine the best value for the dead count threshold, 𝑑𝑇𝑕 we plotted the variation in

the number of erasures, folds and FTL-triggered garbage collections against various

threshold values, for SLAC implementation on Greedy and Cost-benefit policies. Fig. 9

depicts the sample experimental results for the CellPhone benchmark. We observed when

CHAPTER 6

EXPERIMENTAL RESULTS

6.1. Configuring SLAC Parameters

The parameters of 𝑛 (number of samples) and ε (fluctuation threshold) need to be

configured to run SLAC. Slack prediction algorithm was ran with various values 𝑛 of for

all the benchmarks, and found that the intuition of smaller values of 𝑛 performing better

than larger values. The reason behind this can be explained as follows. Since future

samples tend to be influenced more by recent past, we can follow the application patterns

closely with 𝑛 as small as possible, but big enough to accommodate fluctuations in the

recent sample data.

After performing various experiments, we fixed 𝑛 at 4 and ε at 5000 μsec. Other

prediction approaches were evaluated like weighted moving average, with recent samples

assigned higher weights than the older. Certainly more sophisticated approaches as in [4]

can be taken up, which will enhance slack prediction, but come with a higher algorithmic

and resource overheads.

To determine the best value for the dead count threshold, 𝑑𝑇𝑕 the variation in the number

of erasures, folds and FTL-triggered garbage collections against various threshold values

was plotted, for SLAC implementation on Greedy and Cost-benefit policies. Fig. 9

depicts the sample experimental results for the CellPhone benchmark. It was observed

22

when 𝑑𝑇𝑕 was increased from 2 to 32, erasures and folds drop significantly. However,

since higher threshold allows lesser folds during slack, we see an increase in the number

of FTL-triggered garbage collections with higher 𝑑𝑇𝑕 . This concurs with the hypothesis

of increasing garbage collection efficiency with the increasing values of 𝑑𝑇𝑕 . Thus, it was

set to 32, i.e. hot blocks only with dead page count equal to 32 are considered by SLAC

for folding. From the specification [21], fold time 𝑡𝑓 was calculated to be 20128 usec.

6.2. Configuring FSAF Parameters

The parameters δ, μ and Δ need to be configured to run FSAF. Proactive reclamation

algorithm was ran with various values of δ and μ for all the benchmarks, and results

supported the intuition that higher values for these parameters result in higher

performance. By setting these to high as possible, proactive reclamation is triggered only

when the system is low in free space, but runs frequently enough to generate sufficient

Fig.9. Variation in Erasures, Folds and garbage collections against dead page count

threshold

0

2

4

6

8

10

12

14

16

0

1000

2000

3000

4000

5000

6000

7000

8000

2 4 6 8 101214161820222426283032

T
o
t
a
l

n
u
m
b
e
r

o
f

G
C
s

T
o
t
a
l

n
u
m
b
e
r

o
f

E
r
a
s
u
r
e
s

a
n
d

F
o
l
d
s

Dead Page Count

Erasures

Folds

GCs

23

free space. Thus, δ was set to 0.2 and μ to 0.85, i.e. when the dead data size exceeds 20%

of the total space and system utilization is 85%, proactive reclamation is triggered.

To determine the best value for Δ, it was observed variation in the total application

response times, number of erasures, and garbage collections against various sizes of

reclaimed dead data, represented by δ` (= (δ – Δ)). Owing to lack of space, related

results were omitted. It was observed that when δ` was increased from 0 to 0.18, Flash

delays and erasures decrease initially and increase afterwards, as the reclamation activity

increases. However, number of garbage collections remains the same. Thus, δ` needs to

be set to a small positive value. This concurs with the hypothesis that small values for δ`

are better than large values. So, Δ was set to 0.18.

In essence, FSAF is configured to proactively reclaim dead data as soon as dead content

becomes more than 20% of the total Flash size when Flash utilization is greater than

85%, and reclaims 2% of dead blocks at each invocation.

