Architecture Description Language (ADL)-driven
Software Toolkit Generation for Architectural
Exploration of Programmable SOCs

PRABHAT MISHRA
Department of Computer and Information Science and Engineering, University of Florida

AVIRAL SHRIVASTAVA and NIKIL DUTT
Center for Embedded Computer Systems, University of California, Irvine

The increasing complexity of system functionality and advances in semiconductor technology have
resulted in system implementations using programmable Systems-on-Chips (SOCs). Furthermore
as the software content of such SOCs dominates the design process, there is a critical need to
support exploration and evaluation of different architectural configurations. The increasing soft-
ware content coupled with decreasing time-to-market create a critical need for automated software
generation tools to increase designer productivity. Traditional hardware-software codesign flows
do not support necessary exploration and customization of the embedded processors. However the
inherently application specific nature of the embedded processors and the stringent area, power
and performance constraints in embedded systems design critically require fast and automated
architecture exploration methodology. Architecture Description Language (ADL)-driven design
space exploration and software toolkit generation strategies have become popular recently. This
approach provides a systematic mechanism for a top-down design and validation framework, which
is very important to develop complex systems. The heart of this approach lies in the ability to au-
tomatically generate software toolkit including a architecture-sensitive compiler, a cycle accurate
simulator, assembler, debugger, and verification/validation tools. This paper presents a software
toolkit generation methodology using the EXPRESSION ADL. Our exploration studies demon-
strate the need and usefulness of this approach in compiler-in-the-loop design space exploration
of reduced instruction-set architectures.

Categories and Subject Descriptors: D.3.4 [Software]: Programming Languages— Processors;

1.6.7 [Computing Methodologies|: Simulation and Modeling—Simulation Support Systems

General Terms: Design, Languages
Additional Key Words and Phrases: Architecture Description Language, Design Space Explo-
ration, Programmable Architecture, Retargetable Compilation, Embedded Processor

This work was partially supported by NSF grants CCR-0203813 and CCR-0205712. We would
like to acknowledge the contributions of Prof. Alex Nicolau, Mehrdad Reshadi, Ashok Halambi,
Dr. Peter Grun, Partha Biswas, Dr. Mahesh Mamidipaka, and Sudeep Pasricha.

Author’s address: P. Mishra, Department of Computer and Information Science and Engineering,
University of Florida, Gainesville FL 32611, email: prabhat@Qcise.ufl.edu; Aviral Shrivastava and
Nikil Dutt, Center for Embedded Computer Systems, Donald Bren School of Information and
Computer Sciences, University of California, Irvine, CA 92697, email: {aviral, dutt}@ics.uci.edu.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2006 ACM 1084-4309/2006/0400-0001 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006, Pages 1-31.

2 . Mishra et al.

1. INTRODUCTION

Increasing complex system functionality and advances in semiconductor technology
are changing how electronic systems are designed and implemented today. The
escalating non-recurring engineering (NRE) costs to design and manufacture the
chips have tilted the balance towards achieving greater design reuse. As a result,
hardwired application specific integrated circuit (ASIC) solutions are no longer
attractive. Increasingly we are seeing a shift toward systems implemented using
programmable platforms. Furthermore, the high degree of integration provided by
current semiconductor technology has enabled the realization of the entire system
functionality onto a single chip, which we call a Programmable System-On-Chip
(SOC). Programmable SoCs are an attractive option not only because they provide
a high degree of design reuse via software, but because they also greatly reduce the
time-to-market.

With both the system complexity and time-to-market becoming the main hurdles
for design success, a key factor in programmable SoC design is the designer’s pro-
ductivity, i.e., his ability to quickly and efficiently map applications to SOC imple-
mentations. Furthermore, the need for product differentiation necessitates careful
customization of the programmable SOC — a task that traditionally takes a long
time. Traditionally, embedded systems developers performed limited exploration
of the design space using standard processor and memory architectures. Further-
more, software development was usually done using existing, off-the-shelf processors
(with supported integrated software development environments) or done manually
using processor specific low-level languages (assembly). This was feasible because
the software content in such systems was low and the embedded processor architec-
tures were fairly simple (e.g., no instruction level parallelism) and well-defined (e.g.,
no parameterizable components). The emergence of complex, programmable SOCs
poses new challenges for design space exploration. To enable efficient and effective
design space exploration, the system designer critically needs methodologies that
permit: i) rapid tuning of the embedded processors for target applications, and ii)
automatic generation of customized software for the tuned embedded processors.

Figure 1 describes a contemporary hardware/software co-design methodology for
the design of traditional embedded systems consisting of programmable processors,
application specific integrated circuits (ASICs), memories, and I/O interfaces [?].
This contemporary design flow starts from specifying an application in a system
design language. The application is then partitioned into tasks that are either
assigned to software (i.e., executed on the processor) or hardware (ASIC) such that
design constraints (e.g., performance, power consumption, cost, etc.) are satisfied.
After hardware/software partitioning, tasks assigned to software are translated into
programs (either in high level languages such as C/C++ or in assembly), and then
compiled into object code (which resides in memory). Tasks assigned to hardware
are translated into Hardware Description Language (HDL) descriptions and then
synthesized into ASICs.

In traditional hardware/software codesign, the target architecture template is

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

ADL-driven Software Toolkit Generation for Architectural Exploration . 3

Design. |
Specification -

HW/SW Partitioning [4---- '

Verify

I L I I }//
ASICs JJ Processors JJ‘

Il [l
e — —p Traditional Flow

| | (Hand-written Tools)
C C — — P Manual
Interfaces H Memories H ----- » Feedback
----- » ADL-driven Flow
System-on-Chip (Generate Tools/Models)

Fig. 1. Hardware/Software Co-Design Flow for SOC Design

pre-defined. Specifically, the processor is fixed or can be selected from a library
of pre-designed processors, but customization of the processor architecture is not
allowed. Even in co-design systems allowing customization of the processor, the
fundamental architecture can rarely be changed. However the inherently applica-
tion specific nature of the embedded processor and strict multi-dimensional design
constraints (power, performance, cost, weight, etc.) on the SoC critically requires
customization and optimization of the design, including the processor design, mem-
ory design and the processor-memory organizations. The contemporary co-design
flow (which does not permit much customization) limits the ability of the system
designer to fully utilize emerging IP libraries, and furthermore, restricts the ex-
ploration of alternative (often superior) SOC architectures. Consequently there is
tremendous interest in a language-based design methodology for embedded SOC
optimization and exploration.

Architectural Description Languages (ADLs) are used to drive design space explo-
ration and automatic compiler/simulator toolkit generation. As with an HDL-based
ASIC design flow, several benefits accrue from a language-based design methodol-
ogy for embedded SOC design, including the ability to perform (formal) verification

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

4 . Mishra et al.

and consistency checking, to easily modify the target architecture and memory or-
ganization for design space exploration, and to automatically generate the software
toolkit from a single specification.

Figure 1 illustrates the ADL-based SOC co-design flow, wherein the architecture
template of the SOC (possibly using IP blocks) is specified in an ADL. This tem-
plate is then validated to ensure the specification is golden. The validated ADL
specification is used to automatically generate a software toolkit to enable software
compilation and co-simulation of the hardware and software. Another important
and noticeable trend in the embedded SOC domain is the increasing migration
of system functionality from hardware to software, resulting in a high degree of
software content for newer SOC designs. This trend, combined with shrinking
time-to-market cycles, has resulted in intense pressure to migrate the software de-
velopment to a high-level language (such as C, C++, Java) based environment in
order to reduce the time spent in system design. To effectively perform these tasks,
the SOC designer requires a high-quality software toolkit that allows exploration of
a variety of processor cores (including RISC, DSP, VLIW, Super-Scalar and ASIP),
along with generation of optimized software, to meet stringent performance, power,
code density, and cost constraints. Manual development of the toolkit is too time-
consuming to be a viable option. An effective embedded SOC co-design flow must
therefore support automatic software toolkit generation, without loss of optimizing
efficiency. Such software toolkits typically include Instruction Level Parallelizing
(ILP) compilers, cycle-accurate and/or instruction-set simulators, assemblers/dis-
assemblers, profilers, debuggers etc. In order to automatically generate these tools,
software toolkit generators accept as input a description of the target processor-
memory system specified in an ADL.

Design Specification
(Architecture Document)

i Exploration
S/W Toolkit

Generation

Application
Programs

This article focuses on ADL-driven software toolkit generation and design space
exploration. Figure 2 shows a simplified methodology for ADL driven exploration.

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

ADL-driven Software Toolkit Generation for Architectural Exploration . 5

This methodology consists of four steps: design specification, validation of the speci-
fication, retargetable software toolkit generation, and design space exploration. The
first step is to capture the programmable architecture using an ADL. The next step
is to verify the specification to ensure the correctness of the specified architecture.
The validated specification is used to generate a retargetable software toolkit that
includes a compiler and a simulator. The generated software toolkit enables design
space exploration of programmable architectures for the given application programs
under various design constraints such as area, power and performance.

The rest of the paper is organized as follows. Section 2 briefly surveys current
ADLs and describes how to capture processor, coprocessor and memory architec-
tures using the EXPRESSION ADL. Section 3 presents validation techniques to
verify the ADL specification. Section 4 presents the methodology for retargetable
compiler generation. The retargetable simulator generation approach is described
in Section 5 followed by a case study in Section 6. Finally, Section 7 concludes the

paper.

