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A B S T R A C T

Since many Cyber–Physical Systems (CPS) interact with the real world, they are safety- or mission- critical.
Temporal specification languages like STL (Signal Temporal Logic) have been developed to capture the
properties that built CPS must meet. However, the existing temporal logics/languages do not provide a natural
way to express the tolerance with which the timing properties must be met. As a consequence of this, the
specified properties may be vague, the ensuing CPS design may end up being over- or under-provisioned, and
the validation of whether the built CPS meets the specified CPS properties may turn out to be erroneous. To
address these issues, a run-time verification methodology is proposed, that allows users to explicitly specify
the tolerance with which timing properties must be met. To ensure the correctness of measurement-based
validation of a built CPS, this article: (i) proposes a test to determine if a given measurement system can
validate the properties specified in TTL, and (ii) proposes a measurement-based testing methodology to provide
one-sided guarantee that the built CPS meets the specified CPS properties. The guarantees are one-sided in the
sense that when the measurement-based testing concludes that the properties are met, then they are guaranteed
to be met (so not false positive). However, when the measurement-based testing concludes that the properties
were not met, then they may have met (there can be false negative). In order to validate our claims, we built
a model of flying paster (part of the printing press that swaps in a new roll of paper when the current roll
is about to finish) using Arduino Mega 2560 and two Hansen brushed DC motors and specified the timing
constraints among the various events in this system, along with the tolerances with which they should be met
in TTL. We generated the testing logic and validated that we get no false positive, even though we encounter
4.04% false negative. The rate of false negatives can be reduced to be less than any arbitrary value by using
more accurate measurement equipment.
. Introduction

Cyber–Physical Systems (CPS) are systems that integrate the in-
eraction of computational and physical worlds and enable intelligent
nd automated sensing and control. Many current and envisioned CPS,
ike intelligent traffic management systems [3,4], smart grids [5],
rones [6], etc., have safety–critical requirements that must always
e met. Many specifications1 concerning the safety and performance
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1 Terminology note: In this paper, we use the term ‘‘constraint’’ to imply what the system must do/achieve, and ‘‘specification’’ to imply the limits of the

ystem components. For example, while building an autonomous vehicle, the timing constraint may be that the vehicle should be able to drive at 80 kmph, but
ngine specification may be that it can only achieve 60 kmph.

of CPS are related to the timing of the system where the correctness
is not only tied to providing the correct response but also at the
right time [7,8]. Since specification of a timing constraint using our
natural language can be ambiguous, several types of temporal logic
have been proposed to formally specify the timing behavior of a sys-
tem. LTL (Linear Temporal Logic) [9] is used to capture properties
of Boolean predicates, MTL (Metric Temporal Logic) [10] can capture
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system properties using Boolean predicates in continuous time and STL
(Signal Temporal Logic) [11] can specify system properties in terms of
real-valued signals over continuous time.

The main limitation of the existing temporal logics/languages that
we identify in this article is that they do not explicitly consider the
tolerance with which the specified constraint must be met.2 For exam-
ple, suppose there is a timing constraint that a signal 𝑦(𝑡) must become
high 200 ms after the signal 𝑥(𝑡) becomes high. This timing constraint
can be represented in STL as □

(

↑ 𝑥(𝑡)3→ ⋄[200 ms](↑ 𝑦(𝑡))
)

.4 However,
this timing constraint is vague — since it does not specify the tolerance
with which the constraint must be met. Time is inherently continuous
and therefore the delay between two events cannot be exactly equal
to a real-value. Moreover, every measurement device has non-zero
uncertainty in measurement and the exact (real) time of the occurrence
of an event cannot be reestablished from a record of the timestamps
at which they were measured to occur [12], and therefore the given
property can only be evaluated to a certain finite uncertainty. The
right constraint should have been that — signal 𝑦(𝑡) must become high
200 ms ±10 ms after the signal 𝑥(𝑡) becomes high.

Another example is distributed synchronized cameras where 3 cam-
eras must take a picture at the same time from different angles to
combine and perform 3-D scene reconstruction. The constraint for this
system can be written in STL as □(↑ 𝑡𝐴 → ⋄(↑ 𝑡𝐵) → ⋄(↑ 𝑡𝐶 )). Here,
𝑡𝐴, 𝑡𝐵 , and 𝑡𝐶 are the times of the shutter events on the 3 different
cameras. Note that this timing specification also does not specify the
required precision (millisecond, microsecond, or nanosecond precision)
with which the timing constraint must be met. If these constraints are
interpreted strictly, then it is impossible to build such a system. In the
absence of tolerance specification, it is impossible to figure out if a built
CPS is over or under-designed.

Furthermore, if the tolerances are not specified, it is hard for the
verification teams to determine if a built CPS meets the specified
properties. For example, if the timing constraints must be met with
a tolerance of nanoseconds, but the measurement system can only
measure with millisecond precision, then it is clearly not possible to
use the measurement system to validate the CPS properties. By having
tolerance in the specification, it is clear in the verification step to
choose the right systems. If the acceptable uncertainty is not formally
determined in the system specifications, verification teams may need
to study the system or use informal methods to figure it out.

Finally, we show that even if have a precise-enough measurement
system, because of the inherent uncertainty in measurements it is
impossible to guarantee that a built CPS meets the specified timing
properties if the tolerance with which the properties must be met are
not specified. In fact, type I (false positive), and type II (false negative)
observations are possible. This means that even if the measurement
system says that a property is being met, it may actually not be met,
and even if the measurement system says that a property is not being
met, it may actually be met. For safety–critical properties, the type I
misjudgement (false positive) can be especially dangerous.

In summary, the contributions of this article are:

• The article argues that the tolerance with which timing properties
must be met by a CPS, must be specified along with the CPS prop-
erties, otherwise the property specification may be vague, and
the validation of whether the built CPS meets the specified CPS
properties may be erroneous, and the ensuing CPS design may
end up being over-provisioned or sub-optimal. The method in this
paper uses a specification language, TTL (Timestamp Temporal

2 We use the term tolerance to specify how much deviation from the
deal/nominal behavior is acceptable and we use the term uncertainty to

capture the variation in the measured values.
3 ↑ 𝑥(𝑡) shows the rising edge when 𝑥(𝑡) becomes high (i.e., there is an event

on 𝑥(𝑡)) [1].
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⋄[𝑎] or ⋄=𝑎 is the Punctual form of ⋄[𝑎,𝑏] when 𝑏 = 𝑎 [2].
Logic) [13], proposed in 2017, that allows the users to explicitly
specify the tolerance with which timing constraints must be met.

• The proposed approach considers several factors of the mea-
surement system, including the precision of digital-to-analog and
analog-to-digital converters and clock synchronization accuracy
that affect the precision of timestamps, to determine if the mea-
surement system can be used to validate if a built CPS meets its
timing properties specified in TTL or not.

• We propose a verification methodology that given the precision of
measurement equipment, will ensure that type I misjudgements
cannot happen. This is achieved at the cost of more type II
misjudgements (false negatives). However, the rate of type II
misjudgements (false negatives) can be reduced to arbitrary levels
by improving the precision of the measurement equipment.

To demonstrate the usefulness of our approach we developed a
Flying Paster system — the part of the printing press that swaps the
active roll of paper with a new one when the active roll is about to run
out of paper and breaker tripping in power systems. We implemented a
model of flying paster using Arduino Atmega 2560 and two DC motors,
and specified the safety and performance-related timing specifications
without tolerances in STL and with tolerances in TTL.

By using our approach, we determine that the original monitoring
system (using Arduino Atmega 2560s) was not accurate enough to
validate the required properties. The uncertainty in the monitoring
system (i.e., 106 μs) was more than the precision required by the
properties (100 μs) of the flying paster application. In fact, the data
acquisition system could only sample at 10 kS∕s, while to validate the
timing constraints of flying paster with tolerance of 100 μs, we needed
at least a sampling rate of 20 kS∕s. We switched to National Instruments
NI-cRio that allows more than 20 Kilo samples per second sampling
rate, and we were able to validate the properties over the built CPS.

We developed the logic for validating whether the built flying paster
system meets the timing properties. Experimental results show that
there were no false positives (the number of cases where the built
CPS does not meet the specification, but the monitoring system could
not catch it) when we used logic derived from TTL specification that
contains tolerances. However, the logic derived from the STL specifica-
tion that does not contain tolerances showed about 2.61% rate of false
positives. These false positives can be very dangerous for safety–critical
properties.

We performed similar experiments on a MATLAB model of power
breaker circuit. Power breakers are required for cutting off the elec-
tricity power in case of over-current. In order to prevent failure, it
should satisfy some temporal properties like ‘‘the breaker should trip if
the duration at which the voltage is above 1.2 p.u. (per unit) is greater
than 160 ms.’’. In this experiment, we could demonstrate that without
considering tolerance as a part of statements in temporal logic, three
violations were not detected by the monitoring system (i.e., around
13%). However, since TTL considers uncertainties in the statements,
there were no undetected violations, even though there were about 4%
false negatives (cases when the monitoring system reported that the
timing constraint was not met, but actually they were met). However,
as mentioned before, the rate of false negatives can be reduced to
below any arbitrary value by choosing a better measurement system.
In the last experiment, we used tolerable errors in STL expressions
and showed that to implement the required circuit on FPGA, TTL
implementation needs fewer resources.

2. Related work

One approach to verify the temporal specifications of CPS is run-
time verification where the system’s behavior is monitored during its
operation [14]. In order to verify the timing specifications of real-
time systems, it is firstly required to express the system temporal

behavior in a formal language like Temporal Logic (TL). Temporal



Microprocessors and Microsystems 101 (2023) 104890M. Mehrabian et al.

t
n
l
s
o
(
o

c
c
t
t
r
a
i
r
r
t

( s
Logic, proposed in [15], is a system of rules to represent the system
behavior and reason about propositions qualified in terms of time.
Pnueli [16,17] and Owicki et al. [18] have proposed Temporal Logic for
the specification and verification of reactive systems. Linear Temporal
Logic (LTL) [19], Computation Tree Logic (CTL) [20,21], Metric Tem-
poral Logic (MTL) [10], Metric interval Temporal Logic (MITL) [22],
Timed Propositional Temporal Logic (TPTL) [23], and Signal Temporal
Logic (STL) [11] have been proposed to define the timing specifica-
tions of real-time systems. Although, the introduced temporal logic
formalisms are very useful and expressive for representing the temporal
specifications of real-time systems, representing uncertainties is still
challenging.

Some of the common languages to express temporal specifications
of CPS are LTL, MTL, and STL where they comprise three major timing
operators (Globally, Eventually, and Until) for expressing any level-based
iming constraint. However, the expressions are often combined and/or
ested and must be evaluated recursively. Additionally, although those
ogic languages have the capability to express event-based timing con-
traints, combined temporal expressions are constructed out of a variety
f level-based timing constraints. In order to represent only one event
rising or falling), we should use past and future operators together in
ne expression.5

In 2006, Fainekos proposed the robust interpretation of MTL over
ontinuous-time signals taking values in metric spaces [24]. Since the
lassical methods to test temporal logic just involve boolean abstrac-
ion, when a specification is either satisfied or violated, it is not possible
o know its degree. In essence, the robustness degree function gives a
eal value that indicates how far is a signal from violating or satisfying
specification using a metric 𝜌 [25]. This technique is a significant

mprovement in falsification approaches [26,27]. Using Booleanziner
ules, it is practical to transform STL formulas to MITL and define STL
obustness in a similar approach [28]. In the domain of uncertainty,
he robustness techniques can consider 𝜌 as the maximum robust value

for a specification and then, by considering 𝜌 value, monitor the signal
to know if it has satisfied the specification. In this regard, there are
some algorithms and tools [22,29,29] for online monitoring of CPS.
The algorithms basically make a parse tree for the formula and give a
range to show the robustness of the monitored signal value. Although
temporal logic robustness can be used to express uncertainty on values
(spatial robustness) in MTL/STL, it does not have a direct definition to
express the existing uncertain values (robustness) in time domain. In
order to consider uncertainties in time domain, we can consider time
robustness to know how robustly the formula is satisfied or violated
with respect to time. In the other words, if the time robustness of a
monitored signal is known, it is intuitively possible to consider a part of
that (or its entire) as uncertainty. The approach proposed in 2010 [30]
maps every spatial robustness to temporal. It has two definitions for
left/right robustness6 when a specification is either satisfied or violated.
To calculate the robustness value, the algorithm receives two sort of
different values, (i) a sequence of variable step-size time-tamped values
of the monitored signal and, (ii) a time function with a finite sequence
of points where its derivative is changed. Then, based on the signal
values and the time derivatives, the time robustness can be calculated
incrementally. Although the method calculates time robustness in an
explicit way, it is computationally expensive for online monitoring
since its complexity is of the order of the sum of the signal’s sampling
frequency. Furthermore, because the methods based on MTL/STL use
both past and future operands to express signal events, representing
events needs long and cumbersome expressions.