6.3. Improvement in Application Response Times

Fig. 10 shows application response times of different benchmarks for Greedy as well as

the combined approach (COMBO) that includes both FSAF and SLAC techniques.

Depending upon the timing characteristics as well as the deleted file content, we see that

different benchmarks differ in their total application response times. Fig. 11 shows

average page write access times for each benchmark, for Greedy and COMBO

approaches. By detecting dead data dynamically and scheduling GCs in the background,

we see that COMBO achieves significant reduction in both application response times

24

and page write access times.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

Greedy COMBO Greedy COMBO Greedy COMBO

s1 s2 s3

To
ta

l A
p

p
lic

at
io

n
 R

e
sp

o
n

se
 T

im
e

s,

se

c

Benchmarks

Fig.10: Total application response times for various benchmarks – Greedy vs.

COMBO

0

500

1000

1500

2000

2500

Greedy COMBO Greedy COMBO Greedy COMBO

s1 s2 s3

W
ri

te
-

A
ve

ra
ge

 M
e

m
o

ry
 A

cc
e

ss

Ti
m

e
s,

 u
se

c

Benchmarks

Fig.11: Average memory write-access times for various benchmarks for Greedy

and COMBO

25

In order to understand the above composite gains in detail, presented are individual

results and discussion. Fig.12 depicts the average page write access times for each

benchmark. Each of the histogram for a benchmark represents Greedy, SLAC-Greedy,

Cost-benefit and SLAC-Cost-benefit policies respectively. An average of benchmarks for

each of these methods is also presented. As per the specification [21], a page write is

supposed to take 400 usec, but we see that, in reality the values are much higher. The

reason behind this behavior is the delays associated with garbage collection operations. It

has to be noted that the effect of garbage collection overhead becomes even more

pronounced at higher Flash utilizations. One can see from Fig.12 that SLAC

implementations of Greedy and Cost-benefit policies show improvement over the normal

Greedy and Cost-benefit garbage collection policies. This is because, by carrying out

garbage collection activity in the background and also selectively folding, SLAC policy

significantly decreases write access times compared to Greedy and Cost-benefit

implementations. From Fig. 12, we can also observe variation in the average write access

time across benchmarks. This is majorly because of two reasons: variation in the locality

of reference and difference in the slack times available to each benchmark. We observe

that maximum gains can be obtained when a benchmark exhibits sequential write access

patterns, also with a reasonable slack. MP3 benchmark, thus gains maximum by as much

as 51% with SLAC. On the contrary, gains are less when there is no slack. However, we

see that SLAC achieves 18.2% improvement on the average. It is important to know that

additional writes and reads to pages and OOBs are issued by the FTL itself during the

process of folding while copying valid pages. In other words, application-issued writes

26

trigger FTL to issue more writes during the process of folding. Since SLAC always folds

blocks with minimum cleaning costs, the above delays are also reduced automatically,

contributing to the reduction of Flash access times.

0

200

400

600

800

1000

1200

CellPhone Event
Recorder

Fax JPEG MAD MPEG MP3 average

W
ri

te
-

A
ve

ra
ge

 M
e

m
o

ry
 A

cc
e

ss
 T

im
e

,
u

se
c

Greedy SLAC-Greedy CB SLAC-CB

Benchmarks

0

200

400

600

800

1000

1200

CellPhone Event
Recorder

Fax JPEG MAD MPEG MP3 average

W
ri

te
-

A
ve

ra
ge

 M
e

m
o

ry
 A

cc
e

ss
 T

im
e

,
u

se
c

Greedy SLAC-Greedy CB SLAC-CB

Benchmarks

Fig.12. Average page-write access times with various garbage collection policies

Fig.13. Normalized total device delays with various garbage collection policies.

27

Total device delays for each benchmark and also the benchmark average are given in

Fig.13, after normalizing to Greedy method. The total device delay includes delays

incurred due to reads, writes as well as garbage collections. We can observe that

improvements in device delays after employing SLAC are similar to improvements in

write access times. This is because of the fact that read access times of Flash are much

lower than write access times, and also because reads are normally cached. Thus, SLAC

aims at reducing write access times.