2. ARCHITECTURE SPECIFICATION USING EXPRESSION ADL

The phrase “Architecture Description Language” (ADL) has been used in the con-
text of designing both software and hardware architectures. Software ADLs are used
for representing and analyzing software architectures [?]. Software ADLs capture
the behavioral specifications of the components and their interactions that com-
prises the software architecture. However, hardware ADLs capture the structure
(hardware components and their connectivity), and the behavior (instruction-set)
of programmable architectures consisting of processor, coprocessor and memory
subsystem. Computer architects have long used machine description languages for
the specification of architectures. Early ADLs such as ISPS [?] were used for
simulation, evaluation, and synthesis of computers and other digital systems. Con-
temporary ADLs can be classified into three categories based on the nature of the
information an ADL can capture: structural, behavioral, and mixed. The struc-
tural ADLs (e.g., MIMOLA [?]) capture the structure in terms of architectural
components and their connectivity. The behavioral ADLs (e.g., nML [?] and ISDL
[?]) capture the instruction-set behavior of the processor architecture. The mixed
ADLs (e.g., LISA [?] and EXPRESSION [?]) capture both structure and behav-
ior of the architecture. There are many comprehensive ADL surveys available in
the literature including ADLs for retargetable compilation [?], SOC design [?], and
programmable embedded systems [?].

Our exploration framework uses the EXPRESSION ADL [?] to specify processor,
coprocessor, and memory architectures. Figure 3 shows an example architecture
that can issue up to three operations (an ALU operation, a memory access operation
and a coprocessor operation) per cycle. The coprocessor supports vector arithmetic
operations. In the figure, oval boxes denote units, dotted ovals are storages, bold
edges are pipeline edges, and dotted edges are data-transfer edges. A data-transfer
edge transfers data between units and storages. A pipeline edge transfers instruction
(operation) between two units. A path from a root node (e.g., Fetch) to a leaf node
(e.g, WriteBack) consisting of units and pipeline edges is called a pipeline path. For
example, { Fetch, Decode, ALU, WriteBack} is a pipeline path. A path from a unit

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

6 . Mishra et al.

to main memory or register file consisting of storages and data-transfer edges is
called a data-transfer path. For example, { MemCntrl, L1, L2, MainMemory} is a
data-transfer path. This section describes how the EXPRESSION ADL captures
the structure and behavior of the architecture shown in Figure 3 [?].

PRGN o, ’L—I‘ ~ MEMORY SUBSYSTEM :
. PC Y= ---+ e e) 3 :
S ,& : \\I_ns_t.’, H
\ -8 5
: \ H \ :
>’ Register s\ : v :
Hn egtster\\,,,,1> : \ :
2 N _File_. " H \ H
z S - \ z \ z
A Vo R i, . N :
i \ CO-PROCESSOR : : ‘\ B
l - B
| N . \ H
l - \ :
1 : z \ H
<~ \ :
‘ Ei B
: z - \ z
l E— T~ -al :
| - = __ v - H
l . = \ -~ :
| _I_= 7 Local _ _ _\.__ _ _ ___ H
| 1T Memory 7 T 7Y e :
| E \ - B
| D o--nT [
1 : H -7 \ |
1 S_=--7 \ |
I - \ !
l : \ !
I R v
o AT e, 3 _L_‘ JEESEN PTG
[A - 1 v __ L2 °_ Main "\ :
1 >‘\ Data /’Q N Uniﬁed//q D'\Memory// H
! - : i, oo RS
) LT T T T P PP PP PP YRPRYRRTIRRRTITE
‘ :
| B
L e e e e o o i : O Unit —> Pipeline edge
PROCESSOR : ’:_—:/ Storage --+ Data-transfer edge

Fig. 3. An example architecture

2.0.1 Structure. The structure of an architecture can be viewed as a net-list
with the components as nodes and the connectivity as edges. Similar to the proces-
sor’s block diagram in its databook, Figure 4 shows a portion of the EXPRESSION
description of the processor structure [?]. It describes all the components in the
structure such as PC, RegisterFile, Fetch, Decode, ALU and so on. Each component
has a list of attributes. For example, the ALU unit has information regarding the
number of instructions executed per cycle, timing of each instruction, supported
opcodes, input/output latches, and so on. Similarly, the memory subsystem struc-
ture is represented as a netlist of memory components. The memory components
are described and attributed with their characteristics such as cache line size, re-
placement policy, write policy, and so on.

The connectivity is established using the description of pipeline and data-transfer
paths. For example, Figure 4 describes the four-stage pipeline as { Fetch, Decode,
Ezecute, WriteBack}. The Erxecute stage is further described as three parallel
execution paths: ALU, LoadStore, and Coprocessor. Furthermore, the LoadStore
path is described using pipeline stages: AddrCalc and MemChnirl. Similarly, the
coprocessor pipeline has three pipeline stages: EMIF_1, CoProc, and EMIF_2. The
architecture has fifteen data-transfer paths. Seven of them are uni-directional paths.
For example, the path { WriteBack — RegisterFile} transfers data in one direction,
whereas the path { MemCnirl < L1Data} transfers data in both directions.

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

ADL-driven Software Toolkit Generation for Architectural Exploration . 7

2.0.2 Behavior. The EXPRESSION ADL captures the behavior of the architec-
ture as the description of the instruction set and provides a programmer’s view of
the architecture. The behavior is organized into operation groups, with each group
containing a set of operations' having some common characteristics. For example,
Figure 2.0.2 [?] shows three operation groups. The aluOps group includes all the
operations supported by the ALU unit. Similarly, memOps and cpOps groups con-
tains all the operations supported by the units MemCnitrl and CoProc respectively.
Each instruction is then described in terms of it’s opcode, operands, behavior, and
instruction format. Each operand is classified either as source or as destination.
Furthermore, each operand is associated with a type that describes the type and
size of the data it contains. The instruction format describes the fields of the in-
struction in both binary and assembly. Figure 2.0.2 shows the description of add,
store, and vectMul operations. Unlike normal instructions whose source and desti-
nation operands are register type (except load/store), the source and destination
operands of vectMul are memory type. The sf and s2 fields refer to the starting
addresses of two source operands for the multiplication. Similarly dst refers to the
starting address of the destination operand. The length field refers to the vector
length of the operation that has immediate data type.

Components specification
(FetchUnit Fetch
(capacity 3) (timing (all 1)) (opcodes all) ...) ...

(ExecUnit ALU
(capacity 1) (timing (add 1) (sub 1) ...)
(opcodes (add sub ...)) ...

(CPunit CoProc
(capacity 1) (timing (vectAdd 4) ...)
(opcodes (vectAdd vectMul))

Pipeline and data-transfer paths
(pipeline Fetch Decode Execute WriteBack)
(Execute (parallel ALU LoadStore Coprocessor))
(LoadStore (pipeline AddrCalc MemCntrl))
(Coprocessor (pipeline EMIF_1 CoProc EMIF_2))
(dtpaths (WriteBack RegisterFile) (L1Data L2) ...)
Storage section
(DCache L1Data

(wordsize 64) (linesize 8) (associativity 2) ...

(ICache LlInst (latency 1) ...)
(DCache L2 (latency 5) ...)
(DRAM MainMemory (latency 50) ...)

Fig. 4. Specification of Structure using EXPRESSION ADL

n this paper we use the terms operation and instruction interchangeably.

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

8 . Mishra et al.

Behavior: description of instruction set
opgroup aluOps (add, sub, ...))
opgroup memOps (load, store, ...))
opgroup cpOps (vectAdd, vectMul, ...))
opcode add
(operands (sl reg) (s2 reg/int16) (dst reg))
(behavior dst = sl + s2)
(format 000101 dst(25-21) s1(21-16) s2(15-0))
)
(opcode store
(operands (sl reg) (s2 int16) (s3 reg))
(behavior M[sl + s2] = s3)
(format 001101 s3(25-21) s1(21-16) s2(15-0))
)
(opcode vectMul
(operands (s1 mem) (s2 mem) (dst mem) (length imm))
(behavior dst = sl * s2)

)

(
(
(
(

Operation Mapping
(target
((addsub dest srcl src2 sre3))
)
(generic
((add temp srcl src2) (sub dest src3 temp))

)

Fig. 5. Specification of Behavior using EXPRESSION ADL

The ADL captures the mapping between the structure and the behavior (and
vice versa). For example, the add and sub instructions are mapped to the ALU
unit, the load and store instructions are mapped to the MemCnitrl unit, and so
on. The ADL also captures other information such as mapping between the target
and generic instruction set to enable retargetable compiler/simulator generation.
For example, the target instruction addsub in Figure 2.0.2 is composed of generic
instructions add and sub. The detailed description of the EXPRESSION ADL is
available in [?].

