
A Methodology and Formalism to Handle Timing Uncertainties in Cyber-Physical
Systems

by

Mohammadreza Mehrabian

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved July 2021 by the
Graduate Supervisory Committee:

Aviral Shrivastava, Chair
Fengbo Ren

Hessam Sarjoughian
Patricia Derler

ARIZONA STATE UNIVERSITY

August 2021

ABSTRACT

Uncertainty is intrinsic in Cyber-Physical Systems since they interact with hu-

man and work with both analog and digital worlds. Since even minute deviation

from the real values can make catastrophe in safety critical application, considering

uncertainties in CPS behavior is essential.

On the other side, time is a foundational aspect of Cyber-Physical Systems (CPS).

Correct timing of system events is critical to optimize responsiveness to the environ-

ment, in terms of timeliness, accuracy, and precision in the knowledge, measurement,

prediction, and control of CPS behavior.

In order to design more resilient and reliable CPS, first and foremost, there should

be a way to specify the timing constraints that a constructed Cyber-Physical System

must meet with considering existing uncertainties. Only then, we can seek systematic

approaches to check if all timing constraints are being met, and develop correct-by-

construction methodologies. In this regard, Timestamp Temporal Logic (TTL) is

developed to specify the timing constraints on a distributed CPS. By TTL designers

can specify the timing requirements that a CPS must satisfy in a succinct and intuitive

manner and express the tolerable error as apart of language. The proposed deduction

system on TTL (TTL reasoning system) gives the ability to check the consistency

among expresses system specifications and simplify them to be implemented on FPGA

for run-time verification.

Regarding CPS run-time verification, Timestamp-based Monitoring Approach

(TMA) has been designed that can hook up to a CPS and take its timing specifi-

cations in TTL and verify if the timing constraints are being met with considering

the existing uncertainties in the system. TMA does not need to compute whether

the constraint is being met at each and every instance of time but it re-evaluates a

constraint only when there is an event that can affect the outcome. This enables

i

it to perform online timing monitoring of CPS for less computation and resources.

Furthermore, the minimum design parameters of the timing CPS that are required

to enable testing the timing of CPS are defined in this dissertation.

ii

To my family.

iii

ACKNOWLEDGMENTS

This dissertation was only made possible by the support and guidance of my advisor

Dr. Aviral Shrivastava who his guidance and dedication inspired me over the course

of my Ph.D. I would like to thank my committee members, Dr. Fengbo Ren, Dr.

Hessam Sarjoughian, and Dr. Patricia Derler for their insights and feedback on my

research.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 Contributions of This Thesis . 7

2 UNCERTAINTY MUST BE CONSIDERED IN CYBER-PHYSICAL

SYSTEMS . 9

2.1 Why Uncertainty Must be Considered in CPS . 9

2.2 Different Uncertainty Sources . 12

2.2.1 Knowledge uncertainty . 13

2.2.2 Natural Variability . 13

2.2.3 Decision Uncertainty . 14

2.3 How to Handle Uncertainty in CPS . 14

2.3.1 Conceptual Abstraction and Specification 15

2.3.2 Modeling, Simulation, and Verification. 16

2.3.3 Validation and Testing . 20

3 A FORMALISM FOR MONITORING TIMING SPECIFICATIONS OF

CPS WITH CONSIDERING TOLERANCE . 22

3.1 Signal Temporal Logic - STL . 23

3.1.1 The Drawbacks of STL Statements in Monitoring 24

3.1.2 A Solution to Eliminate the Impact of Measurement Error . . 27

3.2 Timestamp Temporal Logic - TTL . 29

3.2.1 The Event Representation in TTL . 30

3.2.2 TTL Syntax . 31

v

CHAPTER Page

3.2.3 TTL Semantics . 32

4 TTL REASONING SYSTEM . 43

4.1 Background . 44

4.1.1 Continuous-Time Signals . 44

4.1.2 Discrete-Time Signals . 45

4.1.3 Events on Signals . 45

4.2 TTL Arithmetic Axioms . 46

4.3 TTL Axioms and Logic Rules. 46

4.3.1 TTL Axioms: . 48

4.3.2 TTL Rules . 49

4.4 Natural Deduction for TTL. 52

4.4.1 Natural Deduction Reasoning on TTL statements 53

4.4.2 The TTL Reasoning Features . 54

5 TIMESTAMP-BASED MONITORING APPROACH TO MONITOR

TIMING SPECIFICATIONS OF CPS . 57

5.1 TMA Algorithms for Level-based Temporal Specifications 59

5.1.1 Globally Operator . 59

5.1.2 Eventually Operator . 59

5.1.3 Until Operator . 60

5.2 TMA Algorithms for Event-based Temporal Specifications 63

5.2.1 Latency Constraint . 64

5.2.2 Simultaneity Constraint . 65

5.2.3 Untimed Operators’ Computation Using Timestamps 65

5.3 Time Testing Methodology . 66

vi

CHAPTER Page

5.3.1 Methodology Steps . 67

5.3.2 Methodology Capabilities . 71

6 A METHOD TO QUALIFY TESTBEDS TO VERIFY TIMING BE-

HAVIOR OF CPS . 73

6.1 Distributed testbed to evaluate timing behavior of (distributed) CPS 73

6.2 Analog to Digital Converter (ADC) parameters 75

6.2.1 ADC Sampling Rate . 75

6.2.2 ADC Resolution . 76

6.3 Input Impedance . 76

6.4 Clock Parameters . 77

6.4.1 Clock Fractional Frequency Offset . 78

6.4.2 Clock Synchronization Rate. 79

6.5 Testbed Capability Analysis . 79

7 APPLICATIONS AND EMPIRICAL EVALUATIONS 82

7.1 Applications, Their Timing Specifications, and Modeling 82

7.1.1 Flying Paster Application . 82

7.1.2 Temporal Specifications of Flying Paster 84

7.2 Autonomous Intersection Manager (RIM) Application 85

7.3 Applying Reasoning System on two Applications 87

7.3.1 Power Grid Synchronization (Synchrophasor) 89

7.3.2 Simultaneous Image Capturing for 3D Reconstruction 93

7.3.3 Timing Specifications of Simultaneous Image Capturing 95

7.4 Applying TTL Reasoning System on Flying Paster and RIM 95

7.4.1 Consistency Checking of Temporal Specifications 95

vii

CHAPTER Page

7.4.2 Consistency Checking for Autonomous Intersection Scenario 97

7.4.3 Considering Measurement Errors for Accurate Monitoring . . 99

7.4.4 Simplifying the Monitoring Logic . 102

7.4.5 Reasoning about Unobservable Events . 106

7.5 Using TMA for Run-time Monitoring of Simultaneous Image Cap-

turing and Synchrophasor Applications . 107

7.5.1 Monitoring Flying Paster Using TMA . 107

7.5.2 Monitoring Synchrophasor Using TMA . 112

7.5.3 Monitoring Simultaneous Image Capturing Using TMA 113

7.6 Using Timestamp-based Monitoring Approach (TMA) to Monitor

Temporal Behavior of Globally and Flying Paster Application 114

7.6.1 Efficiency of TMA in Implementing a Single Operator 115

7.7 The Satisfaction of the Testbed Requirements . 115

7.7.1 NI-cRIO Setup . 116

7.7.2 ZYNQ 7000 Setup . 118

7.7.3 Testbed Capability Analysis . 119

REFERENCES . 120

APPENDIX

A UNCERTAINTY ANALYSIS . 126

B THE PROOF FOR TMA ALGORITHMS AND TTL RULES 131

viii

LIST OF TABLES

Table Page

2.1 Different Types of Uncertainties. 10

3.1 Satisfaction Relations and Language Semantics . 41

4.1 TTL Arithmetic Axioms. 47

4.2 The Introduction and Elimination Rules for TTL Timing Specifications. 49

5.1 The Rules to Create a Parse Tree from a TTL Statement 68

7.1 Seven Scenarios in Flying Paster to See the Effect of Measurement

Error in the Calculation. 101

7.2 The Number of Required Lookup Tables and Flip-flops for Implement-

ing Monitoring Tool on Zynq 7000. 106

7.3 Six Different Scenarios for Flying Paster Application. 110

7.4 Memory Requirement on FPGA for Globally Operator. 115

7.5 The Specifications of Monitoring Devices . 116

7.6 The Specifications of Monitored CPS Applications. 117

ix

LIST OF FIGURES

Figure Page

2.1 RSS Rules for Three Cases, i) Longitudinal Distance, ii) Lateral Dis-

tance, and iii) Merging Roads. 11

2.2 One Possible Classification for Uncertainty. Knowledge Uncertainty,

Natural Variability, and Decision Uncertainty Are Three Major Sets

for Explaining Uncertainties in CPS. 15

3.1 The Time Deference between Two Events Generated by Threshold

Crossing. 24

3.2 The problem with monitoring STL timing statements. 26

3.3 Maximum Time Measurement Error in Signal Transitions Is δ. 28

3.4 The Process to Events from Analog Signals by Threshold Crossing. . . . 31

3.5 The Effect of Tolerance in Latency and Simultaneity Calculations. 37

5.1 a) Generating a Boolean Signal from Analog Signal, b) Calculating

Until Operator in TMA. 58

5.2 FSM to Implement an Until Operator. 62

5.3 a) Calculating of Latency Constraint, b) Calculating AND Gate Using

Timestamps. 64

5.4 a) Calculation of Simultaneity Constraint b) The Timed-automata to

Calculate Simultaneity Constraint. 65

5.5 The FSM for Calculating AND Gate Using Timestamps. 66

5.6 Generated Parse Tree for a TTL Statement. 69

5.7 TTL Computing Blocks According to the Parse Tree in Figure 5.6. . . . 71

6.1 Time Testing Structure Diagram. 75

6.2 A Digitized Analog Signal at Two Different Sampling Rates. 76

x

Figure Page

6.3 An Analog Signal Sampled Using Two Different ADCs That Have the

same range and different resolutions. 77

6.4 Voltage Drop on Different Signals Connected to a Resistive Load. 78

6.5 Worst-case Error between Actual Occurrence Time and Detection Time

for an ADC with Sampling Frequency fs. 80

7.1 The Schematic of Flying Paster and its Modeling Implementation. 84

7.2 Robust Intersection Manager (RIM) Algorithm. 86

7.3 Autonomous Intersection Manager Using Traxxas Cars. 87

7.4 RSS Longitudinal Distance Rule and the Relations between the Events. 87

7.5 The Schematic of Controlling Two DC Motors to Rotate in the Same

Phase. 90

7.6 Modeling the Synchrophasor Using Two DC Mtors. 91

7.7 Two ArduCAM Taking Simultaneous Images of a Moving Soccer Ball. 94

7.8 The Schematic of Monitoring Simultaneous Image Capturing. 95

7.9 Latency Measurement between Contact and Cut When the Velocity of

Active Roll Is Increased. Latency Measurement between Contact and

Cut. w Is the Error Value between Actual Velocity and the Calculated

by the Reasoning System with Considering Measurement Errors. E

Demonstrates the Error Value When We Do not Consider the Mea-

surement Errors. Ignoring the Measurement Error Can Result in an

Incorrect Evaluation of the Timing Constraint and Cause a Failure. . . 102

7.10 Comparison of FF and LUT Numbers in 3 Implemented Methods. 111

7.11 #FFs Utilization in Three Methods in Different Six Scenarios in Table 7.3112

7.12 Acquired Results from Oscilloscope for the Synchrophasor. 113

xi

Figure Page

7.13 The Results for Image Capturing Acquired from Oscilloscope. a) Im-

ages Are Taken Simultaneously. b) The Delay between the Time That

the Images Are Taken Is Less Than 0.2 s. 114

A.1 PDF of a Gaussian distribution (continuous) and (discrete) 130

xii

Chapter 1

INTRODUCTION

Cyber-Physical Systems (CPS) integrate physical and computational worlds to

form smart, coordinated, efficient and responsive infrastructures. Deploying CPS

that increase the efficiency in sectors of health, energy, aviation and freight rail by

1% will save $186 billion in the U.S. over a 15 year period.

Time is a fundamental concept in CPS which allows the integration of discrete

(cyber) and continuous (physical) domains [Shrivastava et al., 2017]. CPS use sen-

sors whose data are often time-tagged for efficient data fusion and knowledge of when

the measurement was taken. Computing, communication and control commands in

dynamic real-time systems need to be executed within a specified latency [Mehrabian

et al., 2012]. Correct and robust orchestration of different tasks and/or distributed

parts requires correct temporal behavior within and among CPS components. Cur-

rent and future CPS systems such as health-care monitoring and active control de-

vices, intelligent transportation, and electrical power systems are a few safety-critical

examples requiring synchronization and latency controls.

In order to be confident about the behavior of a built or designed CPS, their

timing behavior must be tested and verified. Prior to performing testing of temporal

behavior, timing constraints must be expressed in a formal language. That enables

robust analysis of constraint satisfiability and consistency. The formal expression

enables the application developer to explicitly specify timing requirements in the

design phase and provide the basis to automate the generation of application and

associated test code to enable a more systematic, rigorous, and iterative verification

process of the SUT (System Under Test).

1

Temporal logic provides the formalism to define time specifications, where evalu-

ation of constraint satisfiability is based on reasoning about the propositions. There

are several types of temporal logic which reason about variables on a discrete or

continuous time domain. LTL (Linear Temporal Logic) [Bolotov et al., 2006] is de-

fined for sequences of boolean predicates, MTL (Metric Temporal Logic) [Koymans,

1990a] is expressed on real-valued signals in discrete time and STL (Signal Temporal

Logic) [Maler and Ničković, 2013a] is utilized for specifying timing constraints on

real-valued signals over continuous time and more suitable for CPS.

Event-based timing constraints can be expressed in STL by using the Rise and

Fall operators [Maler and Ničković, 2013a]. However, STL statements can become

quite complicated, difficult to understand, and therefore, error prone. Since timing

constraints are specified and written manually by humans, they should be readable

and intuitive, to bridge specification at the programming language level with syn-

thesis and validation during application compilation and verification on hardware

platforms. In particular, using STL expressions to specify simple latency constraints

among events become complicated, as they must be expressed in a nested manner.

Furthermore, expressing the acceptable tolerance of the timing constraints make the

constraint expressions more complicated.

The other parameter that should be considered in expressing the CPS temporal

behavior is expressing tolerable error (i.e., Tolerance) existing in the measurement

equipment in CPS manufacturing. Expressing tolerance is crucial to develop the

right implementation of CPS and verifying their specifications since it represents the

level of required precision in CPS. Tolerance values express how much degradation

is acceptable for a timing specification and allows developers to know the minimum

specification of a measurement system that must be used to validate the specifica-

tion. In the absence of tolerance, specifications might be un-testable. For example,

2

saying that an event must happen at 4 : 00 p.m. is vague and infeasible to test. This

is because checking whether the event happened at exactly 4 : 00pm may take un-

bounded time. Instead, the specification should be that a certain event must happen

at 4 : 00 p.m.± 1 minute.

On the other side, since CPS are generally surrounded by a chaotic environment

and they interacting with an analog world while their computation and network sys-

tem are in the digital world, their behavior might be uncertain and this might impact

the implemented safety requirements. In most CPS, having uncertain values is intrin-

sic and the developers struggle with imprecise measured values at all levels of design,

modeling, simulation, verification, and validation.

Uncertainty comes from inadequate information, incorrect assumptions, erroneous

data, and/or variability of natural processes. Or, the relationship among system’s

user, adaptation logic, and business logic might be loosely coupled. Since the uncer-

tain values directly affect the behavior of systems, the developers should deal with

them as a real challenge to guarantee that their product meet its expected timing

behavior [Shrivastava et al., 2017, Chipman et al., 2015, Ma et al., 2019]. The un-

certainties have a variety of sources. Drifts in measured values, aging of the physical

devices, noise, and sporadic failures are some examples of the sources for the deviation.

Moreover, the cyber part of the CPS discretizes continuous signals that are sampled

from the physical world and this process always adds an inevitable quantization error.

The timing and the nature of inputs, the system state, and physical environment

are some examples of the uncertainty sources in CPS that can be divided into two

major categories for uncertainties, i) uncertainty in timings, ii) uncertainty in values.

In order to develop the right verification/monitoring for a system, the effects of un-

certainty on the system specification/operation should be considered [Zhang et al.,

2016a] in both directions. Indeed, ignoring even minute uncertainty values, especially

3

in the system’s timings, might put vast deviations on the system behavior and affect

the system’s safety especially in time-sensitive safety-critical applications [Radojicic

et al., 2017a, Lee, 2008, Zhang et al., 2016b]. Some real catastrophic events like

the crash of LH2904 aircraft [Ladkin, 1994], Patriot Missile crash [US GAO, 1992]

and Nissan’s airbag issue [Charette, 2014] demonstrate that deviations in measured

parameters or deflection in actuation can cause failure in a system. Although some

works have been done for value uncertainty under Temporal Logic Robustness domain

(e.g., robustness on MTL [Annpureddy et al., 2011] and/or STL [Annpureddy et al.,

2011]), considering timing uncertainties in run-time verification is a serious need.

This work focuses on temporal monitoring of Cyber-Physical Systems with con-

sidering tolerance as a part of high-level specification and uncertainty in low-level

implementation. Therefore, in chapter 2 the source of uncertainties and the way to

handle them in different steps of CPS developments are introduced.

Timestamp Temporal Logic (TTL) [Mehrabian and other, 2017] is a temporal

logic language expresses the timing constraints among a set of events with having the

ability to have time tolerance value as a part of language. It is a formalism for express-

ing temporal specifications of CPS that receives the events on signals and evaluate

the timing specifications by doing the calculations on the event’s timestamps. TTL

proposes 5 event-based temporal operators for expressing the timing specifications of

CPS and consider a room in each operator to add the maximum tolerable error in

evaluating the timing predicates.

Indeed, CPS struggle with a sort of uncertainties while the measurement in cy-

ber side also is not free of errors. One solution for such erroneous environment is

considering the measurement uncertainty in the calculation. Therefore, it is bene-

ficial if the value of uncertainty comes to the formalism and has its own required

role in calculation while the temporal logic statement is evaluated. By adding the

4

uncertainty to the evaluation of TTL predicates, the system designers develop a re-

alistic system descriptions where the monitoring developers are able to monitor the

same specifications with considering the same existing uncertainties. In addition to

considering the measurement uncertainty in the logical predicates, TTL reduces the

number of temporal operators and consequently diminishes the required space cir-

cuit for run-time monitoring. The events are expressed as direct single predicates

using threshold crossing of the signals and it is not needed to generate the event

using the STL operators that causes the statements long and hard to read and im-

plement. Furthermore, a methodology comes along with TTL formalism making the

process of monitoring more systematic especially for nested and complicated tempo-

ral statements. The proposed methodology, introduced in chapter 3, gets joined and

nested temporal statements, parses them in a parsing graph, make the corresponding

block diagram and finally, implement each block in TMA. The methodology manages

the input/outputs of the blocks to produce the right verdict for the input temporal

statements.

Developing the monitoring approach to verify the CPS temporal specifications can

be more systematic and efficient. It is shown in chapter 4 that each TTL operator can

be translated into mathematical predicate using the Mathematical Logic formalism.

As a result, it becomes possible to examine a set of TTL statement by converting

them into mathematical predicates. By hiring the rules in Mathematical Logic, a

developer is able to do some extra operations on the predicates. Therefore, in some

cases the possibility of inconsistency between the statements can be checked or it is

possible to combine several TTL statements to archive a higher degree of efficiency

for the size of the monitoring circuit in online method. Such capabilities become

practical if we define the required axiom and logical rules for each TTL operator.

Using the traditional natural deduction model is the key to define the rules and the

5

way to deduce new statements from some TTL hypothesises and predicates. The

benefit of the natural deduction on TTL is having the ability to take both user-

defined tolerance as well as system uncertainties into account when new statements

are deduced. Chapter 4 summarizes the axioms and proposes the rules and the style

of proof in reasoning process for TTL.

As an efficient monitoring technique, Timestamp-based Monitoring Approach

(TMA) is presented in the next part. TMA utilizes timestamps of changing val-

ues on signals to evaluate the required temporal specifications in CPS. TMA is able

to monitor the generic temporal operators of STL (i.e. Globally, Eventually, and

Until) using the timestamps of the transitions from ⊥ to > and vice versa. This

technique, presented in chapter 5, stores just last two timestamps of events on sig-

nals and by running its algorithms can return the right verdict about satisfactory of

a timing constraint with its specified time tolerance and existing uncertainty in the

measurement system. The proposed method has the capability to be implemented

for either online and offline monitoring of CPS. In online monitoring, the required

space on an FPGA board is constant and not related to the horizon of the temporal

operator. In fact, TMA forms a Timed Automaton for each operand and implement

the generated automota on FPGA.

Considering user-defined tolerance value and existing measurement uncertainties

in converting the continuous world (Physical) to discrete (cyber) has another benefit

by which the suitable equipment for monitoring can be chosen. Indeed, an arbitrary

monitoring device does not necessarily have enough precision for run-time monitoring

of a specific CPS. The data acquisition modules, the frequency of the equipment’s

clock, the synchronization frequency and its maximum drift in distributed systems,

the resolution of the Analog to Digital converters and the other parameters affecting

the system timing should be considered and pass a certain minimum qualification

6

exam. Therefore, by expressing the CPS timing constraints in TTL where the oper-

ators contain the maximum acceptable and accumulated errors as ε, the developers

determine the minimum requirements for the monitoring equipment. Therefore, if the

maximum error in the measurement part of monitoring equipment is small enough

comparing with ε it is qualified for the run-time verification of that specific CPS.

Regarding this capability of TTL, a set of time-related parameters are defined in

chapter 6 to standardize the monitoring equipment. By measuring those parameters,

the maximum timing error for the monitoring device can be calculated and therefore,

its ability to monitor a certain CPS is examined.

Finally, in chapter 7 four time-sensitive CPS applications are introduced. In this

chapter, the effectiveness of the proposed methods on real applications are examined.

1.1 Contributions of This Thesis

The contributions of this thesis can be summarized as blow:

• A temporal logic formalism, Timestamp Temporal Logic (TTL) is presented

that it helps to have a more efficient and accurate monitoring. TTL provides

the required potential to have efficient monitoring process by proposing succinct

and intuitive temporal operators. By TTL, it is possible to have precise and

accurate run-time verification process since it considers the user-defined time

tolerance and as a part of the language and takes measurement errors into

account as uncertainties in evaluations of temporal expressions.

• A reasoning system by applying natural deduction proof approach on mathe-

matical logic is proposed to prepare the logical statements for monitoring and/or

reduce the number of predicates. By doing the consistency check and combining

the logical statements, the run-time verification will be more meaningful and

testing developers can provide a shrunk circuit for FPGA. Moreover, the pro-

7

posed axiom and rules consider tolerance and uncertainties in all mathematical

calculations.

• An efficient online monitoring method is presented that implements the run-time

verification of CPS temporal specifications efficiently in terms of the required

area of FPGA. TMA does not need to store the value of signals based on their

related interval and just do the calculations based on very last timestamps.

Moreover, since TMA utilizes TTL, it is able to do the right monitoring be-

cause TTL-based calculations have the required parameters for tolerances and

uncertainties.

• In order to qualify a testbed to monitor temporal specifications of CPS, the

parameters having significant impacts on the precision of testbed in measuring

time are introduced (i.e., some metrics are proposed). By knowing the maximum

allowed tolerable error in TTL statement, the accurate-enough equipment based

on proposed metrics are chosen for run-time verification. Therefore, the way

to calculate the total error and how it can be covered in TTL statements are

studied.

• Four different time-sensitive applications have been implemented. Their proper

functionalities have been examined by TMA and the TTL methodology/reasoning

where the precision of the testbeds determined by the proposed standard.

8

Chapter 2

UNCERTAINTY MUST BE CONSIDERED IN CYBER-PHYSICAL SYSTEMS

Outcomes or events that cannot be predicted with certainty are often called risky

or uncertain values. In fact, there is a distinct difference between Uncertainty and

Risk. Risk describes situation for which probabilities are available and the result

has a negative effect. It is used to describe the likelihood of various events, the

system state and/or outputs. When the ranges of possible events are known and

their probabilities are measurable, risk is called objective risk. If the probabilities

are based solely on human judgement, the risk is called subjective risk. On the other

side, if the probabilities of a set of events/outputs/states cannot be quantified or the

occurrence of events are unpredictable, the problem is a sort of uncertainty and not

risk.

2.1 Why Uncertainty Must be Considered in CPS

It could be said that the presence of uncertainty is the only thing that is cer-

tain in a Cyber Physical Systems (CPS). Uncertainty in information is inherent in

future oriented planning efforts. It comes from inadequate information and incorrect

assumptions, as well as from the variability of natural processes.

Sensors have noise so even if they sit next to each other the sampled values may

not be the same. One can see that it is not a single source that causes uncertainty

in CPS, rather it is many different sources of uncertainty sometimes compounding

each other [Esfahani and Malek, 2013, van de Lindt et al., 2018]. The source of

uncertainties are summarized in Table 2.1. In fact, the table demonstrates different

sources fro uncertainty and their impacts on CPS operation with giving an example

9

Table 2.1: Different Types of Uncertainties.
Uncertainty Definition Impact on CPS Example in CAV’s domain KU a NV b DU c

Physical Process
Uncertainty in the characteristics of

a physical process.
Malfunctioning about the delivered service.

Miscalculation for expansion of metal in different

temperatures in a wheel’s shaft which causes wrong steering.

Sensor (Measurement)
Measuring quantitative values with

the presence of disturbances (noises).
Problems with understanding the environment.

The noises at the frequency of ultrasonic sensor that causes

side accidents.

Actuator
Problems in delivering the right

services at the right time.
Malfunctioning about the delivered service. Failing to active brake system in-time.

Effector
Uncertainty about the future state

of a robot.
Impacts the coordinated operations.

Wrong path planning when a CAV approaches a merging

point.

Controller
Uncertainty in behavior, execution

time, and context of a controller.
Malfunctioning about the delivered service.

Failing to achieve supposed velocity in an interval that

increases the chance of collision.

Instrumental
Uncertainties caused by

instrumentation among different parts.
Malfunctioning about the delivered service.

The connectivity among electrical parts changes the voltage

of the connected wires.

Network
Lack of information about network

at run-time.
Impacts the coordinated operations.

late package for Intersection Manager or the other CAVs

causes late decision in one CAV and increases the chance

of collision.

Time
Lack of information about the occurrence

of event or duration of an activity.
Malfunctioning about the delivered service.

The late/soon event generation causes late/soon actuation

(e.g., in braking system) and increases the chance of collision.

aKnowledge Uncertainty

bNatural Valriability

cDecision Uncertainty

in Connected Autonomous Vehicle’s domain. If these sources of uncertain are not

dealt with small errors can eventually compound into very significant errors. In

fields like automation, manufacturing, and autonomous vehicles not dealing with this

uncertainty correctly can be catastrophic even resulting in death.

CPS systems are automated and therefore uncertainty must be taken into account

when programming them or it will not be dealt with. In order to deal with the error,

one must first understand it. To that end there is a significant amount of work in

classifying and modeling uncertainty. These methods range from extensive testing

such as hardware in the loop (HiL) to software modeling using simulation. In the end

the goal is the same, understand and quantify uncertainty so that it can be dealt with

in all the situations the CPS will encounter [Esfahani and Malek, 2013]. Sometime

this is still not possible and the system must be set up to gracefully degrade (fail)

in a situation that it cannot understand. Uncertainty is inevitable, however through

correct classification, modeling, and creation of methods to deal with it the risks can

be mitigated.

In order to see the impact of uncertainties on the CPS operation, an example is

10

given here in the domain of autonomous vehicles. The Responsibility-Sensitive Safety

(RSS) [Shalev-Shwartz et al., 2017, Khayatian et al., 2021] provides a framework

to determine the safe distance (with considering the worst-case scenarios) to avoid

accidents on the roads. The method proposes a set of rules to avoid collisions and

in a case of accident, it has a certain methodology to put the blame on the agent

which could not follow the rules. Figure 2.1 depicts three possible scenarios. There

are longitudinal distance between the blue (Cf) and green (Cr) cars, lateral distance

between the green (C1) and red (C2) cars, and a merging situation between the red

(Cm) and yellow (Cj) cars. For longitudinal case if the longitudinal distance becomes

less than dlongmin , Cr should react in time. Similarly, in the lateral case if the lateral

distance becomes less than dlatmin both C1 and C2 should react in-time. In the last

case where Cj approaches the merging point, the closest vehicle to the merging point

has the right of the road (min(dm, dj)) and the second vehicle just maintains its

longitudinal distance to it (dlongmin).

𝑑𝑚𝑖𝑛
𝑙𝑜𝑛𝑔

merging
point

𝑑𝑚𝑖𝑛
𝑙𝑎𝑡

𝐶𝑟/𝐶1

𝐶𝑗

𝑣𝑟

𝑎max,𝑎𝑐𝑐
𝑙𝑜𝑛𝑔

𝑎min,𝑑𝑒𝑐
𝑙𝑜𝑛𝑔

𝑣𝑓

𝑎max,𝑑𝑒𝑐
𝑙𝑜𝑛𝑔

𝐶𝑟

𝐶𝑓

𝐶2/𝐶𝑚

𝐶1

𝐶𝑓

𝐶2

𝐶𝑚

𝜇

𝑣2
𝑙𝑎𝑡

𝑎𝑚𝑖𝑛,𝑏𝑟𝑎𝑘𝑒
𝑙𝑎𝑡

𝑣𝑚
𝑙𝑜𝑛𝑔

𝑎min,𝑑𝑒𝑐
𝑙𝑜𝑛𝑔

𝑎max,𝑎𝑐𝑐
𝑙𝑜𝑛𝑔

𝑣1
𝑙𝑎𝑡

𝑎max,𝑎𝑐𝑐
𝑙𝑎𝑡

𝑎min,𝑑𝑒𝑐
𝑙𝑎𝑡

𝜇

𝑑𝑚
𝑑𝑗

Figure 2.1: RSS Rules for Three Cases, i) Longitudinal Distance, ii) Lateral Dis-
tance, and iii) Merging Roads.