In Propositional Linear Temporal Logic (pLTL) [31], it is required
to find an optimal solution for temporal specification in the system be-
havior to judge its correctness. As a fact, the time complexity of finding

5 ↑ 𝜓 = (𝜓 ∧ (¬𝜓 ⊤)) ∨ (¬𝜓 ∧ (𝜓 ⊤)) for rising edges and ↓ 𝜓 =
¬𝜓 ∧ (𝜓 ⊤)) ∨ (𝜓 ∧ (¬𝜓 ⊤)) for falling edge.

6 Similar to Latency constraint we propose in this paper.
3

a

an optimal solution for a pLTL specification is doubly exponential in
the number of prepositions in a single statement. There is a similar
issue in using STL. One solution is to use Mixed Integer Linear Program
(MIPL). However, MIPL is an NP-hard problem to solve. [32] proposed
a method as a probabilistic extension to STL to evaluate complex
specifications. Indeed, for uncertain and changing environments, a
probabilistic variant of STL is proposed to express safety constraints on
random variables. This approach presents an efficient receding horizon
algorithm to maximize the probability of satisfaction of a temporal
specification. In PrSTL, a time-bounded specification 𝜓 is assigned to
a system (e.g., CPS). PrSTL allows for computing the probability of
satisfaction given a sequence of states over the target system. The ideal
in this logic is estimating the true states of targets and because the
estimates over the target states are given in the form of probability
distributions, the signal evaluation is done in terms of probability. Nev-
ertheless, these works only evaluate the signal in the form of probability
distributions instead of the robustness or traditional Boolean evaluation
based on stochastic methods with solid judgements. Moreover, they
assume the state of the system is always fully known [33].

In the domain of analog mixed signals, AMS-LTL [34] is an exten-
sion of STL that uses the notion of events as atomic properties for the
predicates in which an event is to express a change in the truth of the
propositions. This logic proposes auxiliary state machines and auxiliary
functions, two types of formalisms, for Analog and Mixed-Signal (AMS)
assertions (e.g., a user can create properties or asserted behavior for
AMS). It has been shown that the complexity of satisfaction/violation
using the monitoring algorithm for AMS-LTL is EXPSPACE-complete.7

One popular solution for verifying the behavior of CPS is simulating
the CPS and running the monitoring system beside it and see if the re-
quirements are met at run-time. In this domain, the conventional moni-
toring methods generally use the same formalisms (i.e. STL/MTL/MITL)
to express timing requirements in the monitoring processes. Since those
languages do not explicitly/intrinsically express the tolerable error as a
part of language, the developed monitoring system might be overesti-
mated, large, or heavy in most of cases and may leave the violation
of some monitored timing specifications undetected. Some tools for
analyzing the timing requirements in CPS have been implemented in
Breach [35], and S-Taliro [36]. Both tools record simulation data and
evaluate timing constraints considering the simulation.

Recognizing the high overhead, AMT [37] proposed an incremental
approach to compute the constraints at a segment granularity. An
incremental method was proposed by Deshmukh et al. [38] where
timing constraints are evaluated by traversing the parse tree generated
for STL formulas. They optimize calculations by eliminating repetitive
computations. Since all of these examples are implemented in simula-
tion, they have the access to the real values and hence, do not consider
the uncertainties in their computations.

Beside the previous approaches that work in simulation, there are
some examples implemented on FPGA. Selyunin et al. [39] proposed a
framework for generating monitors with recovery from a class of high-
level STL specifications. This method firstly simplifies the STL formula,
converts them into equi-satisfiable past operators, and then using an
offline evaluation. The code is synthesized in a digital reconfigurable
hardware. It uses SystemC simulation kernel to run the monitor on
pre-recorded traces. R2U2 is another method implemented on FPGA
for a security threat detection [40]. Schumann et al. proposed a tech-
nique receiving the properties of an Unmanned Aerial Vehicle (UAV)
using MTL/LTL statements and then diagnosis security attacks by a
Bayesian Network model. Indeed, the authors construct FPGA monitors
for security requirements and specify possible attacks that a UAV might
undergo.

7 In complexity theory, EXPSPACE is the set of all decision problems
olvable by a deterministic Turing machine in O(2p(n)) space, where p(n) is
polynomial function of n.
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While the aforementioned methods do not discuss about the effi-
ciency of the FPGA implementation, Reinbacher et al. in 2013 presented
n algorithmic framework, for monitoring temporal specifications ex-
ressed in past-time MTL/LTL. They showed that their work optimized
he required memory space since the needed storage for the signal
istory is bounded by ⌈log2(𝑛)⌉ where 𝑛 is elapsed time from when

the monitoring is started. Jakšić et al. [41] implemented a monitoring
method called Counters algorithm on FPGA. The Counters algorithm
reduces the computation complexity from 𝑂(𝑛2) to 𝑂(𝑛 log(𝑛)), where 𝑛
is the size of time interval of the temporal constraints. This technique
converts future STL operators into past expressions and translates all
constraints such that their interval starts from zero. Then, a counter
is dedicated to measuring the duration of a positive pulse in each
interval. The number of needed counters depends on the variability of
the monitored signal and the length of the interval bound (𝑎).

Although these methods showed a way to reduce memory usage,
the storage remains a concern (even for bounded constraints). Since it
is not possible to express the maximum allowed deviation for measured
and computed values, the designer/verification developers implement
their monitoring methods as precise as possible while it is not al-
ways required. Intuitively, such implementation needs more resources
in comparison with the methods that adjust their precision degree
considering use-defined allowed tolerance. Moreover, by relaxing the
conditions with considering tolerance, it becomes possible to take
uncertainties into account and cover the corner cases and provide a
guarantee to make sure the monitoring approach is able to catch all
timing violations.

3. Problems in run-time verification using existing temporal logics

Several temporal logics like CTL, LTL, MTL, and STL have been
developed to specify the properties that a built CPS must meet. STL
is most applicable to express the properties of CPS since it allows the
specification of properties of real-valued signals in continuous time. In
this section, we discuss about one of the common challenges in using
STL expressions in the online monitoring of temporal specifications. In
order to illustrate that, there is an example in the following section.

3.1. An example for time uncertainty in event detection

In STL, a CPS designer can express specifications like (examples
taken from [42]):

𝜓 = □(𝑥(𝑡) < 3.5).

This STL statement specifies that the value of the signal 𝑥(𝑡) should never
go above 3.5 V.

Another example is:

𝜓 = □[2,6](|𝑥(𝑡)| < 2)

This STL statement specifies that in the next 2s to 6s, the value of the
signal 𝑥(𝑡) remains between −2 V and 2 V.

The issue that we want to draw attention to is that STL specifications
do not provide a mechanism for the CPS designer to explicitly specify
the tolerance with which these specifications should be met. This is the
case, even though STL claims to model continuous time. Without the
tolerance specification, it is impossible to correctly validate if a built
CPS meets its timing constraints or not.

Consider the example shown in Fig. 1. The figure depicts a signal 𝜓
that should be monitored by a verification system to see if it satisfies
the STL statement, □[1,5]𝜓 . The STL statement expresses a property that
is considered to be met at time 𝑡 iff, in the next 1 to 5 s (i.e. 𝑡 + 1 to
𝑡 + 5), the signal (𝑝𝑠𝑖) is true continuously.

The diagram (Fig. 1) depicts that 𝜓 becomes true at real-time 0.91 s
and becomes false again at 4.81 s. If we do the calculation to determine
4

the satisfaction of □[1,5]𝜓 at 𝑡 = 0, we will conclude that the temporal
Fig. 1. The problem of monitoring a STL timing statement. Since in the discretization
process an interval is just converted into a single value, the final evaluation can be
wrong if the uncertainty in the measurement device is not taken into account.

specification has not been satisfied, since 𝜓 was not true from 4.81 s
o 5 s.

However, if we use a digital monitoring circuit with a sampling
eriod (𝛿 = 0.2 s), then we reach a different conclusion. Suppose the
ampling times (time steps) are {0, 0.2, 0.4,…} s. The sampling system
ill first record that the signal 𝜓 is true will be at the 1 s mark. It will

last record that the signal was true will be at the 5 s mark. So □[1,5]𝜓
is found to be met.

False positive misjudgement (type I error) can cause serious prob-
lems, particularly in safety–critical applications because the measure-
ment system concludes that the timing constraint is met, while in reality
it is not met! This problem is severe because the probability of type I
errors (or false positive evaluations) only decreases with the precision
of the measurement equipment, but is not eliminated. Thus it is hard
to guarantee the safety of the CPS.

One possible solution to fix this issue, for existing temporal logics
e.g. STL/MTL/MITL, is to account for the measurement error by man-
ually modifying the time intervals of the timing operators. However,
this approach will be hard for nested/complex temporal statements,
there is no specific method to consider tolerance in those languages,
and if the tolerance is considered case-by-case, for each case there
is a need to have a proof for the correctness. Since TTL semantics
converts temporal specifications into mathematical conditions, it is
possible to have general proofs for complex and nested specifications.
Furthermore, since representing temporal specifications in STL needs
more temporal operators, it needs more space on FPGA to design and
verify in comparison with using TTL.

4. Tolerance in timestamp temporal logic (TTL)

All digital devices have a level of measurement uncertainty (say
𝛿)and STL statements cannot be monitored correctly without consid-
ering the uncertainty (𝛿) in the statements. For example, if we want
to check if a signal falls from high to low with a measurement system
that has a sampling period of 0.2 s, then if the measurement system
registers that the signal went from high to low at say the 5 second
mark, then it is impossible to say when between 4.8 s and 5 s the signal
went from low to high. The best we can say is that the signal went
from high to low somewhere between 4.8 s and 5 s. In this case, we
say that the uncertainty in the measurement of the time at which the
signal went from high to low is 𝛿 = 0.2 s. Note that the uncertainty
can be low for a system, but it cannot be eliminated for any real
measurement system. Just assuming the left timestamp (4.8𝑠 in this
case) or the right timestamp (5 s in this case) – both approaches are
not right and can lead to the wrong evaluation of the safety condition.
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Fig. 2. The process to events from analog signals by threshold crossing. Each signal is compared with a threshold and the satisfaction is shown by a Boolean signal.
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The only way to avoid wrong evaluations is to add conservativeness
to the condition calculations. This can be done, if we know an upper-
bound on 𝛿. However, specifying the error of the measurement devices
does not make sense in the temporal constraints of an application. 𝛿 is
a property of a measurement system. From the application perspective,
it makes more sense to define a tolerance or 𝜀 – with which the timing
onstraints must be met. Then a measurement device can be deemed to
e capable or not of being able to evaluate the satisfaction of a timing
onstraint (with a given tolerance), if the measurement uncertainty is
ithin the tolerance of the timing constraint.

Timestamp Temporal Logic (TTL) provides a definitional extension
f STL that more intuitively expresses the timing specifications of
istributed CPS and allows for a more natural expression of timing
olerance. It provides room for considering tolerance as a part of
anguage and enables accurate monitoring.

.1. Event representation in TTL

Simple events in TTL are defined as signal transitions from one
tate to another. In order to extract events for a real-time system,
e utilize the classical discretization/quantization process. In such a
rocess, there are three major parts (i) sampling, discretizing in time
sing regular sampling with an interval 𝛿𝐴𝐷𝐶 , (ii) quantization, uniform

scalar quantization with a step 𝑞, and (iii) interpolation, detecting the
threshold crossing to extract events [43]. Since system 𝛺 is hybrid,
we assume that the monitored signal is band-limited and does not
produce infinite events occurring in a finite time (Zeno behavior [44]).
Moreover, the conversion is done using uniform sampling in Analog to
Digital Converters (ADC). Considering such signals and the quantiza-
tion process, in the interpolation, we are able to calculate the maximum
error in space (𝑑) and time (𝛿𝐴𝐷𝐶 ) [45]. Section 6.4 discuss the way to
accumulate the total uncertainty by considering 𝜀𝐴𝐷𝐶 .

For example, a signal event generated by threshold crossing on
analog signals is presented by a triplet, ⟨𝑠, 𝑡ℎ,↗ 𝑜𝑟 ↘⟩, which is 1 (⊤)
t the time when the signal, 𝑠, crosses a threshold, 𝑡ℎ (crossing from
elow ↗ or from above ↘), and 0 (⊥) everywhere else. The time of

the event is called a timestamp and is represented by a real number.
A signal event can be a singleton or repetitive. In a singleton signal
event, there is only one event (𝜙) which is represented by a single
timestamp while repetitive signal events are expressed by a sequence
of timestamps {𝜙1, 𝜙2,… , 𝜙𝑛}(𝑛∈N).