FSAF results are presented here. Fig.14 depicts total application response times for each

of the benchmark for both greedy and FSAF approaches. We observe that the FSAF

approach improves response times by 22% on the average, and 32% for the scenario s2

compared to the greedy approach. From Fig. 14, we can observe that there is a variation

in the total response times for different scenarios, owing to the content and distribution.

We observe that maximum gains can be obtained when dead data occupies contiguous

rather than randomly distributed sectors, as in the scenario s2. However, we see that

FSAF achieves 22% improvement on the average.

It has to be noted that the total device delay includes delays incurred due to reads, writes

issued by the application as well as those issued during carrying out garbage collection

and wear leveling activity. When file system issues reads and writes and folding and wear

leveling are triggered, additional writes and reads to pages and OOBs are issued by the

FTL during the process of valid data copying. In other words, total writes carried out are

more than application-issued writes. Since FSAF always avoids dead data migration and

directly reclaims dead blocks, device delays are reduced, contributing to the reduction of

28

Flash access times and hence application response times.

Fig. 15 depicts average memory write access times (W-AMAT) for different scenarios

for both greedy and FSAF approaches. We can observe that improvements in W-AMAT

after employing FSAF are similar to improvements in response times. This is because of

the fact that read access times of Flash are much lower than write access times, and also

because reads are normally cached. The variation in the average write access time across

benchmarks is owing to dead data content.

It has to be noted that the response times suffer majorly at higher Flash utilizations when

garbage collection operations are triggered out to regenerate free space. So, if enough

free space can be generated at higher utilizations, we can delay or even avoid costly

garbage collections. FSAF achieves the same by dead data reclamation at higher

utilizations. On the other hand, wear leveling overhead because of dead data, which is

incurred at all Flash utilizations, is avoided by FSAF by avoiding dead data migration.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

Greedy FSAF Greedy FSAF Greedy FSAF

s1 s2 s3

To
ta

l A
p

p
lic

at
io

n
 R

es
p

o
n

se
 T

im
es

,
se

c

Benchmarks

Fig.14: Total application response times for various benchmarks

29

6.4. Improvement in GCs and Erasures

Table II presents the number of garbage collections, erasures and folds for each

benchmark, for both Greedy and COMBO approaches. We see that COMBO

significantly reduces garbage collections, folds and erasures, essentially contributing both

to improved response times as well as increased Flash life time. Presented are individual

results and discussion for SLAC and FSAF approaches also, to see how each method

improves Flash management.

Erasures GCs Folds

Bench-

mark

Gree-

dy

COM-

BO

%Decre

-ase

Gree

dy

COM-

BO

%Decre

-ase

Gre

-

edy

COM

-BO

%Decre

-ase

s1 4907 4211 14.18 10 0 100.00

229

4 1560 32.00

s2 2631 1324 49.68 11 1 90.91

124

9 597 52.20

s3 5384 3219 40.21 25 5 80.00

254

1 1563 38.49

TABLE II: Improvement in erasures, garbage collections and folds with both methods

applied

0

500

1000

1500

2000

2500

Greedy FSAF Greedy FSAF Greedy FSAF

s1 s2 s3

W
ri

te
-

A
ve

ra
ge

 M
em

o
ry

 A
cc

e
ss

T

im
e

s,
 u

se
c

Benchmarks

Fig.15: Average memory write-access times for various benchmarks

30

Table III provides improvements with respect to the number of FTL-triggered garbage

collections and erasures for all approaches, for each benchmark for SLAC. The most

important observation from this table is that, on an average, FTL-triggered garbage

collections reduce by 80%. This means the elimination of most of the undesirable peaks

in the device response times depicted in Fig.2. Benchmarks MAD and MPEG were not

considered in the calculation of the average: the percent improvement is high but number

of garbage collections before and after employing SLAC is very small. Table II also

provides number of erasures for each method. These results underline another important

benefit of employing SLAC approach: the reduction in the number of erasures. Erasures

determine the life time of a Flash and by reducing them we can achieve longer Flash life

times. Reduced number of erasures also means significant energy reduction, as an erasure

is the costliest of all Flash memory operations.