11

For instance, the equation below shows the way to calculate dlongmin for Cf and Cr:

dlongmin =
(
vrρ+

1

2
alongmax,accρ

2 +
(vr + ρalongmax,acc)

2

2alongmin,dec

−
v2f

2alongmax,dec

)
(2.1)

where vr and vf are velocities of the rear and front vehicles, alongmax,acc is the maximum

acceleration rate and, alongmin,dec and alongmax,dec are the minimum and maximum deceler-

ation rates respectively. As a fact, the measured parameters in the field at run-time

are vr, vf , and ρ while the other parameters (e.g. alongmax,acc, a
long
min,dec, and alongmax,dec)

are specific and predefined for each vehicle. In order to show the impact of existing

uncertainties on the safety of such a system, we can do the calculation in two different

fashions: i) without considering and ii) with considering uncertainties in measured

values. Hence, the equation 2.1 is used for the former case and for the latter case it

should be changed a little bit with considering the three following parameters: vr, vf ,

and ρ where they are replaced with v′r, v
′
f , and ρ′ as v′r = vr ±∆vr, v

′
f = vf ±∆vf ,

and ρ′ = ρ±∆ρ.

The above formulas show that each parameter does not have an exact value, but

in a range. Therefore, if we measure them as vr, vf = 20.0m/s and ρ = 1.0s, and

∆vr,∆vf = 1m/s, and ∆ρ = 0.2s they can be 19.0 ≤ vr, vf ≤ 21.0, and 0.8 ≤ ρ ≤ 1.2.

If we substitute the exact values in equation 2.1, the calculated dlongmin = 210m. On the

other side, with considering the ranges and assuming the possible worst-case scenario,

the new minimum longitudinal distance is d′longmin = 60m. Obviously, having such big

differences between real values and calculated ones puts the entire system in an unsafe

situation.

2.2 Different Uncertainty Sources

A CPS at it heart is a digital device interacting with the physical world and

this interaction is the source of the uncertainty. Sensors, actuators, communication,

12

timing, temperature fluctuations, operating systems, hardware faults, software faults,

vibration, clock skew, and far more than can be listed here are sources of uncertainty.

In this section, the different types of uncertainties, their sources, and impacts on CPS

operation by which developers get the abilities to to handle existing uncertainties

during their design and verification/validation processes are introduced.

2.2.1 Knowledge uncertainty

The lack of knowledge where it is not possible to exactly describe the current state,

a future result, or more than one possible outcome [Cailliau and Van Lamsweerde,

2015]. As Figure 2.2 depicts knowledge uncertainty includes parameter value uncer-

tainties and model structure where they are about the uncertainty in system param-

eters and its model.

Epistemic uncertainty

Epistemic uncertainty potentially comes from the lack of knowledge when we model a

system. Unlike Aleatory Uncertainty 1 , Epistemic uncertainty is reducible. Since it is

caused by a lack of information, it can be resolved by gathering complete information

for related models. There are some mathematical solutions that can be used to model

epistemic uncertainty, such as Bayesian estimation [Oberkampf et al., 2002].

2.2.2 Natural Variability

The time-series values usually shows the historical conditions including droughts

and wet periods [Ghanem and Wojtkiewicz, 2004], and they are often actual, or at

least based on, historical data. One thing that is clear about natural uncertainty

is that natural variability cannot be reduced by improving the model’s structures,

1That is explained in the next section

13

better calibration of model parameters, or even increasing the resolution of simula-

tions [Ciffroy and Benedetti, 2018, Ciffroy, 2020].

Aleatory uncertainty

Aleatory uncertainty is the inherent uncertainty introduced by the physical part of

a system [Oberkampf et al., 2002] and is a kind of natural variability. This type of

uncertainty cannot be reduced since it exists in all variables from a physical environ-

ment. This is an impact of natural variability and hence, parameters can be typically

modelled as a probability distribution.

2.2.3 Decision Uncertainty

Uncertainty in system modelling can result from unanticipated changes in mod-

elled systems. The changes can include deviations in nature, defined human objec-

tives/activities/interests, demands and their impacts [Davis and Hall, 2003]. Com-

paring field data with modelled data in the calibration process can yield incorrect

calibrations if operating policies actually implemented in the manufactured system

differ significantly from those built in models. For instance, it is needed to know what

operators react in presence of stress and the response to this question helps to realize

uncertainties of an operator.

Based on the definitions for different types of uncertainties, each of listed uncer-

tainty types in Table 2.1 can be categorized in one category.

2.3 How to Handle Uncertainty in CPS

Providing the right behavior for CPS is challenging and there are a lot of ap-

proaches to make them correctly according their required specifications. One solution

is bottom-up approach where deliver precision timings and functionalities. However,

14

Uncertainty

Knowledge
Uncertainty

Natural
Variability

Decision
Uncertainty

Model Uncertainty Spatial Variability

Goals Objectives

Epistemic
Uncertainty

Aleatory uncertainty

Values Preferences

Parameter
Uncertainty

Temporal Variability

Figure 2.2: One Possible Classification for Uncertainty. Knowledge Uncertainty,
Natural Variability, and Decision Uncertainty Are Three Major Sets for Explaining
Uncertainties in CPS.

it leaves some questions unanswered about the software for the design the program-

ming languages, and the methodologies to make them correctly [Edwards and Lee,

2007]. On the other side, top-down techniques need model-based design where pro-

grams are replaced by modules representing system behaviors of interest [Sztipanovits

and Karsai, 1997]. Finally, the software comes from the modules. The attractive

part of model-based approach is its rich possibilities for interfacing specifications and

compositions. This section talks about the levels of developing CPS, containing i)

Expressing System Specifications, ii) Modeling and Simulation, and iii) System Vali-

dation, in Model-based approach and the requirements that are needed in each level

for verification and validation.

2.3.1 Conceptual Abstraction and Specification

Conceptual abstraction is responsible for providing the design-characteristic facets

of CPS regarding hierarchy parameters and system modularity [Hehenberger et al.,

2016]. CPS designers start this phase with a definition of a system as an abstract rep-

resentation and they decide what system aspects (structures or behaviors) of systems

to be included and what others to be not included. One example of conceptual model

15

is the Apollo’s architecture model in [Git, 2021] where the software view shows the

conceptual position of each module in a CAV and the rational relationships among

all high-level modules 2 . In the conceptual design the uncertain parameters should

be defined.

2.3.2 Modeling, Simulation, and Verification

As a part of CPS implementation, system modeling comprises a set-up of cross-

multidiscipline models to determine the functional properties and system’s param-

eters. In the simulation and verification are two more steps to run a mimic of the

system in modeling software such as MATLAB. In all three processes we need to

consider uncertainties.

System Modeling

The target of having system modelling phase is to propose a cross-multidiscipline

model to determine the required functional, temporal, and system parameters. In

this area, there are major three concerns; i) how to model different components from

different disciplines, ii) how to model the interface between each pair of components,

and iii) how to integrate modelled components [Hehenberger et al., 2016]. If one

needs to cover uncertainties not just for modeling but also for verification, s/he has

to conduct systematic approach to cover all those three steps. In deed, modeling

CPS requires considering various aspects of CPS such as cyber and physical parts,

dynamic behavior, involved both functional non-functional properties. To consider

these requirements, several researchers have used and proposed some modeling lan-

guages. In the modeling scope, the uncertainty sources, the quantization techniques

and the integration of different uncertain values should be defined carefully (some

2The modules are Perception, Prediction, Planning, Localization, Control, etc.

16

examples for quantification methods are in Appendix A).

Additionally, one can consider uncertainties in perspective of timed-automata. To

be specific, uncertainty will be in parameters (variables) when CPS consists of a single

state (in real-world, a state is a process). For example, when calculating R.S.S. rule’s

safety distance, driver’s response time may differ by vehicle. On the other side, uncer-

tainty will be in not only parameters but also in states and transitions if CPS consists

of multiple states (processes) and transitions. For instance, even though the rear car,

in longitudinal distance scenario, decided to brake to maintain safety distance, the

vehicle might fail to decelerate because of malfunctioning. This means transitions

among states might be non-deterministic so that there are multiple states and tran-

sitions for specific state and each transition follows probability. Furthermore, since

the verification process definitely requires a literature of temporal logic, uncertainties

have to be expressed in this way combined with target CPS.

Therefore, in this stage of designing, we should consider uncertainty in the follow-

ing domains:

• Uncertainty in parameter: Parameters can be exact, arbitrarily fixed, stochas-

tic (samples provided), or even uncertain (no sample).

• Uncertainty in state: State can be constant (discrete state) or changing every

moment (continuous state). Unknown state can also exist.

• Uncertainty in transition: Transition can be deterministic or non-deterministic

(transition follows probability). Unknown transition can also exist.

System Simulation

Simulation of a system provides a virtual environment supporting development, test-

ing, and analyzing CPS regarding the designer’s modeling and specifications. The sim-

17

ulation of CPS generally comprises creation and simulation of hybrid models contain-

ing multiple levels of abstraction along with combining different formalisms [Mustafiz

et al., 2016]. The literature proposed different types of simulation as below:

• Continuous, the model is formulated as a sort of differential equations;

• Discrete event, the model involves objects and the relationships among objects;

• Hybrid, an analytical submodel within a discrete event model;

• Monte Carlo, the stochastic process to solve deterministic problems;

while in the CPS domain we mostly need the hybrid simulation [Tolk et al., 2018]

and uncertainty-wise simulation should be a part of analyzing. The example for RSS

domain is having the Ordinary Differential Equation (ODE) to control the velocity

(continuous domain) in rear vehicle and the braking system to keep the safe distance

to the front car (discrete domain). In both system, we should consider uncertainties.

Over-approximation, Shanon expansion, and Affine Arithmetic Decision Diagrams

(AADD) [Radojicic et al., 2017b], are some examples for simulation to consider un-

certainties in hybrid systems.

Verification

In the context of interacting systems, software and/or hardware systems, the formal-

ism Temporal Logic is commonly used to specify the timing requirements of CPS and

utilized in both sides of system design and verification. The temporal logic languages

like LTL (Linear Temporal Logic) [Pnueli, 1977], MTL (Metric Temporal Logic) [Koy-

mans, 1990b], STL (Signal Temporal Logic) [Maler and Ničković, 2013b] can specify

the system behavior containing the sequences of states and/or events, or the output

values. Such specifications can be translated into monitoring programs which observe

18

the system operation and verify the required specifications. In order to have the right

implementation for CPS and its verification process, we need to take uncertainties

into account with following point of views.

-Property formalization should express Tolerance:

In the domain of properties for temporal constraints, one of the challenges of exist-

ing temporal logics, as languages to express the CPS’s properties, is that they do

not specify the tolerance with which a timing constraint must be met. In absence

of tolerance, we must assume that the temporal logic formalisms express the timing

constraints with infinite precision. For instance, in developing seat belt and airbag

in a vehicle, once the vehicle hits an obstacle, the time between releasing the seat

belt and opening airbags should not be less or more than a special value (e.g. 30

ms) to save the passenger from internal organ injury. The expression in English

is “after a rapid deceleration, the time between seat belt pretensioner

(event A that happens before), and airbag deployment (event B) should be

30 ms. However, since time is a continuous variable, it is impossible for the delay

between the two events to be exactly 30ms. A time-sensitive application cannot be

implemented, designed or tested with infinite precision. In this example, it is not

clear that if the delay is 30.00001 is acceptable or 30.000000001. Or, even none is the

right answer. If both are incorrect, without knowing the acceptable number of digits

after the floating point position, the comparison would be limitless [Air, 2021].

Hence, as a fact, expressing timing specifications without considering tolerance is

meaningless. This problem becomes more serious when we know that the measuring

system is not perfect and always has errors 3 . Therefore, it is needed to have the

tolerable error as a part of specification and hence, mentioned in the formal temporal

constraints.

3e.g., due to ADC and quantification conversions.

19

-Verification method should guarantee the its correctness in the pres-

ence of uncertainties:

In CPS verification, it is needed to take all uncertain values into account with con-

sidering worst-case scenarios. However, some satisfactions might fall in the tolerable

duration category which referred as the gray area. It means, it is not clear that the

specified tolerance is enough to cover the overall uncertainty for a certain property.

If a timing constraint is met within the gray area, the rules must detect them as

violated since it may be evaluated as met just because of uncertainty in the mea-

surement system. Based on such rule, some detected timing violations will be false

positive cases (when a violation is reported while it is met) but there will be no false

negatives. Therefore, from this point of view, the monitoring system should provide

a guarantee to detect all violation even the ones in the gray area and this become

possible with doing the monitoring process in a conservative way.

2.3.3 Validation and Testing

CPS Testing and Validation is required to ensure that they operate with high

reliability and can operate as safety-critical applications. Since monitoring systems

validate manufactured CPS interacting with uncertain world, having them becomes

important because they can see the impact of uncertain values on the final systems’

behavior. In this regard, two criteria should be met: i) the testing algorithms must

take the uncertain values into account, and ii) the testing equipment should be qual-

ified regarding the monitored systems.

In the verification process, testing system is connected to the System Under Test

(SUT) and it is like a black box while the output signals are read to verify/validate the

operation. Regarding reading the signals, the monitoring system deals with values.

Hence, considering uncertainties explained in section 2.2 should be a part of mon-

20

itoring implementation as well to make sure there is no discrepancies between the

designed systems from one side and verified/validated system from the other side. As

an example, when RSS minimum longitudinal distance in rear vehicle is calculated,

the run-time verification system that is connected to the CPS and CPS itself should

have a unique understandings about uncertainties. Otherwise, the judgment made

by the validation system is not correct. For example, the way to convert the analog

signals to digital and how to consider the measurement error cased by the conversion

should be taken into account should be similar in both sides.

The other concern is having the right and quantified equipment for validation.

For instance, a device with millisecond precision is not qualified to monitor a cyber-

physical system that its maximum tolerable error is in the range of microsecond.

21

Chapter 3

A FORMALISM FOR MONITORING TIMING SPECIFICATIONS OF CPS

WITH CONSIDERING TOLERANCE

In order to test the performance and verify the correctness of Cyber-Physical Sys-

tems (CPS), the timing constraints of the system as its behavior must be met. There

have been many efforts to verify and ensure CPS reliability. Formal methods, simu-

lation, and testing have been applied to increase the quality of parts of CPS but it is

still a challenge to formally verify complete CPS [Zheng and Julien, 2015]. Therefore,

the second option is to execute the CPS and detect anomalies at run-time. In order

to monitor the timing specifications of CPS, they should firstly, expressed in a formal

language like temporal logic. There are several temporal logic languages to express

the timing specifications of CPS. CTL, LTL, and MTL are some examples while Sig-

nal Temporal Logic (STL) is a fit for CPS since it can express the timing specifications

for analog signals over continuous time. STL can efficiently and succinctly capture

the timing constraints of a given system model. However, many timing constraints

on CPS are more naturally expressed in terms of events on signals.

While it is possible to specify event-based timing constraints in STL, such state-

ments can quickly become long and arcane in even simple systems. Timing constraints

for CPS, which can be large and complex systems, are often associated with toler-

ances, the expression of which can make the timing constraints even more cumbersome

using STL. The other and more important issue is about the problems in monitoring

of STL statements. Since the cyber side in CPS is discrete and quantized it makes

22

inaccuracy in STL monitoring. The details of such problems are coming sections.

3.1 Signal Temporal Logic - STL

Before start to discuss the STL problems, the logic should be introduced.

The basic formula of STL[a,b] are defined by grammar

ψ := p | ¬ψ| ψ1 ∨ ψ2| ψ1U[a,b]ψ2

where p belongs to a set P = {p1, p2, ..., pn} of propositions. From basic STL[a,b] oper-

ators, one can derive other Boolean and temporal operators, Globally and Eventually

as below:

♦[a,b]ψ = >U[a,b]ψ

and

�[a,b]ψ = ¬♦[a,b]¬ψ

STL[a,b] formula are interpreted over n-dimentional Boolean signals that are gen-

erated by crossing real-value signal with real numbers. The satisfaction relation

(s, t) |= ψ indicating that signal s satisfies ψ starting from position t, is defined

inductively as follows:

(s, t) |= p↔ πp(s)[t] = >

(s, t) |= ¬ψ ↔ (s, t) 2 ψ

(s, t) |= ψ1 ∨ ψ2 ↔ (s, t) |= ψ1 or (s, t) |= ψ2

(s, t) |= ψ1Uψ2 ↔ ∃t′ ∈ [t+ a, t+ b] s.t.(s, t′) |= ψ2 and ∀t′′ ∈ [t, t′], (s, t′′) |= ψ1

Eventually and Globally operators can be define as:

(s, t) |= ♦[a,b]ψ ↔ ∃t′ ∈ [t+ a, t+ b] s.t.(s, t′) |= ψ

(s, t) |= �[a,b]ψ ↔ ∀t′ ∈ [t+ a, t+ b] s.t.(s, t′) |= ψ

23

In brief, we evaluate the above operators for the next [a, b] interval at time t (the

current time). ♦[a,b]ψ means ψ should become > anywhere in [t + a, t + b], �[a,b]ψ

means ψ should be always > in [t+ a, t+ b], and ψ1Uψ2 means ψ2 should become >

(e.g. at t′) in [t+ a, t+ b] and ψ1 should be constantly > from now (t) to t′.

3.1.1 The Drawbacks of STL Statements in Monitoring

In monitoring process, the system description is represented in one or the combi-

nation of the above formula as STL statements and they should be implemented

in software or hardware codes to check those specifications.

One of the shortcomings of STL is about the expressions when there are com-

bined or complex statements. One example is when we represent the time difference

between two events. In figure 3.1, there are two analog signals, s1(t) and s2(t). One

possible timing constraint on these two signals is the time deference between the

events generated by threshold crossing. For instance, the time difference between

s1(t) when it crosses th1 from above to the time at which s2(t) crosses th2 from below

should be less than 2 seconds.

𝑡ℎ2

𝑡𝑖𝑚𝑒2.1

𝑠1(𝑡)

𝑠2(𝑡)

1.9

𝑡ℎ1
𝜙1

𝜙2

𝑣𝑜𝑙𝑡𝑎𝑔𝑒

Figure 3.1: The Time Deference between Two Events Generated by Threshold
Crossing.

24

STL has the capability to express the events using Future and Past operators,

Until (U) and Since (S) 1 . The expressions below show how to express rising edge

↑ φ and falling edge ↓ φ 2 events on Boolean signal ψ in STL.

↑ φ = (ψ ∧ (¬ψS>)) ∨ (¬ψ ∧ (ψU>))

↓ φ = (¬ψ ∧ (ψS>)) ∨ (ψ ∧ (¬ψU>))

By these definitions, it is possible to have such timing constraint between two

events:

�(↓ φ1 → �[0,2) ↑ ψ2)

when ψ1 = s1(t) < th1 and ψ2 = s2(t) > th2.

By substituting ↓ φ1 and ↑ φ2 with their STL equivalent expressions, we can

represent the time difference between φ1 and φ2 events. However, expressing temporal

specifications have the potential to become complex when the events are the concern

even in very simple timing constraints. As it can be seen in this example with just

two events, by substituting the event expressions in STL statement, it becomes long

and complex 3 . Since, timing specifications are mostly read, written, analyzed,

and implemented by human, they are error prone and complicated ones may be

implemented in monitoring process with errors.

The other more important issue is the problem with monitoring of timing speci-

fications expressed in STL. As a fact, monitoring systems cannot correctly evaluate

1S is similar to Until but for past. (s, t) |= ψ1Sψ2 ↔ ∃t′ ∈ [t− a, t− b] s.t.(s, t′) |= ψ2 and ∀t′′ ∈
[t, t′], (s, t′′) |= ψ1.

2The rising edge is threshold crossing from below and falling is from above.

3It can be worse in the constraints that have more events involved.

25

STL statements. This is because the real-time signals should be discretized for pro-

cessing in the cyber side. The uniform discretization process always struggles with

error since no measurement device is perfect. There is an example in figure 3.2 where

the STL statement is �[1,5]ψ and a monitoring device monitors signal ψ to evaluate

the statement. In this example assume the sampling time is 0.2s (δ = 0.2s) and the

sampling is started from time zero. Therefore, the sampled times (time steps) are

{0, 0.2, 0.4, ...} and there is a measurement error of 0.2 4 .

4.81 − .91 = 3.9Ac𝑡𝑢𝑎𝑙: 𝑛𝑜𝑡 𝑚𝑒𝑡

5 − 1 = 4 ≤ 4𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑: 𝑚𝑒𝑡

4

1

𝜓3.9

0.91 5

𝐴𝑐𝑡𝑢𝑎𝑙
𝑡𝑖𝑚𝑒

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑
𝑡𝑖𝑚𝑒

4.81 𝑡𝑖𝑚𝑒

Monitoring □ 1,5 𝜓

Figure 3.2: The problem with monitoring STL timing statements.

As the statement �[1,5] defines, in the example, the evaluation for the current

time t is true if in the next 1 to 5 seconds (i.e. t + 1 to t + 5) the signal value

is true continuously. In the other words, the width of positive pulse should be at

least 5 − 1 = 4 to have the evaluation of true for now. As figure 3.2 depicts, ψ is

true at real-time 0.91s and becomes false again at 4.81s. If we do the calculation

to know the satisfaction for �[1,5]ψ in real time, the width of the positive pulse

4In uniform discretization process, the threshold crossing is rounded to the upper number. For
Example, if there are threshold crossings for 0.09 or 0.19, both are converted to 0.2 in discretization.

26

is 4.81s − 0.91s = 3.9s showing the temporal specification has not been satisfied.

However, since in the real implementation of the monitoring device everything is

discreted, the detected values for the rising and falling edges are 1s and 5s instead

of 0.91s and 4.81s respectively. If we do the same calculation, the result shows that

�[1,5]ψ is met for now while it is true not in real.

This false positive evaluation can make serious problems particularly in safety-

critical applications because there is a chance in which the monitoring device shows

the critical timing constraint is met while it is not met really. Assume, there are

some timing constraints in a vehicle for the braking system and they are violated in

test drive and the run-time verification system shows they are satisfied. Clearly, such

wrong evaluation can cause a catastrophe.

This problem is real because even with less value for measurement error for the

time the events (δ) there exist a level of inaccuracy and a very slight error can cause

a catastrophe in time-sensitive safety-critical applications.

3.1.2 A Solution to Eliminate the Impact of Measurement Error

As a solution to fix this problem of STL monitoring, we can easily consider the

time measurement error in the system specification. It means we should express

timing specifications with considering the maximum possible measurement error. In

order to show the way to consider such error, let’s look at Globally statement again.

As figure 3.3 depicts, we know a rising edge in Boolean signal ψ can occur anywhere

between nδ and (n+1)δ, and the measurement system detects it at time step (n+1)δ

because it rounds the values to the upper number. Therefore, the maximum possible

error in the right side is δ. If we express the left side for the interval by “(a
δ
δ − δ”

5 , we are saying that any time from a little bit after “a − δ” until the next time

5Which is open interval for the left.

27

𝜓

𝛿 𝛿

𝑛𝛿

𝑛 + 1 𝛿

𝑚𝛿

𝑚+ 1 𝛿

𝑡𝑖𝑚𝑒

Figure 3.3: Maximum Time Measurement Error in Signal Transitions Is δ.

step is accepted. We should not take the point “a
δ
δ − δ” as a part of the interval

because it belongs to the last sampling time. For the right side of the interval, we

should consider “ b
δ
δ]” and it is closed on the right because in this sampling time, the

calculated time step is rounded to the right (all values between mδ and (m + 1)δ

are rounded to (m + 1)δ) and, therefore “ b
δ
δ” itself is a part of discretized number.

Hence, the modified interval with considering the measurement error is (a
δ
δ − δ, b

δ
δ].

For instance, in the example in figure 3.2, the interval in �[1,5]ψ should be converted

to (0.8, 5]. By the modified interval, the width of the positive pulse should be more

than 5s − 0.8s = 4.2s to the statement is evaluated to true. In this new condition,

the actual width is 4.81s − 0.91s = 3.9s that shows the constraint is not actually

met (3.9s < 4.2s). In the measuring device, we have 5s − 1s = 4s < 4.2s which

demonstrates that the monitoring device evaluates the timing constraint correctly

and shows it is not met.

As it is showed, by modifying the constraint interval, actually the constraint rede-

fined conservatively. In the other words, it guarantees that if the timing requirement

is not met in the device under test, the monitoring says it is not met as well. Such

28

guarantee is one-sided because it is conservative in one side to show it is not met when

it is really not met. In a case when the constraint is met, the monitoring system may

say the constraint is not met. The latter case dose not cause serious problem since

it just issues false alarms. The false alarms are the cost we pay to be aware of the

accurate timing violations by the monitoring system. As a fact, we cannot cover both

sides since they contradict. However, it is required to cover false positive since it is

really needed in monitoring of safety-critical applications.

3.2 Timestamp Temporal Logic - TTL

As it is shown in the last sections, since any monitoring device has a level of

measurement error, STL statements cannot be monitor correctly without considering

such value in the statements. As a fact, this problem exists for any value of δ.

Meaning with even a small value for δ, there is a level of inaccuracy. As it was shown,

if we consider measurement error δ, then we can provide one-sided guarantee that the

constraint is met. However, specifying the error of the measurement devices does not

make sense in the application constraint. From the application perspective, it makes

more sense to define an uncertainty value,ε, within which the constraints should be

met. Engineers usually specify ε when it is the planned limit of acceptable unintended

deviation from a nominal or theoretical dimension. It is from application perspective

and related to the high-level operation of the system regardless of any measurement

systems. If we make a relationship between measurement error and tolerance values of

timing constraints, the connection to consider errors is made and then, the constraint

can be correctly evaluated by a measurement system.

Timestamp Temporal Logic (TTL) provides a definitional extension of STL that

more intuitively expresses the timing specifications of distributed CPS. TTL also

allows for a more natural expression of timing tolerances. The language, provides a

29

room for expressing timing constraints with considering tolerance values that makes

the monitoring accurate.

Beside the TTL specifications, this chapter outlines a methodology to automati-

cally generate logic code and programs to monitor the expressed timing constraints.

3.2.1 The Event Representation in TTL

Since there some operators in TTL that receive events on signals and evaluate the

system timing requirements, it is needed to know to convert an analog signal to a

sequence of events through threshold crossing.

Typically, an event is represented by a single point in the time domain. Accord-

ingly, a signal event is constructed from a real-valued signal crossing a threshold

value. A signal event, generated by threshold crossing on analog signals, is presented

by a triplet, 〈s, th,↗ or↘〉, which is 1 (>) at the time when the signal, s, crosses a

threshold, th (crossing from below ↗ or from above ↘), and 0 (⊥) everywhere else.

A signal event can be singleton or repetitive. In a singleton signal event, there is only

one event (φ) which is represented by a single timestamp while repetitive signal events

are expressed by a sequence of events {φ1, φ2, ..., φn}(n∈N) and can be represented by

multiple timestamps.

Figure 3.4 shows the process to detect event on analog signals by threshold cross-

ing. It depicts comparing two signals (s1 and s2) with their corresponding thresholds

(th1 and th2) results in Boolean signals (ψ1 and ψ2) and applying differentiator oper-

ator (on) on Boolean signals results in instantaneous events (φ1 and φ2). The events

on ψ1 are repetitive hence, their sequence is shown by superscripts.

A Boolean signal can be divided into time intervals during which the value of

the signal is true or false, indicated by I+ and I− (figure 3.4 signals a and b). The

occurrence of an event corresponding to a rising/falling edge is defined as the starting

30

time

𝑠1
𝑠2

𝑡ℎ1

𝑡ℎ2

𝜓1 = (𝑠1 > 𝑡ℎ1)

𝜓2 = (𝑠2 < 𝑡ℎ2)

𝜙1
𝑘 =⋈ (𝜓1)

𝜙2 =⋈ (𝜓2)

𝑡1 𝑡2 𝑡3

𝜙1
1

𝜙2

𝐼𝜓1

+

𝜙1
2

𝜙1 = 𝑠1, 𝑡ℎ1,↗ , 𝜙2 = 〈𝑠2, 𝑡ℎ2,↘〉

Voltage

𝐼𝜓1

−
𝐼𝜓1

+

𝐼𝜓2

+ 𝐼𝜓2

−
𝐼𝜓2

+

𝐼𝜓2

−

Figure 3.4: The Process to Events from Analog Signals by Threshold Crossing.

point of each positive interval (Ii ∈ I+). Each interval can be expressed by a set

of rising and falling timestamps. Taking the rising edge can generate an event. As

figure 3.4 illustrates, the rising edges on the Boolean signals, generated by threshold

crossing, represent the events.

Definition 1. Differentiate operator, φ =on (ψ) converts a Boolean signal ψ ∈ B to a

signal event where the value of φ is 1 when ψ(t+)⊕ψ(t)∧¬ψ(t) = >, and 0 otherwise.

⊕ is the XOR operator and, t+ refers to the right neighborhood of signal at time t in

continuous domain.

Extracting a signal event from a real-valued signal over the continuous time-

domain is done by comparing the values of the signal with a threshold, th, and then,

passing the output through the Differentiate Operator (on) in discrete time-domain.