Finding out the timestamps of simple events, like ⟨𝑠, 𝑡ℎ,↗ 𝑜𝑟 ↘⟩

is a three-step process. Fig. 2 outlines the process. The top 2 curves
in the graph depict comparing two signals (𝑠1 and 𝑠2) with their
corresponding thresholds (𝑡ℎ1 and 𝑡ℎ2), and that results in the middle
2 Boolean signals (𝜓1 and 𝜓2). The Boolean signals (𝜓1 and 𝜓2) can
be divided into time intervals during which the value of the signal is
true or false, indicated by + and −. The time of the rising event
5

Table 1
Grammar of TTL.
𝜓 ∶= 𝑣

|¬𝜓
|𝜓1 ∧ 𝜓2
|□𝜓
|𝜓1𝜓2
|(𝜙1 , 𝜙2 , 𝜀)▿𝑙
|(𝜙1 , 𝜙2 ,…𝜙𝑛 , 𝜀)
|(𝜙1 , 𝜙2 ,… , 𝜙𝑛 , 𝜀)
| (𝜙, 𝜀)▿𝑓
|(𝜙1 , 𝜙2 , 𝜀𝑓 , 𝜀𝑝)▿𝑝

on the Boolean signals (𝜓1 and 𝜓2) then represents the occurrence of
the specified event, and can be obtained by differentiator. In fact, the
Boolean signal 𝜓1, gives the last 2 curves in the figure. Thus, 𝜙̂ = ⨝(𝜓),
where the value of 𝜙 ∈ 𝜙̂ is ⊤ when 𝜓(𝑡+) ⊕ 𝜓(𝑡) ∧ ¬𝜓(𝑡) = ⊤, and ⊥
otherwise. ⊕ is XOR and 𝑡+ refers to the right neighborhood of signal
at time 𝑡 in continuous domain. Then, using the function 𝜏(𝜙)8 we can
xtract the event’s timestamp.

Extracting a signal event from a real-valued signal over the contin-
ous time-domain is done by comparing the values of the signal with
threshold, 𝑡ℎ, and then, passing the output through the Differentiate
perator (⨝) in the discrete time-domain. As it is depicted in Fig. 2,

ignals 𝑠1 and 𝑠2 are firstly converted into Boolean signals after compar-
ng with their corresponding thresholds (𝑡ℎ1, 𝑡ℎ2), and then by applying
he differentiate operator, ⨝ sequence of timestamps 𝜙1 and 𝜙2 are
enerated.

.2. Expressing tolerance in TTL syntax

The TTL syntax is defined based on STL with extensions to enable
xpressing events, natural specification, and considering tolerance. TTL
perators are built based on high-level operators that specify timing
equirements on both the value of a formula and the occurrence time
f events. The output of TTL operators is finally a Boolean value.

efinition 4.1. The satisfaction relation (𝑠, 𝑡) ⊨ 𝜓 , indicating that
ignal 𝑠 satisfies 𝜓 starting from position 𝑡.

efinition 4.2. Given the sets 𝜒 of events and the set V of atomic
ropositions, the set 𝑇𝑇𝐿𝜒 (𝑉 ) of TTL formulas (event-based) is induc-
ively defined using the following grammar shown in Table 1: where
∈V, 𝜙1, 𝜙2,… , 𝜙𝑛 ∈ 𝜒,▿ ∈ {⟨, ⟩,=} and 𝑙, 𝑓 , 𝑝, 𝜀, 𝜀𝑓 , 𝜀𝑝 ∈ R+ + {0}.

In the rest of this section, we describe the meaning of each operator
xisting in the grammar.

8 We will explain it in Section 5
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• The atomic 𝑣 proposition is true if there is a time at which a
threshold crossing exists.

• ¬𝜓 is true iff 𝜓 = ⊥.
• The output of each TTL operator is a Boolean continuous signal.

Hence the STL operators can be applied to them.9 Therefore, □
and  receive Boolean signals and return Boolean as well.

• If the evaluated two TTL formulas, 𝜓1 and 𝜓2 are both true,
𝜓1 ∧ 𝜓2 = ⊤.

• (𝜙1, 𝜙2, 𝜀) calculates the latency between two events 𝜙1 and 𝜙2.
(i) 𝜙1 and 𝜙2 are singleton,10 (ii) 𝜙1 occurs before 𝜙2, and (iii) the
difference between the actual occurrence of two events, 𝜙1 and
𝜙2 should be less/greater than or equal to 𝑙 with the user-defined
tolerance value uncertainty of 𝜀.

• (𝜙1, 𝜙2,… , 𝜙𝑛, 𝜀) specifies that the event 𝜙𝑖 occurs before event
𝜙𝑖+1 (1 ≤ 𝑖 ≤ 𝑛), with a tolerance of 𝜀. 𝜀 determines the acceptable
minimum distance between the events.

• (𝜙1, 𝜙2,… , 𝜙𝑛, 𝜀) specifies that the events 𝜙1 to 𝜙𝑛 occur at the
same time within a time duration of 𝜀.

•  (𝜙, 𝜀𝑓 ) specifies that the occurrence frequency of event 𝜙11

should be less/greater than or equal to 𝑓 within an tolerance
value of 𝜀𝑓 (in Hz).

• (𝜙1, 𝜙2, 𝜀𝑓 , 𝜀𝑝) specifies that the phase difference between two
repeating events 𝜙1, and 𝜙2 on two different signals is less/greater
than or equal to 𝑝, where, 𝜀𝑓 is tolerance in the frequency domain
and 𝜀𝑝 is the tolerance in phase.

5. Conditions for guaranteed verification by monitoring

In this section, we explain the mathematical equations and proof to
have the right expressions with considering Tolerance and Uncertainty
in this section. The equations for Latency operator are explained here.
At the end of this section, we demonstrate how TTL fixes the problem
in monitoring by using 𝜀.

However, before starting to explain the details of the language,
there are some parameters that should be defined.

5.1. Problem definition

In this work, we take a very general approach to monitor a traced
continuous signal 𝑢 of the system 𝛺, with considering a temporal
specification, 𝜓 . 𝑡 is the dense time, and 𝑢(𝑡) represents the signal value
at time 𝑡 in voltage.

5.1.1. The type of signals and discretization process
Let D be a value domain, Boolean (B), or Real-value (R) signal.
Continuous-Time Signals: A continuous signal 𝑠 maps the contin-

uous time domain (dense time) to a real-valued domain. Since CPS
monitoring is usually based upon finite traces [46], the signal length
is 𝑟 expressed by |𝑠| = 𝑟.

Definition 5.1. Signal 𝑠 is a map. 𝑠 ∶ T → R, T is a set of non-negative
real numbers as time, R≥0, and R is the value of continuous signals.

The interval for the entire signal is 𝐼 = [0, 𝑟). Its value at time 𝑡
where 𝑡 ∈ R≥0 is 𝑠(𝑡).

A sequence of disjoint non-empty intervals 𝐼 ∶ {𝐼0, 𝐼1, 𝐼2,… , 𝐼𝑘}, 𝐼𝑖∩
𝐼𝑗 = ∅ is a time partition compatible with a finitely-varying continuous-
time Boolean signal converted into discrete using 𝛤 function, 𝛤 ∶ R →
{⊥,⊤} that makes a discrete signal using a threshold value, 𝑡ℎ:

𝛤𝑠 =

{

⊤, if 𝑠 ≥ 𝑡ℎ
⊥, otherwise

(1)

9 As mentioned before, 𝜓s are Boolean signals whereas 𝜙s are events
10 They occur once in a specific duration.
11 𝜙 is repetitive here and 𝜙𝑖 corresponds to the 𝑖th occurrence of the event
.
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If 𝑥 is a continuous Boolean signal, and if ⋃𝑘
𝑗=0 𝐼𝑗 = [0, 𝑟) and ∀𝐼𝑗

in the form of (𝑡𝑗 , 𝑡𝑗+1), [𝑡𝑗 , 𝑡𝑗+1), (𝑡𝑗 , 𝑡𝑗+1], or [𝑡𝑗 , 𝑡𝑗+1] such that 𝑡 ≤ 𝑡𝑗+1,
or all 𝑡 and 𝑡′, 𝑥(𝑡) = 𝑥(𝑡′).
Discrete-Time Signals: A discrete-time signal 𝜎 is a sequence of

amples of a continuous-time Boolean signal 𝑥 and made by the func-
ion 𝑔 ∶ R → B. The value of 𝜎 at position 𝑖 for continuous signal 𝑥 is
𝑥[𝑖] and equals a Boolean value where 𝑖 ∈ N.

There are different discretization methods and we discuss periodic
r uniform sampling here, which is the type of sampling used most
ften in practice. It can be expressed by 𝛤𝑠(𝜃) = 𝜎𝑠(𝜃.𝛿𝐴𝐷𝐶 ) s.t. 𝜃 ∈
. 𝜎𝑠 is the discrete time signal of continuous signal 𝑠. We name 𝜃
s Timestamp. Moreover, the time interval 𝛿𝐴𝐷𝐶 between successive
amples is called the sampling period or sample interval and it is 1

𝑓𝑠
.

𝑓𝑠 is the sampling rate (samples per second) or the sampling frequency
(hertz). As we will explain in Section 6.4, it is a part of total uncertainty
which is 𝛿.

Therefore, we have function 𝛤 ∶ 𝑠(𝑡)
𝛿𝐴𝐷𝐶 ,𝑡ℎ
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝜎.

Moreover, as a requirement to provide the one-way guarantee for
run-time verification, we assume that the value of a monitored signal
changes at a constant rate between every two captured samples.

Definition 5.2. The temporal logic formula, 𝜓𝑠, is the system specifi-
cation for signal 𝑠(𝑡) behavior.

In the monitoring process, there is a real signal (ground truth)
continuous signal, 𝑠(𝑡), and a discrete signal, 𝜎𝑠[𝜃]. In monitoring,
ince the real value of the signal is not known (because of quanti-
ation/discretization) there is an error value. This error may cause
ncertainty in the system implementations and also monitoring.

The informal definition of each part is explained below:

• 𝑠 is a continuous signal over continuous time 𝑡.
• 𝜓 is a Boolean signal over continuous time. It can be true (positive

pulse) or false (negative pulse) for a duration of time.
• 𝛿𝐴𝐷𝐶 is the sampling time to convert a continuous signal to

discrete. It can be taken as measurement error as well because
it is the maximum error in the discretization process.

• 𝑇 (𝜙) is a function that receives the event 𝜙 and returns its actual
time of occurrence in the continuous domain. It is a real number.

• 𝜏(𝜙) receives the event 𝜙 and returns the event’s timestamp in
discrete domain. Its return value is an integer number.

• 𝜀: is the user-defined tolerance value to cover the existing mea-
surement errors in Cyber–Physical Systems. By this value, we
make the temporal property more conservative since the measure-
ment error can cause uncertainties. Its value in all operators is
𝜀 > 0 and a part of syntax because no measurement system is
perfect.

• ⨝ is differentiator operator and converts a Boolean signal into
events (𝜑̂ = ⨝(𝜎)).12

.2. TTL operators

In this section we have formal definitions for each operator in
TL. The maximum latency constraint is expressed by the following
tatement in TTL:
Maximum Latency: (𝜙1, 𝜙2, 𝜀) < 𝑙, 0 < 𝜀 < 𝑙
If 𝑇 (𝜙) represents the actual occurrence time of event 𝜙 in real

umbers, we have 0 < 𝑇 (𝜙2) − 𝑇 (𝜙1) and 𝑇 (𝜙2) − 𝑇 (𝜙1) < 𝑙 − 𝜀.
(𝜙2) − 𝑇 (𝜙1) is required to be less than 𝑙 − 𝜀 so as to guarantee that

he latency between the two events 𝜙1, and 𝜙2 is less than 𝑙. Fig. 3.a
hows how the latency constraint is calculated in the continuous time.
ow, the question remains, what are the conditions under which we
an guarantee that 𝑇 (𝜙2)−𝑇 (𝜙1) < 𝑙−𝜀 is satisfied in a discrete system.

12 𝜙̂ is a sequence of events.
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Fig. 3. The effect of tolerance in Latency and Simultaneity calculations. Figure (a) shows a Latency constraint and (b) is the demonstration for Simultaneity operator in TTL.
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In formal, continuous signal 𝑠 at time 𝑡 should satisfy this relation:
(𝑠, 𝑡) ⊧ (𝜙1, 𝜙2, 𝜀) iff 𝑇 (𝜙2) − 𝑇 (𝜙1) < 𝑙 − 𝜀.