Benefits of SLAC approach can be understood by observing the way a normal FTL

performs garbage collection. An FTL triggers garbage collection upon free block count

reaching certain critical threshold. At such an instance, blocks are sorted by a metric

decided by the garbage collection policy, and are subsequently reclaimed in the sorted

order until enough free blocks are generated. For example, in Greedy approach, blocks

are sorted by their dead page count, where as in Cost-benefit approach, they are sorted by

cost-benefit value. Because of this, the cost of each fold operation may be different.

SLAC, on the other hand, picks up blocks only with maximum benefits (whose dead page

count is 𝑑𝑇𝑕), doing away with costly sorting operation. The benefits associated manifest

themselves in the reduction of the number of erasures, and improved garbage collection

31

efficiency by reducing number of writes and reads during folding. However, one can

observe that the reduction in the number of erasures is much less compared to the

reduction in number of garbage collections. This is because of the fact that even though

some FTL-triggered garbage collections are taken up in the slack, essentially the same

amount of cleaning activity needs to be performed in both of the approaches.

It has to be noted that SLAC gains are heavily dependent upon the timing or slack

characteristics of applications. When there is no slack, no micro garbage collections can

FTL-

triggered

GCs

Erasures

FTL-triggered

GCs

Erasures

Bench-

mark

Gr

eed

y

SLAC

-

Greed

y

Gr

eed

y

SLAC

-

Greed

y

%De

creas

e

Cost-

benef

it

SLAC-

Cost-

benefit

Cost-

benef

it

SLA

C-

Cost-

benef

it

%De

creas

e

CellPh

one 23 14

50

20 5000 0.4 28 12 5020 5000 0.4

Event

Record

er 14 13

33

45 3288 1.7 17 14 3343 3318 0.75

Fax

11

1 19

76

59 7292 4.79 111 19 7659 7292 4.79

JPEG 21 6

14

49 1410 2.69 26 7 1449 1423 1.79

MAD 2 0

13

4 96
28.3

6 2 0 134 96
28.3

6

MPEG 38 7

26

47 2581 2.49 1 0 1756 1315
33.5

4

MP3 78 0

25

41

4 25078 1.32 97 0

2541

4

2505

6 1.41

TABLE II. SLAC: Improvements in number of FTL-triggered garbage

collections and erasures

32

be performed. For example, the Event recorder benchmark is very write intensive: it

records event data to Flash upon sudden influx of events. Continuous writes to the Flash

in such cases trigger FTL to perform garbage collections automatically. Thus, we can see

that improvement is less for event recorder with SLAC approach. This also explains why

SLAC may not eliminate all FTL-triggered garbage collections. However, it has to be

noted that SLAC does not worsen response times: it stops performing micro-garbage

collections as soon as it detects very high request rates.

Table IV provides improvements with FSAF with respect to the number of garbage

collections, erasures and folds for each benchmark, for both greedy and FSAF methods.

The most important observation from this table is that, on an average, FSAF reduces

number of erasures by 21.6%, by avoiding erasures associated with wear leveling dead

data. Since erasures determine the life expectancy of Flash, endurance is proportionally

improved. Reduced number of erasures also means significant energy reduction, as an

erasure is the costliest of all Flash memory operations.

Erasures GCs Folds

Bench-

mark

Gree-

dy

FSA

F

%Decre-

ase

Gree

dy

FSA

F

%Decre-

ase

Gree-

dy

FSA

F

%Decre-

ase

s1 4907

434

7 11.41 10 7 30.00 2294

197

9 13.73

s2 2631

176

0 33.11 11 5 54.55 1249 792 36.59

s3 5384

429

3 20.26 25 14 44.00 2541

197

6 22.24

Table IV: FSAF: Improvement in erasures, garbage collections and folds

33

Also, garbage collections are also reduced by 43% on the average compared to greedy

method. This is achieved by generating enough free space in the device by performing

proactive reclamation. In other words, this means the elimination of undesirable peaks in

the device response times depicted in Fig.2. Similarly, folds are reduced by employing

FSAF. By reclaiming dead blocks proactively, FSAF eliminates the need for creating

replacement blocks for dead blocks, and thus, unnecessary fold operations are eliminated.