3. VALIDATION OF ADL SPECIFICATION

After specification of full programmable SoC architecture in an ADL, the next step
is to verify the specification to ensure the correctness of the specified architecture.
Although many challenges exist in specification validation, a particular challenge
is to verify the pipeline behavior in the presence of hazards and multiple excep-
tions. There are many important properties that need to be verified to validate the
pipeline behavior. For example, it is necessary to verify that each operation in the
instruction set can execute correctly in the processor pipeline. It is also necessary
to ensure that execution of each operation is completed in a finite amount of time.
Similarly, it is important to verify the execution style (e.g., in-order execution) of
the architecture.

We have developed validation techniques to ensure that the architectural specifi-

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

ADL-driven Software Toolkit Generation for Architectural Exploration . 9

! ’[ADL Speciﬁcation J<, I

|
|
|
i
![Properties} [Graph }
|
|
|
|

(Static) Model Model (Dynamic)

|
|
|
|
Properties} !
|
|
|
|

Validation of Static Behavior Validation of Dynamic Behavior

Fig. 6. Validation of ADL Specification

cation is well formed by analyzing both static and dynamic behaviors of the specified
architecture. Figure 6 shows the flow for verifying the ADL specification [?]. The
graph model as well as the FSM model of the architecture are generated from the
specification. We have developed algorithms to verify several architectural prop-
erties, such as connectedness, false pipeline and data-transfer paths, completeness,
and finiteness [?]. The dynamic behavior is verified by analyzing the instruction
flow in the pipeline using a finite-state machine (FSM) based model to validate sev-
eral important architectural properties such as determinism and in-order execution
in the presence of hazards and multiple exceptions [?; ?]. The property checking
framework determines if all the necessary properties are satisfied. In case of a fail-
ure, it generates traces so that a designer can modify the architecture specification.

4. RETARGETABLE COMPILER GENERATION

As mentioned earlier, embedded systems are characterized by stringent multi-
dimensional constraints. To meet all the design constraints together, embedded
systems very often have non-regular architectures. Traditional architectural fea-
tures employed in high-performance computer systems need to be customized to
meet the power, performance, cost, weight needs of the embedded system. For
example, an embedded system may not be able to implement complete register
bypassing because of its impact on the area, power and complexity of the system.
As a result the embedded system designer may opt for partial bypassing, which can
be customized to meet the system constraints. Further customization is possible
in embedded systems due to their application specific nature. Some architectural
features, which are not “very” useful for the given application set may be absent in
the embedded processor.

In this highly-customized world of embedded architectures, the role of the com-
piler is very crucial and important. The lack of regularity in the architecture, poses
significant challenges for compilers to exploit these features. However, if the com-
piler is able to exploit these architectural features, it can have a significant impact
on the power, performance and other constraints of the whole system. As a result,
compiler development is a very important phase of embedded processor design. A

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

10 . Mishra et al.

lot of time and effort of experienced compiler-writers is invested in developing an
optimizing compiler for the embedded processor. Given the significance of the com-
piler on the processor power and performance, it is only logical that the compiler
must play an important role in embedded processor design.

Although a compiler’s effects can be incorporated into the design of an embed-
ded processor, this process is often ad-hoc in nature and may result in conservative,
or worse yet, erroneous exploration results. For example, designers often use the
code generated by the “old compiler”, or “hand-generated” code to test the new
processor designs. This code should faithfully represent the code that the future
compiler will generate. However, this approximation, or “hand-tuning” generates
many inaccuracies in design exploration, and as a result, may lead to sub-optimal
design decisions. A systematic way to incorporate compiler hints while designing
the embedded processor is needed. Such a schema is called a Compiler-Assisted, or
Compiler-in-the-Loop design methodology. The key enabler of the “Compiler-in-
the-Loop” methodology is an ADL-driven retargetable compiler. While a conven-
tional compiler takes only the application as input and generates the executable, a
retargetable compiler also takes the processor architecture description as an input.
The retargetable compiler can therefore exploit the architectural features present
in the described system, and generate code tuned to for the specific architecture.

Whereas there has been a wealth of research on retargetable compilers[?; 7],
contemporary research on ADL-driven retargetable compilers has focused on both
the design abstraction levels: architecture (instruction-set) and micro-architecture
(implementation, such as pipeline structure). Traditionally there has been more
extensive research on the architecture-level retargetability. Our EXPRESSION-
based compiler-in-the-loop exploration framework employs and advances compiler
retargetability at both the abstraction levels. At the Processor Pipeline (microar-
chitecture) level , decisions on which bypasses should be present in the processor
greatly impacts the power, performance and the complexity of the processor. In-
deed, our recent research results [?], [?], [?] show that deciding the bypasses in the
processor by a traditional “simulation-only” exploration leads to incorrect design
decisions and may lead to sub-optimal designs. A Compiler-in-the-Loop exploration
can be used to suggest pareto-optimal bypass configurations.

In this section we will focus on the use of our “Compiler-in-the-Loop” exploration
methodology at the architectural level, investigate Instruction-Set Architecture ex-
tensions for code size reduction.

4.1 Instruction Set Level Retargetability (rISA)

rreduced bit-width Instruction Set Architecture, (rISA) is a popular architectural
feature to reduce the code size in embedded systems. Architectures with rISA
support two instruction sets, one is the “normal” set, which contains the original
32-bits instructions, and the other is the “reduced bit-width” instruction set, which
encodes the most commonly used instructions in 16-bit instructions. If an applica-
tion is fully expressed in terms of “reduced bit-width” instructions, then 50% code
size reduction is achieved as compared to when it is expressed in terms of normal
instructions.

Several embedded processors support this feature. For instance, the ARM proces-
sor supports rISA with 32-bit normal instructions and narrow 16-bit instructions.

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

ADL-driven Software Toolkit Generation for Architectural Exploration . 11

While the normal 32-bit instructions comprise the A RM instruction set, the 16-bit
instruction form the Thumb Instruction Set. Other processors with a similar fea-
ture include the MIPS32/16 [?], TinyRISC [?], STMicro’s ST100 [?] and the ARC
Tangent [?] processor.

Nermal Nermal Nermal
Normal Normal Normal
Nermal Nermal mx
ISA ISA I3A I3A IZA ISA
ISA ISA I3A I3A IZA ISA
rISA fISA FI1SA_nop| cI3A rIZA |rISA_m=x
Nermal Nermal Nermal
(@)) ©

Fig. 7. rISA normal instructions co-reside in memory

The code for a rISA processor contains both normal and rISA instructions, as
shown in Figure 7 from [?]. The fetch mechanism of the processor is oblivious of
the mode of execution of the processor: regardless of the processor executing rISA
instruction, or normal instruction, the instruction fetch of the processor remains
unchanged.

The processor dynamically converts the rISA instructions to normal instructions
before or during the instruction decode stage. Figure 8 shows the dynamic trans-
lation of Thumb instructions to ARM instructions, as described in [?].

Fetch 1 Decods stage iExanu‘he
Stage | ;
[
L2 '\\“Ll :
|
-+ =
|
| |
L i :
i Thuer |
Instnuction 1
| Decompressar Pl |
| ARM
I Inestmucion I -
| - cecade I
| A1) |
|
| Thum btate !

Fig. 8. Translation of Thumb instruction to ARM instruction

Typically, each rISA instruction has an equivalent instruction in the normal in-
struction set. This is done to ensure that the translation from a rISA instruction to
a normal instruction (which has to be performed dynamically) is simple, and can
be done without performance penalty.

After conversion, the instruction executes as a normal instruction, and therefore
no other hardware change in required. Thus, the main advantage of rISA lies in
achieving good code size reduction with minimal hardware additions.

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

12 . Mishra et al.

However, some instructions, (for example, an instruction with a long immediate
operand), cannot be mapped into a single rISA instruction. It takes more than
one rISA instructions to encode the normal instruction. In such cases, more rISA
instructions are required to implement the same task. As a result, rISA code has
slightly lower performance as compared to the normal code.

The rISA instruction-set (IS), because of bit-width restrictions, can encode only
a subset of the normal instructions and allows access to only a small subset of regis-
ters. Contemporary rISA processors (such as ARM/Thumb, MIPS32/16) incorpo-
rate a very simple rISA model with rISA instructions that can access 8 registers (out
of 16 or 32 general-purpose registers). Owing to tight bit-width constraints in rISA
instructions, they can use only very small immediate values. Furthermore, existing
rISA compilers support the conversion only at a routine-level (or function-level) of
granularity. Such severe restrictions make the code-size reduction obtainable by
using rISA very sensitive to the compiler quality and the application features. For
example, if the application has high register pressure, or if the compiler does not
do a good job of register allocation, it might be better to increase the number of
accessible registers at the cost of encoding only a few opcodes in rISA. Thus, it
is very important to perform our “Compiler-in-the-Loop” design space exploration
(DSE) while designing rISA architectures.

4.1.1 rISA Model. The rISA model defines the rISA IS, and the mapping of
rISA instructions to normal instructions. Although typically each rISA instruction
maps to only one normal instruction, there may be instances where multiple rISA
instructions map to a single normal instruction.

rISA processors can operate in two modes: “rISA mode” and “normal mode”.
Most rISA processors (e.g. ARM) have a mode bit in the CPSR (Current Process
State Register), which identifies whether the processor is in rISA mode or normal
mode. When the processor is in rISA mode, it breaks the instruction into two halves
and decodes them separately and sequentially. The processor needs to find out
whether the instructions it is receiving are normal instructions or rISA instructions.
Many rISA processors accomplish this by using explicit instructions that change
the mode of execution. We label an instruction in the normal IS that changes
mode from normal to rISA the mx instruction, and an instruction in the rISA
instruction set that changes mode from rISA to normal the rISA_mz instruction.
Every sequence of rISA instructions starts with an mx instruction and ends in a
rISA_mx instruction. Such a sequence of rISA instructions is termed as r[SA Block.