In order to answer this question, we should look at CPS again. Most
CPS implementations and measurement systems sample signals (with a
fixed sampling time of 𝛿) and, therefore, capture a timestamp as the
occurrence of the event. The actual time of an event is inferred from
the timestamp within an error 𝛿. The measurement error has several
sources such as quantization, sampling time, analog to digital converter
(ADC) resolution [47]. If 𝜏(𝜙) represents the integer timestamp at
which the event 𝜙 is captured, and both 𝑇 (𝜙) and 𝜏(𝜙) are initiated
to zero when the system starts to operate, then 𝜏(𝜙) =

⌈

𝑇 (𝜙)
𝛿

⌉

is the
relation between 𝑇 (𝜙) and 𝜏(𝜙).

Therefore, we know that 𝑇 (𝜙1) = (𝛿𝜏(𝜙1) − 𝛿, 𝛿𝜏(𝜙1)) and similarly
𝑇 (𝜙2) = (𝛿𝜏(𝜙2)− 𝛿, 𝛿𝜏(𝜙2)). Hence, their subtraction to find the latency
between two events 𝜙1 and 𝜙2 will be bounded between 𝛿(𝜏(𝜙2) −
𝜏(𝜙1)) − 𝛿 and 𝛿(𝜏(𝜙2) − 𝜏(𝜙1)) + 𝛿.13 In fact:

𝛿(𝜏(𝜙2) − 𝜏(𝜙1)) − 𝛿 < 𝑇 (𝜙2) − 𝑇 (𝜙1) < 𝛿(𝜏(𝜙2) − 𝜏(𝜙1)) + 𝛿 (2)

Also, we already know that in order to be conservative, it is enough
if we have:

𝑇 (𝜙2) − 𝑇 (𝜙1) < 𝑙 − 𝜀 (3)

to guarantee the time difference between events is certainly less than
𝑙. Therefore, based on Eqs. (2) and (3):

𝛿𝜏(𝜙2) − 𝛿𝜏(𝜙1) − 𝛿 < 𝑙 − 𝜀 (4)

Since we know that 0 < 𝛿𝜏(𝜙2)− 𝛿𝜏(𝜙1), 0 < 𝑙−𝜀+ 𝛿. Hence, to have
the guarantee for Eq. (3), we should test:

𝜏(𝜙2) − 𝜏(𝜙1) <
𝑙 − 𝜀
𝛿

+ 1 (5)

and the condition is (by considering Eqs. (2) and (4)) is 𝜀 − 𝛿 < 𝑙.
On the other hand, in inequality (4), if 𝜀 < 𝛿, since we are adding a

positive number to 𝑙 (𝛿𝜏(𝜙2)−𝛿𝜏(𝜙1) < 𝑙−(𝜀−𝛿)), it does not guarantee
(4). Therefore, we should have 𝛿 < 𝜀. As a fact, if inequality (5) is
not true, inequality (3) might still be true. However, by considering
𝜀 > 𝛿 we make sure if (5) is true, (3) is definitely true as well. This
relation between 𝜀 and 𝛿 makes sense because in Eq. (5), the added
value (𝛿) due to the discretization process is compensated by 𝜀. In the
above equations, (5) is a property of measurement and 𝛿 < 𝜀 is the
property of measurement system.

Therefore, we have:

(𝑠, 𝑡) ⊧ (𝜙1, 𝜙2, 𝜀) (6)

Regarding inequity(5), if we consider 𝛿 < 𝜀 since the accepted error
is greater than the actual error, we can ensure that if there is a violation

13 Since the subtraction is calculated, the maximum error is 𝛿.
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in the Latency constraint, we can catch it. In fact, without considering
𝜀, there is a gray area in which it is not clear to know whether the
Latency constraint is violated or met.

Minimum Latency: 𝑙 < (𝜙1, 𝜙2, 𝜀)
By considering Eq. (2), we have 𝑙+𝜀−𝛿 < 𝛿(𝜏(𝜙2)−𝜏(𝜙1)). If 𝜀 < 𝛿, we

cannot guarantee that the time difference between two events is greater
than 𝑙. Therefore, 𝛿 < 𝜀. Similar to the maximum latency specification,
there will be an error of 𝛿 between the actual time and the captured
timestamp of events. Hence, we have:
𝑙 + 𝜀
𝛿

− 1 < 𝜏(𝜙2) − 𝜏(𝜙1), 𝛿 < 𝜀 (7)

Exact Latency: (𝜙1, 𝜙2, 𝜀) = 𝑙
The constraint means that 𝑇 (𝜙2) − 𝑇 (𝜙1) = 𝑙 ± 𝜀 or 𝑙 − 𝜀 < 𝑇 (𝜙2) −

(𝜙1) < 𝑙 + 𝜀. A monitoring system can ensure this specification by
hecking if 𝑙−𝜀

𝛿 +1 ≤ 𝜏(𝜙2) − 𝜏(𝜙1) ≤
𝑙+𝜀
𝛿 −1. By 𝜀, we defined a specific

duration to shrink the time for satisfaction regarding 𝛿. Again, if 𝜀 < 𝛿
we cannot guarantee to catch all violations. Hence, the measurement
system is considered to be able to evaluate the specification correctly
if 𝛿 < 𝜀.

5.3. TTL-based run-time verification approach detects all timing violations

As an example to demonstrate the advantage of TTL over STL in
monitoring approaches, let us take a look at Fig. 1 and its example
again. In Section 3, we explained the issue in which the monitoring
device cannot detect the violation. However, since TTL considers the
measurement error, it can solve the false positive problem using 𝜀. As
a fact, TTL is able to express the width of a signal pulse by considering
rising and falling edges. In Fig. 1, we can replace □[1,5]𝜓 by minimum
latency, (⟨𝑠1(𝑡), 2.5,↗⟩, ⟨𝑠1(𝑡), 2.5,↘⟩) > 4𝑠. From the example (in
ection 3), we know 𝛿 = 0.2 and can take 𝜀 = 0.4. Based on the numbers
n Fig. 1 and 𝛿 and 𝜀, we have 𝜏(⟨𝑠1(𝑡), 2.5,↗⟩) =

⌈

2
0.2

⌉

= 10 and

𝜏(⟨𝑠1(𝑡), 2.5,↘⟩) =
⌈

6
0.2

⌉

= 30.

(⟨𝑠1(𝑡), 2.5,↗⟩, ⟨𝑠1(𝑡), 2.5,↘⟩, 0.4) > 4𝑠

⟺
𝑙 + 𝜀
𝛿

− 1 < 𝜏(⟨𝑠1(𝑡), 2.5,↘⟩) − 𝜏(⟨𝑠1(𝑡), 2.5,↗⟩)

4 + 0.4
0.2

⌉

− 1 < 30 − 10 ⟹ 21 ≮ 20

Accordingly, the monitoring system shows the timing constraint is
violated when it is really violated. Therefore, while STL mistakenly
shows the temporal requirement is met, TTL is able to correctly catch
the violation.

This conversion, Globally to Latency can be generalized for the other
two operators in STL. In fact, in order to utilize the capabilities of TTL,
it is possible to have corresponding operators for Eventually and Until as
well. This conversion can be done by considering the rising and falling
edges on the Boolean signals.
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To summarize, we can express the STL (or MITL) operators in TTL as
below. If we consider 𝜙𝑟 and 𝜙𝑓 as the rising and falling edges, ◊[𝑎,𝑏]𝜓 ,

[𝑎,𝑏]𝜓 , and 𝜓1[𝑎,𝑏]𝜓2 are defined as below:

[𝑎,𝑏]𝜓 ⟶ [𝑎,𝑏](𝜙𝑟, 𝜙𝑓 , 𝜀) > 0, 𝜀 > 𝛿

[𝑎,𝑏]𝜓 ⟶ [𝑎,𝑏](𝜙𝑟, 𝜙𝑓 , 𝜀) > 𝑏 − 𝑎, 𝜀 > 𝛿

[𝑎,𝑏](𝜙1𝑟 , 𝜙1𝑓 , 𝜀) > 0 ∧ [𝑎,𝑏](𝜙2𝑟 , 𝜙2𝑓 , 𝜀) > 0 ∧ [𝑎,𝑏](𝜙2𝑟 , 𝜙1𝑓 , 𝜀) > 0, 𝜀 > 𝛿

here (𝑠, 𝑡) ⊧ (𝜙1, 𝜙2, 𝜀) > 𝑙 then 𝑙+𝜀
𝛿 − 1 < 𝜏(𝜙2) − 𝜏(𝜙1) iff 𝜃1 =

𝜏(𝜙1), 𝜃2 = 𝜏(𝜙2) s.t. 𝜃1, 𝜃2 ∈ [𝑡 + 𝑎, 𝑡 + 𝑏]

5.4. TTL provides a one-way guarantee in CPS monitoring

Since the TTL operators can be used in monitoring systems to
verify the operation of safety–critical applications, they must be able
to catch all timing violations. On the other side, we know TTL specifies
the timing constraints within a tolerance value (𝜀). Accordingly, some
satisfactions might fall in the tolerable duration category which we
refer to as the gray area. If a timing constraint is met within the gray
area, our rule detects them as violated since it may be evaluated as
met just because of uncertainty in the measurement system. Based on
such rule, some detected timing violations will be false negative cases
(when a violation is reported while it is met) but there will be no false
positive. Therefore, from this point of view, TTL provides a one-way
guarantee for run-time verification. The rate of false negative is directly
dependant on the size of the gray area.

Providing the one-way guarantee mean that if the evaluation system
says a timing constraint is met, we are certain that it is actually
met given the specified tolerance by the designer and the existing
uncertainty of the measurement devices. Having zero false positive is
valuable for safety–critical systems. It is worth noting that providing a
two-way guarantee is not possible due to the existence of uncertainty in
the monitoring system. Our approach provides the one-way guarantee
at the cost of being more conservative and having more false negatives.

5.5. TTL rules

In the rest of this section, we show the rules for TTL temporal
operators to guarantee the monitoring accuracy (proofs for Latency are
in Section 5) and summarize all in Table 2.

Maximum Latency: (𝜙1, 𝜙2, 𝜀) < 𝑙, 0 < 𝜀 < 𝑙 we already showed
that if we have 𝜏(𝜙2) − 𝜏(𝜙1) <

𝑙−𝜀
𝛿 + 1, 𝛿 < 𝜀 the maximum latency is

guaranteed.
Minimum Latency: 𝑙 < (𝜙1, 𝜙2, 𝜀) if we have 𝑙+𝜀

𝛿 − 1 < 𝜏(𝜙2) −
(𝜙1), 𝛿 < 𝜀, the minimum latency is guaranteed.
Exact Latency: (𝜙1, 𝜙2, 𝜀) = 𝑙 is guaranteed if we have 𝑙−𝜀

𝛿 + 1 ≤
𝜏(𝜙2) − 𝜏(𝜙1) ≤

𝑙+𝜀
𝛿 − 1, 𝛿 < 𝜀.

Chronological: (𝜙1, 𝜙2,… , 𝜙𝑛, 𝜀) means that 𝜀 < 𝑇 (𝜙𝑖+1) − 𝑇 (𝜙𝑖).
measurement system with accuracy of 𝛿 will be able to ensure the

pecification by monitoring 𝜀
𝛿 − 1 < 𝜏(𝜙𝑖+1) − 𝜏(𝜙𝑖) only if 𝛿 < 𝜀.

Simultaneity: (𝜙1, 𝜙2,… , 𝜙𝑛, 𝜀) means that the time difference
between each pair of events is less than 𝜀, or by the other words

𝑚𝑎𝑥
(

𝑇 (𝜙1), 𝑇 (𝜙2),… , 𝑇 (𝜙𝑛)
)

− 𝑚𝑖𝑛
(

𝑇 (𝜙1), 𝑇 (𝜙2),… , 𝑇 (𝜙𝑛)
)

< 𝜀

A measurement system with accuracy of 𝛿 will be able to ensure the
specification by monitoring

𝑚𝑎𝑥
(

𝜏(𝜙1), 𝜏(𝜙2),… , 𝜏(𝜙𝑛)
)

− 𝑚𝑖𝑛
(

𝜏(𝜙1), 𝜏(𝜙2),… , 𝑡𝑠(𝜙2)
)

< 𝜀
𝛿
+ 1

The added 𝛿 value (everything is normalized by 𝛿) is just to consider
the measurement error value compensated by 𝜀. Additionally, as before,
the measurement is valid only if 𝛿 < 𝜀. Fig. 3.b demonstrate the
imultaneity calculation.
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Minimum Frequency: 𝑓 <  (𝜙, 𝜀𝑓 )
This temporal specification defines the minimum frequency for a repet-
itive event on a signal and can be converted into the time domain. In
fact in the time domain, it means 𝑇 (𝜙𝑛) − 𝑇 (𝜙𝑛−1) < 1

𝑓±𝜀𝑓
where 𝜙𝑖

corresponds to the 𝑖th occurrence of the event 𝜙 on the same signal.
To simplify, we have: 𝑇 (𝜙𝑛) − 𝑇 (𝜙𝑛−1) < 1

𝑓+𝜀𝑓
. Similar to latency,

𝜏(𝜙𝑛) − 𝜏(𝜙𝑛−1) < 1
𝛿(𝑓+𝜀𝑓 )

+ 1, 𝛿 < 1
𝜀𝑓

.
Maximum Frequency:  (𝜙, 𝜀𝑓 ) < 𝑓

n time domain, this operator defines the minimum period for a repet-
tive event. Indeed, we should have 1

𝑓−𝜀𝑓
< 𝑇 (𝜙𝑛) − 𝑇 (𝜙𝑛−1).