It has to be noted that FSAF approach also results in lesser algorithmic overhead. An FTL

triggers garbage collection upon free block count reaching certain critical threshold. At

such an instance, blocks are sorted by a metric decided by the garbage collection policy,

and are subsequently reclaimed in the sorted order until enough free blocks are generated.

For example, in Greedy approach, blocks are sorted by their dead page count. FSAF, on

the other hand directly erases dead blocks, i.e., blocks only with maximum benefits,

doing away with costly sorting operation. The benefits associated manifest themselves in

the reduction of the number of erasures, and improved garbage collection efficiency by

reducing number of writes and reads during folding.

It has to be noted that FSAF gains are heavily dependent upon the dead data content and

distribution. However, since FSAF naturally switches to regular wear leveling and

garbage collection operations when there is no dead data, its performance is at least as

good as the normal case.

34

6.5. Overheads

In SLAC, the overhead associated with slack prediction is 𝑂(𝑛), arising mainly from the

calculation of 𝐷𝑑𝑒𝑣 . Since 𝑛 is set to a very small value, it is clear that the overhead is

minimal. Selective folding uses FTL’s block list, and may need to maintain a very small

list of blocks to be folded in the slack. It also needs to scan blocks, which is an 𝑂 𝑘

operation, where is 𝑘 the number of blocks. However, it has to be noted that by carrying

out efficient folds in slack, selective folding reduces or eliminate the garbage collection

burden on the FTL, so as to decrease the overall garbage collection overhead. Also, by

setting 𝑑𝑇𝑕 to 32, we eliminate the need of any sorting activity during selective folding.

The overhead associated with FSAF comes from dead data detection and proactive

reclamation. To detect dead data, FSAF needs to monitor writes to only three sections of

Flash: the MBR, Volume ID and the FAT32 table itself. By reading and storing MBR and

Volume ID at every format time, need for constructing formatting information at every

Flash plug-in is eliminated. To detect which sector is being deleted, FSAF needs to

maintain a buffer of size of maximum one sector. Also, finding out which sector is being

deleted is an 𝑂(𝑠) operation, where 𝑠 is the number of sector pointers stored in a single

sector of the FAT32 table. Subsequent addition and deletion from the dead data list are all

𝑂(1) operations. Thus, algorithmic overhead introduced by FSAF is only 𝑂(𝑠) per write.

Since typically there are only 128 pointers per sector, this overhead is very minimal.

Proactive reclamation, on the other hand, reduces the overall overhead on the system.

Since proactive reclamation executes at a higher efficiency than a normal garbage

35

collection operation and also eliminates or delays regular garbage collections, effectively

system overhead is significantly reduced.

36

CHAPTER 7

CONCLUSION

This work proposed a new FTL-based framework for improving application response

times and overall flash management that is consistent with the current system interfaces.

The first method, SLAC breaks up lengthy GC operations into chunks and carries out the

same efficiently, so as to achieve significant improvements in application response times,

average write access times and the number of erasures. The second approach is a novel

method to impart the awareness of file system operations at the FTL level, without

changing any existing file system architectures. By being able to detect and treat dead

data efficiently at the FTL level, this method achieves significant improvements in

application response times, average write access times as well as erasures.

CHAPTER 7

CONCLUSION AND FURTHER WORK

This work proposed a new FTL-based framework for improving application response

times and overall Flash management that is consistent with the current system interfaces.

The first method, SLAC breaks up lengthy GC operations into chunks and carries out the

same efficiently, so as to achieve significant improvements in application response times,

average write access times and the number of erasures. The second approach is a novel

method to impart the awareness of file system operations at the FTL level, without

changing any existing file system architectures. By being able to detect and treat dead

data efficiently at the FTL level, this method achieves significant improvements in

application response times, average write access times as well as erasures.