In order to avoid changing the instruction fetch mechanism of rISA processors, it
is important to ensure that all the normal instructions align to the word boundary.
However, an odd number of instructions in a rISABlock result in the ensuing normal
instruction not being aligned to the word boundary. Therefore a padding rISA_nop
instruction is required to force the alignment to the word boundary.

Due to bit-width constraints, a rISA instruction can access only a subset of
registers. The register accessibility of each register operand must be specified in
the rISA model. The width of immediate fields must also be specified. In addition,
there may be special instructions in the rISA model to help the compiler generate
better code. For example, a very useful technique to increase the number of registers
accessible in rISA mode is to implement a rISA move instruction that can access all

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

ADL-driven Software Toolkit Generation for Architectural Exploration . 13

| Opcode | dst |sccl | scc? |

e

x+y+zt+w =16

Fig. 9. Bitwidth constraints on rISA instructions

registers 2. Another technique to increase the size of the immediate operand value
is to implement a rISA extend instruction that completes the immediate field of
the succeeding instruction. Numerous such techniques can be explored to increase
the efficacy of rISA architectures. Next we describe some of the more important
rISA design parameters that can be explored using our framework.

4.1.2 rISA Design Parameters. The most important consequence of using a
rISA instructions is the limited number of bits available to encode the opcode, the
register operands and the immediate values — resulting in a large space of alternative
encodings that the rISA designer needs to explore and evaluate. For instance, most
existing architectures the register operand field in the rISA instructions is 3-bit
wide, permitting access to only 8 registers. For 3-address instructions, (3 x 3) =9
bits are used in specifying the operands. Therefore only (16 - 9) = 7 bits are left to
specify the opcode. As a result only 27 = 128 opcodes can be encoded in rISA. The
primary advantage of this approach is the huge number of opcodes available. Using
such a rISA most normal 32-bit instructions can be specified as rISA instructions.
However, this approach suffers from the drawback of increased register pressure
possibly resulting in poor code size.

One modification is to increase the number of registers accessible by rISA instruc-
tions to 16. However, in this model, only a limited number of opcodes are available.
Thus, depending on the application, large sections of program code might not be
implementable using rISA instructions. The design parameters that can be ex-
plored include the number of bits used to specify operands (and opcodes), and the
type of opcodes that can be expressed in rISA.

Another important rISA feature that impacts the quality of the architecture is the
“implicit operand format” feature. In this feature, one (or more) of the operands
in the rISA instruction is hard-coded (i.e. implied). The implied operand could
be a register operand, or a constant. In case a frequently occurring format of add
instruction is add R; R; R; (where the first two operands are the same), a rISA
instruction rISA_addl R; R; , can be used. In case an application that access
arrays produces a lot of instructions like addr = addr + 4 then a rISA instruction
r1SAqqqs addr which has only one operand might be very useful. The translation
unit, while expanding the instruction, can also fill in the missing operand fields.
This is a very useful feature that can be used by the compiler to generate high

2This is possible because a move has only two operands and hence has more bits to address each
operand.

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

14 . Mishra et al.

quality code.

Another severe limitation of rISA instructions is their inability to incorporate
large immediate values. For example, with only 3 bits available for operands, the
maximum unsigned value that can be expressed is 7. Thus, it might be useful to
vary the size of the immediate field, depending on the application and the values
that are (commonly) generated by the compiler. However, increasing the size of the
immediate fields will reduce the number of bits available for opcodes (and also the
other operands). This trade-off can be meaningfully made only with a Compiler-
in-the-Loop DSE framework.

Various other design parameters such as partitioned register files, shifted /padded
immediate fields, etc. should also be explored in order to generate a rISA architec-
ture that is tuned to the needs of the application and to the compiler quality. While
some of these design parameters have been studied in a limited context, there is a
critical need for an ADL-driven framework that uses architecture-aware compiler
to exploit and combine all of these features. We now describe our rISA compiler
framework, which enables compiler-in-the-loop exploration framework to quantify
the impact of these features.

[GCCFontEnd -
1 =
— MakdSABlocks |
l .

- Profitability Analysis fe-------
Archietcture l
model

—.[Insiruction Selection Tﬁ: : _ /
—_—
model (e

ul Mode Change Insirs.]‘ -

l

—-{ Register Allocation]
l

_ Tnsert NOPs)

Fig. 10. rISA Compiler flow for DSE

4.1.3 rISA Compiler. Figure 10 shows the phases of our EXPRESS compiler
[?] that are used to perform rISAization. rISAization is the process of converting
normal instruction to rISA instructions. We use the GCC front end to output
a sequence of generic three-address MIPS instructions, which in turn are used to

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

ADL-driven Software Toolkit Generation for Architectural Exploration . 15

generate the CFG, DFG and other compiler data structures comprising the internal
representation of the application.

Mark rISA Blocks. Due to the restrictions discussed in the previous subsec-
tion, several types of instructions, such as those with many many operands, instruc-
tions with long immediate values etc. may not be convertible to rISA instructions.
The first step in compilation for a rISA processor marks all the instructions that
can be converted into rISA instructions. A contiguous list of marked instructions
in a basic block is termed a rISABlock. Owing to the overhead associated with
rISAization, it may not be profitable to convert all rISABlocks into rISA instruc-
tions.

Profitability Analysis. This step decides which rISABlocks to convert into
rISA instructions, and which ones to leave in terms of normal instructions. A
mode change instruction is needed at the beginning and at the end of each rISA
Block. Further, in order to adhere with the word boundary, there should be an
even number of instructions in each rISABlock. Therefore, if a rISABlock is very
small, then the mode change instruction overhead could negate gains from code
compression achieved through rISAization. It should be noted here that if all the
predecessors of a basic block are also decided to be encoded in rISA mode, then the
mode change instructions may not be needed. We will perform and discuss such
optimizations in a later stage.

Similarly if the rISABlock is very big, the increased register pressure (and the
resulting register spills) could render rISAization unprofitable. Thus an accurate
estimation of code size and performance trade-off is necessary before rISAizing a
rISABlock. In our technique, the impact of rISAization on code size and perfor-
mance is estimated using a profitability analysis function.

The profitability analysis function estimates the difference in code size and per-
formance if the block were to be implemented in rISA mode as compared to normal
mode. The compiler (or user) can then use these estimates to trade-off between
performance and code size benefits for the program. The profitability heuristic is
described in greater detail in [?].

Instruction Selection. Our compiler uses a tree pattern matching based algo-
rithm for Instruction Selection. A tree of generic instructions is converted into a
tree of target instructions. In case a tree of generic instructions can be replaced by
more than one target instruction tree, then one with lower cost is selected. The cost
of a tree depends upon the user’s relative importance of performance and code-size.

Normally, during instruction selection, a tree of generic instructions has trees of
target instructions as possible mappings. Our rISA framework provides trees of
rISA instructions also as possible mapping. As a result the instruction selection to
rISA instructions becomes a natural part of the normal instruction selection process.
The Instruction Selection phase uses a profitability heuristic to guide the decisions
of which section of a routine to convert to rISA instructions, and which ones to
normal target instructions. All generic instructions within profitable rISABlocks
are replaced with rISA instructions and all other instructions are replaced with
normal target instructions.

Replacing a generic instruction with a rISA instruction involves two steps, first
converting to the appropriate rISA opcode, and second, restricting the operand

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

16 . Mishra et al.

variables to the set of rISA registers. This is done by adding a restriction on the
variable, which implies that this variable can be mapped to the set of rISA registers
only.

Mode Change Instructions. After Instruction Selection the program contains
sequences of normal and rISA instructions. A list of contiguous rISA instructions
may span across basic block boundaries. To ensure correct execution, we need to
make sure that whenever there is a switch in the instructions from normal to rISA
or vice versa (for any possible execution path), there is an explicit and appropriate
mode change instruction. There should be a max instruction when the instructions
change from normal to rISA instructions, and a rISA_maz instruction when the
instructions change from rISA instructions to normal instructions. If the mode of
instructions change inside a basic block, then there is no choice but to add the
appropriate mode change instruction at the boundary. However when the mode
changes at basic block boundary, the mode change instruction can be added at the
beginning of the successor basic block or at the end of the predecessor basic block.
The problem becomes more complex if there are more than one successors and
predecessors at the junction. In such a case, the mode change instructions should
be inserted so as to minimize the performance degradation, i.e., in the basic blocks
which execute the least. We use a profile based analysis to find where to insert the
mode change instructions [?].

Register Allocation. Our EXPRESS compiler implements a modified version
of Chaitin’s solution [?] to Register Allocation. Registers are grouped into (pos-
sibly overlapping) register classes. Each program variable is then mapped to the
appropriate register class. For example, operands of a rISA instruction belong to
the rISA register class (which consists of only a subset of the available registers).
The register allocator then builds the interference graph and colors it honoring the
register class restrictions of the variables. Since code blocks that have been con-
verted to rISA typically have a higher register pressure (due to limited availability
of registers), higher priority is given to rISA variables during register allocation.