Therefore, 1
𝛿(𝑓−𝜀𝑓 )

− 1 < 𝜏(𝜙𝑛) − 𝜏(𝜙𝑛−1) where 𝛿 < 1
𝜀𝑓

, 𝜀𝑓 < 𝑓 .
Exact Frequency:  (𝜙, 𝜀𝑓 ) = 𝑓

xact frequency means 𝑇 (𝜙𝑛) − 𝑇 (𝜙𝑛−1) = 1
𝑓±𝜀𝑓

in time domain. By

simplifying the equations, we have 1
𝑓+𝜀𝑓

< 𝑇 (𝜙𝑛) − 𝑇 (𝜙𝑛−1) < 1
𝑓−𝜀𝑓

,
𝜀𝑓 < 𝑓 .

Considering the measurement error of 𝛿, the system must monitor
1

𝛿(𝑓+𝜀𝑓 )
+ 1 < 𝜏(𝜙𝑛) − 𝜏(𝜙𝑛−1) < 1

𝛿(𝑓−𝜀𝑓 )
− 1, and the monitoring is valid

only if 𝛿 < 1
𝜀𝑓

, 𝜀𝑓 < 𝑓 .
Minimum Phase: 𝑝 < (𝜙1, 𝜙2, 𝜀𝑓 , 𝜀𝑝)

f events 𝜙1 and 𝜙2 occur at the same frequency (exact frequency)
hen Phase can be defined.14 This constrain defines the desired latency
etween consequent events on two different event sources (𝜙1 and 𝜙2).

Hence, based on this concern, we must satisfy two conditions: (i)
(𝜙1, 𝜀𝑓 ) =  (𝜙2, 𝜀𝑓 ), and (ii) 𝑝 − 𝜀𝑝 < 𝑇 (𝜙𝑛2) − 𝑇 (𝜙

𝑛
1).

From condition (i), we have|(𝑇 (𝜙𝑛1) − 𝑇 (𝜙
𝑛−1
1 )) − (𝑇 (𝜙𝑛2) − 𝑇 (𝜙

𝑛−1
2 ))|

1
𝜀𝑓

. If we assume 𝐴 ∶ 𝑇 (𝜙𝑛1) − 𝑇 (𝜙
𝑛−1
1 ) and 𝐵 ∶ 𝑇 (𝜙𝑛2) − 𝑇 (𝜙

𝑛−1
2 ), we

have: − 1
𝜀𝑓

< 𝐴 − 𝐵 < 1
𝜀𝑓

. Hence, there are two cases, (a) 𝐴 < 1
𝜀𝑓

+ 𝐵,

and (b) 𝐵 − 1
𝜀𝑓
< 𝐴.

From Eq. (2), we know that

𝛿(𝜏(𝜙𝑛1) − 𝜏(𝜙
𝑛−1
1 )) − 𝛿 < 𝐴 < 𝛿(𝜏(𝜙𝑛1) − 𝜏(𝜙

𝑛−1
1 )) + 𝛿

(𝜏(𝜙𝑛2) − 𝜏(𝜙
𝑛−1
2 )) − 𝛿 < 𝐵 < 𝛿(𝜏(𝜙𝑛2) − 𝜏(𝜙

𝑛−1
2 )) + 𝛿

To be conservative, in (a), 𝐴 should be in its maximum value and
should be in its Minimum value. Therefore, 𝛿(𝜏(𝜙𝑛1) − 𝜏(𝜙

𝑛−1
1 )) + 𝛿 <

1
𝜀𝑓

+ 𝛿(𝜏(𝜙𝑛2) − 𝜏(𝜙𝑛−12 )) − 𝛿, and in (b), 𝛿(𝜏(𝜙𝑛2) − 𝜏(𝜙𝑛−12 )) + 𝛿 < 1
𝜀𝑓

+

𝛿(𝜏(𝜙𝑛1) − 𝜏(𝜙
𝑛−1
1 )) − 𝛿.

Thus, the pre-conditions for satisfaction of Phase constraint are:

𝜏(𝜙𝑛1) − 𝜏(𝜙
𝑛−1
1 ) − (𝜏(𝜙𝑛2) − 𝜏(𝜙

𝑛−1
2 )) < 1

𝛿𝜀𝑓
− 2 (8)

𝜏(𝜙𝑛2) − 𝜏(𝜙
𝑛−1
2 ) − (𝜏(𝜙𝑛1) − 𝜏(𝜙

𝑛−1
1 )) < 1

𝛿𝜀𝑓
− 2 (9)

From condition (ii), the specification implies that 𝑝+𝜀𝑝
𝛿 −1 < 𝜏(𝜙𝑛2) −

𝜏(𝜙𝑛1). Since the monitoring system must ensure that 𝑝 + 𝜀𝑝 < 𝑇 (𝜙𝑛2) −
𝑇 (𝜙𝑛1) is monitored correctly, the monitoring system will be imple-
mented as 𝑝′ + 𝜀′𝑝 − 1 < 𝜏(𝜙𝑛2) − 𝜏(𝜙𝑛1) where 𝑝′ = 𝑝

𝛿 and 𝜀′𝑝 = 𝜀𝑝
𝛿 . To

check if the measurement system can evaluate the timing specification,
𝛿 < 1

𝜀𝑓
and 𝛿 < 𝜀𝑝 statements should hold.

Maximum Phase: (𝜙1, 𝜙2, 𝜀𝑓 , 𝜀𝑝) < 𝑝
For this specification, the two frequencies of 𝜙1 and 𝜙2 should be equal

ithin a tolerance. 𝑇 (𝜙𝑛2)−𝑇 (𝜙
𝑛
1) < 𝑝−𝜀 where 𝜙𝑖1 and 𝜙𝑖2 correspond to

he 𝑖th occurrence of the events 𝜙1 and 𝜙2 respectively. Similar to the
inimum phase, the monitoring system should monitor 𝜏(𝜙𝑛2)− 𝜏(𝜙

𝑛
1) <

′ − 𝜀′𝑝 + 1.
Exact Phase: (𝜙1, 𝜙2, 𝜀𝑓 , 𝜀𝑝) = 𝑝
This TTL operator means 𝑇 (𝜙𝑛2) − 𝑇 (𝜙𝑛1) = 𝑝 ± 𝜀𝑝 or 𝑝 − 𝜀𝑝 <

(𝜙𝑛2)−𝑇 (𝜙
𝑛
1) < 𝑝+𝜀𝑝. Considering the error in the measurement system,

e have 𝑝′ − 𝜀′𝑝 + 1 < 𝜏(𝜙2) − 𝜏(𝜙1) < 𝑝′ + 𝜀′𝑝 − 1.

14 Otherwise, having Phase constraint is meaningless.
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Table 2
The conditions that must be met in the monitoring system to guarantee the meeting of TTL constraints.

TTL Temporal Operators Monitoring condition when the constraint is met

𝑣 ⊨ 𝜓 iff 𝑣 = ⊤ ∀𝑡 ≥ 0 (𝑠, 𝑡) ⊨ 𝜓
(𝜙1 , 𝜙2 , 𝜀) < 𝑙 𝜏(𝜙2) − 𝜏(𝜙1) <

𝑙−𝜀
𝛿

+ 1, 𝛿 < 𝜀, 0 < 𝜀 < 𝑙
𝑙 < (𝜙1 , 𝜙2 , 𝜀)

𝑙+𝜀
𝛿

− 1 < 𝜏(𝜙2) − 𝜏(𝜙1), 𝛿 < 𝜀, 0 < 𝜀 < 𝑙
(𝜙1 , 𝜙2 , 𝜀) = 𝑙 𝑙−𝜀

𝛿
+ 1 < 𝜏(𝜙2) − 𝜏(𝜙1) <

𝑙+𝜀
𝛿

− 1, 𝛿 < 𝜀, 0 < 𝜀 < 𝑙,
(𝜙1 , 𝜙2 ,… , 𝜙𝑛 , 𝜀)

𝜀
𝛿
− 1 < 𝜏(𝜙𝑖+1) − 𝜏(𝜙𝑖), 𝛿 < 𝜀

(𝜙1 , 𝜙2 ,… , 𝜙𝑛 , 𝜀) 𝑚𝑎𝑥
(

𝜏(𝜙1), 𝜏(𝜙2),… , 𝜏(𝜙𝑛)
)

− 𝑚𝑖𝑛
(

𝜏(𝜙1), 𝜏(𝜙2),… , 𝑡𝑠(𝜙2)
)

< 𝜀
𝛿
+ 1, 𝛿 < 𝜀

𝑓 <  (𝜙, 𝜀𝑓 ) 𝜏(𝜙𝑛) − 𝜏(𝜙𝑛−1) < 1
𝛿(𝑓+𝜀𝑓 )

+ 1, 𝛿 < 1
𝜀𝑓

, 𝜀𝑓 < 𝑓
 (𝜙, 𝜀𝑓 ) < 𝑓

1
𝛿(𝑓−𝜀𝑓 )

− 1 < 𝜏(𝜙𝑛) − 𝜏(𝜙𝑛−1), 𝛿 < 1
𝜀𝑓

, 𝜀𝑓 < 𝑓
 (𝜙, 𝜀𝑓 ) = 𝑓 1

𝛿(𝑓+𝜀𝑓 )
+ 1 < 𝜏(𝜙𝑛) − 𝜏(𝜙𝑛−1) < 1

𝛿(𝑓−𝜀𝑓 )
− 1, 𝛿 < 1

𝜀𝑓
, 𝜀𝑓 < 𝑓

𝑝 < (𝜙1 , 𝜙2 , 𝜀𝑓 , 𝜀𝑝) 𝑝′ + 𝜀′𝑝 − 1 < 𝜏(𝜙𝑛2) − 𝜏(𝜙
𝑛
1), 𝛿 <

1
𝜀𝑓

and 𝛿 < 𝜀𝑝, 𝜀′𝑝 =
𝜀𝑝
𝛿

, 𝑝′ = 𝑝
𝛿

(𝜙1 , 𝜙2 , 𝜀𝑓 , 𝜀𝑝) < 𝑝 𝜏(𝜙𝑛2) − 𝜏(𝜙
𝑛
1) < 𝑝

′ − 𝜀′𝑝 + 1, 𝛿 < 1
𝜀𝑓

and 𝛿 < 𝜀𝑝, 𝜀′𝑝 =
𝜀𝑝
𝛿

, 𝑝′ = 𝑝
𝛿

(𝜙1 , 𝜙2 , 𝜀𝑓 , 𝜀𝑝) = 𝑝 𝑝′ − 𝜀′𝑝 + 1 < 𝜏(𝜙2) − 𝜏(𝜙1) < 𝑝′ + 𝜀′𝑝 − 1, 𝛿 < 1
𝜀𝑓

and 𝛿 < 𝜀𝑝, 𝜀′𝑝 =
𝜀𝑝
𝛿

, 𝑝′ = 𝑝
𝛿

w
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Note that the events in Frequency and Phase formulas are necessarily
periodic, whereas in the other timing specifications, they should be
singleton.

All aforementioned operators and their meanings are summarized
in Table 2.

6. How to know a monitoring equipment is good enough to verify
a specific CPS

This section is an effort towards standardizing the process of testing
the timing properties of CPS where a design of a testbed is outlined.
The testbed can be used to test the CPS to check if all the timing
constraints are being met or not in a systematic and correct manner
to enable correct-by-construction (CbC) synthesis of the testbed. The
testbed – like the distributed CPS it is trying to test – is also a distributed
CPS, with each node (of the testbed) monitoring the required signals
from the CPS node. Hardware timestamping and IEEE 1588 Precision
Time Protocol (PTP) synchronization of the clocks among the CPS
components provides observations at the same timescale through vast
geographies, without losing accuracy with time. In this section, there
is also a discussion about the key timing parameters of the testbed
that will affect the time testing capability. In this regard, it studies the
specifications that must be met by the testbed, such that the testbed
can validate the timing constraints.