As it is depicted in figure 3.4, signals s1 and s2 are firstly converted into Boolean

signals after comparing with their corresponding thresholds (th1,th2), and then by

applying the differentiate operator, on signal events, φ1 and φ2, are generated.

3.2.2 TTL Syntax

The TTL syntax is defined based on STL with extensions to enable distributed

CPS with respect to absolute time, improved clarity, and considering tolerance values

31

without substantial loss of meaning. TTL operators are built based on high-level

operators that specify timing requirements on both the value of a formula and the

occurrence time events. The output of TTL operators are finally a Boolean.

Definition 3.2.1. The comparison operator 5, is a mapping function from a real-

valued signal to a Boolean value, where 5 ∈ {>,=, <}.

Definition 3.2.2. The satisfaction relation (s, t) � ψ, indicating that signal s satisfies

ϕ starting from position t.

As the STL grammar, the level-based 6 temporal operators used in TTL are

Globally, Eventually, and Until and defined inductively according to section 3.1.

Definition 3.2.3. Given the sets χ of events, and the set V of atomic propositions,

the set TTLχ(V) of TTL formulas (event-based) is inductively defined using the

following grammar:

ψ := v|¬ψ|ψ1 ∧ ψ2|L(φ1, φ2, ε)Ol|C(φ1, φ2, ...φn, ε)|S(φ1, φ2, ..., φn, ε)|F(φ, ε)Of

|P(φ1, φ2, εf , εp)Op

where v ∈V, φ1, φ2, ..., φn ∈ χ,O ∈ {<,>,=} and δ, l, f, ε, εf , εp ∈ R+ + {0}.

3.2.3 TTL Semantics

Before starting to explain the details of the language, there are some parameters

that should be defined.

• s is a continuous signal over continuous time t.

• ψ is a Boolean signal over continuous time. It can be true (positive pules) or

false (negative pulse) for a duration of time.

6Level-based operators receive Boolean signal values at each single moment (time step) and
evaluate the constraint. On the other side, event-based timing constraints are operators that receive
events on signals and are evaluated based on the events.

32

• δ is the sampling time to convert a continuous signal to discrete. It can be

taken as measurement error as well because it is the maximum error in the

discretization process.

• φ is an event signal that is true for a short time like δ. In discrete time domain,

it is true for just one time step.

• T (φ) is a function that receives the event φ and returns its actual time of

occurrence in continuous domain. It is a real number.

• τ(φ) receives the event φ and returns the event’s timestamp which is an integer

number.

• ε is the user-defined tolerable error.

• on is differentiator operator and converts a Boolean signal into signal event

(ϕ =on (ψ)).

• δ is sampling time for discretization and assumed δ < 1s.

As it is depicted in figure 3.4 the triplet 〈s1, th,↗〉 is equivalent to on (s1 > th)

and the triplet 〈s2, th,↘〉 is equivalent to on (s2 < th).

Now, the meaning of each operator is explained as follow:

Maximum Latency: L(φ1, φ2, ε) < l, 0 < ε < l

This proposition specifies that i) the events φ1 and φ2 are singleton 7 , ii) φ1 occurs

before φ2, and iii) the difference between the actual occurrence of two events, φ1 and

φ2 should be less than l with tolerance of ε. If T (φ) represents the actual occurrence

time of event φ in real numbers, we have 0 < T (φ2) − T (φ1) from condition ii and

7they occur once in a while

33

T (φ2)−T (φ1) < l− ε from condition iii. It should be less than l− ε because we need

to guarantee that the latency between those two events is less than l.

Figure 3.5.a depicts the how the latency constraint is calculated in continuous

time.

Now, the question is when can we guarantee that T (φ2)−T (φ1) < l−ε is satisfied

in a discrete system?

Most CPS implementations and measurement systems sample signals (with sam-

pling time of δ) and, therefore, capture a timestamp as the occurrence of the event.

The actual time of the event is inferred from the timestamp within an error δ. The

measurement error has several sources such as quantization, sampling time, analog to

digital converter (ADC) resolution 8 . If τ(φ) represents the integer timestamp at

which the event φ is captured, and both T (φ) and τ(φ) are initiated to zero when the

system starts to operate, then τ(φ) =
⌈
T (φ)
δ

⌉
is the relation between T (φ) and τ(φ).

Therefore, we know that

T (φ1) = (δτ(φ1)− δ, δτ(φ1)]

and similarly

T (φ2) = (δτ(φ2)− δ, δτ(φ2)]

Hence, their subtraction to find the latency between two events φ1 and φ2 will be

bounded between δ(τ(φ2)− τ(φ1))− δ and δ(τ(φ2)− τ(φ1)) + δ 9 . In fact:

δ(τ(φ2)− τ(φ1))− δ < T (φ2)− T (φ1) < δ(τ(φ2)− τ(φ1)) + δ (3.1)

In order to be conservative, it is enough if we have

8Their effects are studied in chapter 6.

9Since the subtraction is calculated, the maximum error is δ.

34

T (φ2)− T (φ1) < l − ε (3.2)

to guarantee the time difference between events is certainly less than l. Therefore,

based on equations 3.2 and 3.1:

δτ(φ2)− δτ(φ1)− δ < l − ε (3.3)

Since we know that 0 < δτ(φ2)− δτ(φ1), 0 < l − ε+ δ.

Hence to guarantee 3.2, we should test:

τ(φ2)− τ(φ1) <
l − ε
δ

+ 1 (3.4)

and the condition is (by considering equations 3.1 and 3.3):

ε− δ < l (3.5)

On the other hand, in inequality 3.3, if ε < δ, since we are adding a positive

number to l (δτ(φ2)− δτ(φ1) < l− (ε− δ)), it does not guarantee 3.3. Therefore, we

should have δ ≤ ε. This relation between ε and δ makes sense because is equation 3.4,

the added value (δ) due to the discretization process is compensated by ε.

In the above equations, 3.4 is a property of measurement and δ ≤ ε is the

property of measurement system.

Minimum Latency: l < L(φ1, φ2, ε)

This specification implies that the time difference between the actual occurrence of

event φ2 and event φ1 should be greater than l, with a tolerance of ε. In other words,

if T (φ) is the actual occurrence of the event φ, then the specification implies that

l ± ε < T (φ2) − T (φ1). Since the tolerance concept determines that l + ε should be

35

satisfied to guarantee the minimum latency, the relationship between actual time of

events can be defined as: l + ε < T (φ2)− T (φ1).

By considering equation 3.1:

l + ε− δ < δ(τ(φ2)− τ(φ1))

If ε < δ, we cannot guarantee that the time difference between two events is

greater than l. Therefore, δ ≤ ε.

Similar to the maximum latency specification, there will be an error of δ between

the actual time and the captured timestamp of events. Hence we have:

l + ε

δ
− 1 < τ(φ2)− τ(φ1), δ ≤ ε (3.6)

Exact Latency: L(φ1, φ2, ε) = l

Exact latency specifies that the difference between the occurrence of two events φ1

and φ2 should be equal to l with a tolerance of ε. This means T (φ2)− T (φ1) = l ± ε

or l − ε < T (φ2)− T (φ1) < l + ε. A monitoring system can ensure this specification

by checking if l−ε
δ

+ 1 < τ(φ2)− τ(φ1) <
l+ε
δ
− 1. Again, the measurement system is

considered to be able to evaluate the specification correctly if δ < ε.

Chronological: C(φ1, φ2, ..., φn, ε)

It specifies that the event φi occurs before event φi+1 (1 ≤ i ≤ n), with a tolerance

of ε. This means that ε < T (φi+1)− T (φi). A measurement system with accuracy of

δ will be able to ensure the specification by monitoring ε
δ
− 1 < τ(φi+1)− τ(φi) only

if δ < ε.

Simultaneity: S(φ1, φ2, ..., φn, ε)

Specifies that the events φ1 to φn occur at the same time with a tolerance of ε. This

means that the time difference between each pair of events is less than ε, or by the

36

𝑠1

𝑠2
𝑡ℎ2

time𝑡1 𝑡2

𝑡ℎ1

𝑎)

𝑒1

𝑒2

𝑒1

𝑒2

𝑒3

𝑠1

𝑠2

𝑡ℎ1

𝑡ℎ2

𝑠3𝑡ℎ3

𝜀 time

𝑏)
Voltage

Voltage

ℒ 𝜙1, 𝜙2, 𝜀 < 𝑙 ↔ Δ𝑡 < 𝑙 − 𝜀 𝒮 𝜙1, 𝜙2, 𝜙3, 𝜀

Δ𝑡

𝜙1: 𝑠1, 𝑡ℎ1,↗ , 𝜙2: 〈𝑠2, 𝑡ℎ2,↘〉 𝜙1: 𝑠1, 𝑡ℎ1,↗ , 𝜙2: 𝑠2, 𝑡ℎ2,↗ , 𝜙3: 〈𝑠3, 𝑡ℎ3,↗〉

𝜀

Figure 3.5: The Effect of Tolerance in Latency and Simultaneity Calculations.

other words

max
(
T (φ1), T (φ2), ..., T (φn)

)
−min

(
T (φ1), T (φ2), ..., T (φn)

)
< ε

A measurement system with accuracy of δ will be able to ensure the specification by

monitoring

max
(
τ(φ1), τ(φ2), ..., τ(φn)

)
−min

(
τ(φ1), τ(φ2), ..., ts(φ2)

)
<
ε

δ
+ 1

The added δ value (everything is normalized by δ) is just to consider the mea-

surement error value compensated by ε. Additionally, as before, the measurement is

valid only if δ < ε. Figure 3.5.b demonstrate the Simultaneity calculation.

Minimum Frequency: f < F(φ, εf)

specifies that the occurrence frequency of event φ 10 should be less than f with

a tolerance of εf (in Hz) or, in time domain, T (φn) − T (φn−1) < 1
f±εf

where φi

corresponds to the ith occurrence of the event φ on the same signal. To simplify, we

have: T (φn) − T (φn−1) < 1
f+εf

. Similar to latency, τ(φn) − τ(φn−1) < 1
δ(f+εf)

+ 1,

δ < 1
εf

.

Maximum Frequency: F(φ, εf) < f

specifies that the frequency of event φ should be less than f with a tolerance of εf

10φ is repetitive here and φi corresponds to the ith occurrence of the event φ.

37

(in Hz) or 1
f±εf

< T (φn) − T (φn−1). Simplified, this is 1
f−εf

< T (φn) − T (φn−1).

Therefore, 1
δ(f−εf)

− 1 < τ(φn)− τ(φn−1) where δ < 1
εf

, εf < f .

Exact Frequency: F(φ, εf) = f

means that the occurrence frequency of the event φ should be equal to f with a

tolerance of εf (in Hz) or T (φn) − T (φn−1) = 1
f±εf

where φi corresponds to the ith

occurrence of event φ. Simplifying: 1
f+εf

< T (φn)− T (φn−1) < 1
f−εf

,εf < f .

Considering the measurement error of δ, the system must monitor 1
δ(f+εf)

+ 1 <

τ(φn)− τ(φn−1) < 1
δ(f−εf)

− 1, and the monitoring is valid only if δ < 1
εf

,εf < f .

Minimum Phase: p < P(φ1, φ2, εf , εp)

specifies that the phase difference between two repeating events φ1, and φ2 on two

different event sources is greater than p, where, εf and εp are the tolerance in fre-

quency and phase calculations. If events φ1 and φ2 occur at the same frequency

(exact frequency) then Phase defines the desired latency between consequent events

on two different event sources (φ1 and φ2). Hence, we must satisfy two conditions: i)

F(φ1, εf) = F(φ2, εf), and ii) p− εp < T (φn2)− T (φn1).

From condition i)

|(T (φn1)− T (φn−11))− (T (φn2)− T (φn−12))| < 1

εf

if we assume

A : T (φn1)− T (φn−11) and B : T (φn2)− T (φn−12) we have:

− 1
εf
< A−B < 1

εf
. Hence, there are two cases:

A <
1

εf
+B (3.7)

and

B − 1

εf
< A (3.8)

38

From 3.1, we know that

δ(τ(φn1)− τ(φn−11))− δ < A < δ(τ(φn1)− τ(φn−11)) + δ

δ(τ(φn2)− τ(φn−12))− δ < B < δ(τ(φn2)− τ(φn−12)) + δ

To be conservative, in 3.7, A should be in its maximum value and B should be in

its Minimum value. Therefore:

δ(τ(φn1)− τ(φn−11)) + δ <
1

εf
+ δ(τ(φn2)− τ(φn−12))− δ

and in 3.8:

δ(τ(φn2)− τ(φn−12)) + δ <
1

εf
+ δ(τ(φn1)− τ(φn−11))− δ

Thus, the pre-conditions for satisfaction of Phase constraint is:

τ(φn1)− τ(φn−11)− (τ(φn2)− τ(φn−12)) <
1

δεf
− 2 (3.9)

and

τ(φn2)− τ(φn−12)− (τ(φn1)− τ(φn−11)) <
1

δεf
− 2 (3.10)

From condition ii), the specification implies that p+εp
δ
− 1 < τ(φn2)− τ(φn1). Since

the monitoring system must ensure that p+εp < T (φn2)−T (φn1) is monitored correctly,

the monitoring system will be implemented as p′ + ε′p − 1 < τ(φn2) − τ(φn1) where

p′ = p
δ

and ε′p = εp
δ

. To check if the measurement system can evaluate the timing

specification, δ < 1
εf

and δ < εp statements should hold.

Maximum Phase: P(φ1, φ2, εf , εp) < p

defines that the difference between timestamps of two events on two different event

sources should be less than a certain value (p). For this specification, also the two

39

frequencies should be the same. T (φn2)− T (φn1) < p± ε where φi1 and φi2 correspond

to the ith occurrence of the events φ1 and φ2 respectively. Similar to the minimum

phase, the monitoring system should monitor τ(φn2)− τ(φn1) < p′ − ε′p + 1.

Exact Phase: P(φ1, φ2, εf , εp) = p

indicates that the difference between the timestamps of two events, φn1 and φn2 should

be equal to p with a tolerance of εp where the frequency of occurrence of φ1 and

φ2 must be equal (condition 1). This means T (φn2) − T (φn1) = p ± εp or p − εp <

T (φn2)− T (φn1) < p + εp. Considering the error in the measurement system, we have

p′ − ε′p + 1 < τ(φ2)− τ(φ1) < p′ + ε′p − 1.

Note that the events in Frequency and Phase formulas are necessarily periodic,

whereas in the other timing specifications they should be singleton.

All aforementioned operators are semantically formulated in table 3.1 and in de-

tails in chapter 4.

40

Table 3.1: Satisfaction Relations and Language Semantics

1 (σ, t) |= v iff (σ)[t] = >

2 (σ, t) |= ¬ψ iff (σ, t) 6|= ψ

3 (σ, t) |= ψ1 ∧ ψ2 iff (σ, t) |= ψ1 and (σ, t) |= ψ2

4 (σ, t) |= l < L[a,b](φ1, φ2, ε)
iff ∃t′ ∈ [t+a, t+b] s.t. (σ, t′) |= φ1 and ∃t′′ > t′

s.t. (σ, t′′) |= φ2 and l+ε
δ
− 1 < (t′′ − t′).

5 (σ, t) |= L[a,b](φ1, φ2, ε) < l

iff ∃t′ ∈ [t+a, t+b] s.t. (σ, t′) |= φ1 and ∃t′′ > t′

s.t. (σ, t′′) |= φ2 and (t′′ − t′) < l−ε
δ

+ 1.

6 (σ, t) |= L[a,b](φ1, φ2, ε) = l

iff ∃t′ ∈ [t+a, t+b] s.t. (σ, t′) |= φ1 and ∃t′′ > t′

s.t. (σ, t′′) |= φ2 and l−ε
δ

+1 ≤ (t′′−t′) ≤ l+ε
δ
−1.

7 (σ, t) |= C[a,b](φ1, φ2, ..., φn, ε)

iff ∀ti ∈ [t + a, t + b], i = {1, ..., n − 1} s.t.

(σ, ti) |= φi and (σ, ti+1) |= φi+1 and ti < ti+1

and ε
δ
− 1 < ti+1 − ti

8 (σ, t) |= S[a,b](φ1, φ2, ..., φn, ε)
iff ∀ti ∈ [t+a, t+b], i = {1, ..., n} s.t. (σ, ti) |= φi

and max{ti} −min{ti} < ε
δ

+ 1

9 (σ, t) |= f < F[a,b](φ, εf)

iff ∀t′ ∈ [t+a, t+b], ∃t′′ ∈ [t+a, t+b], t′ < t′′ s.t.

(σ, t′) |= φ and (σ, t′′) |= φ and @t′′′, t′ < t′′′ < t′′

s.t. (σ, t′′′) |= φ and (t′′ − t′) < 1
δ(f+εf)

+ 1

10 (σ, t) |= F[a,b](φ, εf) < f

iff ∀t′ ∈ [t+a, t+b], ∃t′′ ∈ [t+a, t+b], t′ < t′′ s.t.

(σ, t′) |= φ and (σ, t′′) |= φ and @t′′′, t′ < t′′′ < t′′

s.t. (σ, t′′′) |= φ and 1
δ(f−εf)

− 1 < (t′′ − t′)

41

11 (σ, t) |= F[a,b](φ, εf) = f

iff ∀t′ ∈ [t+a, t+ b],∃t′′ ∈ [t+a, t+ b], t′ < t′′

s.t. (σ, t′) |= φ and (σ, t′′) |= φ and @t′′′, t′ <

t′′′ < t′′ s.t. (σ, t′′′) |= φ and 1
δ(f+εf)

+ 1 ≤

(t′′ − t′) ≤ 1
δ(f−εf)

− 1

12 (σ, t) |= p < P[a,b](φ1, φ2, εf , εp)

iff ∀t′1 ∈ [t+a, t+b]s.t. (σ, t′1) |= φ1 and ∃t′′1 ∈

[t+ a, t+ b] s.t. t′1 < t′′1 and (σ, t′′1) |= φ1 and

@t′′′1 s.t. (σ, t′′′1) |= φ1 and ∀t′2 ∈ [t+a, t+b]s.t.

(σ, t′2) |= φ2 and ∃t′′2 ∈ [t+a, t+ b] s.t. t′2 < t′′2

and (σ, t′′2) |= φ2 and @t′′′2 s.t. (σ, t′′′2) |= φ2

and t′′1 − t′1− (t′′2 − t′2) < 1
δεf
− 2 and t′′2 − t′2−

(t′′1 − t′1) < 1
δεf
− 2 and (p

δ
+ εp

δ
− 1) < t′2 − t′1

13 (σ, t) |= P[a,b](φ1, φ2, εf , εp) < p

iff ∀t′1 ∈ [t+a, t+b]s.t. (σ, t′1) |= φ1 and ∃t′′1 ∈

[t+ a, t+ b] s.t. t′1 < t′′1 and (σ, t′′1) |= φ1 and

@t′′′1 s.t. (σ, t′′′1) |= φ1 and ∀t′2 ∈ [t+a, t+b] s.t.

(σ, t′2) |= φ2 and ∃t′′2 ∈ [t+a, t+ b] s.t. t′2 < t′′2

and (σ, t′′2) |= φ2 and @t′′′2 s.t. (σ, t′′′2) |= φ2

and t′′1 − t′1− (t′′2 − t′2) < 1
δεf
− 2 and t′′2 − t′2−

(t′′1 − t′1) < 1
δεf
− 2 and t′2 − t′1 < (p

δ
− εp

δ
+ 1)

14 (σ, t) |= P[a,b](φ1, φ2, εf , εp) = p

iff ∀t′1 ∈ [t+a, t+b]s.t. (σ, t′1) |= φ1 and ∃t′′1 ∈

[t+ a, t+ b] s.t. t′1 < t′′1 and (σ, t′′1) |= φ1 and

@t′′′1 s.t. (σ, t′′′1) |= φ1 and ∀t′2 ∈ [t+a, t+b] s.t.

(σ, t′2) |= φ2 and ∃t′′2 ∈ [t+a, t+ b] s.t. t′2 < t′′2

and (σ, t′′2) |= φ2 and @t′′′2 s.t. (σ, t′′′2) |= φ2

and t′′1 − t′1− (t′′2 − t′2) < 1
δεf
− 2 and t′′2 − t′2−

(t′′1−t′1) < 1
δεf
−2 and (p

δ
− εp

δ
+1) ≤ t′2−t′1 ≤

(p
δ

+ εp
δ
− 1)

42

Chapter 4

TTL REASONING SYSTEM

As it is discussed earlier, one practical approach to verify the temporal behavior

of Cyber-physical Systems is run-time monitoring. While monitoring based assurance

schemes make sense, there are still several practical challenges in enabling them:

i) Specified requirements may not be consistent: In the effort to address safety

concerns, designers often write down a lot of safety specifications. One important task

is to determine if all the specifications are consistent.

ii) Complexity of monitoring logic: Since CPS can be large and complex, and

designers often over-specify the requirements, the monitoring logic can be very large,

which in turn requires tremendous resources to be able to perform online monitoring.

Limitation of resources is the main reason offline monitoring approaches are more

broadly used.

iii) Handling timing requirements specified over inaccessible signal: Many

CPS designers define specifications involving some events or signals that are not

directly accessible through measurement.

Without a major change in the design which may affect the system timing, such

specifications are impossible to monitor.

One way to address above challenges is to develop a deductive reasoning frame-

work for timing specifications. A deductive reasoning framework is a set of rules

and transformations that allows for establishing a meaningful relationship between

individual statements [Hoare, 1969]. Researchers have proposed deductive reason-

ing systems for LTL [Bolotov et al., 2006], Computation Tree Logic (CTL) [Pnueli

43

and Kesten, 2002], and Propositional Projection Temporal Logic (PPTL) [Duan and

Zhang, 2008]. However, these logics are not sufficient to express the timing specifica-

tions of CPS, since they are defined over Boolean values and discrete time – while CPS

operate on real signal values and over continuous time. The objective of this chapter

is to augment the temporal specifications with a deductive reasoning framework for

TTL.

To demonstrate the usefulness of the approach two case studies have been imple-

mented i) a flying paster application – and ii) an intersection management system

for connected autonomous vehicles, which schedules the safe and efficient passage of

autonomous vehicles through a signal-free intersection. The safety and performance-

related timing specifications are specified in TTL for both applications first, and then

the proposed reasoning is applied on various scenarios.

4.1 Background

Before having the details for the reasoning framework, it is needed to have some

sort of definitions for SUT and monitoring framework.

4.1.1 Continuous-Time Signals

A continuous signal s maps the continuous time domain (dense time) to a real-

valued domain.

Definition 4.1.1. Signal s is a map as s : T→ R where T is the set of non-negative

real numbers as time, R≥0, and R is the value of analog signals.

In monitoring CPS, since it is usually based upon finite traces [Maler and Nickovic,

2004] and we are interested in Boolean values, s is elaborated as s : R≥0 → B 1 . The

1B is Boolean values containing true and false

44

interval for the entire signal is I = [0, r), and its value at time t where t ∈ R≥0 is

shown by s(t). The signal length is r expressed by |s| = r.

4.1.2 Discrete-Time Signals

A discrete-time signal σ is a sequence of samples of a continuous-time signal s.

The discrete signal is σ and σ : N → B. The value of σ at position i by σ[i] where

i ∈ N. In order to extract the signal value at time t, we need just to multiply the

sample number to the “sampling time”, δ, (t = i× δ).

4.1.3 Events on Signals

In Temporal Logic, Event can be defined as useful and relevant patterns of

changes[Allen and Ferguson, 1994]. Events in CPS are driven by the process, the

system signals, the physical environment, etc. We can generally determine a pattern

of changes over time for an event. TTL augments the event specification through

explicit definition of the change thresholds in the relevant system parameters. For

Boolean signals, changing the value from true (>) to false (⊥) and from ⊥ to > are

detected as events and we call them ”rising” and ”falling” events, respectively.

To have a logic definition for event, we enumerate all conditions who cause the

certain event in a single proposition. φ : action(c1, ..., cn) expresses the action that

initiates an event, φ, where c1 through cn are conditions at the time the event is

triggered.

Definition 4.1.2. φ@t denotes the occurrence of event φ at time “t” when all condi-

tions c1, c2, ..., cn are satisfied. The function T (φ) returns i as its occurring time (real

number).

Definition 4.1.3. In discrete time, φ@i is the event occurred at time step i, and

45

function τ(φ) returns i as its timestamp.

After having the required definitions for continuous and discrete signals, Boolean

signals, events on signals, continuous and discrete time, and timestamps, everything

is ready to explain the axioms and rules for TTL.

Using a deduction framework, a CPS designer can define timing specifications in

TTL and then prove new statements to evaluate correctness of temporal behavior.

TTL should contain arithmetic axioms (e.g. a + b = a ↔ b = 0) as well as logical

axioms and rules (e.g. p → q ↔ ¬p ∨ (p ∧ q)) as the primitives in the deduction

process.

4.2 TTL Arithmetic Axioms

TTL is defined over the natural numbers, typically used to express time (or

timestamps), constants, variables, and rational numbers to represent the values in

the continuous world. Based on those two categories, a set of arithmetic axioms

are defined. Table 4.1 represents some axioms utilized in this chapter. Note that

x, y, z, w, a, b, c, d ∈ N

Definition 4.2.1. Functions: g(x1, ..., xn), each argument xi is an input and g (in

lower case) is a function with n variables as arguments. Functions represent a subset

of relations where there is only one “value” for any set of “inputs”. If n = 0, g is a

constant.

4.3 TTL Axioms and Logic Rules

In this section, the axioms and logic rules are introduced for TTL using opera-

tors defined in chapter 3 and other logic operators (such as conjunction, disjunction,

implication, etc.) from [Prawitz, 2006]. As it is shown earlier, timing specifications,

46

Table 4.1: TTL Arithmetic Axioms.

Rule Name Arithmetic Axiom

A1 x+ 0 = x

A2 (x+ y) + z = x+ (y + z)

A3 x+ (−x) = 0

A4 x < y, z < w → x+ z < y + w

A5 x < y ↔ −y < −x

A6 x < z − y ↔ x < z + y

A7 x < y, z = x ↔ z < y

A8 x < y → x− z < y

A9 x < y + z ↔ x− y < z

A10 x ≤ y ↔ x < y + 1

Q1 a
b

= c
d
↔ d

b
= c

a
; a, b, c, d 6= 0

Q2 a
b
< c

d
↔ d

c
< b

a
; a, b, c, d 6= 0

Q3 a
b
< c

d
↔ a.d

b
< c; b, d 6= 0

Q4 a
b
< c

d
↔ a < b.c

a
; b, d 6= 0

in TTL, express the relations between the occurrences of events. L,S, C,F ,P are

the event-based timing operators in TTL that receive events and then evaluate the

desired timing specifications utilizing their timestamps. Hence, it is required to know

how to logically extract an event’s timestamp.

Logic definition for Timestamp

Timing specifications are calculated using event timestamps. In the TTL formalism,

the timestamp follows the “@” symbol in an event (section 4.1.3). By natural deduc-

tion, it is possible to extract timestamp of an event using a function. Indeed, φ@τ

47

shows event φ at time-step T and function “τ(φ@i)” receives the event φ and returns

its happening timestamp, i.

Definition 4.3.1. Introduction and Elimination: Rules in a logic come in one of two

flavors, i) Introduction or ii) Elimination rules. Introduction rules introduce the use

of a logical operator, and elimination rules eliminate it.

The following example is an instance for introduction and Elimination rules.

The rules for “conjunction” (∧) are: φ, ψ
φ∧ψ ∧ I, φ∧ψ

ψ
∧ LE, φ∧ψ

φ
∧RE where ∧I rule

introduces the conjunction on two propositions φ and ψ, and ∧LE and ∧RE rules

show the elimination of the left and right operands respectively. In the deduction

below, the first rule introduces the logic “conjunction” between φ and ψ – called ∧I.

Rule ∧LE eliminates the left operand and deduce if “φ ∧ ψ then ψ ”. Each row in

a proof comprises a sequence number, rule of inference, and the prior line or lines of

the proof that license that rule. For instance to prove: “P ∧Q,Q ∧ R⇒ P ∧ R” we

have:

1 P ∧Q

2 Q ∧R

3 P ∧RE, 1

4 R ∧LE, 2

5 P ∧R ∧I, 3, 4

4.3.1 TTL Axioms:

Now, the required definitions to be used in natural deduction proofs are available.

Table 4.2 demonstrates the TTL axioms. The logic behind the table is the TTL

semantics but they are represented as the introduction and elimination rules. By

those axioms, we can have proofs in natural deduction style. Keep in mind that, for

48

all existing formulas, ε < l, δ < ε, δ < 1
εf
< εp, εf < f , and εp < p.

In order to understand the rules listed in Table 4.2, there is a proof for Minimum

Latency rule in Theorem 4.3.2 in section 4.4.

Table 4.2: The Introduction and Elimination Rules for TTL Timing Specifications.