Insert NOPs. The final step in code generation is to insert 7I[SA_nop instruction
in 7ISABlocks that have an odd number of rISA instructions.

We have briefly described how the EXPRESSION ADL-driven EXPRESS com-
piler can be used to generate architecture-sensitive code for rISA architectures by
considering the compiler effects during DSE, the designer is able to accurately esti-
mate the impact of the various rISA features. Section 6 presents some exploration
results for rISA exploration using the MIPS 32/16-bit rISA architecture.

5. RETARGETABLE SIMULATOR GENERATION

Simulators are indispensable tools in the development of new architectures. They
are used to validate an architecture design, a compiler design as well as to eval-
uate architectural design decisions during design space exploration. Running on
a host machine, these tools mimic the behavior of an application program on a
target machine. These simulators should be fast to handle the increasing com-
plexity of processors, flexible to handle all features of applications and processors,
e.g., runtime self modifying codes, and retargetable to support a wide spectrum of
architectures.

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

ADL-driven Software Toolkit Generation for Architectural Exploration . 17

The performance of simulators vary widely depending on the amount of informa-
tion it captures (abstraction level), as determined by its abstraction level. Func-
tional simulators only capture the instruction-set details. The Cycle-accurate sim-
ulators capture both instruction-set and micro-architecture details. As a result,
cycle-accurate simulators are slower than functional simulators but provide timing
details for the application program. Similarly, bit- and phase-accurate simulators
model the architecture more accurately at the cost of simulation performance.

Simulators can be further classified based on the model of execution: interpretive
and compiled. Interpretive simulation is flexible but slow. In this technique, an
instruction is fetched, decoded, and executed at run time. Instruction decoding is
a time consuming process in a software simulation. Compiled simulation performs
compile time decoding of application program to improve the simulation perfor-
mance. The performance improvement is obtained at the cost of flexibility. Com-
piled simulators rely on the assumption that the complete program code is known
before the simulation starts and is furthermore run-time static. Compiled simula-
tors are not applicable in embedded systems that support runtime self modifying
codes or multi-mode processors. There are various ADL-driven simulator genera-
tion frameworks in the literature including GENSIM using ISDL [?], MSSB/MSSU
using MIMOLA [?], CHECKERS using nML [?], SIMPRESS/RexSim using EX-
PRESSION [?], HPL-PD using MDES [?], and fast simulators using LISA [?] and
RADL [?]. This section briefly describes retargetable simulator generation using
the EXPRESSION ADL for instruction-set architecture (ISA) simulation as well
as cycle-accurate simulation.

5.1 Instruction-Set Simulation

In a retargetable ISA simulation framework, the range of architectures that can
be captured and the performance of the generated simulators depend on three
issues: first, the model based on which the instructions are described; second, the
decoding algorithm that uses the instruction model to decode the input binary
program; and third, the execution method of decoded instructions. These issues
are equally important and ignoring any of them results in a simulator that is either
very general but slow or very fast but restricted to some architecture domain.
However, the instruction model significantly affects the complexity of decode and
the quality of execution. We have developed a generic instruction model coupled
with a simple decoding algorithm that lead to an efficient and flexible execution of
decoded instructions [?; ?].

Figure 11 shows our retargetable simulation framework that uses the ADL spec-
ification of the architecture and the application program binary (compiled by gcc)
to generate the simulator [?]. Section 5.1.1 presents our generic instruction model
that is used to describe the binary encoding and the behavior of instructions [?].
Section 5.1.2 describes the instruction decoder that decodes the program binary us-
ing the description of instructions in the ADL. The decoder generates the optimized
source code of the decoded instructions [?]. The structure generator generates the
structural information to keep track of the state of the simulated processor. The
target independent components are described in the library. This library is finally
combined with the structural information and the decoded instructions and is com-
piled on the host machine to get the final ISA simulator.

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

18 . Mishra et al.

Target ADL Specification
Application

[Behavior] [Structure I

Template Structure
Generator Generator

| Target Binary

Instruction [Structural Information
Templates

[Library

[Decodc d Instructions

Instruction
Decoder

Fig. 11. ADL-driven Instruction-Set Simulator Generation

5.1.1 Generic Instruction Model. The focus of this model is on the complex-
ities of different instruction binary formats in different architectures [?]. As an
illustrative example, we model the integer arithmetic instructions of the Sparc V7
processor which is a single-issue processor with 32-bit instruction [?]. The integer-
arithmetic instructions, IntegerOps (as shown below), perform certain arithmetic
operations on two source operands and write the result to the destination operand.
This subset of instructions is distinguished from the others by the following bit
mask:

Bitmask: 10xxxxx0 XXXXXXX XXXXXXXX XXXXXXX
IntergerOps: < opcode dest srcl src2 >

A bit mask is a string of ‘1’, ‘0’ and ‘x’ symbols and it matches the bit pattern
of a binary instruction if and only if for each ‘1’ or ‘0’ in the mask, the binary
instruction has a 1 or a 0 value in the corresponding position respectively. The
‘x’ symbol matches with both 1 and 0 values. In this model, an instruction of a
processor is composed of a series of slots, I =< slg, sl1,... > and each slot contains
only one operation from a subset of operations. All the operations in an instruction
execute in parallel. Each operation is distinguished by a mask pattern. Therefore,
each slot (sl;) contains a set of operation-mask pairs (op;, m;) and is defined by
the format: sl; =< (op, mio)|(op}, miy)]| ... >.

An operation class refers to a set of similar operations in the instruction set that
can appear in the same instruction slot and have similar format. The previous slot
description can be rewritten using an operation class clOps: sl; =< (clOps;, m;) >.
For example, integer arithmetic instructions in Sparc V7 can be grouped in a
class (IntegerOps) as: Isparc =< (IntegerOps, 10zx — zxxQrraxr — rrrrxrre —
zaxzrrrxr — xxxx)|... >. An operation class is composed of a set of symbols and

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

ADL-driven Software Toolkit Generation for Architectural Exploration . 19

an expression that describes the behavior of the operation class in terms of the
values of its symbols. For example, the operation class has four symbols: opcode,
dest, srcl and src2. The expression for this example will be: dest = f,pcode (srcl,
src2). Each symbol may have a different type depending on the bit pattern of
the operation instance in the program. For example, the possible types for src2
symbol are register and immediate integer. The value of a symbol depends on its
type and can be static or dynamic. For example, the value of a register symbol
is dynamic and is known only at run time, whereas the value of an immediate
integer symbol is static and is known at compile time. Each symbol in an op-
eration has a possible set of types. A general operation class is then defined as:
clOps =< (s0,T0), (s1,T1), - - - |exp(so, $1,...) >, where (s;, T;) are (symbol, type)
pairs and exp(sg, S1,...) is the behavior of the operations based on the values of
the symbols.

The type of a symbol can be defined as a register (€ Registers) or an im-
mediate constant (€ Constants) or can be based on certain micro-operations
(€ Operations). For example, a data processing instruction in ARM (e.g., add) uses
shift (micro-operation) to compute the second source operand, known as Shifter-
Operand. Each possible type of a symbol is coupled with a mask pattern that
determines what bits in that operation must be checked to find out the actual
type of the corresponding symbol. Possible types of a symbol are defined as:
T = {(t,m)|t € Operations U Registers U Constants, m € (1|0|z)*}. For example,
the opcode symbol can be any of valid integer arithmetic operations (OpTypes) as
shown in Figure 12.

Note that this provides more freedom for describing the operations because here
the symbols are not directly mapped to some contiguous bits in the instruction and
a symbol can correspond to multiple bit positions in the instruction binary. The
actual register in a processor is defined by its class and its index. The index of a
register in an instruction is defined by extracting a slice of the instruction bit pattern
and interpreting it as an unsigned integer. An instruction can also use a specific
register with a fixed index, as in a branch instruction that update the program
counter. A register is defined by: r = [regClass, i, j]|[regClass, index], where i and
j define the boundary of index bit slice in the instruction. For example, if the dest
symbol is from the 25th to 29th bits in the instruction, and is an integer register,
its type can be described as: DestType = [IntegerRegClass,29,25]. Similarly a
portion of an instruction may be considered as a constant. For example, one bit
in an instruction can be equivalent to a Boolean type or a set of bits can make
an integer immediate. It is also possible to have constants with fixed values in the
instructions. A constant type is defined by where i and j show the bit positions
of the constant and type is a scalar type such as integer, Boolean, float, etc. The
complete description of integer-arithmetic instructions in SPARC processor is shown
in Figure 12.

5.1.2 Generic Instruction Decoder. A key requirement in a retargetable sim-
ulation framework is the ability to automatically decode application binaries of
different processors architectures. This section describes the generic instruction de-
coding technique that is customizable depending on the instruction specifications
captured through our generic instruction model.

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

20 . Mishra et al.