The most important design parameters of the distributed testbed
that affect the errors in the timing measurements are described below.

6.1. Analog to digital converter (ADC) parameters

The testbed monitors all signals by sampling them because they
should be digitalized to use on the cyber side. This is done by Analog to
Digital Converters (ADCs) on the probes. The sampling rate of an ADC,
𝑓𝑠, is expressed as samples per second, or Hertz (Hz). In order to be
able to monitor a signal correctly, the sampling rate must be sufficiently
high to capture the fastest observable dynamics of interest in the signal.
Suppose we intend to find out the time at which a signal rises above
3.4 V. Fig. 4 shows this signal, monitored with two different sampling
rates. On the left with sampling rate of 𝑓𝑠 = 1 kHz, the threshold
crossing time of the signal is detected as 𝑡 = 1 ms. However, on the
right, with sampling rate of 𝑓𝑠 = 0.5 kHz, the threshold crossing time
of the signal is detected as 𝑡 = 2 ms.

Since an ADC converts the voltage signal into digitized sampled
vents, the accuracy of measurement is also limited by the number of
its used to express the sampled value, 𝑛𝑏𝑖𝑡𝑠𝐴𝐷𝐶 , and the voltage range

of the ADC, 𝑉 𝑅𝐴𝐷𝐶 . An n-bit ADC can represent 2𝑛 values. A 12-bit
ADC that measures the range of 0 V to 5 V has steps of ≈ 1 mV. The
precision of the ADC is defined in terms of resolution of the ADC, or
𝑉𝐴𝐷𝐶 can be calculated as: 𝑉𝐴𝐷𝐶 = 𝑉 𝑅𝐴𝐷𝐶

2𝑛𝑏𝑖𝑡𝑠𝐴𝐷𝐶
. The resolution of the ADC

an affect the time at which the monitoring device detects an event on
signal. Fig. 5 illustrates the conversion of an analog signal to digital
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samples with various resolutions, 𝑉 𝑅𝐴𝐷𝐶 of 5 V. If the user wants to
detect the time when a signal rises above 4 V, then in the left diagram,
with 𝑛𝑏𝑖𝑡𝑠𝐴𝐷𝐶 = 12, the time at which the threshold crossing is detected
is 𝑡 = 3 ms, while in the right diagram, with 𝑛𝑏𝑖𝑡𝑠𝐴𝐷𝐶 = 11, the time at
which the threshold crossing is detected is 𝑡 = 4 ms.

6.2. Input impedance

Wiring a signal to a DAQ device adds a load to the CPS circuit
under test, which causes a change in the shape of the monitored signal.
For pure resistive loads, this change is a simple voltage drop while for
general loads, the shape of the monitored signal is changed based on the
equivalent resistance and reactance of the measuring device (including
capacitance effect of the cables) and the SUT. As a result, based on the
rate of change in the value of the signal, the measurements of the signal
may be delayed or its amplitude may be attenuated. 𝑍𝑖𝑛 is defined as
the CPS equivalent circuit from the terminal connected to the testbed.
The test and measurement device must have a sufficiently high input
impedance to minimize perturbation of the measurement process on
the signal.

Fig. 6.b shows the monitored signal perturbed by the loading effect
of wiring the measurement device to the SUT. The threshold detection
time of the original signal is before the threshold detection time of the
monitored signal.

6.3. Clock fractional frequency offset

A clock’s fractional frequency offset is defined as 𝑓𝑐𝑙𝑜𝑐𝑘 = 𝑓𝑖𝑛𝑠𝑡−𝑓0
𝑓0

,
here 𝑓𝑖𝑛𝑠𝑡 is the instantaneous clock frequency, and 𝑓0 is the nominal

lock frequency. Thus, this is the unitless instantaneous fractional
ffset from the nominal frequency of an oscillator [48]. Environmental
onditions such as voltage and temperature variations or mechanical
ibrations, can affect the rate at which an oscillator runs. Typically,
he fractional frequency offset of a clock, 𝑓𝑐𝑙𝑜𝑐𝑘, is expressed in Parts Per
illion (PPM), indicating the maximum amount of error in one million

ime units. Thus, the uncertainty after an elapsed time 𝑡𝑒𝑙𝑎𝑝𝑠𝑒𝑑 due to
fractional frequency offset of 𝑓𝑐𝑙𝑜𝑐𝑘 is 𝑡𝑒𝑙𝑎𝑝𝑠𝑒𝑑 × 𝑓𝑐𝑙𝑜𝑐𝑘. For instance, a

lock with 5 PPM error, has 5 μs error after 1 s, an uncertainty of about
.5 s after a day, or about 2.5 min after a year. 7 depicts this issue.

Since all clocks deviate from each other, distributed clocks must be
ynchronized to a reference to have an agreement on time and have a
nique and time notion. Synchronization protocols match the clock of
device to a reference clock. However, no synchronization protocol is
erfect, and there is a synchronization uncertainty 𝑡𝑠𝑦𝑛𝑐 , that depends
n several factors, including the number of bits used to represent the
ime, when the time stamping is done (e.g., in the hardware or in
oftware), network jitter, network asymmetries delays, etc. [49]. The
etwork Time Protocol or NTP [50] can usually keep time synchro-
ized to within tens of milliseconds over the public Internet (𝑡 ≈
𝑠𝑦𝑛𝑐
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Fig. 4. A digitized analog signal at two different sampling rates. Given a threshold of 3.4 V, the threshold crossing time is detected at different times depending on the sampling
rate.
Fig. 5. An analog signal sampled using two ADCs that have the same range (0 V to 5 V) and different resolutions. (a) a 12-bit ADC is used. (b) a 11-bit ADC is used. The
threshold crossing time in the left figure is at 𝑡 = 3 ms while it is different in the right figure for the same signal (the threshold crossing is at 𝑡 = 4 ms).
Fig. 6. (a) Voltage drop on a DC signal connected to a resistive load. (b) Voltage drop and shift on an AC signal connected to a load that has both reactive and resistive
components. (c) Change in the shape of an arbitrary signal due to the loading effect.
10 ms). The Precision Time Protocol, PTP [51], can provide time syn-
chronization over a LAN with sub-microsecond accuracy. PTP with the
White Rabbit [52] extension used for the CERN Large Hadron Collider,
can synchronize to sub-nanosecond accuracy. For CPS distributed over
a wide area with high precision and accuracy needs, GNSS (Global
Navigation Satellite Systems) can provide 100 ns accuracy.

Another important parameter is the rate of synchronization, 𝑟𝑠𝑦𝑛𝑐 ,
which is the number of times per second (e.g., in units of Hz) that
synchronization is performed. Every time we perform synchronization,
the time offsets are within 𝑡𝑠𝑦𝑛𝑐 of each other. But from thereon, until
the next synchronization, the clock times will move apart at the rate of
𝑓𝑐𝑙𝑜𝑐𝑘, if the local clock uses the protocol to adjust its time but not its
frequency. The worst-case clock offset, 𝜖𝑤𝑐𝑐𝑜, while the system clock is
synchronized via the time synchronization protocol in steady-state and
while all other environmental conditions are stable, can be calculated
as: 𝜖𝑤𝑐𝑐𝑜 = 𝑡𝑠𝑦𝑛𝑐 +

𝑓𝑐𝑙𝑜𝑐𝑘
𝑟𝑠𝑦𝑛𝑐

. Note that the units are in time, since 𝑓𝑐𝑙𝑜𝑐𝑘 is
unitless and the reciprocal of 𝑟 is in units of time (see Fig. 7).
10

𝑠𝑦𝑛𝑐
6.4. Analysis to calculate the total uncertainty

In order to determine whether timing behavior is verifiable by
a given testbed, it is important to understand the sources of tim-
ing measurement uncertainty, described as 𝛿 in the timing constraint
specification.

Consider a distributed CPS, with an exact latency constraint
(𝑒1, 𝑒2, 𝜖) = 𝑙 for events 𝑒1 and 𝑒2, where 𝑒1 occurs on signal 𝑠1 and
𝑒2 on 𝑠2 respectively. These events are detected at different nodes of
the CPS. The latency constraint states that, given 𝑡1 as the occurrence
of 𝑒1, the time at which 𝑒2 occurs should be equal to 𝑡1 + 𝑙 ± 𝜖. The
testbed must capture the time at which an event occurs. However, the
measured time will be erroneous. This can due to the several factors,
including the sampling frequency 𝑓𝑠, the ADC resolution 𝑉𝐴𝐷𝐶 , and the
clock error, 𝛿𝑤𝑐𝑐𝑜.

Consider an event described by the tuple ⟨𝑠1, 𝑣𝑡, 𝑟𝑖𝑠𝑖𝑛𝑔⟩, marking the
threshold 𝑣 crossing of signal 𝑠 on a rising edge. Since the ADC output
𝑡 1
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Fig. 8. Worst-case error between actual occurrence time and detection time for an
DC with sampling frequency 𝑓𝑠 and fixed threshold detection based on an integer

multiple of the ADC resolution.

is a multiple of the supported resolution, the testbed may not be able
to detect the exact point of the threshold crossing. Thus, the threshold
value must be mapped to the nearest upper bound of the value. Since all
sampled data are collected at known points in time (integer multiples of
1
𝑓𝑠

), a threshold crossing is detected with a maximum error 𝛿𝐴𝐷𝐶 = 1
𝑓𝑠

.
Fig. 8 illustrates the worst-case error 1

𝑓𝑠
in an example.

Since all samples are timestamped using the local clock of the
easurement system, clock synchronization error (𝛿𝑤𝑐𝑐𝑜) must be taken

nto account. Thus, the maximum time error between the actual event
ccurrence and the detected event occurrence is the sum of the ADC
rror and the clock synchronization error: 𝛿𝑡𝑜𝑡𝑎𝑙 ≤ 𝛿𝑤𝑐𝑐𝑜 + 𝛿𝐴𝐷𝐶 .

Since there will be at most 𝛿𝑡𝑜𝑡𝑎𝑙 error in both the measurements
of 𝑒1 and 𝑒2, then the testbed can confidently verify whether the
xact latency constraint is being met or not. Other types of constraints
e.g., simultaneity, frequency, phase, etc.) are also expressed with a
emporal error tolerance and one can similarly reason and verify the
emporal behavior.

. Empirical evaluation

In order to demonstrate the usefulness of the proposed monitoring
pproach, three CPS applications have been used. Flying paster is a
art of a printing press that swaps a full paper roll when the current
aper roll is running out of paper. Flying paster is a distributed CPS
ith a variety important timing constraints that should be met. The
11

ther application is the breaker tripping in a power system when a fault
occurs. For coordination of breakers in a Distributed Energy System
(DES), they should meet a set of timing constraints. The last application
is a quadcopter in which the time specifications for its motors have been
monitored.

7.1. Flying paster application

A flying paster is part of a printing press, a distributed system
enabling continuity of operation through the automatic exchange of
an expiring paper roll with a new roll. Fig. 9.a shows a schematic of
the flying paster with the active roll 𝐴, which feeds the web. When
the radius of paper in roll 𝐴 is less than a given threshold, the roll
is replaced by the spare roll 𝑆. The radius of the paper around roll
𝐴, (𝑟𝐴), is measured by the sensor 𝐻 . When this radius falls below
a given threshold, the Approaching Out of Paper (AOP) event (𝜙𝐴𝑂𝑃 )
is generated, which initiates the paper roll replacement process by
starting the rotation of roll 𝑆. A strip of adhesive tape on the paper
roll 𝑆 is used to attach the paper from roll 𝑆 to roll 𝐴. The location
of the tape is detected by sensor 𝐹 , which creates the 𝛾 event (𝜙𝛾 ).

he frequency of the 𝛾 event is used to calculate the angular velocity,
𝑆 , of 𝑆. Once the linear velocities of roll 𝑆 and 𝐴 are equal, a Match
vent (𝜙𝑀𝑎𝑡𝑐ℎ) is generated. Then, sensor 𝐹 generates the event Top
ead Center (TDC) to indicate the detection of the tape. Two complete
otations of 𝑆 after event TDC, the idler wheel 𝐸 pushes the paper from
oll 𝐴 towards roll 𝑆, at which point the paper from roll 𝑆 adheres to
he outgoing paper from roll 𝐴. This event, (𝜙𝐶𝑜𝑛𝑡𝑎𝑐𝑡), occurs after roll 𝑆
erformed two rotations plus 255 degrees, 𝑡𝑎𝑝𝑒𝑇 𝑜𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝐴𝑛𝑔𝑙𝑒 = 225◦.
mmediately after it, the Cutter 𝐷 cuts the paper from 𝐴. This is called
he Cut event (𝜙𝐶𝑢𝑡), and occurs when roll 𝑆 has two rotations plus
𝑎𝑝𝑒𝑇 𝑜𝐶𝑢𝑡𝐴𝑛𝑔𝑙𝑒 = 270◦ after TDC.