TTL Specification Introduction Rule Elimination Rule

1 l < L(φ1, φ2, ε)
0<τ(φ2)−τ(φ1)∧(l+εδ −1)<τ(φ2)−τ(φ1)

l<L(φ1,φ2,ε) LMI l<L(φ1,φ2,ε)
0<τ(φ2)−τ(φ1)∧(l+εδ −1)<τ(φ2)−τ(φ1)

LME

2 L(φ1, φ2, ε) < l
0<τ(φ2)−τ(φ1)∧τ(φ2)−τ(φ1)< l−ε

δ
+1

L(φ1,φ2,ε)<l LXI L(φ1,φ2,ε)<l
0<τ(φ2)−τ(φ1)∧τ(φ2)−τ(φ1)< l−ε

δ
+1

LXE

3 L(φ1, φ2, ε) = l
l−ε
δ

+3≤τ(φ2)−τ(φ1)∧τ(φ2)−τ(φ1)≤ l+εδ −3
L(φ1,φ2,ε)=l LEI L(φ1,φ2,ε)=l

l−ε
δ

+1≤τ(φ2)−τ(φ1)∧τ(φ2)−τ(φ1)≤ l+εδ −1
LEE

4 C(φ1, ..., φn, ε)

n−1∧
k=1

(ε
δ
−1)<τ(φk+1)−τ(φk)

C(φ1,...,φn,ε) CHI C(φ1,...,φn,ε)
n−1∧
k=1

(ε
δ
−1)<τ(φk+1)−τ(φk)

CHE

5 S(φ1, φ2..., φn, ε)
max

τ(φk),1≤k≤n
− min
τ(φk),1≤k≤n

< ε
δ
+1

S(φ1,...,φn,ε) SMI S(φ1,...,φn,ε)
max

τ(φk),1≤k≤n
− min
τ(φk),1≤k≤n

< ε
δ
+1

SME

6 f < F(φ, εf)
τ(φi)−τ(φi−1)< 1

δ(f+εf)
+1

f<F(φ,εf)
FMI

f<F(φ,εf)
τ(φi)−τ(φi−1)< 1

δ(f+εf)
+1

FME

7 F(φ, εf) < f
1

δ(f−εf)
−1<τ(φi)−τ(φi−1)

F(φ,εf)<f
FXI

F(φ,εf)<f
1

δ(f−εf)
−1<τ(φi)−τ(φi−1)

FXE

8 p < P(φ1, φ2, εf , εp)

F(φ1,εf)=F(φ2,εf)
u

...

p+εp
δ
− 1 < τ(φi2)− τ(φi1)

P(φ1,φ2,εf ,εp)<p
PMI

p<P(φ1,φ2,εf ,εp)
∀i∈N,F(φ1,εf)=F(φ2,εf)∧(

p+εp
δ
−1)<τ(φi2)−τ(φi1)

PME

9 P(φ1, φ2, εf , εp) < p

F(φ1,εf)=F(φ2,εf)
u

...

τ(φi2)− τ(φi1) <
p−εp
δ

+ 1

P(φ1,φ2,εf ,εp)<p
PXI

P(φ1,φ2,εf ,εp)<p
∀i∈N,F(φ1,εf)=F(φ2,εf)∧τ(φi2)−τ(φi1)<

p−εp
δ

+1
PXE

4.3.2 TTL Rules

There are some TTL rules here that express temporal specifications in terms of

latency.

• LE (Exact Latency): ` L(φ1, φ2, ε) = l→` (¬(l < L(φ1, φ2, ε))∧¬(L(φ1, φ2, ε) <

l)).

This rule is about Exact Latency.The conjunction of maximum and minimum

latencies with the same l and ε values makes an exact latency.

49

• SL (Simultaneity to Latency): ` S(φ1, φ2, ..., φn, ε)→` L(φi, φj, εl) < ε, where

∀i, j ∈ {1, 2, ..., n}, εr < ε, i < j.

If Simultaneity between n events for ε is >, the latency between any pair of

events is less than ε.

• CL (Chronological to Latency): ` C(φ1, φ2, ...φn, ε)→` ε < L(φi, φi+1) where

i ∈ N, 1 ≤ i ≤ n− 1.

If Chronological between n events for ε is >, the latency between any pair of

adjacent events in the statement is more than ε.

• FL (Frequency to Latency): ` F(φ, εf) < f →` 1
f+εf

< L(φk−1, φk, εl) where

εl <
1
εf
, k ∈ N, k > 1.

If Maximum Frequency is >, the latency between any pair of adjacent events is

more than a certain value.

• PL (Phase to Latency): ` P(φ1, φ2, εf , εp) < p→`
(
F(φ1, εf) = F(φ2, εf)

)
∧(

L(φk1, φ
k
2, εp) < p

)
,∀k ∈ N, 1 ≤ k ≤ n.

If Maximum Phase is > for two event signals, their frequencies are equal and

the latency of events on two signals are less than a specific value.

• FE (Exact Frequency): ` F(φ, εf) = f →` ¬
(
f < F(φ, εf)

)
∧ ¬
(
F(φ, εf) <

f
)

.

Exact Frequency is the conjunction of maximum and minimum Frequency op-

erators.

• PE (Exact Phase): ` P(φ1, φ2, εf , εp) = p →` ¬
(
p < P(φ1, φ2, εf , εp)

)
∧

¬
(
P(φ1, φ2, εf , εp) < p

)
Exact Phase is the conjunction of maximum and minimum Phase operators.

50

In Theorem 4.3.1, there is a proof for LE rule and the rest of proofs including

Soundness are transferred to the Appendix B.

Theorem 4.3.1. The exact latency equals to the conjunction of Maximum and Min-

imum Latency constraints.

` L(φ1, φ2, ε) = l→` (¬(l < L(φ1, φ2, ε)) ∧ ¬(L(φ1, φ2, ε) < l))

Proof. Consider A : L(φ1, φ2, ε) = l, B : ¬(l < L(φ1, φ2, ε)), and ¬(C : L(φ1, φ2, ε) <

l).

For term A, if 0 L(φ1, φ2, ε) = l, regardless of B and C, the entire formula is >.

Hence, we suppose A is > so we need to prove B ∧ C = >.

For B, 0 < τ(φ2)− τ(φ1) and ¬(l+ε
δ
−1 < τ(φ2)− τ(φ1)). For C, 0 < τ(φ2)− τ(φ1)

and ¬(τ(φ2)−τ(φ1) <
l−ε
δ

+1). Assume, t′ = τ(φ1) and t′′ = τ(φ2),
l−ε
δ

+1 ≤ t′′−t′ ≤
l+ε
δ
− 1 which is the same as the semantic definition for exact latency in Table 3.1,

line 6.

In Theorem 4.3.2, there is a proof for the existing Minimum Latency axiom (LMI)

in Table 4.2. It shows how we can validate each rule.

Theorem 4.3.2. The introduction rule for Minimum Latency is valid. i.e.,

(0<τ(φ2)−τ(φ1))∧(l+εδ −1<τ(φ2)−τ(φ1))
l<L(φ1,φ2,ε) LMI is true

Proof. Let ψ be a formula of TTLχ(V), ψ is universally valid or a tautology if (σ, t) |=

ψ for every t ∈ N. Therefore, regarding the syntax for Minimum Latency, we hae:

Suppose (σ, t) |=
(

(0 < τ(φ2)− τ(φ1)) ∧ (τ(φ2)− τ(φ1) <
l+ε
δ
− 1)

)
iff (σ, t) |= 0 < τ(ψ2)−τ(φ1) and (σ, t) |= τ(φ2)−τ(φ1) <

l+ε
δ
−1 iff 0 < τ(φ2)−τ(φ1)

and τ(φ2)−τ(φ1) < l+ε considering t′ = τ(φ1) and t′′ = τ(φ2), since 0 < τ(φ2)−τ(φ1),

we have t′ < t′′. Therefore, ∃t′ ∈ N s.t. (s, t′) |= φ1 and ∃t′′ > t′ s.t. (s, t′′) |= φ2

51

and t′′ − t′ < l+ε
δ
− 1 that based on the minimum latency semantics, implies l <

L(φ1, φ2, ε)

4.4 Natural Deduction for TTL

The TTL deduction system is quite similar to applying natural deduction on

propositional logic. A proof of proposition P in natural deduction starts from axioms

and assumptions. Every step in the proof is an instance of an inference rule with

expressions of the appropriate syntactic class.

Having the hypothetical judgments or reasoning from assumptions is required

in the logic because they make the use of assumptions in proving process. This

judgement contains two parts: i) the top sentence, called assumption, and ii) bottom

sentence which is evaluated statement. One example of such statement in TTL is

maximum Phase axiom. It is a hypothetical judgments using PXI axiom:

Phase Rules P(φ1, φ2, εf , εp) < p: Since this specification contains the frequency

condition (see chapter 3), hypothetical judgments, it can be used as hypothesis in

natural deduction. The Introduction (PXI) rule is defined as follows:

F(φ1,εf)=F(φ2,εf)
u

...

τ(φi2)− τ(φi1) <
p−εp
δ

+ 1

P(φ1,φ2,εf ,εp)<p
PXI

Elimination (PXE) rule for maximum phase specification is defined as

P(φ1,φ2,εf ,εp)<p
∀i,F(φ1,εf)=F(φ2,εf) ∧ τ(φi2)−τ(φi1)<

p−εp
δ

+1
PXE.

52

The introduction rule states that if two events (φ1, φ2) occur periodically at the

same frequency, the time difference between two consecutive events should be moni-

tored to evaluate the given offset. The offset is compared with a value ‘p’ to create a

predicate. The introduction (PXI) and elimination (PXE) rules for phase determine

the maximum phase offset specification. The Rule for Minimum and Exact phase

offset specifications can be similarly deduced (see Table 4.2 and Appendix B).

4.4.1 Natural Deduction Reasoning on TTL statements

In natural deduction, the reasoning process starts with premises, it applies rules

of inference to derive conclusions and then strings such derivations together to form

logical proofs. The idea is quite simple. Deducing a new statement from the premises,

axioms, rules and/or existing previous derived statements by referring them using

their name on the right and the line numbers on the left. Fitch style is chosen as

the proof style since it is particularly popular in the Logic community, powerful as

many other proof systems and is far simpler to use. Lemma 4.4.1 in this section

demonstrates an example of reasoning process in Fitch style.

Lemma 4.4.1. Latency tolerance is cumulative.

L(φ1, φ2, ε1) < l1,L(φ2, φ3, ε2) < l2 =⇒ L(φ1, φ3, ε1 + ε2) < l1 + l2 + δ

Proof. The name of each rule is shown on the right side of steps and the deduced

statement is written on the left side in each line:

53

1 L(φ1, φ2, ε1) < l1

2 L(φ2, φ3, ε2) < l2

3 τ(φ2)− τ(φ1) <
l1−ε1
δ

+ 1 LXE, 1

4 τ(φ3)− τ(φ2) <
l2−ε2
δ

+ 1 LXE, 2

5 τ(φ3) + τ(φ2)− τ(φ2)− τ(φ1) <
l1−ε1+l2−ε2

δ
+ 2 A4, 3, 4

6 τ(φ3)− τ(φ1) <
l1−ε1+l2−ε2

δ
+ 2 A3, 5

7 τ(φ3)− τ(φ1) <
(l1+l2)−(ε1+ε2)

δ
+ 2 A2, 6

8 L(φ1, φ3, ε1 + ε2) < l1 + l2 + δ LXI, 7

The first two premises are the latency between φ1 and φ2, and φ2 and φ3. Lines

3 and 4 eliminate the Latency specification by LXE in table 4.2. In lines 5-7, the

proof uses the axioms in table 4.1. Similarly, line 8 is deduced from line 7 and LXI

in table 4.2.

4.4.2 The TTL Reasoning Features

The reasoning system has the capability to provide four distinct capabilities. As

it is showed in Lemma 4.4.1, by applying introduction and elimination rules on two

Latency predicates a new TTL statement can be deduced. Since we can implement

just one statement and deduce about the correctness of two other predicates, this

approach can reduce the size of monitoring circuit and, thus, a more efficient run-

time verification approach. As a summary, the following features are the outcome of

the reasoning system.

54

Consistency Checking of Timing Specifications

The approach for consistency checking is very simple and straightforward. For mon-

itoring a temporal behavior, there is a set of TTL hypothesises to be verified and for

each, there is at least an Elimination rule (as table 4.2 illustrates). Therefore, it is

possible to convert all hypothesis to their corresponding mathematical (inequality)

formulas. Then, by applying the axioms in table 4.1, new formulas can be deduced

and then converted to TTL statements using Introduction rules. Finally, if the pro-

duced statements contradict any of hypothesis, it results that there is an inconsistency

and the deduced statements cannot satisfy all hypothesises.

As a practical example, there is a proof showing an inconsistency in the Case

Study in chapter 7, section 7.4.

Considering Error Sources for Tolerance Specification

In all axioms and natural deduction rules in section 4.3, the user-defined accept-

able tolerance and the measurement error are considered. Taking such variables into

account make the monitoring system more accurate, predictable and practical in

implementation. The example in Lemma 4.4.1 shows the way to accumulate the un-

certainties in the proof steps and their impact on the final statements. In chapter 7,

section 7.4.3, the case study for flying paster demonstrates such benefits.

Simplifying the Monitoring Logic

One of the most important features in the proposed method is its ability to simplify a

set of temporal specifications to reach a higher degree of efficiency in the monitoring

circuit. Timestamp-based Monitoring Approach (TMA 2), proposes the efficient al-

2Explained in chapter 5

55

gorithms for single operators, however, it needs a way to reduce the required space on

FPGA boards for combination of several temporal constraints. The reasoning frame-

work provides such ability since by simple steps we can combine related statements.

After applying the elimination rules on TTL statements, because they comprise

simple mathematical formulas, there is an ability to find the common variables in

different statements. Then, by utilizing table 4.1 and considering the common pa-

rameters, it is possible to have a combination of several statements and finally reduce

the number of operators. As a bright example, having two Latency operators (hy-

pothesises) in Lemma 4.4.1, the deduction rules, and axioms can reduce the number

of statements to only one Latency. Intuitively, implementing one operator needs less

area and power on FPGA than two. In chapter 7, section 7.4.4 contains two case

studies in different applications (flying paster and connected autonomous vehicles)

demonstrating the capability to simplify a set of statements.

Reasoning about Unobservable Events

TTL reasoning system has the ability to give some understanding about unobservable

signals. Applying the rules on hypothesises can extract the signals from the operators

and then make new statements. In section 7.4.5, there is an example to illustrate this

capability.

56

Chapter 5

TIMESTAMP-BASED MONITORING APPROACH TO MONITOR TIMING

SPECIFICATIONS OF CPS

This chapter proposes an efficient online approach for monitoring the timing con-

straints of CPS that is called Timestamp-based Monitoring Approach (TMA). The

key improvement is rather than evaluating a constraint at each sampling period,

TMA only computes the constraint satisfaction at the occurrence of relevant events

extracted from monitored signals. The approach just uses the timestamps of events

on signals and calculates the satisfaction of timing specifications of CPS by imple-

menting online monitoring technique. For this aim, firstly the temporal specifications

should be expressed in a formal language, temporal logic, and then synthesised on a

monitoring equipment. TTL, as a formalism for expressing CPS temporal behavior,

can express timing constraints commonly used in CPS including level-based timing

constraints where Boolean predicates are constructed from analog signals. For exam-

ple, the following expression defines a level-based timing constraint: ”whenever the

value of signal X remains positive for 1 second, signal Y should become greater than

2V within 5 seconds”. It can be expressed as: �(�[0,1](X > 0v)→ ♦[0,5](Y > 2v)).

TTL also allows for expressing event-based timing constraints which are specified

to constrain the relations between the occurrence time of events e.g. the latency

between two events should be less than 2 seconds when the acceptable tolerance is

100 microseconds. L(φ1, φ2, 0.0001s) > 2s.

For online monitoring of either level-based or event-based timing constraint, TMA

firstly converts analog signals to discrete Boolean signals similar to [Maler and other,

2013] by extracting the timestamp of each transition, from true to false or vice versa.

57

The sets of rising edges Γr and falling edges Γf for a Boolean signal ψ are defined as

below:

Γr = {tψr1 , ..., t
ψ
rn}

and

Γf = {tψf1 , ..., t
ψ
fn
}

where tψri and tψfi are the timestamps for the ith rising and falling edge on ψ,

respectively. Figure 5.1.a depicts a Boolean signal ψ, which is created when the

signal s(t) becomes greater than function f(t). After threshold crossing, the Boolean

signal is described by tψri and tψfi , (i = 1, ..., n). Now, ψ is represented as a tuple

consisting of an initial state (ψinit), a set of rising edges (Γr) and falling edges (Γf):

ψ = (ψinit,Γr,Γf). Note that this is a reversible operation and the Boolean signal

can be reconstructed from the initial state ψinit and sets of timestamps for rising and

falling edges.

1 3 7 85

𝜓1

𝜓2

𝜓1𝒰 2,4 𝜓2

96

𝑡𝑟1
𝜓1

time

⊤

⊥

⊥

⊥

⊤

𝑏)

⊤

𝑡𝑓1
𝜓1

𝑡𝑟2
𝜓1 𝑡𝑓2

𝜓1

𝑡𝑟1
𝜓2

𝑡𝑟1
𝒰

𝑡𝑓1
𝜓2

𝑡𝑓1
𝒰 𝑡𝑓2

𝒰 𝑡𝑟2
𝒰

𝜓 = 𝑠 𝑡 > 𝑓(𝑡)

𝑓(𝑡)

𝑠(𝑡)

𝑡𝑖𝑚𝑒

𝑣𝑜𝑙𝑡𝑎𝑔𝑒

⊤

⊥
𝑡𝑟1
𝜓

𝑡𝑓1
𝜓

𝑡𝑟2
𝜓
𝑡𝑓2
𝜓
𝑡𝑟3
𝜓 𝑡𝑓3

𝜓

𝑎)

Figure 5.1: a) Generating a Boolean Signal from Analog Signal, b) Calculating Until
Operator in TMA.

By applying differentiate operator on a Boolean signal ψ (ϕ =on ψ), event signal is

generated (ϕ). ϕ is true for a short period (sampling time) and false otherwise. Since

58

this operator provides the event set, Θϕ, it contains just the timestamps showing the

time of events (not rising and falling), Θϕ = {θϕ1 , ..., θϕn}.

5.1 TMA Algorithms for Level-based Temporal Specifications

After converting the real-value signals to Boolean and the extracting the cor-

responding timestamps, now it is possible to introduce the TMA algorithms. For

level-based timing operators there are three major algorithms.

5.1.1 Globally Operator

�[a,b]ψ at time t is true if the value of ψ in the future interval [t+a, t+b] is Always

true. In order to monitor such statement by TMA, signal ψ should be firstly converted

to a set of rising and falling timestamps (Γr = {tψr1 , ..., t
ψ
rn} and Γf = {tψf1 , ..., t

ψ
fn
}).

Given a Boolean signal (ψ) expressed with a set of rising and falling edges (Γψr and

Γψf), the set of rising and falling edges for �[a,b]ψ (Γ�r and Γ�f) are updated by running

Algorithm 1.

The new �[a,b]ψ rising and falling edges are computed based on the most recent tψr

(expressed as the current rising edge timestamp on ψ), tψf (expressed as the current

falling edge timestamp on ψ) as well as the values of a and b. The computed rising

and falling edges are only added to Γ�r and Γ�f if their timestamps for the rising edge

is less than that of the falling edge. A pair of timestamps appended to Γ�r and Γ�f

signifies that there is a new valid interval where the constraint, �[a,b]ψ, was met.

5.1.2 Eventually Operator

♦[a,b]ψ at time t is true if the value of ψ in the future interval [t+a, t+ b] becomes

true Eventually at least for a moment. For monitoring ♦[a,b]ψ in TMA, a Boolean

signal (ψ) expressed with, Γψr and Γψf , for every new pair of timestamps, the set of

59

Algorithm 1 Globally (tψr , tψf , a, b)

1: t�ri = tψr − a

2: t�fi = tψf − b

3: if t�ri < 0 then

4: t�ri = 0

5: end if

6: if t�fi < 0 then

7: t�fi = 0

8: end if

9: if t�ri < t�fi then

10: Γ�r = Γ�r + {t�ri}

11: Γ�f = Γ�f + {t�fi}

12: end if

rising and falling edges are updated by applying Algorithm 2. The new ♦[a,b]ψ rising

and falling edges are computed upon the most recent tψr and tψf timestamps as well

as the values of a and b. The calculated timestamps are only added to the set under

the constraint; a rising edge must occur after the last falling edge. Also, if the last

computed falling is in the range of new pulse, the last falling should be replaced with

the new falling edge to append the last pulse on the result. A pair of timestamps

appended to Γ♦r and Γ♦f signifies that there is a new valid interval where the constraint,

♦[a,b]ψ, was met.

5.1.3 Until Operator

In ψ1U[a,b]ψ2, Until operator is applied on two Boolean signals ψ1 and ψ2 and

ψ1U[a,b]ψ2 is true at time t if ψ2 is true at t′, t′ ∈ [t + a, t + b], and ψ1 is true

60

Algorithm 2 Eventually (tψr , tψf , a, b)

1: t♦ri = tψr − b

2: t♦fi = tψf − a

3: if t♦ri < 0 then

4: t♦ri = 0

5: end if

6: if t♦fi < 0 then

7: t♦fi = 0

8: end if

9: if t♦fi−1
< t♦ri and t♦ri < t♦rf then

10: Γ♦r = Γ♦r + {t♦ri}

11: Γ♦f = Γ♦f + {t♦fi}

12: end if

13: if t♦ri <= t♦fi−1
and t♦fi−1

< t♦fi then

14: Γ♦f = Γ♦f − {t
♦
fi−1
}

15: Γ♦f = Γ♦f + {t♦fi}

16: end if

continuously from t to t′. In order to monitor Until given two Boolean signals, ψ1

and ψ2, with new rising and falling edges tψ1
r , tψ2

r , tψ1

f and tψ2

f , the set of rising and

falling edges for ψ1U[a,b]ψ2 (ΓUr and ΓUf) are updated by Algorithm 3 with the incoming

pairs of timestamps. The new rising and falling edges for Until are computed in the

first 2 lines.

61

Algorithm 3 Until (tψ1
r , tψ2

r , tψ1

f , tψ2

f , a, b)

1: tUri = max(tψ1
r , t

ψ2
r − b)

2: tUfi = min(tψ1

f , t
ψ2

f)− a

3: if tUri < 0 then

4: tUri = 0

5: end if

6: if tUfi < 0 then

7: tUfi = 0

8: end if

9: if tUfi−1
< tUri and tUri < tUfi and tUri < tUrf then

10: ΓUr = ΓUr + {tUri}

11: ΓUf = ΓUf + {tUfi}

12: end if

13: if tUri <= tUfi−1
and tUfi−1

< tUfi then

14: ΓUf = ΓUf − {tUfi−1
}

15: ΓUf = ΓUf + {tUfi}

16: end if

𝜓1 𝜓2

0 0
𝜓1 𝜓2

0 1

𝜓1 𝜓2

1 1

𝜓1 𝜓2

1 0

𝜓1𝑓/−

𝜓2𝑟/−

𝜓2𝑓/−

𝜓1𝑟/𝑡𝑟
𝒰=𝑡𝑟

𝜓1

𝜓1𝑟 , 𝜓2𝑓/−

𝜓1𝑓, 𝜓2𝑟/−
𝜓1𝑓

, 𝜓2𝑓
/𝑡𝑓

𝒰=𝑡𝑓
𝜓1 − 𝑎

𝜓1𝑟
, 𝜓2𝑟

/𝑡𝑟
𝒰=𝑡𝑟

𝜓1

𝜓2𝑟/𝑡𝑟
𝒰= max(𝑡𝑟

𝜓2 − 𝑏, 𝑡𝑟
𝜓1)

𝜓2𝑓
/𝑡𝑓

𝒰=min 𝑡𝑓
𝜓1 , 𝑡𝑓

𝜓2 − 𝑎

𝜓1𝑟
/−

𝑠𝑡𝑎𝑟𝑡

𝜓1𝑓/𝑡𝑓
𝒰=𝑡𝑓

𝜓1 − 𝑎

Figure 5.2: FSM to Implement an Until Operator.

62

Starting at line 3, new edges are either appended or discarded, depending on

whether or not they comply with the signals. For example, any negative time value

and any set of edges with a falling happening before a corresponding rising edge

indicate the constraint is not satisfied. Similarly, any edge with rising that comes

before the falling edge of the previous set is discarded and the previous falling is

replaced with the new falling since the last positive pulse should be extended to the

new falling edge. A pair of timestamps appended to ΓUr and ΓUf signifies that there

is a new valid interval where the constraint, ψ1U[a,b]ψ2, was met. As depicted in the

Until example in Figure 5.1.b, tUr1 = max(1, 2 − 4) = 1 and tUf1 = min(5, 9) − 2 = 3.

Since tUr1 < tUf1 they can be used to update ψ1U[2,4]ψ2 by being appended to ΓUr and ΓUf .

The potential ψ1U[2,4]ψ2 rising and falling edges obtained from the second pulse of ψ1

are then computed as follows: tUr2 = max(7, 2 − 4) = 7 and tUf2 = min(8, 9) − 2 = 6.

Since tUf2 ≤ tUr2 they must be disregarded rather than appended to ΓUr and ΓUf . This

concludes that U[2,4], were met in the interval from time t = 1 to t = 3, when the first

pulse of ψ1 must hold until the rising event on ψ2 is true at some time step between

a and b 1 . The Finite State Machine (FSM) in figure 5.2, calculates the result of

Until operator with just four states (two bits).

5.2 TMA Algorithms for Event-based Temporal Specifications

For demonstrating how TMA monitors the event-based temporal specifications,

Latency and Simultaneity operators are explained in this section where the rest of

the TTL operator are monitored in a similar way. However, it is worth mentioning

that in the diagrams for calculating Latency and Simultaneity in figures 5.3 and 5.4

the measurement errors are not showed. This is because the figures are depicted to

make a better understanding of the method for the reader. Intuitively, chapter 3

1In the calculations for ψ1U[a,b]ψ2 operator,just overlapped pulses on ψ1 and ψ2 are considered.

63

and 4 represented all required calculations for measurement errors and user-defined

tolerance values.

𝑎) 𝑏)

𝜃2 − 𝑏

𝜀

𝜃1 − 𝑎

𝑡𝑟 𝑡𝑓

ℒ 𝑎,𝑏 𝜑1, 𝜑2, 𝜀 < 𝑙

⊤

⊥

𝜃1 𝜃2

𝑙

𝑡𝑖𝑚𝑒

𝑣𝑜𝑙𝑡𝑎𝑔𝑒

𝜓1

𝜓2

𝑡𝑟
^ 𝑡𝑓

^

𝜓1⋀𝜓2

max min

𝑡𝑖𝑚𝑒

Figure 5.3: a) Calculating of Latency Constraint, b) Calculating AND Gate Using
Timestamps.

5.2.1 Latency Constraint

A Latency constraint specifies the time difference between the occurrence of two

events. A simple example of a latency constraint is the minimum, maximum or

exact time interval between two events, denoted as follows: L(ϕ1, ϕ2, ε) 5 l where

5 ∈ {>,<,=}. The test code generation takes as input two events (ϕ1 and ϕ2) and

compares the difference between the event timestamps with a real number l. Since

the signals are singletons,the sets of Θϕ1 and Θϕ2 each contains only one element.

Hence, whenever event Θϕ2 is received, the latency can be calculated. The latency

constraint evaluation is comprised of two steps: (1) calculating the delay ∆t between

two timestamps, θϕ1

1 , and θϕ2

1 (∆t = θϕ2

1 − θϕ1

1), and (2) comparing ∆t with l. If

((∆t5l) = >) then the rising and falling edges of result are: tLr = θϕ2

1 −a, tLf = θϕ1

1 −b.

As the example shows in figure 5.3.a, the predicate is L(φ1, φ2, ε) < l, the maximum

Latency. Although the time difference between timestamps of events θ1 and θ2 (the

corresponding events for φ1 and φ2) is a little bit more than l, since it does not exceed

l + ε, the result is true from θ1 − a to θ2 − b.

64

There is
no event

An event on
𝜑1to 𝜑𝑛

co
u

n
t(even

ts)<
𝑛count(events)== 𝑛

&&

𝜃𝑚𝑖𝑛
𝜑𝑖 + 𝜀 ≤c

𝜃𝑚𝑖𝑛
𝜑𝑖 + 𝜀 >c

&&
count(events)< 𝑛

start

The constraint
is not met

The constraint
is met

𝑡𝑟
𝒮 = m𝑖𝑛 𝜃𝜑𝑖 − 𝑎

𝑡𝑓
𝒮 = m𝑎𝑥 𝜃𝜑𝑖 − 𝑏

3

1

2

4

𝑡: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒

𝜃𝑚𝑎𝑥 − 𝑏

𝜀

𝜃𝑚𝑖𝑛 − 𝑎

𝑡𝑟
𝒮 𝑡𝑓

𝒮

𝒮 𝑎,𝑏 (𝜑1, 𝜑2, 𝜑3, 𝜖)
⊤

⊥

𝜃1 𝜃2𝜃3

𝜃𝑚𝑎𝑥: 𝜃3

𝜃𝑚𝑖𝑛: 𝜃1

𝑡𝑖𝑚𝑒

𝑣𝑜𝑙𝑡𝑎𝑔𝑒

𝑎) 𝑏)

ሶ𝑐 = 1
𝑐 = 0

Figure 5.4: a) Calculation of Simultaneity Constraint b) The Timed-automata to
Calculate Simultaneity Constraint.

5.2.2 Simultaneity Constraint

To determine the satisfiability of the Simultaneity constraint, the point in time

where a set of events have occurred within a time tolerance of ε is evaluated. Figure

5.4.a) shows the example of three events occurring within ε so that the constraint is

met between θmin − a and θmax − b. A timed-automaton is utilized to evaluate this

timing constraint. As figure 5.4.b) demonstrates, if the timed-automaton detects n

events in ε duration, the constraint is evaluated to true.

5.2.3 Untimed Operators’ Computation Using Timestamps

As it is discussed earlier, the benefit of the proposed method (TMA) is due to

its ability to replace the history of signals with their latest transition timestamps.