SPARCInst = $ (InegerOps, 10xx-xxx0 XXXX~-XXXX XXXX-XXXX XXXX-xxxx) | §;
IntegerOp = <
(opcode, OpTypes), (dest, DestType), (srcl, SrciType), (src2, Src2Type)
| { dest = opcode(srcl, src2); }

>3
OpTypes = {
(Add, xxxx-xxxX 0000-XXXX XXXX-XXXX XXXX-XXXX),
(Sub, xxxx-xxxx 0100-XXXX XXXX-XXXX XXXX~-XXXX),
(Or , xxxx-xxxX 0010-XXXX XXXX-XXXX XXXX-XXXX),
(And, xxxx-xxxX 0001-XXXX XXXX-XXXX XXXX~-XXXX),

(Xor, xxxx-xxxX 0011-XXXX XXXX-XXXX XXXX-XXXX),

};

DestType = [IntegerRegClass, 29, 25];

SrciType = [IntegerRegClass, 18, 14];

Src2Type = {
([IntegerRegClass,4,0], XXXX-XXXX XXXX~XXXX XXOX-XXXX XXXX-XXXX),
(\#int,12,0\#, XXXX-XXXX XXXX-XXXX XX1X-XXXX XXXX~-XXXX)

};

Fig. 12. Description of integer-arithmetic instructions in SPARC processor

Algorithm 1 describes how the instruction decoder works [?]. This algorithm
accepts the target program binary and the instruction specification as inputs and
generates a source file containing decoded instructions as output. Iterating on the
input binary stream, it finds an operation, decodes it using Algorithm 2, and adds
the decoded operation to the output source file [?]. Algorithm 2 also returns the
length of the current operation that is used to determine the beginning of the next
operation. Algorithm 2 gets a binary stream and a set of specifications containing
operation or micro-operation classes. The binary stream is compared with the el-
ements of the specification to find the specification-mask pair that matches with
the beginning of the stream. The length of the matched mask defines the length
of the operation that must be decoded. The types of symbols are determined by
comparing their masks with the binary stream. Finally, using the symbol types,
all symbols are replaced with their values in the expression part of the correspond-
ing specification. The resulting expression is the behavior of the operation. This
behavior and the length of the decoded operation are produced as outputs.

Consider the following SPARC Add operation example and its binary pattern:

’Add gl, \#10, g2 1000-0100 0000-0000 0110-0000 0000—1010‘

Using the specifications described in Section 5.1.1, in the first line of Algorithm
2, the (InegerOps, 10xx-xxx0 XXXX-XXXX XXXX-XXXX XXXX-XXXX) pair matches with
the instruction binary. This means that the IntegerOps operation class matches
this operation. Next the values of the four symbols are determined: opcode, dest,
srcl, src2. Symbol opcode’s type is OpTypes in which the mask pattern of Add
matches the operation pattern. So the value of opcode is Add function. Symbol
dest’s type is DestType which is a register type. It is an integer register whose
index is bits 25th to 29th (00010), i.e. 2. Similarly, the values for the symbols srcl
and src2 can be computed. By replacing these values in the expression part of the
IntegerOps the final behavior of the operation would be: g2 = Add(gl, 10); which

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

ADL-driven Software Toolkit Generation for Architectural Exploration . 21

Algorithm 1: StaticInstructionDecoder
Inputs: i) Target Program Binary (Application)
ii) Instruction Specifications (InstSpec)
Output: Decoded Program DecodedOperations
Begin
Addr = Address of first instruction in Application
DecodedOperations={};
while (Application not processed completely)
BinStream = Binary stream in Application starting at Addr;
(Exp, AddrIncrement) = DecodeOperation (BinStream, InstSpec);
DecodedOperations = DecodedOperations U <Exp, Addr>;
Addr = Addr + AddrIncrement;
endwhile;
return DecodedOperations ;
End;

means g2 = gl + 10.

Algorithm 2: DecodeOperation
Input: Binary Stream (BinStream), Specifications (Spec)
Output: Decoded Expression (Exp), Length (DecodedStreamSize)
Begin
(OpDesc, OpMask) = findMatchingPair(Spec, BinStream)
OpBinary = initial part of BinStream whose length is equal to OpMask
Exp = the expression part of OpDesc;
foreach pair of (s, T) in the OpDesc
Find t in T whose mask matches the OpBinary;
v = ValueOf(t, OpBinary);
Replace s with v in Exp;
endfor
return (Exp , size(OpBinary));
End;

5.2 Cycle-Accurate Simulation

Automatic simulator generation for a class of architecture has been addressed in
the literature. However, it is difficult to generate simulators for a wide variety of
processor and memory architectures including RISC, DSP, VLIW, superscalar, and
hybrid. The main bottleneck is the lack of an abstraction (covering a diverse set
of architectural features) that permits the reuse of the abstraction primitives to
compose the heterogeneous architectures. In this section, we describe our simu-
lator generation approach based on functional abstraction. Section 5.2.1 presents
functional abstraction needed to capture a wide variety of architectural features.
Section 5.2.2 briefly describes ADL-driven simulator generation using the functional
abstraction.

5.2.1 Functional Abstraction. In order to understand and characterize the di-
versity of contemporary architectures, we have surveyed the similarities and differ-
ences of each architectural feature in different architecture domains [?]. Broadly
speaking, the structure of a processor consists of functional units, connected using

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

22 . Mishra et al.

ports, connections and pipeline latches. Similarly, the structure of a memory sub-
system consists of SRAM, DRAM, cache hierarchy, and so on. Although a broad
classification makes the architecture look similar, each architecture differs in terms
of the algorithm it employs in branch prediction, the way it detect hazards, the way
it handle exceptions, and so on. Moreover, each unit has different parameters for
different architectures (e.g., number of fetches per cycle, levels of cache, and cache
line size). Depending on the architecture, a functional unit may perform the same
operation at different stages in the pipeline. For example, read-after-write(RAW)
hazard detection followed by operand read happen in the decode unit for some ar-
chitectures (e.g., DLX [?]), whereas in some others these operations are performed
in the issue unit (e.g., MIPS R10K). Some architectures even allow operand read in
the execution unit (e.g., ARM7). We observed some fundamental differences from
this study; the architecture may use:

—the same functional or memory unit with different parameters
—the same functionality in different functional or memory unit,
—mnew architectural features

The first difference can be eliminated by defining generic functions with appro-
priate parameters. The second difference can be eliminated by defining generic
sub-functions, which can be used by different architectures at different stages in
the pipeline. The last one is difficult to alleviate since it is new, unless this new
functionality can be composed of existing sub-functions. Based on our observations
we have defined the necessary generic functions, sub-functions and computational
environment needed to capture a wide variety of processor and memory features.
In this section we present functional abstraction by way of illustrative examples.
We first explain the functional abstraction needed to capture the structure and be-
havior of the processor and memory subsystem, then we discuss the issues related
to defining generic controller functionality, and finally we discuss the issues related
to handling interrupts and exceptions.

We capture the structure of each functional unit using parameterized functions.
For example, a fetch unit functionality contains several parameters, viz., number of
operations read per cycle, number of operations written per cycle, reservation sta-
tion size, branch prediction scheme, number of read ports, number of write ports
etc. These ports are used to connect different units. Figure 13 shows a specific
example of a fetch unit described using sub-functions. Each sub-function is defined
using appropriate parameters. For example, ReadInstMemory reads n operations
from instruction cache using current PC address (returned by ReadPC) and writes
them to the reservation station. The fetch unit reads m operations from the reser-
vation station and writes them to the output latch (fetch to decode latch) and uses
BTB based branch prediction mechanism. We have defined parameterized func-
tions for all functional units present in contemporary programmable architectures
viz., fetch unit, branch prediction unit, decode unit, issue unit, execute unit, com-
pletion unit, interrupt handler unit, PC Unit, Latch, Port, Connection, and so on.
We have also defined sub-functions for all the common activities e.g., ReadLatch,
WriteLatch, ReadOperand, and so on.

The behavior of a generic processor is captured through the definition of opcodes.
Each opcode is defined as a function, with a generic set of parameters, which per-

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

ADL-driven Software Toolkit Generation for Architectural Exploration . 23

FetchUnit (# of read/cycle, res—station size,)
{
address = ReadPC();
instructions = ReadInstMemory(address, n);
WriteToReservationStation(instructions, n);
outinst = ReadFromReservationStation(m);
WriteLatch(decode_latch, outinst);

pred = QueryPredictor(address);
if pred {
nextPC = QueryBTB(address);
SetPC(nextPC);
} else
IncrementPC(x);

Fig. 13. A Fetch Unit Example

forms the intended functionality. The parameter list includes source and destination
operands, necessary control and data type information. We have defined common
sub-functions e.g., ADD, SUB, SHIFT, and so on. The opcode functions may use
one or more sub-functions. For example, the MAC (multiply and accumulate) uses
two sub-functions (ADD and MUL) as shown in Figure 14.

ADD (srcl, src2) { MJL (srcl, src2) {
return (srcl + src2); return (srcl * src2);

} }

MAC (srcl, src2, src3) {
return (ADD(MJL(srcl, src2), src3));

Fig. 14. Modeling of MAC operation

Each type of memory module, such as SRAM, cache, DRAM, SDRAM, stream
buffer, and victim cache, is modeled using a function with appropriate parameters.
For example, a typical cache function has many parameters including cache size,
line size, associativity, word size, replacement policy, write policy, and latency. The
cache function performs four operations: read, write, replace, and refill. These
functions can have parameters for specifying pipelining, parallelism, access modes
(normal read, page mode read, and burst read), and so on. Again, each function
is composed of sub-functions. For example, an associative cache function can be
modeled using a cache function.