This approach can be carried over to Multi-Level Cell (MLC) NAND Flash based

applications. By storing two bits per NAND cell, MLC Flashes offer higher densities, but

perform poorer compared to basic Single-Level Cell (SLC) counterparts, owing to higher

Flash management overheads in garbage collection, wear leveling and also error

detection and correction. Also, the former have lesser life times. MLC Flashes can be

targeted for broader range of applications by extending the proposed approach to

improve their performance and life time.

37

REFERENCES

[1] A. Ban. Flash file system. United States Patent, no.5404485, April 1995.

[2] A. Ban. Wear leveling of static areas in flash memory. US Patent 6,732,221. M-

systems, May 2004.

[3] Elaine Potter, ―NAND Flash End-Market Will More Than triple From 2004 to 2009‖,

http://www.instat.com/press.asp?ID=1292&sku=IN0502461SI

[4] Golding, Richard; Bosch, Peter; Wilkes, John, ―Idleness is not sloth‖. USENIX Conf,

Jan. 1995

[5] Hyojun Kim Youjip Won , ―MNFS: mobile multimedia file system for NAND flash

based storage device‖, Consumer Communications and Networking Conference,

2006. CCNC 2006. 3rd IEEE

[6] Hanjoon Kim, Sanggoo Lee, S. G., ―A new flash memory management for flash

storage system,‖ COMPSAC 1999.

[7] Intel Corporation. ―Understanding the flash translation layer (ftl) specification‖.

http://developer.intel.com/.

[8] J.W. Hsieh, L.-P. Chang, and T.-W. Kuo. Efficient On-Line Identification of Hot

Data for Flash-Memory Management. In Proceedings of the 2005 ACM symposium

on Applied computing, pages 838.842, Mar 2005.

[9] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho. ―A space-efficient flash translation

layer for compact flash systems‖. IEEE Transactions on Consumer Electronics, May

2002.

[10] J. C. Sheng-Jie Syu. An Active Space Recycling Mechanism for Flash Storage

Systems in Real-Time Application Environment. 11th IEEE International Conference

on Embedded and Real-Time Computing Systems and Application (RTCSA'05),

pages 53.59, 2005.

[11] Kawaguchi, A., Nishioka, S., and Motoda, H., ―A Flash-memory Based File

System‖, USENIX 1995.

REFERENCES

[1] A. Ban. Flash file system. United States Patent, no.5404485, April 1995.

[2] A. Ban. Wear leveling of static areas in Flash memory. US Patent 6,732,221. M-

systems, May 2004.

[3] Elaine Potter, ―NAND Flash End-Market Will More Than triple From 2004 to 2009‖,

http://www.instat.com/press.asp?ID=1292&sku=IN0502461SI

[4] Golding, Richard; Bosch, Peter; Wilkes, John, ―Idleness is not sloth‖. USENIX Conf,

Jan. 1995

[5] Hyojun Kim Youjip Won , ―MNFS: mobile multimedia file system for NAND Flash

based storage device‖, Consumer Communications and Networking Conference,

2006. CCNC 2006. 3rd IEEE

[6] Hanjoon Kim, Sanggoo Lee, S. G., ―A new Flash memory management for Flash

storage system,‖ COMPSAC 1999.

[7] Intel Corporation. ―Understanding the Flash translation layer (ftl) specification‖.

http://developer.intel.com/.

[8] J.W. Hsieh, L.-P. Chang, and T.-W. Kuo. Efficient On-Line Identification of Hot

Data for Flash-Memory Management. In Proceedings of the 2005 ACM symposium

on Applied computing, pages 838.842, Mar 2005.

[9] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho. ―A space-efficient Flash

translation layer for compact Flash systems‖. IEEE Transactions on Consumer

Electronics, May 2002.