However, it is required to have the unique framework for all possible operators. Or-

dinary logic operators like And, Or, Implies or so on, just operate on Boolean signals

and produce Boolean results as well [Moslem Didehban and Mehrabian, 2108]. Since

the evaluation in TMA is done using timestamps, there should be a way to evaluate

ordinary logic operators accepting timestamps. As an example, an And calculation

65

approach is depicted in figure 5.3.b) where it calculates ψ1 ∧ ψ2. The corresponding

FSM for AND gate is in figure 5.5. At the beginning, both ψ1 and ψ2 are false (ψ1 = 0

and ψ2 = 0). If the FSM receives a rising on ψ1, ψ1r , the states of the predicates

are ψ1 = 1 and ψ2 = 0. Whenever a rising is detected on ψ2 as well, now the state

of Boolean signals are true (ψ1 = 1 and ψ2 = 1). Therefore, the algorithm should

produce the output which is true and it would be a rising edge timestamp on the

output signal (the bottom green arrow). The rising edge timestamp is the same as

the rising edge of ψ2, t
∧
r = tψ2

r because only at that time both ψ1 and ψ2 had had

their own rising timestamps.

𝜓1 𝜓2

0 0
𝜓1 𝜓2

0 1

𝜓1 𝜓2

1 1

𝜓1 𝜓2

1 0

𝜓2𝑟
/−

𝜓2𝑓
/−

𝜓
1
𝑓
,𝜓

2
𝑟
/−

𝜓2𝑟
/𝑡𝑟

Λ=𝑡𝑟
𝜓2

𝜓2𝑓
/𝑡𝑓

Λ=𝑡𝑓
𝜓2

𝜓1𝑟/
𝑡𝑟
Λ=𝑡𝑟

𝜓1

𝜓1𝑓
/𝑡𝑓

Λ=𝑡𝑓
𝜓1

𝑠𝑡𝑎𝑟𝑡

Figure 5.5: The FSM for Calculating AND Gate Using Timestamps.

5.3 Time Testing Methodology

In this section, a methodology is presented to automate the monitoring of CPS

timing constraints that can be implemented on commercially available platforms. In

this process, there are three entities: 1) System Under Test (SUT), 2) TTL statements

that specify the timing requirements, and 3) a measurement system that monitors

66

the SUT’s timing specifications.

5.3.1 Methodology Steps

The proposed methodology has five steps to perform the testing on a CPS as

follows:

1- Making TTL Parse Tree

In order to produce the parse tree from the TTL statement, all temporal constraints

should be written as a string, and all operators should be separated by parentheses.

Then, the expression string is converted into a list of tokens. In each step, one token

is taken, then the rules are applied until all tokens are applied on the tree (a non-

binary tree). After taking the last token, the parse tree is created. In parsing a TTL

statement, there are three different types of tokens:

1. Operators

• Temporal operators (U , �, ♦, L, S, C, F , P , and on)

• Boolean operators (¬, ∧ and ⇒)

• Comparison operators (>, <, =, ↗ and ↘)

2. Operands

• Signals

• Real numbers

3. Separators

• “(”, “)”, “〈” and “〉”

67

Table 5.1: The Rules to Create a Parse Tree from a TTL Statement
Current Token Next Token IsEmpty(G) IsNotEmpty(G)

“(” or “〈” X Create a new node Create a right child

Operands X Create a right node and assign the operand to it

All operators ex-

cept “↗” and

“↘”

X
Assign the operator

to the current node

Travel upward until reach an empty

node and assign the operator to it. If

no empty node is found, create a parent

node for the root, assign the operator

to it and goto the new root

“,” is not “〈” goto the parent node

“,” is “〈” goto the parent node and create an empty right child node for it.

“)” X goto the parent node

“〉” X goto the parent node and assign “on” to it

“↗” X assign “>” to the current node

“↘” X assign “<” to the current node

The right child and left child illustrate the ordering between the children of a

node. The rules to parse a TTL statement are in table 5.1. In figure 5.6, a TTL

statement is converted into its corresponding parse tree by the algorithm.

2- Creating the Block Diagram

Each node in the parse tree corresponds to a computing block in the block diagram

except for leaves which are monitored signals and thresholds (figure 5.7).

Each block produces the output for its parent based on the timestamps it receives.

Chronological and Simultaneity blocks produce Boolean output signal to show the

exact time at which signals meet their constraints. The outputs of Latency, Frequency

and Phase blocks are natural numbers and after comparing with a threshold and

applying the differentiate operator they can be converted into signal events to be

used in nested temporal operators.

68

>

^

F

^

𝒔𝟏

>

3
10

0

>

𝑠5

S

>

𝑠3

<

𝑠4 2

<

5
𝒔𝟐

⋈

⋈ ⋈

1

(((
�[0,5] (s1 > 3)

)
∧
(
♦[0,5] (s2 < 5)

))
⇒ (♦[0,5]

((
�[0,2] ((F (〈s5, 0,↗〉)) > 10)

)
∧ (S (〈s3, 1,↗〉, 〈s4, 2,↘〉))

))
Figure 5.6: Generated Parse Tree for a TTL Statement.

3- Creating the Physical Connection

After determining the list of monitored signals, an appropriately isolated data acquisi-

tion device should be chosen to measure the signals without changing the functionality

of the CPS. For instance, the input impedance of the acquisition device should be

high enough so that the system does not experience any voltage drop. Appropriately

shielded cables should be used in order to avoid interference between signals, espe-

cially in high-frequency applications. Similarly, we need to use interface circuits like

optocouplers to improve the isolation when isolation of the acquisition device is not

high enough. The specifications of the monitoring devices, the way to make the con-

nections between SUT and monitoring equipment and the architecture for distributed

monitoring are discussed in chapter 6 in details.

69

4- Signal Monitoring

In order to deal with timing constraints in TTL, real-valued signals should be repre-

sented as signal events based on the edge type (rising, falling). Then, using a reliable

clock, signal events are converted to timestamps and stored in a database for either

offline analysis or sent to an online testing application. TTL semantics in table 3.1

are expressed for continuous signals, where each signal event represents a single point

in time. However, implementation on hardware platforms requires discretization of

the continuous signal. It is assume that all signals are well-behaved such that there

are no undetectable transient events between contiguous pairs of samples. This can

be achieved by using appropriate Data Acquisition (DAQ) devices that have high

sampling rates.

Time synchronization, absolution or relative, is necessary in measuring temporal

properties of a distributed SUT. A distributed test device must be synchronized to

ensure accurate, reproducible and repeatable measurement of the SUT based upon

the temporal constraints evaluated. Providing timestamps based on a global time is

an option in a system in which the occurrence of an event in absolute time matters.

Otherwise, measuring the relative time between events is sufficient, and time testing

can be implemented by the methodology regardless of accuracy to global time.

5- Constraint Evaluation

The result of a TTL statement is evaluated from the right-most block of the analyzer

(figure 5.7). Past operators are used to specify a timing constraint over past time

intervals as defined in [Maler and other, 2013, Jakšićet al., 2015] since they should

wait for future time to evaluate. For evaluating operators ♦[a,b] and �[a,b], the analyzer

waits for b seconds and then starts evaluating the constraint. Therefore, the response

70

0
5

−

⋈

𝑠1

3
>

0
5

S

F

10
>

0
2

0
5

<

𝑠2

5
𝑠5

0
> ⋈

𝑠3

1
>

𝑠4

2
<

⋈

⋈

FPGA Analyzer

T/FTimestampReal-valued Signal Real-valued Number

−

−

−

(((�[0,5](s1 > 3)) ∧ (♦[0,5](s2 < 5)))⇒ (♦[0,5]((�[0,2]((F(〈s5, 0,↗〉)) > 10)) ∧ S(〈s3, 1,↗〉, 〈s4, 2,↘〉))))
Figure 5.7: TTL Computing Blocks According to the Parse Tree in Figure 5.6.

at each instance (t) actually is corresponding to t − b. Moreover, online monitoring

of a constraint that contains future operators with infinite time interval is obviously

impossible (e.g. �(x > 3)). In order to solve this issue, the compiler modifies the

operator to one with time interval, [ts, tf] where ts and tf are start and finish time of

the testing.

5.3.2 Methodology Capabilities

Since the methodology works based on the events’ timestamps, it requires less

memory for monitoring and is suitable for implementing future operators in online

testing 2 . Moreover, the methodology completely fit distributed cyber-physical sys-

tems since it can evaluate the timing requirements when the agents are geographically

posed in different locations. As long as all agents are synchronized and their clock

drifts are less than a certain value it is possible to monitor remote agents. As an

2chapters 5 and 4.

71

example, assume the latency between two events φ1 and φ2 is a timing requirement

but φ1 occurs in Agent1 and φ2 is generated in Agent2. Agent1 and Agent2 are two

subsystem in a CPS that are geographically distributed. Since the method considers

just the timestamps of φ1 and φ2 and it is not required to access the original signals,

the calculation for latency is possible and can be conducted in one of two agents.

Furthermore, since in distributed systems the synchronization error and the preci-

sion of event capturing devices matter, the methodology can support such issues by

standardizing the monitoring testbed 3 .

The other capability of methodology is about using the output of TTL operators as

input signals. For instance, for evaluating Frequency, Latency and Phase constraints,

their outputs (a real-valued number) are compared with another number and provides

a True/False signal. This True/False signal is represented by a set of rising and falling

timestamps. As figure 5.7 shows, once the frequency of the signal s5 is greater than

10 Hz, the output will be true. This Boolean signal is represented as two sets of

timestamps containing rising and falling edge. Then, the output timestamps are

passed to the globally operator(�). The globally operator subtracts 2 s from every

signal’s falling edge timestamp. If the result is less than the previous signal’s rising

edge timestamp, the timestamp is fully removed.

In addition to aforementioned benefits, the methodology has the capability to be

implemented on FPGA boards which are fast, reliable and low-cost. The acquired

timestamps can be analyzed on the FPGA itself, transferred to a machine with a

higher performance to process, or stored in a database when the CPS is distributed

for offline analysis.

3chapter 6

72

Chapter 6

A METHOD TO QUALIFY TESTBEDS TO VERIFY TIMING BEHAVIOR OF

CPS

This chapter is an effort towards standardizing the process of testing the tim-

ing properties of CPS where a design of a testbed is outlined. The testbed can be

used to test the CPS to check if all the timing constraints are being met or not in

a systematic and correct manner to enable correct-by-construction (CbC) synthesis

of the testbed. The testbed – like the distributed CPS it is trying to test – is also

a distributed CPS, with each node (of the testbed) monitoring the required signals

from the CPS node. Hardware timestamping and IEEE 1588 Precision Time Protocol

(PTP) synchronization of the clocks among the CPS components provides observa-

tions at the same timescale through vast geographies, without losing accuracy with

time. In this chapter, there is also a discussion about the key timing parameters of

the testbed that will affect the time testing capability. In this regard, it studies the

specifications that must be met by the testbed, such that the testbed can validate

the timing constraints. Finally, the Correct-by-construction (CbC) timing testbed is

applied to verify the timing constraints of two example distributed CPS.

6.1 Distributed testbed to evaluate timing behavior of (distributed) CPS

A systematic approach to test and verify the timing behavior of a distributed sys-

tem is to monitor signals and events of the System Under Test (SUT) and timestamp

events with a common testbed timebase within the specified precision and accuracy

such that the required timing constraints over a distributed system can be properly

verified. Figure 6.1 shows the structure of the proposed distributed testbed. Just

73

like the CPS under test, the testbed itself is also a distributed CPS. Each node of

the CPS is monitored by a (Data Acquisition) DAQ platform – a programmable test

and measurement device with analog and digital inputs and outputs. There are k

distributed testbed nodes that communicate using a network link. All nodes are

synchronized with a clock reference to have the same notion of time. There exists a

database logging the time-stamped events from the distributed test and measurement

system for further analysis.

Each testbed node has two major components:

• DAQ platform

• Operating System (OS)

The DAQ platform of each node monitors the signals and timestamps of the events

of interest using a time-synchronized internal clock. The monotored signals must be

made observable by design – this is an aspect of Design For Testability (DFT). Each

test and measurement node is synchronized to a local clock reference – a Global

Navigation Satellite System (GNSS) traceable reference time source for example –

and distributed using the Precision Time Protocol (PTP). The event timestamps are

sent to the OS, which in turn, sends them all the workstations data, that loads them

into a database. The database of time-stamped events enables automated analysis to

determine if the timing constraints of the distributed CPS are met or not. Whether a

testbed can validate a timing constraint or not, depends on the design parameters of

the testbed. The most important design parameters of the distributed testbed that

affect the errors in the timing measurements are described below.

Whether a testbed can validate a timing constraints or not, depends on the design

parameters of the testbed. The most important design parameters of the distributed

testbed that affect the errors in the timing measurements are described below.

74

𝑃𝑙𝑎𝑛𝑡1

Monitoring
Timestamping

Clock

Data Acquisition

OS

Testbed 1

Communication

Synchronization

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟1 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑛

Clock Reference

Database

Testing &
Analysis

Communication

Results

Workstation

𝑃𝑙𝑎𝑛𝑡𝑛

Monitoring
Timestamping

Clock

Data Acquisition

OS

Testbed K

Communication

Synchronization

Data Communication Channel

Synchronization Channel

Testbed System

CPS/SUT

Figure 6.1: Time Testing Structure Diagram.

6.2 Analog to Digital Converter (ADC) parameters

The testbed monitors all signals by sampling them because they should be digi-

talized to use in cyber side. This is done by Analog to Digital Converters (ADCs) on

the probes.

6.2.1 ADC Sampling Rate

The sampling rate of an ADC, fs, is expressed as samples per second, or Hertz

(Hz). In order to be able to monitor a signal correctly, the sampling rate must be

sufficiently high to capture the fastest observable dynamics of interest in the signal.

Suppose we intend to find out the time at which a signal rises above 3.4V. Figure 6.2

shows this signal, monitored with two different sampling rates. On the left with

sampling rate of fs = 1 kHz, the threshold crossing time of the signal is detected as

t = 1 ms. However, on the right, with sampling rate of fs = 0.5 kHz, the threshold

crossing time of the signal is detected as t = 2 ms.

75

0 1 2 3 4 5

𝑓𝑠 = 1 𝐾𝐻𝑧 𝑓𝑠 = 0.5 𝐾𝐻𝑧

0 2 4Time(ms) Time(ms)

Threshold

Voltage(mV) Voltage(mV)

3.4V

Figure 6.2: A Digitized Analog Signal at Two Different Sampling Rates.

6.2.2 ADC Resolution

Since an ADC converts the voltage signal into digitized sampled events, the accu-

racy of measurement is also limited by the number of bits used to express the sampled

value, nbitsADC , and the voltage range of the ADC, VRADC . An n-bit ADC can rep-

resent 2n values. A 12-bit ADC that measures the range of 0 V to 5 V has steps of ≈ 1

mV. The precision of the ADC is defined in terms of resolution of the ADC, or VADC

can be calculated as: VADC = VRADC

2nbitsADC
. The resolution of the ADC can affect the time

at which the monitoring device detects an event on a signal. Figure 6.3 illustrates the

conversion of an analog signal to digital samples with various resolutions, VRADC of 5

V. If the user wants to detect the time when a signal rises above 4 V, then in the left

diagram, with nbitsADC = 12, the time at which the threshold crossing is detected

is t = 3 ms, while in the right diagram, with nbitsADC = 11, the time at which the

threshold crossing is detected is t = 4 ms.

6.3 Input Impedance

Wiring a signal to a DAQ device adds a load to the CPS circuit under test, which

causes a change in the shape of the monitored signal. For pure resistive loads, this

change is a simple voltage drop while for general loads, the shape of the monitored

76

1

2

3

4

5

2

5

3

1

3 2 4

12-bit ADC 11-bit ADC

Threshold

Voltage(mV) Voltage(mV)

Time(ms) Time(ms)

3.4V

Figure 6.3: An Analog Signal Sampled Using Two Different ADCs That Have the
same range and different resolutions.

signal is changed based on the equivalent resistance and reactance of the measuring

device (including capacitance effect of the cables) and the SUT. As a result, based

on the rate of change in the value of the signal, the measurements of the signal may

be delayed or its amplitude may be attenuated. Input impedance, Zin, is defined as

the CPS equivalent circuit from the terminal connected to the testbed. The test and

measurement device must have a sufficiently high input impedance to minimize per-

turbation of the measurement process on the signal. Figure 6.4.a shows the monitored

signal perturbed by the loading effect of wiring the measurement device to the SUT.

The threshold detection time of the original signal is after the threshold detection

time of the monitored signal. The parts of b and c of the figure demonstrate the

same potential problem for periodic and/or arbitrary signals.

6.4 Clock Parameters

A clock’s fractional frequency offset is defined as fclock = finst−f0
f0

, where finst is the

instantaneous clock frequency, and f0 is the nominal clock frequency. Thus, this is

the unitless instantaneous fractional offset from the nominal frequency of an oscillator

[nis, 2017]. Environmental conditions such as voltage and temperature variations or

mechanical vibrations, can affect the rate at which an oscillator runs.

77

Time(ms)
0 1 2 3 4 5

Voltage(mv)

a)

0

5

0 1 2 3 4 5

2mv

Voltage(mv)

0.25

Time(ms)

5

0

-5

b)

3.7mv

0 1 2 3 4 5

1mv

Voltage(mv)

0.6

Time(ms)

5

0

-5

c)

4.8

Original signal before wiring:

Perturbed signal after wiring:

Figure 6.4: Voltage Drop on Different Signals Connected to a Resistive Load.

6.4.1 Clock Fractional Frequency Offset

Typically, the fractional frequency offset of a clock, fclock , is expressed in Parts Per

Million (PPM), indicating the maximum amount of error in one million time units.

Thus, the time error after an elapsed time telapsed due to a fractional frequency offset

of fclock is telapsed × fclock . For instance, a clock with 5 PPM error, has 5 µs error after

1 second, an error of about 0.5 s after a day, or about 2.5 min after a year.

Since all clocks deviate from each other, distributed clocks must be synchronized

to a reference to have an agreement on time and have a unique and time notion.

Synchronization protocols match the clock of a device to a reference clock. However,

no synchronization protocol is perfect, and there is a synchronization error tsync, that

depends on several factors, including the number of bits used to represent the time,

when the time stamping is done (e.g., in the hardware or in software), network jitter,

network asymmetries delays, etc. [Eidson and Stanton, 2015]. The Network Time

Protocol or NTP [Mills, 1992] can usually keep time synchronized to within tens of

milliseconds over the public Internet (tsync ≈ 10 ms). The Precision Time Protocol,

PTP [IEE, 2008], can provide time synchronization over a LAN with sub-microsecond

78

accuracy. PTP with the White Rabbit[Lipiński et al., 2011] extension used for the

CERN Large Hadron Collider, can synchronize to sub-nanosecond accuracy. For CPS

distributed over a wide area with high precision and accuracy needs, GNSS (Global

Navigation Satellite Systems) can provide 100 ns accuracy.

6.4.2 Clock Synchronization Rate

Another important parameter is the rate of synchronization, rsync, which is the

number of times per second (e.g., in units of Hz) that synchronization is performed.

Every time we perform synchronization, the time offsets are within tsync of each

other. But from thereon, until the next synchronization, the clock times will move

apart at the rate of fclock , if the local clock uses the protocol to adjust its time

but not its frequency. The worst-case clock offset, εwcco , while the system clock

is synchronized via the time synchronization protocol in steady-state and while all

other environmental conditions are stable, can be calculated as: εwcco = tsync + fclock
rsync

.

Note that the units are in time, since fclock is unitless and the reciprocal of rsync is in

units of time.

Ideally, the testbed would have a GNSS receiver clock, where GNSS propagates

time traceable to UTC (USNO) at an accuracy on the order of 100 ns. GNSS receivers

can be installed into time servers and propagate traceable time through the network.

The synchronization network can propagate the traceable reference time via PTP or

NTP.

6.5 Testbed Capability Analysis

In order to determine whether timing behavior is verifiable by a given testbed, it

is important to understand the sources of timing measurement uncertainty, described

as ε in the timing constraint specifications.

79

Consider a distributed CPS, with a max latency constraint L(φ1, φ2, ε) < l for

events φ1 and φ2, where φ1 occurs on signal s1 and φ2 on s2 respectively. These

events are detected at different nodes of the CPS. The latency constraint states that,

given t1 as the occurrence of φ1, the time at which φ2 occurs should be less tha

t1 + l + ε. The testbed must capture the time at which an event occurs. However,

the measured time will be erroneous. This can due to the several factors, including

the sampling frequency fs, the ADC resolution VADC , and the clock error, εwcco .

Consider an event described by the tuple φ1 = 〈s1, vt,↗〉, marking the threshold

vt crossing of signal s1 on a rising edge. Since the ADC output is a multiple of

the supported resolution, the testbed may not be able to detect the exact point of

the threshold crossing. Thus, the threshold value must be mapped to the nearest

upper bound of the value. Since all sampled data are collected at known points in

time (integer multiples of 1
fs

), a threshold crossing is detected with a maximum error

εADC = 1
fs

. Figure 6.5 illustrates the worst-case error 1
fs

in an example.

Collected samples Original signal

V𝐴𝐷𝐶

1

𝑓𝑠

𝑉𝑇ℎ

𝑡𝐴 𝑡𝐷
Error

Figure 6.5: Worst-case Error between Actual Occurrence Time and Detection Time
for an ADC with Sampling Frequency fs.

Since all samples are timestamped using the local clock of the measurement sys-

tem, clock synchronization error (εwcco) must be taken into account. Thus, the max-

imum time error between the actual event occurrence and the detected event oc-

80

currence is the sum of the ADC error and the clock synchronization error: εtotal ≤

εwcco + εADC .

Since there will be at most εtotal error in both the measurements of φ1 and φ2,

then the testbed can confidently verify whether the exact latency constraint is being

met or not. Other types of constraints (e.g., simultaneity, frequency, phase, etc.) are

also expressed with a temporal error tolerance and one can similarly reason and verify

the temporal behavior.

81

Chapter 7

APPLICATIONS AND EMPIRICAL EVALUATIONS

In order to demonstrate the usefulness of the proposed methods, four CPS applica-

tions were implemented and evaluated: i) flying paster, ii) an intersection manager

for autonomous vehicles that manages the safe and efficient movement of autonomous

vehicles through a traffic intersection (Robust Intersection Manager (RIM)), iii) si-

multaneous image capturing, and iv) synchrophasor. Firstly, the applications are

introduced with their timing specifications in TTL. Then, the benefits of reasoning

system are studied with applying the deduction system on the application’s temporal

specifications. In the next part, a monitoring system is proposed for each applica-

tion using TMA and finally, the specifications of monitoring systems are examined to

know whether they are good enough for monitoring.

7.1 Applications, Their Timing Specifications, and Modeling

I this section, the applications used to show the capabilities of methods are intro-

duced. In each part, the application description, its timing specifications and their

expression in TTL, and how they have implemented are explained.

7.1.1 Flying Paster Application

A flying paster is part of a printing press, a distributed system enabling continuity

of operation through the automatic exchange of an expiring paper roll with a new roll.

Figure 7.1.a shows a schematic of the flying paster with the active roll A, which feeds

the web. When the radius of paper in roll A is less than a given threshold, the roll is

replaced by the spare roll S. The radius of the paper around roll A, (rA), is measured

82

by sensor H. When this radius falls below a given threshold, the Approaching Out of

Paper (AOP) event (φAOP) is generated, which initiates the paper roll replacement

process by starting the rotation of roll S. A strip of adhesive tape on paper roll S is

used to attach the paper from roll S to roll A. The location of the tape is detected

by sensor F , which creates the γ event (φγ). The frequency of the γ event is used to

calculate the angular velocity ωS of S. Once the linear velocities of roll S and A are

equal, a Match event (φMatch) is generated. Then, sensor F generates the event Top

Dead Center (TDC) to indicate the detection of the tape. Two complete rotations

of S after event TDC, the idler wheel E pushes the paper from roll A towards roll

S, at which point the paper from roll S adheres to the outgoing paper from roll A.

This event, (φContact), occurs after roll S performed two rotations plus 255 degrees,

tapeToContactAngle = 225°. Immediately after it, the Cutter D cuts the paper from

A. This is called the Cut event (φCut), and occurs when roll S has two rotations plus

tapeToCutAngle = 270° after TDC.

Modeling of Flying Paster

A picture of the implementation of a scaled model of the flying paster is shown in

figure 7.1.b. Rolls A and S in figure 7.1.a are implemented using two Hansen DC

motors dialed (0−360 degree) disks, driven by two Arduino Mega2560 boards. Disks

have a hole at zero degrees, which is detected by a photo-micro sensor. Photo-micro

sensors implement the sensor H, and F and are installed next to the disks. The paper

is modeled in software with the initial length of 125m and 0.05mm of thickness so

that the initial diameter for both rolls is 9cm (radius of 4.5 cm). The AoP event is

generated when the radius of A becomes less than 2.5cm.

83

: 𝑡𝑎𝑝𝑒𝑇𝑜𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝐴𝑛𝑔𝑙𝑒 = 225°

: 𝑡𝑎𝑝𝑒𝑇𝑜𝐶𝑢𝑡𝐴𝑛𝑔𝑙𝑒 = 270°2

1

: 𝐶𝑜𝑛𝑡𝑎𝑐𝑡3

: 𝐶𝑢𝑡4

A E

D

web
3

4

S

TDC

Double
sided
tape

1

2

𝑎)

Spare Roll
S

Active Roll
ASensor2

F
Sensor1

H

Measurement
device

𝑏)

Figure 7.1: The Schematic of Flying Paster and its Modeling Implementation.

7.1.2 Temporal Specifications of Flying Paster

- F(φγ, 0.005 × vA
2πrS

) = vA
2πrA

: The linear velocity of the paper (vA) (measured by

sensor F) of the active roll should be constant at 20m/s ± 10−3m/s, otherwise, it

cannot be fed to the printing press. It is known that vA = rA × ωA where rA is the

current paper radius and ωA is the angular velocity of the roll A. The tolerable error

for the velocity is 0.5 percent of the velocity on the active roll (0.005× vA
2πrS

).

- L(φAOP , φMatch, 10−4s) < 6s: The time interval from AoP to Match should be no

more than 6 seconds with the maximum of 100µs (10−4s) of uncertainty. Otherwise,

the paper on the old roll will run out before the new paper can be attached.

- C(φMatch, φTDC , 10−4s) and L(φMatch, φTDC , 10−4s) < 2π
ωS

: This captures the specifi-

cation that Match happens before TDC, and that TDC happens before completing

84

one full rotation from Match. Otherwise Contact and Cut do not work correctly.

- C(φContact, φCut, 10−4s): Cut event must occur after Contact event, otherwise, the

paper from the active roll is cut before attaching the new paper. The allowed tolerance

to detect this chronology is 100µs (10−4s).

- L(φContact, φcut, 10−4s) < 1.5ms: The delay between Contact and Cut should be

less than 1.5ms not to have a late cut. The acceptable tolerance is 100µs (10−4s).

- L(φTDC , φcontact, 10−4s) < 4π
ωS

+ 225
ωS

: This captures the specification that Contact

must occur 2 rotations plus 225 degrees from the TDC event. Otherwise the two

papers are not connected.

- L(φTDC , φcut, 10−4s) > 4π
ωS

+ 270
ωS

, when tape is in 2 rotations plus 270° of TDC, Cut

must fire. Otherwise, old paper is not cut in time.

7.2 Autonomous Intersection Manager (RIM) Application

The second case study is of an intersection manager (IM) for autonomous vehi-

cles. Several designs of traffic intersections for autonomous vehicles has been pro-

posed [Khayatian et al., 2020a, Dedinsky et al., 2019, Khayatian et al., 2020b, 2021,

2020c]. Robust Intersection Manager (RIM) [Khayatian et al., 2018] is one of the

recent frameworks for autonomous intersections that works in presence of variable

round-trip delay in communication between the vehicle and the intersection, and is

robust against model mismatches and external disturbances. Figure 7.2 depicts the

RIM algorithm. The intersection operates in 4 phases: i) when an incoming vehicle

reaches the synchronization line (SL), it sends a request to IM to synchronize its clock

with the IM. ii) When the vehicle crosses the request line (RL), it requests a V oA

and ToA – the velocity and time of arrival of the vehicle to the edge of intersection.

iii) The vehicle receives the V oA and ToA at some time say tθ, and then creates and

follows an optimal trajectory to achieve the assigned V oA and ToA. iv) When the

85

vehicle reaches the intersection line (IL), it cruises across the intersection at V oA.

When a vehicle receives V oA and ToA, its controller targets to be at IL with velocity

of V oA at ToA.

Sync PhaseControl Phase

to achieve

VoA/ToA

SLRL
IL

IM

Out of

Intersection

Range

𝑡𝜃

𝑡𝑅𝐿

𝑡𝑆𝐿

Computation

Figure 7.2: Robust Intersection Manager (RIM) Algorithm.

Modeling of RIM

The intersection manager case study consists of 6 autonomous vehicles and an in-

tersection manager. Vehicles communicate with the IM through a wireless network.

The length of each road connected to the intersection is 3m and the lane width is 1m.

Each vehicle is built on the Traxxas chassis, which is 0.6m long and 0.2m wide. The

RL and the SL are placed 2.5 meters and 3 meters away from IL. The intersection

manager and vehicles are developed with ESP8266 microcontrollers. The Network

Time Protocol (NTP) is used for clock synchronization and have δ = 8µs as the max-

imum synchronization error. The measurement error is replaced with synchronization

error.

86

Figure 7.3: Autonomous Intersection Manager Using Traxxas Cars.