A major challenge for functional abstraction of programmable architectures, is
the modeling of control for a wide range of architectural styles. We define control

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

24 . Mishra et al.

in both distributed and centralized manner. The distributed control is transfered
through pipeline latches. While an instruction gets decoded the control information
needed to select the operation, the source and the destination operands are placed
in the output latch. These decoded control signals pass through the latches between
two pipeline stages unless they become redundant. For example, when the value for
srcl is read that particular control is not needed any more, instead the read value
will be in the latch. The centralized control is maintained by using a generic control
table. The number of rows in the table is equal to the number of pipeline stages
in the architecture. The number of columns is equal to the maximum number
of parallel units present in any pipeline stage. Each entry in the control table
corresponds to one particular unit in the architecture. It contains information
specific to that unit e.g., busy bit (BB), stall bit (SB), list of children, list of
parents, opcodes supported, and so on.

Another major challenge for functional abstraction is the modeling of interrupts
and exceptions. We capture each exception using an appropriate sub-function. Op-
code related exceptions (e.g., divide by zero) are captured in the opcode function-
ality. Functional unit related exceptions (e.g., illegal slot exception) are captured
in functional units. External interrupts (e.g., reset, debug exceptions) are captured
in the control unit functionality. The detailed description of functional abstraction
for all the micro-architectural components is available in [?].

5.2.2 Simulator Generation. We have developed C++ models for the generic
functions and sub-functions described in Section 5.2.1. The development of simula-
tion models is a one-time activity and independent of the architecture. The simula-
tor is generated by composing the abstraction primitives based on the information
available in the ADL specification. The simulator generation process consists of
three steps. First, the ADL specification is read to gather all the necessary details
for the simulator generation. Second, the functionality of each component is com-
posed using the generic functions and sub-functions. Finally, the structure of the
processor is composed using the structural details. In the remainder of this section
we briefly describe the last two steps.

To compose the functionality of each component, all necessary details (such as
parameters and functionality) are extracted from the ADL specification. First, we
describe how to generate three major components of the processor: instruction
decoder, execution unit and controller, using the generic simulation models. Next,
we describe how to compose the functionality A generic instruction decoder uses
information regarding individual instruction format and opcode mapping for each
functional unit to decode a given instruction. The instruction format information is
available in ADL specification. The decoder extracts information regarding opcode
and operands from input instruction using the instruction format. The mapping
section of the ADL captures the information regarding the mapping of opcodes
to the functional units. The decoder uses this information to perform/initiate
necessary functions (e.g., operand read) and decide where to send the instruction.

To compose an execution unit, it is necessary to instantiate all the opcode func-
tionalities (e.g, ADD, SUB etc. for an ALU) supported by that execution unit.
The execution unit invokes the appropriate opcode functionality for an incoming
operation based on a simple table look-up technique as shown in Figure 15. Also,

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

ADL-driven Software Toolkit Generation for Architectural Exploration . 25

if the execution unit is supposed to read the operands, the appropriate number of
operand read functionalities need to be instantiated unless the same read function-
ality can be shared using multiplexers. Similarly, if the execution unit is supposed
to write the data back to register file, the functionality for writing the result needs
to be instantiated. The actual implementation of an execute unit might contain
many more functionalities such as read latch, write latch, modify reservation station
(if applicable), and so on.

The controller is implemented in two parts. First, it generates a centralized
controller (using a generic controller function with appropriate parameters) that
maintains the information regarding each functional unit, such as busy, stalled etc.
It also computes hazard information based on the list of instructions currently
in the pipeline. Based on these bits and the information available in the ADL,
it stalls/flushes necessary units in the pipeline. Second, a local controller is main-
tained at each functional unit in the pipeline. This local controller generates certain
control signals and sets necessary bits based on the input instruction. For example,
the local controller in an execute unit will activate the add operation if the opcode
is add, or it will set the busy bit in case of a multi-cycle operation.

(#fetches) ((buffer siz%input/output ports)

" MIPS{
FetchUnit (4,0,) {
} /** No instruction buffer processing **/

DecodeUnit (....) {

/** use binary description and operation mapping
} ** to decide where to send the instruction **/
ExecuteUnit (....) {

<opcode, dst, srcl, src2, ...> = input instruction
result = opTable] opcode].execute(srcl, src2, ...)

Controller (....) {
} /** Use control table to stall/flush the pipeline */

9

Fig. 15. An example simulation model for MIPS architecture

It is also necessary to compose the functionality of new instructions (behavior)
using the functionality of existing instructions. This operation mapping (described
in Section 2) is used to generate the functionality for the target (new) instructions
using the the functionality of the corresponding generic instructions. The final
implementation is generated by instantiating components (e.g., fetch, decode, reg-
ister files, memories etc.) with appropriate parameters and connecting them using
the information available in the ADL. For example, Figure 15 shows a portion of
the simulation model for the MIPS architecture. The generated simulation models

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

26 . Mishra et al.

combined with the existing simulation kernel creates a cycle-accurate structural
simulator.

6. DESIGN SPACE EXPLORATION

Having established the need for, and some techniques using an ADL-driven ap-
proach for toolkit generation, we now show some sample results of design space
exploration of programmable SoCs. We have performed extensive architectural de-
sign space exploration by varying different architectural features in the EXPRES-
SION ADL. We have also performed micro-architectural exploration of the MIPS
4000 processor in three directions: pipeline exploration, instruction-set exploration,
and memory exploration [?]. Pipeline exploration allows addition (deletion) of new
(existing) functional units or pipeline stages. Instruction-set exploration allows the
addition of new instructions or formation of complex instructions by combining the
existing instructions. Similarly, memory exploration allows modification of mem-
ory hierarchies and cache parameters. The system architect only modifies the ADL
description of the architecture, and the software toolkit is automatically generated
from the ADL specification using the functional abstraction approach. The public
release of the retargetable simulation and exploration framework is available from
http://www.cecs.uci.edu/ "express. This release also supports a graphical user in-
terface (GUT). The architecture can be described (or modified) using the GUI. The
ADL specification and the software toolkit are automatically generated from the
graphical description. In the rest of this section, we present sample experimental
results demonstrating the need and usefulness of Compiler-in-the-Loop design space
exploration of rISA designs which discussed in Section 4.

6.1 Instruction-Set Exploration (rISA Design Space)

The experimental results of the Compiler-in-the-Loop Design Space Exploration
of rISA designs is divided into two main parts. First we demonstrate the good-
ness of our rISA compiler. We show that as compared to existing rISA compilers,
our instruction-level, register pressure sensitive compiler can consistently achieve
superior code compression over a set of benchmarks. In the second part, we de-
velop rISA designs, and demonstrate that the code compression achieved by using
different rISA designs is very sensitive on the rISA design itself. Depending on
the specific rISA design chosen, there can be a difference of up to 2X in the code
compression achievable. This clearly demonstrates the need to very carefully select
the appropriate rISA design, and shows that a Compiler-in-the-Loop exploration
greatly helps the designer choose the best rISA configuration.

6.1.1 7ISA Compiler Comparison. For the baseline experiments, we compile the
applications using GCC for MIPS32 ISA. Then we compile the same applications
using GCC for MIPS32/16 ISA. We perform both the compilations using -Os flags
with the GCC to enable all the code size optimizations. The percentage code com-
pression achieved by GCC for MIPS16 is computed and is represented by the light
bars in Figure 16 taken from [?]. The MIPS32 code generated by GCC is compiled
again using the register pressure based heuristic in EXPRESS. The percentage
code compression achieved by EXPRESS is measured and plotted as dark bars in
Figure 16.

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

ADL-driven Software Toolkit Generation for Architectural Exploration . 27

50 [: . mGCC
Compiler Comparison
| P P mEXPRESS

40

30

20

10

% Code Compression

Benchmarks

20

Fig. 16. Percentage code compressions achieved by GCC and EXPRESS for MIPS32/16

Figure 16 shows that the register pressure based heuristic performs consistently
better than GCC and successfully prevents code size inflation. GCC achieves on
an average 15% code size reduction, while EXPRESS achieved an average of 22%
code size reduction. We simulated the code generated by EXPRESS on a variant of
the MIPS R4000 processor that was augmented with the rISA MIPS16 Instruction
Set. The memory subsystem was modeled with no caches and a single cycle main
memory. The performance of MIPS16 code is on average 6% lower than that of
MIPS32 code, with the worst case being 24% lower. Thus our technique is able to
reduce the code size using rISA with a minimal impact on performance.