[10] J. C. Sheng-Jie Syu. An Active Space Recycling Mechanism for Flash Storage

Systems in Real-Time Application Environment. 11th IEEE International Conference

on Embedded and Real-Time Computing Systems and Application (RTCSA'05),

pages 53.59, 2005.

[11] Kawaguchi, A., Nishioka, S., and Motoda, H., ―A Flash-memory Based File

System‖, USENIX 1995.

http://www.instat.com/press.asp?ID=1292&sku=IN0502461SI
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20hyojun%20kim%3cIN%3eau)&valnm=+Hyojun+Kim&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20%20youjip%20won%3cIN%3eau)&valnm=++Youjip+Won&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10599
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10599
http://developer.intel.com/
http://www.instat.com/press.asp?ID=1292&sku=IN0502461SI
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20hyojun%20kim%3cIN%3eau)&valnm=+Hyojun+Kim&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20%20youjip%20won%3cIN%3eau)&valnm=++Youjip+Won&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10599
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10599
http://developer.intel.com/

38

[12] Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo, ―Real-Time Garbage collection for

Flash-Memory Storage Systems of Real-Time Embedded Systems‖, ACM

Transactions on Embedded Computing Systems, November 2004

[13] L.-P. Chang and T.-W. Kuo. An Adaptive Striping Architecture for Flash

Memory Storage Systems of Embedded Systems. In IEEE Real-Time and Embedded

Technology and Applications Symposium, pages 187.196, 2002.

[14] Malik, V. 2001a.‖ JFFS—A Practical Guide‖,

http://www.embeddedlinuxworks.com/articles/jffs guide.html.

[15] Mei-Ling Chiang, Paul C. H. Lee, Ruei-Chuan Chang, ―Cleaning policies in

mobile computers using flash memory,‖ Journal of Systems and Software, Vol. 48,

1999.

[16] M.-L. Chiang, P. C. H. Lee, and R.-C. Chang. Using data clustering to improve

cleaning performance for Flash memory. Software: Practice and Experience, 29-

3:267.290, May 1999.

[17] Microsoft, ―Description of the FAT32 File System‖,

http://support.microsoft.com/kb/154997

[18] Ohoon Kwon and Kern Koh, ―Swap-Aware Garbage collection for NAND Flash

Memory Based Embedded Systems‖, Proceedings of the 7th IEEE CIT2007.

[19] Rosenblum, M., Ousterhout, J. K., ―The Design and Implementation of a Log-

Structured FileSystem,‖ ACM Transactions on Computer Systems, Vol. 10, No. 1,

1992.

[20] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S.-W. Park, and H.-J. Songe.

―FAST: A log-buffer based ftl scheme with fully associative sector translation‖. The

UKC, August 2005.

[21] Toshiba 128 MBIT CMOS NAND EEPROM TC58DVM72A1FT00,

http://www.toshiba.com, 2006.

[22] Wu, M., Zwaenepoel, W., ―eNVy: A Non-Volatile, Main Memory Storage

System‖, ASPLOS 1994.

[23] Yuan-Hao Chang Jen-Wei Hsieh Tei-Wei Kuo, ―Endurance Enhancement of

Flash-Memory Storage, Systems: An Efficient Static Wear Leveling Design‖,

DAC’07

http://support.microsoft.com/kb/154997
http://support.microsoft.com/kb/154997
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28yuan%20hao%20chang%3CIN%3Eau%29&valnm=Yuan-Hao+Chang&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20jen%20wei%20hsieh%3CIN%3Eau%29&valnm=+Jen-Wei+Hsieh&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20tei%20wei%20kuo%3CIN%3Eau%29&valnm=+Tei-Wei+Kuo&reqloc%20=others&history=yes

39

[24] Zaitcev, ―The usbmon: USB monitoring framework‖,

http://people.redhat.com/zaitcev/linux/OLS05_zaitcev.pdf

http://people.redhat.com/zaitcev/linux/OLS05_zaitcev.pdf
http://people.redhat.com/zaitcev/linux/OLS05_zaitcev.pdf