𝑑𝑚𝑖𝑛

𝜙𝑆𝑅 𝜙𝑆𝑆

𝜙𝐸𝑆

𝜙𝐸𝑅

𝑎) 𝑏) 𝑐)

DSRC
sender

Sensor
e.g. LIDAR

Braking
System

DSRC
receiver

Processor

𝜙𝑆𝑅

𝜙𝑆𝑆

𝜙𝐸𝑆

𝜙𝐸𝑅

Rear car

Front car

𝑐𝑎𝑟𝑟

𝑐𝑎𝑟𝑓
𝑣𝑓

𝑣𝑟

𝑎max,𝑑𝑒𝑐

𝑎max,𝑎𝑐𝑐
𝑎min,𝑑𝑒𝑐

Figure 7.4: RSS Longitudinal Distance Rule and the Relations between the Events.

7.3 Applying Reasoning System on two Applications

A Scenario for RIM

In order to know the timing specifications for RIM, firstly we need to define a scenario.

In RIM, Adaptive Cruise Control (ACC) is used to ensure front-back accident will not

happen if a vehicle breaks suddenly. In ACC, the rear vehicle detects that the front

vehicle applies the brake in two ways, i) receiving the sudden brake message through

Dedicated Short-Range Communications (DSRC) or ii) the measured distance is less

than a threshold.

87

The sensor measurements enable the vehicle to maintain a minimum distance from

the front vehicle based on the worst-case network delay and response time of detec-

tion. The rear vehicle can detect an anomalous delay in the network by continuous

monitoring of the received data from the front vehicle. If network delay is greater

than a threshold, the minimum distance should be increased. This is because the rear

vehicle maintains a safe distance by using a LIDAR or RADAR-based sensor, and

increased network delays result in longer response times.

The Responsibility-Sensitive Safety (RSS) [Shai and other, 2017] provides a frame-

work to determine the safe distance for a rear vehicle to follow in order to avoid an

accident in the assumed worst-case scenario. The equation below shows the relation

between minimum distance and response time, ρ (time between detecting a distance

less than dmin to brake):

dmin =
(
vrρ+

1

2
amax,accρ

2 +
(vr + ρamax,acc)

2

2amin,dec

−
v2f

2amax,dec

)
(7.1)

where vr and vf are velocities of the rear and front vehicles, amax,acc is the maximum

acceleration rate and, amin,dec and amax,dec are the minimum and maximum deceler-

ation rates respectively. As figure 7.4.a shows two autonomous vehicles must have a

minimum longitudinal distance, dmin, before IL.

Timing Specifications of RIM

Based on the desired performance and safety of RIM, the following timing specifica-

tions are for RIM:

- L(φθ, φIL, 10−3s) > th, the time between receiving VoA/ToA (φθ) and crossing IL

(φIL) must be greater than a threshold (th) with 1ms of error, otherwise the vehicle

may not be able to achieve its VoA/ToA, which may lead to an accident. th is

vehicle-dependent and determined by the vehicle specifications.

88

- L(φRL, φIL, 10−3s) > len
Vmax

, if the vehicle drives with a velocity of more than the

maximum allowed speed, it would enter the intersection sooner than ToA and collide

with another car.

- L(φRL, φIL, 10−3s) < len
Vmin

, if the vehicle drives with a velocity of less than the

minimum allowed speed, it would enter the intersection later than ToA and it would

collide with other cars.

- F(φS, 5Hz) < ρ, in the rear vehicle’s Adaptive Cruise Control System, periodicity

between sending radar measurements (φS) and distance computations must be less

than braking response time (ρ). Otherwise, it cannot act fast enough and would

collide with the front car. The allowable tolerance in the frequency of φS is 5Hz.

- L(φES, φER, 10−3s)+ ta < ρ, the wireless network delay between the front (φES) and

the rear (φER) vehicle plus actuation time (ta) should be less than ρ. Otherwise, the

emergency braking system acts late and the vehicle collides with the one in front.

7.3.1 Power Grid Synchronization (Synchrophasor)

In order to reconnect a generator to the power grid for distribution of Alternating

Current (AC) power, the generator should be synchronized to the system parameters

to ensure voltage and frequency stability. When power components providers are

connecting to the AC grid, their voltage (amplitude), frequency and phase must

match. As the time related specification of PMU (Power Management Unit), the

frequency of two sources should be 50 or 60 Hz with maximum tolerance of 1% and

the maximum allowed phase deviation is about 10 degrees. Since frequency and phase

parameters are time sensitive, it is possible to specify timing constraints on them.

89

Modeling of Synchrophasor Using Two DC Motors

Power grid synchronization has been modeled using two DC motors where the first

motor (master motor) represents the grid reference for frequency and phase, and

the second one (slave motor) demonstrates the generator which should be controlled

by the master motor. Figure 7.5 shows the schematic of controlling two DC motors.

Two motors are controlled by two Arduino Mega 2560 boards synchronized by wireless

modules (NRF24L01). The phase of motors are monitored by two cRIO platforms

(figure 7.5).

DC Motor1

Slave ControllerMaster Controller

DC Motor2

c-Rio Testbed part1

𝑆2
𝑆1

c-Rio Testbed part2

Testbed

Optical

sensor2

Optical

sensor1

CPS

Synchronized

by IEEE-1588

Synchronized

by NTP

Figure 7.5: The Schematic of Controlling Two DC Motors to Rotate in the Same
Phase.

Two dials labeled from 0 to 360 degrees are installed on the motors’ shafts to

illustrate two sinusoidal signals. The angular speed of reference motor is set to 60

revolutions per second which indicates the power grid frequency (60 Hz). A small

hole is drilled on both dials at zero degrees in order to detect a revolution using

photomicrosensor. The goal is to synchronize the speed (frequency) and phase of the

slave motor with the master after an activation event rises. The setup for two DC

motors is depicted in figure 7.6. In this setup, an Arduino Mega 2560 board is used

for each motor, and they are implemented as a distributed synchronization system.

90

Two Arduino boards are connected by two wireless modules (NRF24L01+, 2.4 GHz)

by which the master motor controller sends required data to the slave controller.

Moreover, the master controller has an additional role for the slave and the slave uses

it as the reference for clock synchronization by NTP [Mills, 1989]. Using NTP, the

two devices can be synchronized to a precision of about 2 ms through the exchange

of NTP messages.

Figure 7.6: Modeling the Synchrophasor Using Two DC Mtors.

Since the CPS implementation is in a distributed manner, the testbed should

be distributed as well (Testbed part 1 and 2 in figure 7.5). One cRIO controller is

dedicated for each motor to monitor the sensors’ signals.

In a distributed system, having a common understanding of time is a critical

feature of the testbed. In order to achieve this capability, cRIO controllers use the NI-

TimeSync plug-in that utilizes the IEEE 1588 Precision Time Protocol (PTP)[IEEE

Instrumentation and Measurement Society, 2002] as the synchronization protocol with

100 ns precision utilizing a Local Area Network (LAN).

An NI-9381 module is used on each cRIO 9067 which contains 37 pins including

eight analog input/output and four digital input/output pins. Two analog input pins

on NI-9381 are used and connected to the sensor output pins on each motor. Two

installed sensors, Omron EESX970C1, have 5 V as their output when they detect

91

the hole. Once the sensor output crosses 2.5 V from below, a hole is detected (the

threshold is 2.5 V).

Timing Specifications of Synchrophasor

In such a synchrophasor, a pair of generators connected to the same grid should

generate a sinusoidal signal with frequency, f = 60 Hz, with 0.24% tolerance[Fre].

The phase difference between two generators should not be greater than 10° ± 0.5°.

The timing constraint for this case study is a frequency constraint on both sinusoidal

signals and a phase constraint between them. One can write the frequency constraint

as F(φMaster , 0.144) = 60 where acceptable tolerance for period, T , is 1
60+0.144

≤ T ≤
1

60−0.144 (16.63 ms ≤ T ≤ 16.67 ms) so the tolerance error window is about 80 µs. For

the second requirement, the phase between the signals should be within 10°. So, the

phase constraint can be described by P(φMaster , φSlave , 23 µs) < 0.463 µs. Acceptable

tolerance for this requirement is ε = 463 µs because a complete revolution (360°) is

done in 16.67 ms (1
60 Hz

= 16.67 ms).

In order to test the timing of this application, its timing specifications should be

defined clearly. I defined the timing constraints for this case study as “The frequency

of the rising edges of two signals s1 and s2 from the master and the slave sensors

crossing threshold, 2.5 V , must be 60 Hz and the time at which two sensors detect

the drilled hole should be exactly the same in each period with at most 463 µs error.

The tolerances are 0.144 Hz and 23µs for the frequency and phase respectively”.

The TTL statement for master controller is (s1 and s2 are the signals on Master

and Slave respectively):

F(〈s1, 2.5,↗〉, 0.144Hz) = 60 Hz

92

Similarly, we can write the TTL statement for the slave controller as:

F(〈s2, 2.5,↗〉, 0.144Hz) = 60 Hz

and as a distributed system we have:

P(〈s1, 2.5,↗〉, 〈s2, 2.5,↗〉, 0.000023s) < 0.0004 s

Three aforementioned TTL expressions can be rewritten by a single statement

separated with logic AND(∧). The monitoring program evaluates results online.

7.3.2 Simultaneous Image Capturing for 3D Reconstruction

3D image reconstruction based on multiple 2D images taken from different angles

of a scene has application in many fields, including entertainment, military (geometric

information extraction), autonomous driving, and sports (e.g., football match anal-

ysis). 100 µs is taken as the maximum delay between capture time of two cameras.

This requirement is interpreted as a Simultaneity constraint between trigger signals

of cameras with maximum acceptable tolerance of ε = 10 ms or S(φc1 , φc2 , 10 ms).

Modeling of Simultaneous Image Capturing Application

A model of the application was implemented where each camera takes a picture of a

rolling ball from different angles at the same time. Figure 7.7 depicts the experiment

testbed as well as the monitoring platform. The equipment are ArduCAM ESP8266

UNO boards which include a 2 MP CMOS camera for image capturing, a built-in

ESP8266 module for wireless communication and some digital I/O. The connected

battery was a rechargeable 3.7 V 700 mAh Li-Po battery as the power supply. A

web-server is used to send the capture command to both cameras. Upon capturing,

each ArduCAM board generates a trigger signal on one of the digital input/output

93

(I/O) pins. This signal is used to show the delay between capture time instances

between two cameras. Figure 7.7 shows the ArduCAM boards (towards the bottom)

taking pictures of a rolling soccer ball and the testing platforms.

Figure 7.7: Two ArduCAM Taking Simultaneous Images of a Moving Soccer Ball.

As Figure 7.8 demonstrates, there is a server (a desktop computer or a laptop)

with a wireless communication device to send the command to camera boards. Once

each camera receives the message from the server, they should take a picture after

no more than 0.2 s and send it back to the server. Then, these images can be used

for 3D image reconstruction. In order to avoid blurring, all images should be taken

simultaneously. ArduCAM1 (the bottom camera in figure 7.8) raises a flag on its

digital pin #2 once it receives the command. This pin is connected to the testbed as

signal s1. Each ArduCAM board is set to raise a flag on one of digital pin #3 when

they take the photo. The pin #3 of each camera is connected to the corresponding

cRIO device as signals s2 and s3. Applying the configuration from the first case study,

each camera is attached to one of the cRIO devices. Since we defined that the cameras

must take the pictures synchronously, the events detected on s2 and s3 should occur

simultaneously within 0.2 s after they receive the command message. Thus, the time

interval between the event detected on signals s1 and s2 should be less than 0.2 s.

94

Testbed part1 (cRIO NI-9035)

Main controller

ArduCAM2

ArduCAM1

𝑆1

𝑆2

𝑆3

Testbed part2 (cRIO NI-9067)

CPSTestbed

Synchronized
by IEEE-1588 Synchronized

NTP

Figure 7.8: The Schematic of Monitoring Simultaneous Image Capturing.

7.3.3 Timing Specifications of Simultaneous Image Capturing

In specifying the timing constraints, the requirement can be specified as a max-

imum Latency and a Simultaneity constraints within a time error tolerance. Hence,

the timing specification is, The signal s2 should go above 2.5 V at the same time with

signal s3 when it goes above 2.5 V with 0.01 s tolerance and the latency between the

time that the activation signal, s1, goes above 2.5 V and the time that the capture

signal, s2, goes above 2.5 V should be less than 0.2 s with tolerance of 0.01.

In TTL:

(S(〈s2, 2.5v,↗〉, 〈s3, 2.5v,↗〉, 0.01s) ∧ (L(〈s1, 2.5v,↗〉, 〈s2, 2.5v,↗〉, 0.01s) < 0.2s))

7.4 Applying TTL Reasoning System on Flying Paster and RIM

In this section, the benefits of TTL reasoning system for monitoring of temporal

behavior of CPS are demonstrated.

7.4.1 Consistency Checking of Temporal Specifications

TTL logic can check the consistency between timing specification that are ex-

pressed for a system.

95

The following specifications for flying paster are considered.

From physics rules, it is known that the relation between linear and angular ve-

locity as ωS = vS
rS

and between the angular velocity and the frequency of rotation:

ωS = 2πFS ⇒ vS = 2πrSFS. Besides, from the system definition, we know that the

linear velocity of both rolls should equal, vS = vA. Hence:

2πrSFS = vA ⇒ FS = vA
2πrS

Hz ± 0.5% (FS is frequency of S), rS = 0.045m and the

acceptable error is 0.5% of FS.

F
(
φγ, 0.005× vA

2πrS

)
=

vA
2πrS

Also, from the other definitions, we know:

tapeToContactAngle = 225
360
×λ and tapeToCutAngle = 270

360
×

λ

λ is the time of one rotation of S. It is necessary to check if the latency between

Contact and Cut is greater than 1.5 ms or in TTL L(φContact , φCut , 10−4s) < 1.5ms.

The TTL reasoning to check the consistency between those four specifications is

below:

96

1 F(φγ, 0.005× vA
2πrS

) = vA
2πrS

2 τ(φContact) = 225
360
× λ

δ

3 τ(φCut) = 270
360
× λ

δ

4 L(φContact , φCut , 10−4s) < 1.5ms

5 τ(φnγ)− τ(φn−1γ) ≤ 2πrS
0.995vAδ

− 1 FE, 1

6 2πrS
1.005vAδ

+ 1 ≤ τ(φnγ)− τ(φn−1γ) FE, 1

7 τ(φnγ)− τ(φn−1γ) = 360
225
× τ(φContact) Q1, 2

8 τ(φnγ)− τ(φn−1γ) = 360
270
× τ(φCut) Q1, 3

9 360
225
× τ(φContact) ≤ 2πrS

0.995vAδ
− 1 A7, 5, 7

10 2πrS
1.005vAδ

+ 1 ≤ 360
270
× τ(φCut) A7, 6, 8

11 360
225
× τ(φContact) <

2πrS
0.995vAδ

A10, 9

12 2πrS
1.005vAδ

< 360
270
× τ(φCut) A10, 10

13 − 2πrS
0.995vAδ

< −360
225
× τ(φContact) A5, 11

14 270
360
× 2πrS

1.005vAδ
< τ(φCut) Q3, 12

15 −225
360
× 2πrS

0.995vAδ
< −τ(φContact) Q3, 13

16 2πrS
360vAδ

(270
1.005
− 225

0.995
) < τ(φCut)− τ(φContact) A4, 14, 15

17 1.68ms < L(φContact , φCut , 10−4s) LMI, 16

Line 17 shows that the latency between Contact and Cut is greater than 1.68ms

which is inconsistent with L(φContact , φCut , 10−4) < 1.5ms (the third temporal spec-

ification in Section 7.5.1).

7.4.2 Consistency Checking for Autonomous Intersection Scenario

In the proposed scenario in figure 7.4, when two CAVs are driving on the same

lane and same direction, the deceleration on front vehicle is detected in the rear by

either receiving the sudden brake message (φER) sent through the wireless network

97

or measuring distance by sensor which sends φSS signal as an event and receive φSR

event by reflection 7.4.b. If rear vehicle detects an inconsistency between the measured

velocity (calculated using the sensors’ data) and the velocity received through DSRC,

it should drive more conservative (maintain a larger distance) to avoid any accidents

(larger dmin). Another option is reducing the response time of the rear vehicle. The

first solution degrades the throughput of the highway while the second one needs

re-scheduling of corresponding tasks in the ECUs and increase the sampling rate of

sensors if possible. By using a reasoning system, it is possible to derive a relation

between parameters of system and prove the satisfaction or violation of a safety

requirement from the available system information (equation 7.1). Moreover, it allows

for developing fault-tolerant routines when a requirement is not going to be met.

Regarding the second option, in the case of increasing vf or having a mismatch

between the received and the calculated vf in rear vehicle (by sensors e.g. Radar),

the rear car should be more conservative. As a fact, the actual end-to-end delay for

reading the sensor (detecting vf) should be less than ρ: (tSR−tSS)+WCETS+ta < ρ.

tSR and tSS are the time at which sensor sends and receives a signal to measure the

distance. Figure 7.4.c depicts the equation by a block diagram which is the block

diagram of decision making on the rear vehicle to know when a deceleration should

be applied. WCETS is the worst case execution time of calculation to find vf and ta is

the brake actuation time. Furthermore, another message, sudden brake (φEB event),

is issued as a network message by the front vehicle in case of braking (figure 7.4.b).

Once the rear vehicle receives the message, it decelerates. We have tEBR−tEBS+ta < ρ

where tER and tES are the time of receiving and sending the sudden brake message

from the front vehicle.

A)

τ(φSR)− τ(φSS) +
WCETS + ta

δ
<
ρ

δ

98

B)

τ(φER)− τ(φES) +
ta
δ
<
ρ

δ

1 τ(φSR)− τ(φSS) + WCETS+ta
δ

< ρ
δ

2 τ(φER)− τ(φES) + ta
δ
< ρ

δ

3 τ(φSR)− τ(φSS) < ρ−(WCETS+ta)
δ

A9, 1

4 τ(φER)− τ(φES) < (ρ−εl)+εl−ta
δ

A9, 2

5 1
ρ−(WCETS+ta)+5

+ 6 < F(φS, 5) FXI, 3

6 L(φES, φER, 10−3s) < ρ− 10−3s− ta + 1 LXI, 4

7 1
ρ−(WCETS+ta+5

+ 6 < F(φS, 5) ∧ L(φES, φER, 10−3s) < ρ− ta + 0.999 ∧I, 7, 8

The proposition in line 3 is translated into frequency (line 5) since the distance

is periodically measured and communicated by the sensor (φSS). Within the speci-

fied transmission latency, the measurements are received and the response formulated

(φSR) in consecutive events. Line 5 determines the frequency of sending sensor mea-

surement signals proportional to ρ. Hence, decreasing the response time becomes

possible, by increasing the rate of sensor measurement (e.g. Radar). Line 6 denotes

another boundary for decreasing ρ. Thus, if the monitored average delay of wireless

network is more than a certain value, the brake within response time is not going to

happen in the near future so that we conclude the vehicle is driving unsafely now. By

the last statement (line 7), the deduction elaborates the consistency between the

frequency of reading sensor and the wireless network delay for emergency braking.

7.4.3 Considering Measurement Errors for Accurate Monitoring

Dealing with uncertainties during the operation of CPS is required and it should

be considered in both designing and verification stages. That is because they exist in

99

all parts of CPS including physical units, network infrastructure or even processing. If

they are not taken into account, the CPS operation does not follow the specifications

defined in its design. On the other side, the verifying process should be aware of

existing measurement errors to have the right verification for the system operation. In

this chapter, the effects of considering uncertainties in CPS operation are scrutinized

and the result are compared with the real experiments 1

For the flying paster case study presented in section 7.1.1, it is found that there is

an inconsistency for the safety requirement L(φContact, φcut, 10−4s) < 1.5ms and the

reasoning showed that L(φContact, φcut, 10−4s) should be greater than 1.5141ms. It

means that it should inevitably changed to a valid specification. Here, it is changed

to

3ms < L(φContact, φcut, 10−4s)

(if it is greater than 3 ms it is definitely greater than 1.5) to make it consistent

with the rest timing constraints and then see the effect of considering user defined

tolerance and measurement error in the calculation.

Now, let’s look at the proof in section 7.4.1 again. Line 1 contains the uncer-

tainty in frequency. Accordingly, its effect on line 16 is: 2πrS
360vAδ

× 42.52 < τ(φCut)−

τ(φContact) since the latency between Contact and Cut should be greater than 3ms,

it is enough the left part of the above equation is greater than 3ms: 0.003 <

2πrS
360vA

× 42.52. Considering π = 3.14 and rS = 4.5cm, we have, vA < 11.12m/s.

If the tolerance and measurement error are not considered, the tolerance is elimi-

nated in frequency (line 1) and both 1.005 and 0.995 are replaced by 1 in line 16.

Since we do not consider the tolerance and measurement error in latency as well, the

1In order to see the effects of error measurement, it should be big enough to be seen. Therefore,
in the implementation of case studies it has been decreased to 200µs.

100

equation is: 2πrS
360vA

× 45 < τ(φCut)− τ(φContact). Hence, 0.003 < 0.785rS
vA

.

In case of removing the tolerance and error the threshold for vA is vA < 11.775m/s.

An analog to digital input/output data acquisition module monitors the time delay

between Contact and Cut for ten different linear speeds for A. The collected data de-

picted in figure 7.9 confirms that in speeds greater than 11.12m/s, the delay between

Contact and Cut is less than 3ms. The purple line in the figure shows that there is

w m/s error when the measurement error is considered. If δ in the reasoning process

is not taken into account, for all velocities between the pink line and brown line, the

latency between Contact and Cut is not met. However, the calculation without δ

shows they are met.

Furthermore, based on the reported data by the data acquisition system, the

actual latency between Contact and Cut , the calculated value with and without

considering tolerances in table 7.1. The table is about the comparison between the

calculated delay using deduction and measured delay (in experiments) between Con-

tact and Cut events (in microseconds). In each column (scenario), the numbers

for Measured and Calculated with Tolerance are closer than Measured and

Calculated without Tolerance. This demonstrates that not considering the tol-

erance can cause a problem because there is a gap between the calculation and real

implementation.

Apparently, the measured data is closer to the calculation involving the measure-

ment error.

Table 7.1: Seven Scenarios in Flying Paster to See the Effect of Measurement Error
in the Calculation.

8 m/s 9 m/s 10 m/s 11 m/s 12 m/s 13 m/s 14 m/s

Calculated with Tolerance in µs 4172.275 3708.689 3337.82 3034.382 2781.517 2256.554 2384.157

Calculated without Tolerance in µs 4415.625 3925 3532.5 3211.364 2943.75 2717.308 2523.214

Measured in µs 4240 3736 3400 2912 2672 2544 2352

101

The Latency constraint between Contact and Cut events is not met

0

1000

2000

3000

4000

5000

6000

5.97867 7.00328 7.9351 8.96318 9.64007 11.3544 12.4097 12.8537 14.1252

5571.142

4882.058

4238.2

3733.223
3382.808

2907.215
2671.565

2548.578 2352.545

La
te

n
cy

 b
et

w
ee

n
 C

o
n

ta
ct

 a
n

d
 C

u
t

(m
ic

ro
se

co
n

d
s)

Paper actual linear velocity (m/s)
11.77511.12

E

w

The Latency constraint between Contact and Cut events is met

Figure 7.9: Latency Measurement between Contact and Cut When the Velocity of
Active Roll Is Increased. Latency Measurement between Contact and Cut. w Is the
Error Value between Actual Velocity and the Calculated by the Reasoning System
with Considering Measurement Errors. E Demonstrates the Error Value When We
Do not Consider the Measurement Errors. Ignoring the Measurement Error Can
Result in an Incorrect Evaluation of the Timing Constraint and Cause a Failure.

7.4.4 Simplifying the Monitoring Logic

One solution to verify CPS specifications is through monitoring the temporal

behavior at runtime. The simplicity of timing specifciations can reduce the effort

required to design the monitoring logic. Additionally, if we can decrease the number

of specifications and/or their complexity, the memory and power consumption of the

monitoring logic implementation can be diminished. Since most monitoring devices

are implemented on FPGAs and they have relatively smaller memory, simplification

of specification is not an option it is a necessity. In order to illustrate this, there are

two examples in flying paster and RIM.

102

Flying Paster Application

To reduce the complexity of the monitoring logic for the flying paster case study,

there is an example here:

1 C(φMatch, φTDC , 10−4s)

2 τ(φTDC)− τ(φMatch) < 2π
ωδ

3 τ(φTDC) + 4π
ωδ + 270π

180ωδ < τ(φCut)

4 4π
ωδ + 225π

180ωδ < τ(φContact)− τ(φMatch)

5 τ(φContact)− τ(φTDC) < 4π
ωδ + 225π

180ωδ

6 τ(φCut)− τ(φMatch) < 6π
ωδ + 270π

180ωδ

7 τ(φCut) + 4π
ωδ + 225π

180ωδ < τ(φContact) + 6π
ωδ + 270π

180ωδ A4, 4, 6

8 τ(φCut)− τ(φContact) <
2π
ωδ + 45π

180ωδ A9, 7

9 τ(φContact) + 4π
ωδ + 270π

ωδ < τ(φCut) + 4π
ωδ + 225π

180ωδ A4, 3, 5

10 45π
180ωδ < τ(φCut)− τ(φContact) A9, 9

11 14 < τ(φCut)− τ(φContact) A8, 10

12 C(φContact, φCut, 10−4s) CHI, 11

13 L(φContact, φCut, 10−4s) < 2π
ω + 45π

180ω LXI, 8

Here, there are six hypotheses as system specifications. At the end, there are two

deduced independent timing specifications on just Contact and Cut events (line 12

and 13). If line 13 is true since Cut should occur after Contact with the tolerance

of ε = 10−4s, line 12 is also true. Thus, instead of monitoring 6 timing specifications

on 4 events, the monitoring can be done just on one timing specification on 2 events

(Contact and Cut) plus first two specifications (lines 1 and 2 that are not used in

the proof). Therefore, the number of timing specifications to monitor is reduced in

half and therefore, the required area for implementation is accordingly deducted.

103

Autonomous Intersection Manager

In RIM, when a vehicle receives the assigned VoA/ToA, it is responsible to satisfy

its specified constraints using the vehicle’s controller. Basically, when IM receives

a request, calculates VoA/ToA for the new vehicle based on the other vehicles’ tra-

jectories meaning if IM already assigned VoA/ToA to n vehicles, it should calculate

them for vehiclen+1 as well. And then, it checks the calculated trajectory with those

of vehicle1 to vehiclen. If there is a single conflict or more, IM should figure out

another safe pair of VoA/ToA for vehiclen+1.

On the other side, when vehiclen+1 receives the assigned VoA/ToA (at time tθ

in figure 7.2) there should be an enough time to achieve them through its controller

otherwise, it increases the chance of accident inside the intersection area. Therefore,

tIL − tθ (in figure 7.2) should be greater than a threshold. Based on these infor-

mation and TTL reasoning, we can determine the specifications of the vehicle, and

monitor the vehicle behavior to verify the system correctness. As RIM specifies, the

Request and Intersection Lines (RL and IL) are fixed and their distance is given as

Len (figure 7.2). Also, the minimum and maximum velocity of road connected to the

intersection are known, i.e. Vmin and Vmax. Therefore, we are aware of the latest and

earliest time by which a vehicle can travel this distance: len
Vmax

< tIL − tRL < len
Vmin

Moreover, we assume network delays between vehicle and intersection are bounded:

treceiveIM − treqvehicle < maxs and tθ − tsendIM < maxr

Hence, they can be expressed by a single variable maxN , maxN = maxr +maxs.

we know th = Vmax−Vmin

amax
, and the time between receiving V oA/ToA (at tθ) and the

time to reach IL can be find by a subtraction on the time of passing RL to IL and

the time between RL and tθ.

104

1 th < L(θ, IL, 10−3s)

2 L(RL, IL, 10−3s) < len
Vmin

3 len
Vmax

< L(RL, IL, 10−3s)

4 L(θ, IL, 10−3s) = L(RL, IL, 10−3s)− L(RL, θ, 10−3s)

5 L(RL, θ, 10−3s) = L(receiveIM , sendIM , 10−3s) + maxN

6 th+ len
Vmax

< L(θ, IL, 10−3s) + L(RL, IL, 10−3s) A4, 1, 3

7 th+ len
Vmax

− L(θ, IL, 10−3s) < L(RL, IL, 10−3s) A9, 6

8 th+ len
Vmax

− L(θ, IL, 10−3s) < len
Vmin

A10, 7, 2

9 th+ len
Vmax

< len
Vmin

+ L(θ, IL, 10−3s) A9, 8

10 th+ len
Vmax

− len
Vmin

< L(θ, IL, 10−3s) A9, 9

11 th+ len
Vmax

− len
Vmin

< L(RL, IL, 10−3s)− L(RL, θ, 10−3s) A10, 4, 10

12 th+ len
Vmax

− len
Vmin

+ L(RL, θ, 10−3s) < L(RL, IL, 10−3s) A9, 11

13 th+ len
Vmax

− len
Vmin

+ L(RL, θ, 10−3s) < len
Vmin

A10, 12, 2

14 L(RL, θ, 10−3s) < len
Vmin
− (th+ len

Vmax
− len

Vmin
) A9, 13

15 L(receiveIM , sendIM , 10−3s) +maxN < 2len
Vmin
− (th+ len

Vmax
) A7, 14, 5

16 L(receiveIM , sendIM , 10−3s) < 2len
Vmin
− (th+ len

Vmax
+ maxN) A9, 15

The above deduction illustrates that the process for responding to a request must be

bounded by a threshold (2len
Vmin
− (th+ len

Vmax
+ maxN) + ε). Otherwise, the intersection

safety is not guaranteed. The IM checks for conflicts in trajectory of the requesting

vehicle and the existing vehicles inside the intersection area. As the number of existing

vehicles increases, the IM processing time increases exponentially. Hence, the desired

safety specification is violated. As the proof shows, it is possible to monitor just one

timing specification (line 16) on two events instead of monitoring 5 specifications on

5 different events to achieve the same goal.