6.1.2 Sensitivity on rISA Designs. Owing to various design constraints on rISA,
the code compression achieved by using a rISA is very sensitive on the rISA chosen.
The rISA design space is huge and several instruction set idiosyncrasies make it
very tough to characterize. To show the variation of code compression achieved
with rISA, we take a practical approach. We systematically design several rISAs,
and study the code compression achieved by them. Figure 17 taken from [?] plots
the code compression achieved by each rISA design. We start with the extreme
rISA designs, rISA_7833 and rISA_4444 and gradually improve upon them.

rISA _7333. The first rISA design is (rISA-7333). In this rISA, the operand is
a 7-bit field, and each operand is encoded in 3-bits. Thus there can be 27 = 128
instructions in this rISA, but each instruction can access only 8 registers. Fur-
thermore, they can support unsigned immediate values from 0 to 7. However,
instructions that have 2 operands (like move) have 5-bit operands. Thus they can
access all 32 registers. Owing to the uniformity in the instruction format, the trans-
lation unit is very simple for this rISA design. The leftmost bar in Figure 17 plots
the average code compression achieved when we use 1ISA_7333 design on all our

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

28 . Mishra et al.

50 4‘ Percentage code compression achieved by various rISAs'i
10
30
20
10
0
o > >
i 5?‘9. -6“@ & .;0*\
& o el ’ ©
by & A? ﬁ?“ &
& &
rISA Designs Sa‘"’

Fig. 17. Code size reduction for various rISA architectures

benchmarks. On average rISA_7333 achieves 12% code compression. rI[SA_7333 is
unable to achieve good code compressions for applications that have high register
pressure, e.g., adii, and those with large immediate values. In such cases, the com-
piler heuristic decides not to rISAize large portions of the application to avoid code
size increase due to extra spill/reload and immediate extend instructions.

rISA _4444. rISA_444/ is the instruction set on the other end of the rISA design
spectrum. It provides only 4-bits to encode the operand, but has 4-bits to specify
each operand as well. Thus there are 2* = 16 instructions in rISA_{444, but
each instruction can access 2* = 16 registers. We profiled the applications and
incorporated the 16 most frequently occurring instructions in this rISA. The second
bar from the left in Figure 17 shows that the register pressure problem is mitigated
in the rISA_4444 design. It achieves better code size reduction for benchmarks
that have high register pressure, but performs badly on some of the benchmarks
because of its inability to convert all the normal instructions into rISA instructions.
rISA_4444 achieves about 22% improvement over the normal instruction set.

rISA _7333_imm. We now attack the second problem in r[SA_7333 — small im-
mediate values. For instructions that have immediate values, we decrease the size of
opcode, and use the bits to accommodate as large an immediate value as possible.
This design point is called rISA_7333_imm. Because of the non-uniformity in the
size of the opcode field, the translation logic is complex for such a rISA design. The
middle bar in Figure 17 shows that rISA_7333_imm achieves slightly better code
compressions as compared to the first design point since it has large immediate
fields, while having access to the same set of registers. rISA_7333_imm achieves
about 14% improvement over the normal instruction set.

rISA _7333_imp_opnd. Another useful optimization that can be performed to
save precious bit-space is to encode instructions with the same operands using a
different opcode. For example, suppose we have a normal instruction add R1 R2

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

ADL-driven Software Toolkit Generation for Architectural Exploration . 29

R2, and suppose we have a rISA instruction of the format rISA_addl R1 R2 R3.
The normal instruction can be encoded into this rISA instruction by setting the two
source operands same (equal to R2). However, having a separate rISA instruction
format of the form rISA_add2 R1 R2, to encode such instructions may be very
useful. This new rISA instruction format has fewer operands, and will therefore
require fewer instruction bits. The extra bits can be used in two ways: first, directly
by providing increased register file access to the remaining operands and, second
indirectly, since this instruction can afford a longer opcode, another instruction with
tighter constraints on the opcode field (for example an instruction with immediate
operands) can switch opcode with this instruction.

We employ the implied operands feature in rI[SA_7333 and generate our fourth
rISA design, rISA_7333_imp_opnd. This rISA design matches the MIPS16 rISA. It
can be seen from Figure 17, the rISA_7333_imp_opnd design achieves, on average,
about the same code size improvement as the rISA_4444 design point; it achieves
about 22% improvement over the normal instruction set.

rISA _hybrid. Our final rISA design point is rISA_hybrid. This is a custom ISA
for each benchmark. All the previous techniques, i.e., long immediate values, im-
plied operands, etc. are employed to define the custom rISA for each benchmark.
In this rISA design instructions can have variable register accessibility. Complex
instructions with operands having different register set accessibility are also sup-
ported. The register set accessible by operands varies from 4 to 32 registers. We
profiled the applications and manually (heuristically) determined the combinations
of operand bit-width sizes that provide the best code size reduction. The immediate
field is also customized to gain best code size reduction. The rISA_hybrid achieves
the best code size reduction since it is customized for the application set. As seen
in Figure 17, rISA_Hybrid achieves about 26% overall improvement over the normal
instruction set. The code compression is consistent across all benchmarks.

In summary, our experimental results for rISA-based code compression show
that the effects of different rISA formats are highly sensitive to the application
characteristics: the choice of a rISA format for different applications can result in
up to 2X increase in code compression. However, the system designer critically
needs a “Compiler-in-the-Loop” approach to evaluate, tune and design the rISA
instruction set to achieve the desired system constraints of performance, code size
and energy consumption.

In a similar manner, the ADL-driven “Compiler-in-the-Loop” approach is critical
for exploration of programmable SoCs at both the architectural and microarchitec-
tural abstraction levels. While our experimental results have only demonstrated the
need for software toolkit generation using a “Compiler-in-the-Loop” exploration of
rISA formats, it should be clear that a similar ADL-driven software toolkit gener-
ation approach is critical for comprehensive exploration of programmable SoCs.

Experimental results verify that the code compression achieved is very sensitive
to the application characteristics and the rISA itself. Choosing the correct rISA for
the applications can result in a 2X difference in code compression. Thus it is very
important to design and tune the rISA to the applications. Compiler-in-the-Loop
exploration can help designers to choose the optimal rISA design.

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

30 . Mishra et al.

7. CONCLUSIONS

The complexity of programmable architectures (consisting of processor cores, co-
processors and memories) are increasing at an exponential rate due to the combined
effects of advances in technology as well as demand from increasingly complex appli-
cation programs in embedded systems. The choice of programmable architectures
plays an important role in SOC design due to its impact on overall cost, power and
performance. A major challenge for an architect is to find out the best possible
programmable architecture for a given set of application programs and various de-
sign constraints. Due to the increasing complexity of programmable architectures,
the number of design alternatives is extremely large. Furthermore, shrinking time-
to-market constraints make it impractical to explore all the alternatives without
using an automated exploration framework. This paper presented an Architecture
Description Language (ADL)-driven exploration methodology that is capable of
accurately capturing a wide variety of programmable architectures and generating
efficient software toolkit including compilers and simulators.

ADLs have been successfully used in academic research as well as industry for
embedded processor development. The early ADLs were either structure-oriented
(MIMOLA [?], UDL/I [?]), or behavior-oriented (nML [?], ISDL [?]). As a result,
each class of ADLs are suitable for specific tasks. For example, structure-oriented
ADLs are suitable for hardware synthesis, and unfit for compiler generation. Simi-
larly, behavior-oriented ADLs are appropriate for generating compiler and simulator
for instruction-set architectures, and unsuited for generating cycle-accurate simu-
lator or hardware implementation of the architecture. However, a behavioral ADL
can be modified to perform the task of a structural ADL (and vice versa). For
example, nML is extended by Target Compiler Technologies to perform hardware
synthesis and test generation [?]. The later ADLs (LISA [?], HMDES [?] and
EXPRESSION [?]) adopted the mixed approach where the language captures both
structure and behavior of the architecture. ADLs designed for a specific domain
(such as DSP or VLIW) or for a specific purpose (such as simulation or compila-
tion) can be compact and it is possible to automatically generate efficient (in terms
of area, power and performance) tools and hardware. However, it is difficult to de-
sign an ADL for a wide variety of architectures to perform different tasks using the
same specification. Generic ADLs require the support of powerful methodologies
to generate high quality results compared to domain-specific or task-specific ADLs.

This paper presented the four important steps in ADL-driven exploration method-
ology: architecture specification, validation of specification, retargetable software
toolkit generation, and design space exploration. The first step is to capture the
programmable architecture using an ADL. The next step is to verify the specifi-
cation to ensure the correctness of the specified architecture. The validated spec-
ification is used to generate a retargetable software toolkit including a compiler
and a simulator. This paper presented sample experiments to illustrate the use
of an ADL-driven architectural exploration methodology for the exploration of re-
duced bit-width Instruction Set Architectures (rISA) on the MIPS platform. Our
experimental results demonstrate the need and utility of the compiler-in-the-loop
exploration methodology driven by an ADL specification. The ADL specification
can also be used for rapid prototyping ([?], [?], [?]), test generation ([?], [?], [?]),

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

ADL-driven Software Toolkit Generation for Architectural Exploration . 31

and functional verification of programmable architectures [?].

As SOCs evolve in complexity to encompass high degrees of multiprocessing
coupled with heterogeneous functionality (e.g., MEMS and mixed signal devices)
and new on-chip internconnection paradigms (e.g., Networks-on-Chip), the next
generation of Multi-Processor SOCs (MPSOCs) will similarly require a language-
driven methodology for the evaluation, validation, exploration and codesign of such
platforms.

ACM Transactions on Design Automation of Electronic Systems, Vol. x, No. y, mm 2006.