.1.1. Flying paster implementation
A picture of the implementation of a scaled model of the flying

aster is shown in Fig. 9.b. Rolls 𝐴 and 𝑆 in Fig. 9.a are implemented
sing two Hansen DC motors dialed (0–360 degree) disks, driven by two
rduino Mega2560 boards. Disks have a hole at zero degrees, which

s detected by a photo-micro sensor. Photo-micro sensors implement
he sensor 𝐻 , and 𝐹 and are installed next to the disks. The paper is
odeled in software with the initial length of 125 m and 0.05 mm of

hickness so that the initial diameter for both rolls is 9 cm (radius of
.5 cm). The AoP event is generated when the radius of 𝐴 becomes less
han 2.5 cm.

.1.2. Flying paster specification in STL
Based on the desired operation of the flying paster, its timing

pecifications are expressed in STL as follows. Noted that:

• 𝐴: Active roll.
• 𝑆: Spare roll.
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Fig. 9. The schematic of flying pater and its modeling implementation. (a) Flying Paster. Active roll A, is replaced by the spare roll, S to feed the web, (b) A scale model
implemented by two DC motors, Arduino boards and two optical sensors.
• 𝑣: linear velocity.
• 𝑟: radius.
• 𝜔: angular velocity.
• 𝑡𝑎𝑐𝑡𝑖𝑜𝑛: the duration from 𝑡𝐴𝑜𝑃 to 𝑡𝑀𝑎𝑡𝑐ℎ.
• 𝑡𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛: the duration between 𝑡𝐴𝑜𝑃 to 𝑡𝐶𝑢𝑡.

(1) The velocity of the paper on active roll should be constant:

𝑣𝐴 = (𝑟𝐴 × 𝜔𝐴) m∕s, □[𝑡𝑖 ,𝑡𝑠](𝑣𝐴 = 𝑟𝐴 × 𝜔𝐴),

(2) The time interval between 𝐴𝑂𝑃 rising to 𝑀𝑎𝑡𝑐ℎ rising edge must
be no more than 𝑡𝑎𝑐𝑡𝑖𝑜𝑛: □(↑ 𝐴𝑂𝑃 ⇒ ◊[0,𝑡𝑎𝑐𝑡𝑖𝑜𝑛](↑𝑀𝑎𝑡𝑐ℎ))

(3) After 𝑚𝑎𝑡𝑐ℎ, the paper speed of the spare should remain the same
as active: 𝑣𝐴 = 𝑟𝐴 × 𝜔𝐴 and 𝑣𝑆 = 𝑣𝐴

□[𝑡𝑀𝑎𝑡𝑐ℎ ,𝑡𝐶𝑢𝑡](𝑣𝐴 = 𝑟𝐴 × 𝜔𝐴), □[𝑡𝑀𝑎𝑡𝑐ℎ ,𝑡𝐶𝑢𝑡](𝑣𝑆 = 𝑟𝑆 × 𝜔𝑆 ),

□[𝑡𝑀𝑎𝑡𝑐ℎ ,𝑡𝐶𝑢𝑡](𝑣𝑆 = 𝑣𝐴)

(4) Catch the 𝑇𝐷𝐶 (2 rotations of A after Match).

𝑡𝑇𝐷𝐶 − 𝑡𝑀𝑎𝑡𝑐ℎ <
4𝜋
𝜔𝑆

, ◊[𝑡𝑀𝑎𝑡𝑐ℎ ,𝑡𝑀𝑎𝑡𝑐ℎ+
4𝜋
𝜔𝑆

](↑ 𝑇𝐷𝐶),

(5) When tape is 225 degrees after TDC, Contact signal must fire.

𝑡𝐶𝑜𝑛𝑡𝑎𝑐𝑡 − (𝑡𝑇𝐷𝐶 +
225 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝜔𝑆
) < 1 ms,

□[𝑡𝑇𝐷𝐶+
225 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝜔𝑆
,𝑡𝑇𝐷𝐶+

225 𝑑𝑒𝑔𝑟𝑒𝑒𝑠
𝜔𝑆

+0.001](↑ 𝐶𝑜𝑛𝑡𝑎𝑐𝑡)

(6) When tape is 270 degrees after TDC, Cut signal must fire.

𝑡𝑐𝑢𝑡 − (𝑡𝑠𝑝𝑎𝑟𝑒𝑇𝐷𝐶 +
270 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝜔𝑆
) < 1 ms,

□[𝑡𝑠𝑝𝑎𝑟𝑒𝑇𝐷𝐶+
270 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝜔𝑆
,𝑡𝑠𝑝𝑎𝑟𝑒𝑇𝐷𝐶+

290 𝑑𝑒𝑔𝑟𝑒𝑒𝑠
𝜔𝑆

+0.001](↑ 𝑐𝑢𝑡)

(7) AOP to Cut should not be more than 𝑡𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (The user defines
𝑡𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 and it is the maximum duration in which the roll changing
should be done. In this scenario it is 6𝑠).

◊[𝑡𝐴𝑂𝑃 ,𝑡𝐴𝑂𝑃 +𝑡𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛](↑ 𝐶𝑢𝑡)

7.1.3. Temporal specifications of flying paster in TTL
The timing specifications in TTL are:

-  (𝜙𝛾 , 0.005 × 𝑣𝐴
2𝜋𝑟𝑆

) = 𝑣𝐴
2𝜋𝑟𝐴

: The linear velocity of the paper (𝑣𝐴)
(measured by sensor 𝐹 ) of the active roll should be constant at 20 m∕s±
10−3 m∕s, otherwise, it cannot be fed to the printing press. It is known
that 𝑣𝐴 = 𝑟𝐴 × 𝜔𝐴 where 𝑟𝐴 is the current paper radius and 𝜔𝐴 is the
angular velocity of the roll 𝐴. The tolerable error for the velocity is 0.5
percent of the velocity on the active roll (0.005 × 𝑣𝐴

2𝜋𝑟𝑆
).

- (𝜙𝐴𝑂𝑃 , 𝜙𝑀𝑎𝑡𝑐ℎ, 10−3 s) < 6 s: The time interval from AoP to Match
should be no more than 6 s with the maximum of 1 ms (10−3 s) of
12
uncertainty. Otherwise, the paper on the old roll will run out before
the new paper can be attached.
- (𝜙𝑀𝑎𝑡𝑐ℎ, 𝜙𝑇𝐷𝐶 , 10−4 s) and (𝜙𝑀𝑎𝑡𝑐ℎ, 𝜙𝑇𝐷𝐶 , 10−4 s) < 2𝜋

𝜔𝑆
: This cap-

tures the specification that Match happens before TDC, and that TDC
happens before completing one full rotation from Match. Otherwise
Contact and Cut do not work correctly.
- (𝜙𝐶𝑜𝑛𝑡𝑎𝑐𝑡, 𝜙𝐶𝑢𝑡, 10−4 s): Cut event must occur after Contact event,
otherwise, the paper from the active roll is cut before attaching the
new paper. The allowed tolerance to detect this chronology is 100 μs
(10−4 s).
- (𝜙𝐶𝑜𝑛𝑡𝑎𝑐𝑡, 𝜙𝑐𝑢𝑡, 10−4 s) > 3 ms: The delay between Contact and Cut
should be less than 1.5 ms not to have a late cut. The acceptable
uncertainty is 100 μs (10−4 s).
- (𝜙𝑇𝐷𝐶 , 𝜙𝑐𝑜𝑛𝑡𝑎𝑐𝑡, 10−4 s) <

4𝜋
𝜔𝑆

+ 225
𝜔𝑆

: This captures the specification that
Contact must occur 2 rotations plus 225 degrees from the TDC event.
Otherwise the two papers are not connected.
- (𝜙𝑇𝐷𝐶 , 𝜙𝑐𝑢𝑡, 10−4 s) > 4𝜋

𝜔𝑆
+ 270

𝜔𝑆
, when tape is in 2 rotations plus 270◦

of TDC, Cut must fire. Otherwise, old paper is not cut in time.

7.1.4. Testing the accuracy of the monitoring approach using STL and TTL
In order to verify the capabilities of TTL in run-time monitoring,

we run online monitoring for flying paster in 7 different scenarios. The
scenarios are listed in Table 3 where the active motor rotates in 10 m/s
to 22 m/s as linear velocity. As the result, changing the velocity affects
the other timing specifications. For example, 𝑡𝑎𝑐𝑡𝑖𝑜𝑛 and 𝑡𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 are
increased when the linear velocity is decreased. In this experiment,
we took three timing specifications for the application. The latency
between (i) AoP and match, (ii) Match and TDC, and (iii) Contact
and Cut. We used the profiles from FPGA implementation on Ni cRio
9067/9035.

To know the real values for signals we used the sampling rates of
the DAQ devices which are two Ni-9402 with the accuracy of 55 ns. The
sampling rate of 100 μs is used to discretize the values. We expressed the
timing requirements of flaying paster in both STL and TTL, implement
them using TMA, and run each scenario for 100 times. We collected
data for violation and satisfaction of timing constraints. As Fig. 10
depicts, we divided the results into four categories:

• True Positive: When a timing requirements is satisfied and the
monitoring system shows it is met as well.

• True Negative: When a timing requirements is violated and the
monitoring system shows it is not met as well.

• False Positive: When a timing requirements is violated and the
monitoring system shows it is met.

• False Negative: When a timing requirements is satisfied and the
monitoring system shows it is not met.
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Table 3
Seven different scenarios for flying paster applications.

A B C D E F G

𝑣𝐴 22 m/s 20 m/s 18 m/s 16 m/s 14 m/s 12 m/s 10 m/s
𝑡𝑎𝑐𝑡𝑖𝑜𝑛 2 s 3 s 4 s 5 s 6 s 7 s 8 s
𝑡𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 3 s 4 s 5 s 6 s 7 s 8 s 9 s
Fig. 10. Monitoring the time between AoP to Match, Match to TDC, and Contact to Cut events for 7 different velocity for the active roll. The timing constraints are expressed in
STL and TTL and then monitored in order. The false positive is zero when we use TTL. However, since it is a one-side guarantee for accuracy of the monitoring, it has around
4% of false negative rate.
Table 4
The average of violation detection using STL and TTL.

True Positive True Negative False Positive False Negative

STL 75.76% 20.19% 2.61% 1.42%
TTL 75.76% 20.19% 0% 4.04%
The results are depicted in Fig. 10. The Red bar is for the false
ositive which is the most important result for this application. With
igher false positive number, the probability of system crashing is
igher as well since the monitoring device could not detect the timing
iolation. The red bar does not exist in TTL version since we could
uarantee its correctness but using STL causes having false positive in
lmost all experiments.

As Table 4 shows, the rate of true positive and true negative, when
e use either STL or TTL to express timing requirements, are the same.
owever, the big difference is their false negative and false positive
overage. Using STL as the logic language causes 2.61% false positives
n average which is high for safety–critical applications [53]. On the
ther side, since the guarantee is one-sided, we inevitably have a false
egative rate in the TTL-used verification method. Fig. 10 shows this
t the green bars in TTL parts. The average of false negative rate for
nline monitoring methods using TTL is about 4.04%. It is a little bit
igher than false negative in STL and it is the cost to have an accurate
onitoring. In fact, in 4.04% of the experiments, we have false alarms

or timing violations but we can correctly detect all violations by the
ethods utilizing TTL.

.2. The satisfaction of the testbed requirements

In order to test and verify the timing constraints of the experimental
etups, testbed timing specifications (synchronization accuracy, ADC
ampling rate, ADC resolution, etc.) must exceed the CPS specifications
s mentioned in Section 6.4. In this section, the specifications of
he monitoring equipment are scrutinized to know whether they are
ualified for monitoring of Flying Paster.
13
7.2.1. NI-cRIO setup
In a CompactRIO system (NI-cRIO), a controller with a processor

and user-programmable FPGA is populated with one or more condi-
tioned I/O modules from NI or third-party vendors. These modules
provide direct sensor connectivity and specialty functions. cRIO is avail-
able in both a rugged industrial form factor and board-level design and
it provides high-performance processing capabilities, sensor-specific
conditioned I/O, and a closely integrated software toolchain that make
them ideal for Industrial Internet of Things (IIoT), monitoring, and
control applications.

As one of the testbeds for monitoring the time sensitive applications,
two cRIO devices, NI-9067 and NI-9035, have been used as chassis
while two signal acquisition modules, NI-9381 and NI-9232, installed
on them for data acquisitions. Indeed, the modules collected the data
to be processed on the FGPA board on the chassis. The specifications
of the testbed equipment for NI-cRIO setup are summarized in the first
two rows of Table 5.