To compare the required space for implementing the simplified timing specifica-

105

Table 7.2: The Number of Required Lookup Tables and Flip-flops for Implementing
Monitoring Tool on Zynq 7000.

flying paster

Timing Specifications

Autonomous Intersection

Timing Specifications

All Simplified
Memory

Reduction
All Simplified

Memory

Reduction

#LUTs 1450 889 38.6% 1263 632 49.9%

#FFs 2250 1320 41.3% 1940 910 53%

tions with initial ones, the monitoring logic has been implemented using the TMA 2

. Table 7.2 shows the required memory for implementing all specifications versus the

simplified temporal specifications on Xilinx Zynq 7000. Thus, by monitoring simpli-

fied temporal specifications, we can reduce the memory requirement for implementing

on an FPGA by about 45.7%.

7.4.5 Reasoning about Unobservable Events

Not all events inside a CPS can be monitored, but their timing may be needed

to analyze the overall system behavior. For example, in the flying paster, after the

AoP event, the linear velocity of S should be the same as A. When this condition is

satisfied, Match is issued. If the time difference between AoP and Match is too long,

it shows that the settling time of the controller for the spare roller (S) has exceeded

the latency constraint. As a result, the active roll may run out of paper before the

replacement is made. If we can monitor the time for AoP and determine the time for

Match, the monitoring system can predict the settling time for the controller. As it

is mentioned earlier, ttermination = 6s.

2Explained in Chapter 5.

106

1 C(φTDC , φMatch, 10−4s)

2 L(φAoP, φCut, 10−4s) < 6s

3 10−4s
δ
− 1 < τ(φTDC)− τ(φMatch) CHE, 1

4 τ(φCut)− τ(φAoP) < 6s−10−4s
δ

+ 1 LXE, 2

5 τ(φCut)− τ(φAoP) < τ(φTDC)− τ(φMatch) + 6s−2×10−4

δ
+ 2 A4, 3, 4

6 τ(φMatch)− τ(φAoP) < τ(φTDC)− τ(φCut) + 6s−2×10−4

δ
+ 2 A9, 5

7 L(φAoP , φMatch, 10−4) < δτ(φTDC)− δτ(φCut) + 6s− 10−4s+ δ LXI, 6

As the example is showing, the deduction system can find a maximum band for

the latency between AoP and Match.

7.5 Using TMA for Run-time Monitoring of Simultaneous Image Capturing and

Synchrophasor Applications

7.5.1 Monitoring Flying Paster Using TMA

Based on the desired operation of the flying paster, its timing specifications are

converted to STL as follows. Noted that:

• A: Active roll.

• S: Spare roll.

• v: linear velocity.

• r: radius.

• ω: angular velocity.

• taction: the duration from tAoP to tMatch.

107

• ttermination: the duration between tAoP to tCut.

1) The velocity of the paper on active roll should be constant:

vA = (rA × ωA)± 1% m/s

�[ti,ts](vA = rA × ωA ± 1%)

2) The time interval between AOP rising to Match rising edge must be no more than

taction: �(↑ AOP ⇒ ♦[0,taction](↑Match))

3) After match, the paper speed of the spare should remain the same as active:

vA = rA × ωA and vS = vA ± 1%

�[tMatch,tCut](vA = rA × ωA)

�[tMatch,tCut](vS = rS × ωS)

�[tMatch,tCut](vS = vA ± 1%)

4) Catch the TDC (2 rotations of A after Match).

tTDC − tMatch <
4π
ωS

♦[tMatch,tMatch+
4π
ωS

](↑ TDC)

5) When tape is 225 degrees after TDC, Contact signal must fire.

tContact − (tTDC + 225 degrees
ωS

) < ±1 ms.

�[tTDC+
225 degrees
ωS+1 ms

,tTDC+
225 degrees
ωS−1 ms

](↑ Contact)

6) When tape is 270 degrees after TDC, Cut signal must fire.

tcut − (tspareTDC + 270 degrees
ωS

) < ±1 ms

�[tspareTDC+
270 degrees
ωS±1 ms

,tspareTDC+
290 degrees
ωS±1 ms

](↑ cut)

108

7) AOP to Cut should not be more than ttermination (The user defines ttermination and it

is the maximum duration in which the roll changing should be done. In this scenario

it is 6s).

♦[tAOP ,tAOP+ttermination](↑ Cut)

For the evaluation, the timing constraints of Flying Paster with three approaches

(conventional, Jakšić [Jakšićet al., 2015] and TMA) have been implemented on cRIO

FPGA board. In the conventional technique, the horizon for each operator is stored in

memory and the signal history is used for the evaluation. For synthesising the existing

method [Jakšićet al., 2015], all future STL formulas have been converted to the past

notation by the method explained in its original paper. Finally, the same timing

constraints in TTL synthesized in TMA. For example, in �(↑ AOP ⇒ ♦[0,taction](↑

Match)), we have:

Jakšić and conventional Method (which is pointed out as Register Buffer in

[Jakšićet al., 2015]) use STL: Since rising and falling edges (↑ and ↓) cannot be

represented in STL, we express them as the way in [Maler and other, 2013]:

↑ ψ = (ψ ∧ (¬ψ S T)) ∨ (¬ψ ∧ (ψ U T))

↓ ψ = (¬ψ ∧ (ψ S T)) ∨ (ψ ∧ (¬ψ U T))

Therefore, the example is converted to:

�((AOP ∧ (¬AOP S T)) ∨ (¬AOP ∧ (AOP U T))⇒

♦[0,taction](Match ∧ (¬Match S T) ∨ (¬Match ∧ (Match U T)))

In TMA, Since the constraint is a latency between AOP and Match, it can be

easily written in TTL as:

L(〈AOP, 2.5 V,↗〉, 〈Match, 2.5 V,↗〉, 10−4) < taction
3 .

3taction = 6s in this scenario.

109

The level threshold, 2.5 V, is the threshold to detect true or false on the Boolean

signal (0 V and 5 V correspond to false and true, respectively).

In order to compare three methods, the flying paster application has been im-

plemented in 6 different scenarios in which the linear velocity of Active roll (vA) is

different. Table 7.3 listed those 6 scenarios where the linear speed of active roll, the

time of AOP to match (taction) and time to contact (ttermination) varies. When vA is

decreased, the time between events AoP and match (taction), and also between AoP

and cut (ttermination) will be obviously increased.

The required area for implementing the monitoring system is shown in figure 7.11.

Table 7.3: Six Different Scenarios for Flying Paster Application.

A B C D E F

vA 22 m/s 20 m/s 18 m/s 16 m/s 14 m/s 12 m/s

taction 2 s 3 s 4 s 5 s 6 s 7 s

ttermination 3 s 4 s 5 s 6 s 7 s 8 s

As Figure 7.10 depicts, conventional and Jakšić methods required more FFs and

LUTs in the case study. With increasing the intervals, the FF and LUT utilization

increases for the Jakšić method as well. In contrast, TMA takes a constant amount of

memory in all scenarios because it does not require retention of signal history. When

a signal event is observed, the result can be deduced. Moreover, the computation part

– that affects the LUT size – is minimal by reducing operators (either event-based or

level-based) to simple computations.

Low-Variability Signals

[Maler et al., 2007] proposes a metric for a Boolean signal ϕ called variability where

it defines the number of value changing of ϕ in bounded time. ϕ is (∆, n)-bounded

variability if the number of changes in the value of ϕ is at most n. [Jakšićet al., 2015]

110

0%

10%

20%

30%

40%

50%

60%

70%

80%

A B C D E F

FL
IP

-F
LO

P
 S

IZ
E(

P
ER

C
EN

TA
G

E)

THE SCENARIOS

Flying Paster Timing Constraints, FF and LUT size
Conv.FFs Conv. LUTs Jaksic FFs Jaksic LUTs TMA FFs TMA LUTs

Both Could not
be compiled

Conv. Could not
be compiled

Figure 7.10: Comparison of FF and LUT Numbers in 3 Implemented Methods.

demonstrated that their approach is a good fit for monitoring of low-variability signals

since it reduces the number of counters for memorizing the signal values. One of the

timing specification of flying paster (♦[tAOP ,tAOP+ttermination](↑ cut)) was implemented

in three methods to see the efficiency of TMA in monitoring low-variability signals for

different values of ttermination as shown in the third row of Table 7.3. Table 7.3 shows 6

different values for the linear velocity of active roll (vA) and the corresponding taction

and ttermination, which are used to determine the required area for implementing the

monitoring system using conventional method, Jakšić approach, and TMA.

Figure 7.11 compares the FF utilization based upon the conventional, Jakšić, and

TMA approaches for constraint evaluation in the case study application, where TMA

used the least amount of memory.

Although Jakšić is better than conventional approach, TMA is the best among

three technique. The reason is that not only TMA does not need counter or register

and its calculations are lightweight but also that the constraint can be expressed

using just one latency operator (between AOP and Cut), while expressing it in STL

requires 17 and 18 operators in conventional and Jakšić, respectively.

111

0

1000

2000

3000

4000

5000

6000

7000

A B C D E F Average

Th
e

 N
u

m
b

e
r

o
f

LU
Ts

The scenarios

Flying Paster , 7th Timing Constraint, FF Size
Conv. FFs Jakvsic FFs TMA FFs

Figure 7.11: #FFs Utilization in Three Methods in Different Six Scenarios in Ta-
ble 7.3

7.5.2 Monitoring Synchrophasor Using TMA

to the testing framework, sensors on both motors are monitored, and event times-

tamps are sent to the LabVIEW 2015 application core. The application is executed

on a 64-bit Windows 7 with Intel(R) Core TM i7 2.93 GHz and 8 GB of RAM. In

this case study, two 1024 data size Direct Memory Access (DMA) First-In-First Out

(FIFO) data transfer with 64-bit quad signed integer are used with time measure-

ment precision on the order of 25 ns. This is because the cRIO NI-9067 works with a

40 MHz clock. The FPGA synthesis report indicated the Total Used Slices as: 16.9

% (2,257 out of 13,300). Here, a large size buffer for the DMA FIFO on the FPGA is

allocated to the monitoring logic to reduce the communication and processing over-

head on the desktop computer because smaller buffer sizes can cause loss of data.

The TTL analysis is done on a desktop computer by gathering all timestamps from

the cRIO devices.

The cRIO controller is managed by the LabVIEW tool containing a front panel

interface. The front panel includes controls and indicators to send commands and

112

-6

-4

-2

0

2

4

6

- 5 0 5 1 0 1 5 2 0 2 5 3 0 3 5

V
O

LT
A

G
E

(V
)

(F (< S 1 , 2 . 5 ,> , 0 . 0 6 7 H Z) = 6 0 H Z) ^ (F (< S 2 , 2 . 5 , > , . 0 6 7 H Z) = 6 0 H Z)) ^
(P (< S 1 , 2 . 5 ,> , < S 2 , 2 . 5 ,> , 0 . 0 0 0 0 2 S)) < 0 . 4 M S

TIME (MS)

Figure 7.12: Acquired Results from Oscilloscope for the Synchrophasor.

monitor the parameters. In the testbed implementation, using the LabVIEW front

panel shows the result of meeting the time constraint of the motor synchronization

scenario online. Moreover, in order to verify the phase constraint, it is also validated

using an oscilloscope (figure 7.12). The red and blue signals are acquired from optical

sensors on master and slave motors from the logged data on oscilloscope. The trans-

parent red area shows the time interval that the constraint is not met. The testing

methodology has the capability to test the constraints by logging signal timestamps

then applying the testing approach in an offline manner, but here the online moni-

toring has been implemented.

7.5.3 Monitoring Simultaneous Image Capturing Using TMA

The monitoring of the TTL statements showed that the latency difference in

the actuation times of cameras was 0.01 s, as well as the data monitored on the

oscilloscope (figure 7.13.a. Similarly, the interval between s1 and s2 is less than 0.2 s

that is validated by the oscilloscope results depicted in figure 7.13.b. Therefore, the

constraint is met on the deployed platforms and the Boolean indicator shows the

constraint has been satisfied.

113

-6

4

- 0 . 6 - 0 . 1 0 . 4 0 . 9

V
O

LT
A

G
E

(V
)

L(<S1 ,2 .5 ,>,< S2 ,2 .5 ,>,0.01)< 0 .2

-6

-1

4

9

- 0 . 6 - 0 . 1 0 . 4 0 . 9
V

O
LT

A
G

E
(V

)

S(<S2,2 .5 ,>,<S3,2 .5 ,>,0 .01)𝑎)

𝑏)

TIME (s)

TIME (s)

Figure 7.13: The Results for Image Capturing Acquired from Oscilloscope. a)
Images Are Taken Simultaneously. b) The Delay between the Time That the Images
Are Taken Is Less Than 0.2 s.

In this case study, three DMA FIFO memory buffers are used on FPGA for pro-

cessing and Total Slices: 28.9 % (3,849 out of 13,300) of cRIO-9067 FPGA was used.

Figure 7.13 shows the two trigger signals monitored on the oscilloscope.

7.6 Using Timestamp-based Monitoring Approach (TMA) to Monitor Temporal

Behavior of Globally and Flying Paster Application

In this section, there are three different results for the implemented experiments.

Firstly, the required FPGA area for a single operator (Globally) implemented using

TMA is compared with the state of the art [Jakšićet al., 2015], in FPGA implemen-

tation, in table 7.4. As the second part, some timing requirements of flying paster

has been implemented and to show the efficiency of TMA, the occupied FPGA space

is illustrated in two figures.

114

7.6.1 Efficiency of TMA in Implementing a Single Operator

In table 7.4, one single Globally operator with different intervals (from [0, 100]

to [300, 600]) was implemented on an NI cRIO FPGA board. The FPGA board is an

NI-cRIO 9035 equipped with an on-board FPGA, Xilinx Kintex-7 7K70T, containing

82,000 FFs and 41,000 LUTs with a 40 MHz clock frequency. The table illustrates

that in previous method Jakšićet al. [2015], the required area on FPGA depends on

the length of the interval where TMA needs small and fixed size for all operators.

#FF and #LUTs are the number of required flip-flops and lookup tables respectively.

By increasing the length of the interval, the needed FFs and LUTs are increased in

Jakšić where they are constant in TMA.

Table 7.4: Memory Requirement on FPGA for Globally Operator.

#FFs #LUTs

Jakšić [Jakšićet al., 2015] TMA Jakšić [Jakšićet al., 2015] TMA

1 �[0,100] 1902

1820

2981

2696

2 �[0,200] 3935 5895

3 �[0,300] 7821 9314

4 �[150,200] 1891 2875

5 �[300,400] 3702 5431

6 �[450,600] 6312 9612

7.7 The Satisfaction of the Testbed Requirements

In order to test and verify the timing constraints of the experimental setups,

testbed timing specifications (synchronization accuracy, ADC sampling rate, ADC

resolution, etc.) must exceed the CPS specifications as mentioned in section 6.5. In

this section, the specifications of the monitoring equipment are scrutinized to know

whether they are qualified for monitoring such CPS.

115

Table 7.5: The Specifications of Monitoring Devices

Monitoring Setup DAQ card Clk Drift rsync Sampling Rate ADC Zin εtotal

cRIO-9067 NI-9381 5 PPM 1 Hz 10 kS/s 12 Bits 1MΩ 106µs

cRIO-9035 NI-9232 5 PPM 1 Hz 102.4 kS/s 24 Bits 305kΩ 15.7µs

ZYNQ 7000 onboard 5 PPM 1 Hz 100 kS/s 12 Bits 10kΩ 215µs

7.7.1 NI-cRIO Setup

In a CompactRIO system (NI-cRIO), a controller with a processor and user-

programmable FPGA is populated with one or more conditioned I/O modules from

NI or third-party vendors. These modules provide direct sensor connectivity and

specialty functions. cRIO is available in both a rugged industrial form factor and

board-level design and it provides high-performance processing capabilities, sensor-

specific conditioned I/O, and a closely integrated software toolchain that make them

ideal for Industrial Internet of Things (IIoT), monitoring, and control applications.

As one of the testbeds for monitoring the time sensitive applications, two cRIO

devices, NI-9067 and NI-9035, have been used as chassis while two signal acquisition

modules, NI-9381 and NI-9232, installed on them for data acquisitions. Indeed, the

modules collected the data to be processed on the FGPA board on the chassis. The

specifications of the testbed equipment for NI-cRIO setup are summarized in the first

two rows of table 7.5.

The cRIO FPGA borad has a clock with 40 MHz frequency and 5 x 10−6 clock

drift. FPGA clocks are synchronized once a second using NI-TimeSync[Tim, 2010]

that supports PTP. Measurement devices are connected via the dedicated Ethernet

network. Implementation of the IEEE 802.1AS includes a very specific profile of

IEEE 1588 (PTP) (part of IEEE 802.1 Time Sensitive Networking (TSN) standards)

and uses hardware timestamping and compensation both in network elements and

endpoints to minimize time synchronization errors. TSN generally provides both

116

synchronization and also small and deterministic packet latency between testbed de-

vices.

Table 7.6: The Specifications of Monitored CPS Applications.

Application Minimum ε Zout Testbed

Flying Paster 100µs 25mΩ cRIO-9067,9035,NI-9381 NI-9232

Synchrophasor 80µs 25mΩ cRIO-9067,9035,NI-9381 NI-9232

Simultaneous Image Capturing 100µs 470Ω cRIO-9067,9035,NI-9381 NI-9232

RIM 1ms 50Ω ZYNQ-7000

Clock Specifications

The clock drift of the measurement nodes is 5 x 10−6, where each node synchronizes

every second via PTP with a precision of 1µs to the grandmaster. The worst-case

clock time offset of each cRIO is 5 µs
1 s

+ 1µs = 6µs.

ADC and Sampling Time

Since the voltage range of digital module is from 0 V to 5 V and it uses a 12-bit

and 24-bit ADC for NI-9381 and 9232 respectively, the ADC resolution VADC can be

calculated as 5−0
212
≈ 1 mV and 5−0

224
≈ 300 nV in order.

As table 7.5 shows, the sampling rates for NI-9381 and NI-9232 modules are 20

and 102.4 kilo samples per second meaning the sampling time is around 50µs and

9.7µs respectively.

Based on the calculated errors in clock and ADC, the total error cRIO setup is:

NI-9381:

εtotal = 6µs+ 100µs = 106µs

NI-9232:

εtotal = 6µs+ 9.7µs = 15.7µs

117

7.7.2 ZYNQ 7000 Setup

PYNQ [PYN] is an open-source project from Xilinx that makes it easy to design

embedded systems with Zynq Systems on Chips (SoCs). This framework enables

embedded programmers to exploit the capabilities of Xilinx Zynq. In order to monitor

RIM scenario, a PYNQ-Z1 board has been used for each vehicle. For each board, a

Canakit Raspberry Pi Wifi Wireless Adapter/dongle (802.11 N/g/b 150) has been

used for the wireless connectivity between subsystems in monitoring devices. For

each event on CAVs, a specific pin has been connected to a pin on PYNQ board.

The required electricity power provided by a Venom Lipo battery and all boards were

synchronized using NTP every 1 second.

Clock Specifications

The clock drift of the measurement nodes is 5 x 10−6 in the clock frequency of 50MHz.

Each node synchronizes every second via NTP with a precision of 200µs to the grand-

master which is one of the CAVs. The worst-case clock time offset of each cRIO is

εwcco = 5 µs
1 s

+ 200µs = 205µs.

ADC and Sampling Time

Since the voltage range of digital module is from 0 V to 3.3 V and it uses a 12-bit.

The ADC resolution VADC can be calculated as 5−0
212
≈ 1 mV. As table 7.5 depicts, the

sampling rates for ZYNQ-7000 is 100 kilo samples per second meaning the sampling

time is around 10µs. Therefore, εADC = 10µs.

Based on the calculated errors in clock and ADC, the total error for ZYNQ setup

is:

118

εtotal = 205µs+ 10µs = 215µs

7.7.3 Testbed Capability Analysis

In this section, it is shortly shown that whether the testbed is qualified for the

monitoring the applications.

Table 7.6 summarizes the specifications of applications while table 7.5 is demon-

strating the characteristics of monitoring devices for monitoring the case studies. As

the εtotal column shows, the precision of NI-9381 is not enough (it is 106µs) while NI-

9232 (its precision is 15.7µs) is good enough for testing the applications (ε > εtotal).

In Robust Intersection Manager, the smallest tolerable error is 1ms and since the

total error in ZYNQ is 215µs, PYNQ board is qualified to monitor RIM.

About input impedance of the monitoring equipment, all of them are qualified

for monitoring. Output impedance of the ArduCAM boards, for simultaneous image

capturing, is 470 Ω and input impedance of the cRIO is 305kΩ. Therefore, the

loading effect is very small and the testbed is suitable to verify the timing constraints.

Similarly, in synchrophasor and flying paster, two optical sensors (Omron EE-SX970-

C1) has at maximum 25mΩ output impedance in comparison with 305kΩ. In RIM

scenario, each pin of ESP 8266 board has 50Ω of resistors that is too small when they

are connected to a PYNQ board whose pins have a resistor of 10kΩ.

119

REFERENCES

Aviral Shrivastava et al. A testbed to verify the timing behavior of cyber-physical
systems. In DAC 2017. ACM, 2017.

MohammadReza Mehrabian, Saadat Pour Mozafari, and Behrouz Zolfaghari. An
approach to exploiting proper multiples of the generator polynomial in parallel crc
computation. In 2012 IEEE International Conference on Computer Science and
Automation Engineering (CSAE), volume 1, pages 614–617. IEEE, 2012.

Alexander Bolotov, Artie Basukoski, Oleg Grigoriev, and Vasilyi Shangin. Natural
deduction calculus for linear-time temporal logic. In European Workshop on Logics
in Artificial Intelligence, pages 56–68. Springer, 2006.

Ron Koymans. Specifying real-time properties with metric temporal logic. Real-time
systems, 2(4):225–299, 1990a.

Oded Maler and Dejan Ničković. Monitoring properties of analog and mixed-signal
circuits. International Journal on Software Tools for Technology Transfer, 15(3):
247–268, 2013a. ISSN 14332779. doi: 10.1007/s10009-012-0247-9.

Aviral Shrivastava, Mohammadreza Mehrabian, Mohammad Khayatian, Patricia Der-
ler, Hugo Andrade, Kevin Stanton, Ya Shian Li-Baboud, Edward Griffor, Marc
Weiss, and John Eidson. INVITED: A Testbed to Verify the Timing Behavior of
Cyber-Physical Systems: Invited. Proceedings - Design Automation Conference,
Part 12828(69):1–6, 2017. ISSN 0738100X. doi: 10.1145/3061639.3072955.

W Chipman, C Grimm, and C Radojicic. Coverage of Uncertainties in Cyber-Physical
Systems. ZuE 2015; 8. GMM/ITG/GI-Symposium Reliability by Design; Proceed-
ings of, 3:1–8, 2015.

Tao Ma, Shaukat Ali, Tao Yue, and Maged Elaasar. Testing self-healing cyber-
physical systems under uncertainty : a fragility-oriented approach. Software Quality
Journal, 27:615–649, 2019.

Man Zhang, Bran Selic, Shaukat Ali, Tao Yue, Oscar Okariz, and Roland Norgren.
Understanding uncertainty in cyber-physical systems: a conceptual model. In
European conference on modelling foundations and applications, pages 247–264.
Springer, 2016a.

Carna Radojicic, Christoph Grimm, Axel Jantsch, and Michael Rathmair. Towards
verification of uncertain cyber-physical systems. Electronic Proceedings in The-
oretical Computer Science, EPTCS, 247(Snr):1–17, 2017a. ISSN 20752180. doi:
10.4204/EPTCS.247.1.

Edward A. Lee. Cyber physical systems: Design challenges. Proceedings - 11th
IEEE Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing, ISORC 2008, 11:363–369, 2008. doi: 10.1109/ISORC.2008.25.

120

Man Zhang, Bran Selic, Shaukat Ali, Tao Yue, Oscar Okariz, and Roland Norgren.
Understanding uncertainty in cyber-physical systems: A conceptual model. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), 9764:247–264, 2016b. ISSN 16113349.
doi: 10.1007/978-3-319-42061-5{\ }16.

Peter B. Ladkin. A320-211 warsaw accident report. http://sunnyday.mit.edu/
accidents/warsaw-report.html, 3 1994. (Accessed on 11/16/2020).

US GAO. Software Problem Led to System Failure at Dhahran, Saudi Ara-
bia. US GAO Reports, report no. GAO/IMTEC-92-26, 1(1):1–20, 1992.
URL http://www.gao.gov/assets/220/215614.pdf%5Cnhttp://www.gao.gov/
products/IMTEC-92-26.

Robert N. Charette. Nissan recalls nearly 1 million cars for air bag software fix
- ieee spectrum. https://spectrum.ieee.org/riskfactor/transportation/
safety/nissan-recalls-nearly-1-million-cars-for-airbag-software-fix,
03 2014. (Accessed on 11/17/2020).

Yashwanth Annpureddy et al. S-TaLiRo: A Tool for Temporal Logic Falsification for
Hybrid Systems. In TACAS. Springer, 2011.

Mohammadreza Mehrabian and other. Timestamp temporal logic (ttl) for testing the
timing of cyber-physical systems. In TECS 2017. ACM, 2017.

Naeem Esfahani and Sam Malek. Uncertainty in self-adaptive software systems. In
Software Engineering for Self-Adaptive Systems II, pages 214–238. Springer, 2013.

John W van de Lindt, BR Ellingwood, Paolo Gardoni, and DT Cox. Modeling com-
munity resilience to earthquakes and tsunamis: An overview of the center for risk-
based community resilience planning. In 11th National Conference on Earthquake
Engineering 2018: Integrating Science, Engineering, and Policy, NCEE 2018, pages
3694–3698. Earthquake Engineering Research Institute, 2018.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. On a Formal Model
of Safe and Scalable Self-driving Cars. arXiv, 1(1):1–37, 2017.

Mohammad Khayatian, Mohammadreza Mehrabian, Harshith Allamsetti, Kai-Wei
Liu, Po-Yu Huang, Chung-Wei Lin, and Aviral Shrivastava. Cooperative driving
of connected autonomous vehicles using responsibility-sensitive safety (rss) rules.
In Proceedings of the ACM/IEEE 12th International Conference on Cyber-Physical
Systems, pages 11–20, 2021.

Antoine Cailliau and Axel Van Lamsweerde. Handling knowledge uncertainty in risk-
based requirements engineering. In 2015 IEEE 23rd International Requirements
Engineering Conference (RE), pages 106–115. IEEE, 2015.

William L Oberkampf, Sharon M DeLand, Brian M Rutherford, Kathleen V Diegert,
and Kenneth F Alvin. Error and uncertainty in modeling and simulation. Reliability
Engineering & System Safety, 75(3):333–357, 2002.

121

http://sunnyday.mit.edu/accidents/warsaw-report.html
http://sunnyday.mit.edu/accidents/warsaw-report.html
http://www.gao.gov/assets/220/215614.pdf%5Cnhttp://www.gao.gov/products/IMTEC-92-26
http://www.gao.gov/assets/220/215614.pdf%5Cnhttp://www.gao.gov/products/IMTEC-92-26
https://spectrum.ieee.org/riskfactor/transportation/safety/nissan-recalls-nearly-1-million-cars-for-airbag-software-fix
https://spectrum.ieee.org/riskfactor/transportation/safety/nissan-recalls-nearly-1-million-cars-for-airbag-software-fix

Roger G Ghanem and Steven F Wojtkiewicz. Special issue on uncertainty quantifi-
cation. SIAM Journal on Scientific Computing, 26(2):vii–vii, 2004.

P Ciffroy and M Benedetti. A comprehensive probabilistic approach for integrating
natural variability and parametric uncertainty in the prediction of trace metals
speciation in surface waters. Environmental Pollution, 242:1087–1097, 2018.

P Ciffroy. A comprehensive probabilistic approach for integrating and separating
natural variability and parametric uncertainty in the prediction of distribution
coefficient of radionuclides in rivers. Journal of Environmental Radioactivity, 225:
106371, 2020.

John P Davis and Jim W Hall. A software-supported process for assembling evidence
and handling uncertainty in decision-making. Decision Support Systems, 35(3):
415–433, 2003.

Stephen A Edwards and Edward A Lee. The case for the precision timed (pret)
machine. In Proceedings of the 44th annual Design Automation Conference, pages
264–265, 2007.

Janos Sztipanovits and Gabor Karsai. Model-integrated computing. Computer, 30
(4):110–111, 1997.

Peter Hehenberger, Birgit Vogel-Heuser, David Bradley, Benôıt Eynard, Tetsuo
Tomiyama, and Sofiane Achiche. Design, modelling, simulation and integration
of cyber physical systems: Methods and applications. Computers in Industry, 82:
273–289, 2016.

Github - apolloauto/apollo: An open autonomous driving platform. https://
github.com/ApolloAuto/apollo, 06 2021. (Accessed on 06/22/2021).

Sadaf Mustafiz, Cláudio Gomes, Hans Vangheluwe, and Bruno Barroca. Modular
design of hybrid languages by explicit modeling of semantic adaptation. In 2016
Symposium on Theory of Modeling and Simulation (TMS-DEVS), pages 1–8. IEEE,
2016.