The cRIO FPGA board has a clock with 40 MHz frequency and
5 × 10−6 clock drift. FPGA clocks are synchronized once a second
using NI-TimeSync [54] that supports PTP. Measurement devices are
connected via the dedicated Ethernet network. Implementation of the
IEEE 802.1AS includes a very specific profile of IEEE 1588 (PTP) (part
of IEEE 802.1 Time Sensitive Networking (TSN) standards) and uses
hardware timestamping and compensation both in network elements
and endpoints to minimize time synchronization errors. TSN generally
provides both synchronization and also small and deterministic packet
latency between testbed devices.

7.2.2. Clock specifications
The clock drift of the measurement nodes is 5 × 10−6, where each

node synchronizes every second via PTP with a precision of 1 μs to
the grandmaster. The worst-case clock time offset of each cRIO is
5 μs + 1 μs = 6 μs.
1 s
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Table 5
The specifications of monitoring devices.

Monitoring Setup DAQ card Clk Drift 𝑟𝑠𝑦𝑛𝑐 Sampling Rate ADC 𝑍𝑖𝑛 𝜖𝑡𝑜𝑡𝑎𝑙
cRIO-9067 NI-9381 5 PPM 1 Hz 10 kS/s 12 Bits 1 MΩ 106 μ𝑠
cRIO-9035 NI-9232 5 PPM 1 Hz 102.4 kS/s 24 Bits 305 kΩ 15.7 μs
c
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7.2.3. ADC and sampling time
Since the voltage range of digital module is from 0 V to 5 V and it

uses a 12-bit and 24-bit ADC for NI-9381 and 9232 respectively, the
ADC resolution 𝑉𝐴𝐷𝐶 can be calculated as 5−0

212 ≈ 1 mV and 5−0
224 ≈ 300

V in order. As Table 5 shows, the sampling rates for NI-9381 and NI-
232 modules are 20 and 102.4 kilo samples per second meaning the
ampling time is around 50 μs and 9.7 μs respectively. Based on the
alculated errors in clock and ADC, the total error cRIO setup is:
I-9381:

𝑡𝑜𝑡𝑎𝑙 = 6 μs + 100 μs = 106 μs

I-9232:

𝑡𝑜𝑡𝑎𝑙 = 6 μs + 9.7 μs = 15.7 μs

𝜖𝑡𝑜𝑡𝑎𝑙 is defined in Flying Paster specifications that is 100 μs (the
inimum tolerable uncertainty), the precision of NI-9381 is not enough

it is 106 μs) while NI-9232 (its precision is 15.7 μs) is good enough for
esting the applications (𝜀 > 𝜖𝑡𝑜𝑡𝑎𝑙).

.3. Providing on-way guarantee in run-time verification for breaker trip-
ing in power systems

In order to achieve optimum electrical distribution system protec-
ion in power systems, a set of rules are defined on when should a
reaker trip – in case of an overcurrent – so that only the closest
reaker to the fault trip. We also simulated the input signal of a breaker
o verify if it trips correctly according to the specified rule (IEEE 1547).
ne of the timing constraint states that the breaker should trip if the
uration at which the voltage is above 1.2 p.u. (per unit) is greater than
60 ms. The generated signals and monitoring system are simulated in
atlab.

.3.1. Specification in STL
This timing constraint can be written in STL as:

(□[0,0.16]𝑠(𝑡) > 1.2 ⟹ 𝑡𝑟𝑖𝑝)

ince this timing constraint does not include tolerance, its monitoring
ill not account for uncertainties in the measurement and therefore,
e can have false positive.

.3.2. Specification in TTL
The same timing constraint can be specified in TTL as:

(⟨𝑠(𝑡), 1.2,↗⟩, ⟨𝑠(𝑡), 1.2,↘⟩, 0.02) < 0.16

hich is specified based on two events, when the voltage becomes
reater than 1.2 p.u. and when it becomes less than 1.2 p.u. We
imulated a signal to showcase that existing monitoring approaches fail
o detect a timing violation when STL is used for specification while
ur approach can detect them. Fig. 11 shows two simulation scenarios
nd cases where the breaker shall trip. In the top rows, two arbitrary
ignals are generated where the frequency is increasing. The threshold
s a yellow dashed line drawn at 1.2 p.u. The second rows from top
how the actual time where the breaker shall trip, the third rows show
he monitoring without considering uncertainty and tolerance and the
ottom row show our monitoring approach. The red boxes highlight
ases where the breaker shall trip (according to the second row) but
ithout considering the uncertainty and tolerance, it is not detected as

hall trip (third row), while our approach successfully detects them as
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hall trip (bottom row). Blue boxes (one case in the left figure and three
ases in the right figure) highlight false negative cases where the it is
alsely detected as shall trip in our approach.

In these simulations, 𝛿 = 0.01𝑠 and 𝜀 = 0.02 s. We can see that
y considering the tolerance (𝜀) and uncertainty (𝛿), our approach can
etect all shall trip cases, however, the rate of False negative will be
igher than a monitoring system where uncertainty and tolerance are
ot accounted for. This acknowledges that our approach provides a
ne-way guarantee that other approaches do not.

.4. The impacts of having tolerance on the required resources in run-time
erification

After knowing the impact of considering tolerance on the monitor-
ng of safety temporal specifications, we studied its effects on required
rea in synthesizing on FPGA. Therefore, we implemented run-time
erification method, TMA, using three different precision models.

1. Tightly accurate implementation. We used the highest-precision
numbers for clock values, variables, constants, and operations.
For instance, the numbers are Extended precision, Long Inte-
ger, Double precision. Mathematical operations are compatible
with the numeric values. Hence, they are also in their highest
precision.

2. Moderately accurate implementation. We used the precision for
the numeric parameters based on the defined tolerance in the
TTL statements. For example, most of the timing constraints in
Section 7.1.3 has 10−4, some has 10−3, and the velocity of the
active roll should be at the target speed within 0.5% of tolerance.
Based on the tolerance value, we decreased the required memory
from the data types in Tightly Accurate version to integer and
fixed-point, and the corresponding operations also updated.

3. Loosely accurate implementation. We increased the tolerances
in Section 7.1.3 from 10−4 to 10−3, from 10−3 to 10−2, and the
tolerance of velocity to 2%. According to the modifications on
the tolerance, some timing specifications also has been changed.
For instance, the constraint for velocity has been changed to
8 m/s and time between Contact and Cut has been increased to
50 ms.

Based on the above scenarios, we implemented the monitoring
system for all timing requirements of flying paster on NI-cRIO 9067
and compared the required space in terms of the number of Flip-flops
and Lookup Tables.

As Fig. 12 demonstrates, changing the CPS requirements by design-
ers to have relaxed specifications (increasing the level of tolerance),
the needed space on FPGA board to monitor the timing constraints
is reduced. By defining the maximum tolerable uncertainty, the de-
velopers are able to reduce the required calculation resources. In this
experiment, we could reduce the required number of FFs and LUTs by
1.23% and 0.6%. This simplification for implementing the CPS itself is
also applicable since the designer develop real-time systems as precise
as possible while it is not needed based on the tolerable error.

7.5. Monitoring temporal properties of quadcopter

A multirotor helicopter, known as Quadrotor or Quadcopter, has
four rotors to lift and fly. In fact, a lift force is created by narrow-cord
horizontally rotating airfoils [55]. The quadcopter’s flight controller
sends information to the motors via their electronic speed control

circuits (ESC) information on thrust, RPM, (Revolutions Per Minute),
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Fig. 11. (Left) One false positive case is detected (red box) where the monitoring without considering the uncertainty and tolerance fail to detect it while our approach successfully
detect it. (Right) Three false negative cases are shown (blue boxes) where our approach detects it as shall trip. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Fig. 12. The percentages of occupied Flip-flops and LUTs for the Flying Paster
application on cRio device when the tolerance values are tightly, moderately and
loosely accurate selected.

and direction. The flight controller will also combine IMU, Gyro, and
GPS data before signaling to the quadcopter motors on thrust and
rotor speed. As Fig. 13.a depicts, there are four motors in a Quad
X (because it shapes an X). In order to implement a flight scenario,
it is required that some motors rotate Clockwise (CW) and the other
Counterclockwise (CCW). This way, the four propellers can generate
lift and thrust simultaneously. The rotation of the drone along the 𝑥-
axis is called roll, along the 𝑦-axis is called pitch, and along the 𝑧-axis
is called yaw (Fig. 13.b). To control the motion of the quadcopter,
we need to control the speed of each motor. For instance, the drone’s
left–right motion can be controlled by changing its roll. If the drone
needs to move towards left/right, the thrust on the right/left motors is
increased. Similarly, the drone’s front–back motion can be controlled
by changing the pitch and changing the thrust on the front or back
motors. Sometimes it is required to reverse the rotation of two or more
motors to have dynamic braking and prevent a crash [56]. Thanks to
brushless outrunner motors [57] which have more than enough power
to create reverse direction, we can do the reversion using hardware
equipment or software codes at the millisecond level. As the last case
study, we use a temporal property of a flying quadcopter to reverse
motors simultaneously considering 𝜀 as the acceptable error in which
all motors should be inverted within that duration. We have 4 signals
in this scenario: 𝜙𝑚1, 𝜙𝑚2, 𝜙𝑚3, and 𝜙𝑚4 are four signals showing that
motor1, motor2, motor3, and motor4 has been reversed in order.

To ensure that the vehicle works well in a dangerous situation, we
need to test all motors to see their responses in obstacle avoidance
algorithms. Hence, in the worst case, it is required to monitor 𝜙𝑚1 −
𝜙𝑚4 and see if they are roughly received at the same time (within
100 ms) [58].
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Fig. 13. Motor rotations, yaw, pitch, and roll in a quadcopter. (a) two motors should
rotate Clockwise (CW), and two Counterclockwise (CCW). (b) Changing thrust on some
motors changes roll, yaw, and pitch and finally moves the vehicle.

Table 6
The number of required Flip-Flops and Lookup Tables on FPGA
(PYNQ) using STL and TTL with considering tolerance.

#FF #LUTs

Specification in STL [60] 22415 28836
Specification in TTL 614 894

STL:

□((↑ 𝜙𝑚1 → ◊[0,100 ms) ↑ 𝜙𝑚2 ∧◊[0,100 ms) ↑ 𝜙𝑚3 ∧◊[0,100 ms) ↑ 𝜙𝑚4)

∨ (↑ 𝜙𝑚2 → ◊[0,100 ms) ↑ 𝜙𝑚1 ∧◊[0,100 ms) ↑ 𝜙𝑚3 ∧◊[0,100 ms) ↑ 𝜙𝑚4)

∨ (↑ 𝜙𝑚3 → ◊[0,100 ms) ↑ 𝜙𝑚1 ∧◊[0,100 ms) ↑ 𝜙𝑚2 ∧◊[0,100 ms) ↑ 𝜙𝑚4)

∨ (↑ 𝜙𝑚4 → ◊[0,100 ms) ↑ 𝜙𝑚1 ∧◊[0,100 ms) ↑ 𝜙𝑚2 ∧◊[0,100 ms) ↑ 𝜙𝑚3))

TTL:

(↑ 𝜙𝑚1, ↑ 𝜙𝑚2, ↑ 𝜙𝑚3, ↑ 𝜙𝑚4, 100 ms)

We implemented the monitoring system on FPGA, Xilinx PYNQ
board. PYNQ [59] is an open-source project from Xilinx that makes it
easy to design embedded systems with Zynq Systems on Chips (SoCs).
This framework enables embedded programmers to exploit the capabil-
ities of Xilinx Zynq. As a result, for the implementation, we consider
the size of Flip-Flops and LUTs in both methods. For implementing
specification in STL style we utilized the method proposed in [60,61]
for TTL. The observation is summarized in Table 6.

As Table 6 shows, the required resources to implement the TTL mon-
itoring algorithm on FPGA is less than implemented STL monitoring
algorithm. That is because, there are several STL temporal operators
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in this example, and also the available methods using STL need to
store the time interval for each statement. In this experiment, we
considered tolerance in STL as well as TTL, but since STL required more
operators for the same functionality, the implementation needs more
computation power and space on hardware.

8. Conclusion and future works

We proposed a formalism to consider the allowed tolerance by
designers. We represent the conditions to ensure a run-time verification
system is accurate enough to monitor a sort of timing specifications
for safety–critical applications. TTL provides the required proofs to
guarantee the accuracy of online monitoring process. In fact, by consid-
ering the maximum allowable error value, TTL can cover the existing
uncertainties in the environment and system itself. Moreover, since the
system/verification designers are aware of the tolerable error, they do
not need to implement the monitoring device as precise as possible. It
is enough the monitoring accuracy satisfies the constraints within their
tolerance values. This reduces the required space and electricity power
to synthesis run-time verification methods on hardware.
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