Andreas Tolk, Ernest H Page, and Saurabh Mittal. Hybrid simulation for cyber
physical systems: state of the art and a literature review. In SpringSim (ANSS),
pages 10–1, 2018.

Carna Radojicic, Christoph Grimm, Axel Jantsch, and Michael Rathmair. Towards
verification of uncertain cyber-physical systems. arXiv preprint arXiv:1705.00519,
2017b.

Amir Pnueli. The temporal logic of programs. Proceedings - Annual IEEE Sympo-
sium on Foundations of Computer Science, FOCS, 1977-Octob:46–57, 1977. ISSN
02725428. doi: 10.1109/sfcs.1977.32.

Ron Koymans. Specifying real-time properties with metric temporal logic. Real-time
systems, 2(4):225–299, 1990b.

122

https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo

Oded Maler and Dejan Ničković. Monitoring properties of analog and mixed-signal
circuits. International Journal on Software Tools for Technology Transfer, 15(3):
247–268, 2013b. ISSN 14332779. doi: 10.1007/s10009-012-0247-9.

Air bags — national highway traffic safety administration (nhtsa). https://one.
nhtsa.gov/Laws-&-Regulations/Air-Bags, 06 2021. (Accessed on 05/03/2021).

Xi Zheng and Christine Julien. Verification and validation in cyber physical systems:
research challenges and a way forward. In SEsCPS 2015, pages 15–18. IEEE, 2015.

Charles Antony Richard Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580, 1969.

Amir Pnueli and Yonit Kesten. A deductive proof system for ctl. In International
Conference on Concurrency Theory. Springer, 2002.

Zhenhua Duan and Nan Zhang. A complete axiomatization of propositional projection
temporal logic. In TASE’08. IEEE, 2008.

Oded Maler and Dejan Nickovic. Monitoring Temporal Properties of Con-
tinuous Signals. Springer, pages 152–166, 2004. ISSN 03029743. doi:
10.1007/978-3-540-30206-3{\ }12. URL http://link.springer.com/10.1007/
978-3-540-30206-3_12.

James F Allen and George Ferguson. Actions and Events in Interval Temporal Logic.
Journal of Logic and Computation, pages 1–56, 1994.

Dag Prawitz. Natural deduction: A proof-theoretical study. Courier Dover Publica-
tions, 2006.

Oded Maler and other. Monitoring properties of analog and mixed-signal circuits.
International Journal on Software Tools for Technology, 2013.

Ali Abbass Zoraghchian Moslem Didehban and Mohammadreza Mehrabian. A fault
detection method for combinational circuits. International Journal of Advanced
Network, Monitoring and Controls, pages 1–5, 2108.

Stefan Jakšićet al. From Signal Temporal Logic to FPGA Monitors. In MEMOCODE,
2015.

NIST Time and Frequency from A to Z Glossary. https://www.nist.gov/
time-and-frequency-services/d, 2017. [Online; Accessed: 2017-03-21].

John C Eidson and Kevin B Stanton. Timing in Cyber-Physical Systems: The Last
Inch Problem. In Precision Clock Synchronization for Measurement, Control, and
Communication (ISPCS), 2015 IEEE International Symposium on, pages 19–24.
IEEE, 2015.

David L Mills. RFC 1305: Network Time Protocol (Version 3) Specification. Imple-
mentation and Analysis, 1992.

123

https://one.nhtsa.gov/Laws-&-Regulations/Air-Bags
https://one.nhtsa.gov/Laws-&-Regulations/Air-Bags
http://link.springer.com/10.1007/978-3-540-30206-3_12
http://link.springer.com/10.1007/978-3-540-30206-3_12
https://www.nist.gov/time-and-frequency-services/d
https://www.nist.gov/time-and-frequency-services/d

IEEE Standard for a Precision Clock Synchronization Protocol for Networked Mea-
surement and Control Systems. IEEE Std 1588-2008 (Revision of IEEE Std 1588-
2002), pages 1–269, July 2008. doi: 10.1109/IEEESTD.2008.4579760.

Maciej Lipiński, Tomasz W lostowski, Javier Serrano, and Pablo Alvarez. White Rab-
bit: A PTP Application for Robust Sub-nanosecond Synchronization. In ISPCS,
pages 25–30. IEEE, 2011.

Mohammad Khayatian, Mohammadreza Mehrabian, Edward Andert, Rachel Dedin-
sky, Sarthake Choudhary, Yingyan Lou, and Aviral Shirvastava. A survey on in-
tersection management of connected autonomous vehicles. ACM Transactions on
Cyber-Physical Systems, 4(4):1–27, 2020a.

Rachel Dedinsky et al. A dependable detection mechanism for intersection manage-
ment of connected autonomous vehicles. In ASD, 2019.

Mohammad Khayatian, Rachel Dedinsky, Sarthake Choudhary, Mohammadreza
Mehrabian, and Aviral Shrivastava. R 2 im-robust and resilient intersection man-
agement of connected autonomous vehicles. In 2020 IEEE 23rd International Con-
ference on Intelligent Transportation Systems (ITSC), pages 1–6. IEEE, 2020b.

Mohammad Khayatian, Aviral Shrivastava, and Mohammadreza Mehrabian. Sys-
tems and methods for intersection management of connected autonomous vehicles,
May 28 2020c. US Patent App. 16/694,451.

Mohammad Khayatian et al. Rim: Robust intersection management for connected
autonomous vehicles. In RTSS. IEEE, 2018.

Shalev-Shwartz Shai and other. On a formal model of safe and scalable self-driving
cars. arXiv preprint arXiv:1708.06374, 2017.

D Mills. Network time protocol (version 2) specification and implementation; rfc-1119.
Internet Requests for Comments, (1119), 1989.

IEEE Instrumentation and Measurement Society. IEEE 1588 Standard for a Precision
Clock Synchronization Protocol for Networked Measurement and Control Systems
(IEEE Std 1588-2002). 2002.

Frequency excursions. https://www.nerc.com/pa/RAPA/PA/Pages/
FrequencyExcursions.aspx. (Accessed on 08/05/2020).

Oded Maler, Dejan Nickovic, and Amir Pnueli. On synthesizing controllers from
bounded-response properties. In International Conference on Computer Aided Ver-
ification, pages 95–107. Springer, 2007.

NI Time Sync, Version 1.1. http://www.ni.com/pdf/manuals/373185a.pdf, 2010.
[Online; 2010 National Instruments Corporation].

Pynq - python productivity for zynq - home. http://www.pynq.io/. (Accessed on
08/04/2020).

124

https://www.nerc.com/pa/RAPA/PA/Pages/FrequencyExcursions.aspx
https://www.nerc.com/pa/RAPA/PA/Pages/FrequencyExcursions.aspx
http://www.ni.com/pdf/manuals/373185a.pdf
http://www.pynq.io/

Yu Jiang, Mingzhe Wang, Xun Jiao, Houbing Song, Hui Kong, Rui Wang, Yongxin
Liu, Jian Wang, and Jiaguang Sun. Uncertainty theory based reliability-centric
cyber-physical system design. In 2019 International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pages 208–215. IEEE, 2019.

Baoding Liu. Uncertainty theory. In Uncertainty theory, pages 205–234. Springer,
2007a.

Jinjing Huang, Enda Howley, and Jim Duggan. The ford method: A sensitivity
analysis approach. In Proceedings of the 27th International Conference of the Sys-
tem Dynamics Society, Albuquerque, USA, The System Dynamics Society. 6Other
models with the loop picker algorithm are available from the author by email, 2009.

Piroska Haller and Béla Genge. Using sensitivity analysis and cross-association for the
design of intrusion detection systems in industrial cyber-physical systems. IEEE
Access, 5:9336–9347, 2017.

Elena Lisova, Elisabeth Uhlemann, Johan Åkerberg, and Mats Björkman. Monitoring
of clock synchronization in cyber-physical systems: A sensitivity analysis. In 2017
international conference on Internet of Things, embedded systems and communica-
tions (IINTEC), pages 134–139. IEEE, 2017.

Baoding Liu. Uncertainty Theory. Springer Publishing Company, Incorporated, 2nd
edition, 2007b. ISBN 3540731644.

125

APPENDIX A

UNCERTAINTY ANALYSIS

126

In the system modeling, if asked how the system would operate with inputs similar
to those in the historical database, the model should be able to interpolate within
the available knowledge about the target system. Indeed, it should provide a fairly
accurate estimation and we know that estimation always has a level of error since
the model’s ability to reproduce current and recent operations is not perfect. In
this regard, an uncertainty analysis needs to consider how well a model can replicate
current operations, and how similar the target conditions or scenarios are to those
described in the historical record. In this section, we first define some preliminary
concepts about uncertainty analysis and then explain Uncertainty theory, Probability
theory, sensitivity and uncertainty analysis and, a comparison between them.

A.0.1 Uncertainty Theory

Uncertainty theory is used to study uncertain phenomenon that are usually caused
by randomness, fuzziness or uncertainty. In fact, it is a way to measure the likelihood
of an event being true. The uncertainty theory is developed based on four axioms:
i) normality, ii) monotonicity, iii) self-duality, and iv) countable subadditivity. Note
that we use M{Λ} to represent an “uncertain measure”. Given Γ is a non-empty set,
L be a σ-algebra over Γ, Λ ∈ L be an event, and M{Λ} be the level Λ occurs, we
have the following axioms:
Axiom 1. Normality : M{Λ} = 1, stating that the occurrence level for the complete
set is 1 (always).
Axiom 2. Monotonicity : M{Λ1} ≤ M{Λ2} whenever Λ1 ⊂ Λ2, saying that the
occurrence level of a set is always greater than or equal to its subsets.
Axiom 3. Duality : M{Λ} + M{Λc} = 1, meaning that the occurrence level of an
event Λ and its complement Λc is 1.
Axiom 4. Countable Subadditivity : for every countable sequence of event:

Λi M
{⋃∞

i=1 Λi

}
≤
∑∞

i=1M{Λi}
stating that the occurrence level of union of a sequence of countable events is

smaller than or equal to the occurrence level of the summation of those events. Un-
certainty theory has been used for modeling uncertainty in CPS Jiang et al. [2019]
where an uncertain value with a distribution is considered.

Uncertain Variable: An uncertain variable η is a measurable function from an
arbitrary uncertain space defined by (Γ, L,M) to the set of real numbers, that is, for
any Borel set B of real numbers, the set {η ∈ B} = {γ ∈ Γ|η(γ)] ∈ B} is an event Liu
[2007a].

Uncertainty Distribution: The uncertainty distribution is a mapping as Φ :
R → [0, 1] of an uncertain variable η where Φ(x) = M{γ ∈ Γ|η(γ) ≤ x}. In sim-
ple words, the uncertainty distribution indicates how the occurrence frequency of an
event is distributed.

A.0.2 Probability Theorem

Probability theory is used to study the behavior of random phenomena with the
help of mathematics. The probability theory is defined through three axioms: 1)

127

Normality, 2) Nonnegativity, and 3) Countable Additivity.
Given Ω is a nonempty set, A is a σ-algebra over Ω, each element in A is called

an event (A) and Pr{A} indicates the probability that event A will occur. Now,
following axioms should be held:
Axiom 1: Normality: Pr(Ω) = 1, meaning the probability of occurrence of either of
possible events is 1 (always).
Axiom 2: Non-negetivity: Pr(A) ≥ 0 for any A ∈ A, which indicates the probability
of an event cannot be negative.
Axiom 3: Countable Additivity: For every countable sequence of mutually disjoint
events Ai, Pr

{
∪∞i=1 Ai

}
=
∑∞

i=1 Pr{Ai}.

Probability Distribution The probability distribution of a random variable η is
a mapping Φ : R → [0, 1] and Φ(x) = Pr{ω ∈ Ω|η(ω) ≤ x} indicates the probability
that the random variable η is less than or equal to x.

A.0.3 Sensitivity Analysis Vs Uncertainty Analysis

In this section, we study two approaches: i) Sensitivity analysis, which studies the
relative importance of different input factors on the model output and ii) Uncertainty
analysis, which studies just the quantification of uncertainty in model output. In
the CPS domain, uncertainty and sensitivity analysis are employed to predict the
behavior of the system and determine the future outcome of the system.

Sensitivity Analysis

Sensitivity analysis is done to measure the sensitivity of a model to a parameter. In
other words, how the model changes with the change in the parameters. One way
to determine the sensitivity of a parameter is to compute the contribution of the
variable of interest. The simplest approach is to vary uncertain variables within their
reasonable range, one at a time, and then compute the corresponding output. This
approach is widely employed in engineering economics. In the sensitivity coefficient
method, the sensitivity index SI is computed as:

SI =
f(u0 + ∆u)− f(u0 −∆u)

2∆u
(A.1)

where u0 is the input base value, ∆u is the changes in the value of input and f(u) is
the output for the given input u.

Ford method Huang et al. [2009] is another method to determine how sensitive is
a variable of interest in the model. In this approach, the error between the variable
of interest throughout the time vti and the variable of interest in the reference model
vt0 are calculated as:

∆vti = vti − vt0 (A.2)

and the variance is computed as:

Sti = (∆vti)
2

128

Then, the contribution of each experiment (influence factor) is computed as:

cti = sqrt
Sti∑n

m=1 S
t
m

finally, the re-scaled contribution of each experiment is computed as:

rti =
cti∑n

m=1 c
t
m

Similarly, standard deviation has also been used to compute a sensitivity index for
attack detection Haller and Genge [2017]:

ci =
std(vi)

std(v0)

Sometimes errors in two or more variable simultaneously contribute to the out-
put’s uncertainty which requires using joint probabilistic distributions. The first-order
approach computes the sensitivity based on a multivariate linear analysis for a given
performance indicator I = P (f(u)). In this approach, expected value and variance
are computed as:

E[I] = P (ū) +
1

2

{∑
i

∑
j

[
∂P 2

∂ui∂uj
]COV (ui, uj)

}
(A.3)

and

V ar[I] =
∑
i

∑
j

[
∂P

∂ui

∂P

∂uj
]COV (ui, uj) (A.4)

where ū is the mean value of input parameters and COV (ui, uj) is the covariance of
two parameter ui and uj which is computed as COV (ui, uj) = E

[
ui − E[ui]

]
E
[
uj −

E[uj]
]
. It should be noted that first-order uses Taylor approximation and therefore

may not be very accurate for non-linear systems. Sensitivity analysis has been used
to perform decision making under uncertain conditions, for example, to detect if an
attack has happened Lisova et al. [2017]. This is mainly done by computing the
variance of the uncertain variable.

Uncertainty Analysis

The uncertainty analysis tries to guess the set of possible outputs and their proba-
bility. To do so, a Probability Density Function (PDF) is used which describes the
occurrence probability of each value. Figure A.1 shows two examples of a PDF as
a continuous and a discrete function. One step in uncertainly analysis is to identify
all sources of uncertainty that can contribute to the input/outputs joint probability
distribution. Then, the mean and standard deviation can be estimated for the out-
put. Using probability-based approaches, one can determine the other performance
measures such as the probability that the value exceeds an amount.

129

Figure A.1: PDF of a Gaussian distribution (continuous) and (discrete)

A.0.4 Uncertain Programming Model

As far as we know, no work deals with variables as ‘uncertain’ but rather but
‘stochastic’ or ‘arbitrary’. However, in reality, both approaches are improper to ex-
plain CPS’s behaviors without any information (or it is equivalent to Known-unknown
knowledge.). To solve this problem, Liu [2007b] proposes multiple set of solutions for
insufficient (or even no) samples, which are comprehensively called ‘Uncertain Pro-
gramming’. Uncertain programming starts from this assumption: ’humans tend to
over-estimate system’s danger’. In other words, humans manually designate proba-
bility distributions (or belief degree in other term) and these cover all dangers even
though it might be inefficient. Also it teaches us some ways to reasonably deal with
a situation when given minimum set of data. Uncertain programming is a mathe-
matical programming method involving uncertain variables to output a decision with
minimum expected objective value subject to a set of chance constraints. Assum-
ing that x is a decision vector, and ξ is an uncertain vector. The uncertain vector
consists of multiple uncertain variables. Unlike typical linear programming problem,
uncertain variables are non-deterministic and so is the objective function. However,
we can minimize its expected value and it is called Expected Value Model (EVM).

min
x
E [f(x, ξ)]

subject to:

M{gj(x, ξ) ≤ 0} ≥ αj, j = 1, 2, · · · , p.
Definition 1 A vector x is called a feasible solution to the uncertain program-

ming model if
{M{gj(x, ξ) ≤ 0} ≥ αj

for j = 1, 2, · · · , p.
Definition 2 A feasible solution x∗ is called an optimal solution to the uncertain

programming model if {
min
x
E [f(x∗, ξ)] ≤ min

x
E [f(x, ξ)]

for any feasible solution x.

130

APPENDIX B

THE PROOF FOR TMA ALGORITHMS AND TTL RULES

131

B.1 The Proofs for the TMA Algorithms

Lemma B.1.1. For a positive interval, I+i defined on ψ, the eventually statement

(♦[a,b]ψ) is true starting from start timestamp, t
♦[a,b]ψ
r , up to finish timestamp, t

♦[a,b]ψ
f ,

if the width of next negative interval (I−i+1) is greater than b− a where:

t
♦[a,b]ψ
r = tψr − b and t

♦[a,b]ψ
f = tψf − a

Proof. According to the eventually definition, ♦[a,b]ψ is true if there exists a time
t′ ∈ [t+ a, t+ b] such that ψ is satisfied.

Assume tψr is the first time that ψ is true. Then, the following condition is always
true:

t
♦[a,b]ψ
r + a < tψr < t

♦[a,b]ψ
r + b

Since we looking for the earliest time that the condition is met, the rising time of

♦[a,b]ψ is equal to: t
♦[a,b]ψ
r = tψr − b. Similarly, assume tψf is the last instance that ψ is

true. Then,

t
♦[a,b]ψ
f + a < tψf < t

♦[a,b]ψ
f + b

is always true.
Since we are looking for the latest time that the condition is met, the falling time

of ♦[a,b]ψ is equal to:

t
♦[a,b]ψ
f = tψf − a

Since the width of the next negative interval is greater than b−a, we can show that
the computed rising timestamp corresponding to the next positive interval is not less

than the falling timestamp corresponding to the current interval (i.e. t
♦[a,b]ψ
fi

< t
♦[a,b]ψ
ri+1):

ψ
fi
− a < tψri+1

− b

is always true since the width of the next negative interval is greater than b − a
(tψri+1

− tψfi > b− a).

Lemma B.1.2. For a positive interval, I+i on ψ, the statement �[a,b]ψ is true starting

from start timestamp, t
�[a,b]ψ
r , up to finish timestamp, t

�[a,b]ψ

f , if the width of I+i is

greater than b− a, where t
�[a,b]ψ
r = tψr − a and t

�[a,b]ψ

f = tψf − b.

Proof. According to the globally definition, �[a,b]ψ is true if for all time instances
t′ ∈ [t + a, t + b], ψ is satisfied. In order to find the rising timestamp of �[a,b]ψ, we
are looking for the first time that ψ is true.

Assume tψr is the first time that ψ is true. Then,

tψr < t
�[a,b]ψ
r + a

is true.
Since we are looking for the earliest time, the rising time of �[a,b]ψ is equal to:

132

t
�[a,b]ψ
r = tψr − a

.
Similarly, assume tψf is the last instance that ψ is true. Then,

tψf > t
�[a,b]ψ

f + b

is true.
Since we are looking for the latest time, the falling time of �[a,b]ψ is equal to:

t
�[a,b]ψ

f = tψf − b
.

Since the width of positive interval is greater than b − a, we can show that the

computed falling timestamp is always greater than the falling one (i.e. t
�[a,b]ψ

f >

t
�[a,b]ψ
r):

tψf − b > tψr − a
which is always true since the width of the positive interval is greater than b− a

(tψr − t
ψ
f > b− a).

Definition B.1.1. Overlapped Intervals, A positive interval on a boolean signal, I+ψ1i

overlaps with another positive interval on another boolean signal, I+ψ2j
if and only if

∃t′ ∈ I+ψ1i
, ∃t′′ ∈ I+ψ2j

s.t. (s, t′) |= ψ1 ∧ (s, t′′) |= ψ2 ∧ t′ = t′′

Lemma B.1.3. An until statement (ψ1Uψ2) is false for non-overlapped intervals of
ψ1 and ψ2.

Proof. If I+ψ1i
and I+ψ2j

does not overlap, it means there does not exist a time that

both ψ1 and ψ2 are satisfied (i.e. @t′ ∈ I+ψ1i
∪ I+ψ1i

s.t. (s, t) |= ψ1 ∧ ψ2.)

According to until operator definition, there should be a point that ψ2 is satisfied
and ψ1 is satisfied up to that point. Therefore, the result of evaluation is false if there
does not exist a pair of intervals that overlap.

Lemma B.1.4. Assume that I1 and I2 are two positive intervals defined on boolean
signals ψ1 and ψ2 respectively. If the length of overlapping interval of I1 and I2 is
greater than a (i.e. I+ψ1i

∩ I+ψ2j
> a), ψ1U[a,b]ψ2 is true starting from tUr and up to tUf

so, we have:

tUr = max(tψ1
ri
, tψ2
rj
− b)

and
tUf = min(tψ1

fi
, tψ2

fi
)− a

where
tψ1
ri

and tψ2
rj

are timestamps corresponding to rising edges of positive intervals of

ψ1 and ψ2, and tψ1

fi
and tψ2

fj
are timestamps corresponding to falling edges of positive

intervals of ψ1 and, ψ2 respectively.

133

Proof. To ensure ψ1U[a,b]ψ2 is true starting from tUr until tUf , three conditions must be
satisfied:

i) computed tUr must be less than tUf to indicate a positive interval and

ii) max(tψ1
ri
, tψ2
rj
− b) is the start time and iii) min(tψ1

fi
, tψ1

fi
)− a is the finish time.

Part i) To prove the computed rising time is less than the falling one, we need
to show that

tUr < tUf

or

max(tψ1
ri
, tψ2
rj
− b) < min(tψ1

fi
, tψ2

fi
)− a

Assuming

tψ1
ri
> tψ2

rj
− b

we have

tψ1
ri
< min(tψ1

fi
, tψ2

fi
)− a

If tψ1

fi
< tψ2

fi
, it yields tψ1

ri
< tψ1

fi
− a

which is always true since the width of the positive interval of ψ1 is greater than
a.

If tψ2

fi
< tψ1

fi
, it yields tψ1

ri
< tψ2

fi
− a

which is always true since the width of overlapping interval of ψ1 and ψ2 is greater
than a.

Assuming

tψ2
rj
− b > tψ1

ri

we have

tψ2
rj
− b < min(tψ1

fi
, tψ2

fi
)− a

If tψ1

fi
< tψ2

fi
, it yields

tψ2
rj
− b < tψ1

fi
− a

or

tψ1

fi
− tψ2

rj
> a− b

It’s obvious that a−b < 0 and tψ1

fi
−tψ2

rj
> 0 since the minimum width of overlapping

interval of ψ1 and ψ2 is greater than 0.
If tψ2

fi
< tψ1

fi
, it yields

tψ2
rj
− b < tψ2

fi
− a

or

134

tψ2

fi
− tψ2

rj
> a− b

which is true since the width positive interval of ψ2 is greater than 0 and a−b < 0.
Part ii): We need to show tUr is the first instance of time that ψ1U[a,b]ψ2 is true.

Assume tUr2 is the first time that ψ2 is satisfied. So, tUr2 ∈ [tUr + a, tUr + b]. As a result,
tUr + a < tUr2 < tUr + b. Since we look for the first time that ψ1U[a,b]ψ2 is satisfied, so:

tUr > tUr2 − b (B.1)

Besides, ψ1 must be true from tUr until tUr2 . So, we have:

tUr > tUr1 (B.2)

tUr2 > tUf1 (B.3)

Condition B.3 is always true since the minimum overlapping interval of ψ1 and
ψ2 is greater that 0. Combining B.1 and B.2, one can compute the first time (rising
time) that ψ1U[a,b]ψ2 is satisfied as: tUr = max(tψ1

ri
, tψ2
rj
− b)

Part iii): We need to show that tUf is the final time that ψ1U[a,b]ψ2 is true.
There are two cases that indicates a falling timestamp:
a) there does not exist a time t′ > tUf2 ∈ [tUf + a, tUf + b] such that ψ2 is true
and
b) there exists a time t′ > tUf2 ∈ [tUf +a, tUf + b] such that ψ2 is true but there exists

a time t′′ > tUf2 ∈ [tUf + a, tUf + b] such that ψ1 is not true.

For the first case, assume tUf2 is the final time that ψ2 is satisfied. So, tUf2 ∈
[tUf + a, tUf + b].

As a result, tUf + a < tUf2 < tUf + b. As we look for final time that ψ1U[a,b]ψ2 is
satisfied, so:

tUf < tUf2 − a (B.4)

In second case, ψ1 should be true from tUf until tUf2 . Then:

tUf > tUr1 (B.5)

tUf1 > tUf2 (B.6)

Since we are looking for the final time that ψ2 is satisfied but ψ1 is not, we can replace
tf2 with tf + a. As a result,

tUf > tUf1 − a (B.7)

Combining B.4 and B.7, one can compute the final time that ψ1U[a,b]ψ2 is satisfied

as tUf = min(tψ1

fi
, tψ2

fi
)− a.

Condition B.5 is satisfied if we replace tUf with min(tψ1

fi
, tψ2

fi
)− a.

So, we have min(tψ1

fi
, tψ2

fi
)−a > tUr1 which is always true because both the width of

positive interval of ψ1 and the minimum overlapping interval of ψ1 and ψ2 are greater
than a.

135

Lemma B.1.5. If the width of overlapping interval of ψ1 and ψ2 is less than a (a
computed falling timestamp is less than previous computed rising one), we can cancel
them out and ψ1U[a,b]ψ2 remains false in that interval ([tUfi , t

U
ri

]).

Proof. According to Lemma B.1.4, tUri is the first time that ψ1U[a,b]ψ2 is true. So, for
all tUfi−1

< t < tUri , ψ1U[a,b]ψ2 is false. Besides, tUfi is the final time that ψ1U[a,b]ψ2 is

true. So, for all tUfi < t < tUri+1
, ψ1U[a,b]ψ2 is false. As a result, for all times t ∈ [tUfi , t

U
ri

],
ψ1U[a,b]ψ2 is false.

B.2 The TTL Rules

Logical systems in Mathematical Logic are sound if and only if every formula
that can be proved in the system is logically valid with respect to the semantics of
the system. In order to have the Soundness proof for TTL, it is firstly needed to
have some proofs for the TTL rules. In this section, it is shown that all other timing
specifications can be converted to Latency constraint, and then the proof for the TTL
Soundness is represented.

In chapter 4, there are 7 rules for TTL. The proof for LE is in Theorem 4.3.1.
The rest of the proofs are in this section.

B.2.1 Simultaneity

Theorem B.2.1. The rule SL is valid. The simultaneity timing constraint is rep-
resented in terms of latency constraints. If two or more events occur simultaneously
within ε time units, the latency between any two events (mentioned in the simultaneity
constraint) is less than ε.
` S(φ1, φ2, ..., φn, ε)→` L(φi, φj, 0) < ε, where i, j ∈ {1, 2, ..., n}, i < j

Proof. ConsiderA : S(φ1, φ2, ..., φn, ε) andB : L(φi, φj, 0) < ε. For A, if 0 S(φ1, φ2, ..., φn, ε),
regardless of expression B, the entire formula is >. Therefore, if A is >, B should
be >. Hence, we assume ` S(φ1, φ2, ..., φn, ε). If 0 L(φi, φj, 0) < ε, we have (ε <
L(φi, φj, 0)) ∨ (L(φi, φj, 0) = ε). Assume C : ε < L(φi, φj, 0) and D : L(φi, φj, 0) = ε.

i) For term C : ε < L(φi, φj, 0) we have (σ, t) |=
(

(0 < τ(φj)− τ(φi))∧ (0−ε
δ

+ 2 <

τ(φj) − τ(φi))
)

iff (σ, t) |= 0 < τ(ψj) − τ(φi) and (σ, t) |= ε−0
δ

+ 1 < τ(φj) − τ(φi).

Considering ∃t′ ∈ N, t′ = τ(φ1) and ∃t′′ ∈ N, t′′ > t′ s.t. t′′ = τ(φ2) and (s, t′′) |= φ2.
We have ε

δ
+ 1 < t′′ − t′. Assume E : ε

δ
+ 1 < t′′ − t′.

From term A, we know: ∀ti ∈ N, i ∈ {1, 2, ..., n} s.t. (σ, ti) |= φi andmax{τ(φi)}−
min{τ(φi)} < ε. Since max and min are chosen, any pair of {φp, φq}; p, q ∈ {1, 2, ..., n},
and p < q satisfy term A. We choose φi and φj where i < j. Hence, (σ, ti) |= φi,
(s, tj) |= φj, and τ(φj) − τ(φi) <

ε
δ
− 1. Thus, t′′ − t′ < ε

δ
− 1. If we use A5 in

table 4.1, it becomes 1− ε
δ
< t′ − t′′ and we call it F. By applying axiom A4 in table

4.1 on terms E and F and we have 2 < 0 which is not possible. Therefore, we have
contradiction and our assumption (0 L(φi, φj, 0) < ε) is not true.

ii) For term D : L(φi, φj, 0) = ε, from Theorem 4.3.1 we know that (L(φi, φj, 0) =
ε)→ (ε < L(φi, φj, 0))∧ (L(φi, φj, 0) < ε). Since based on last proof, ε < L(φi, φj, 0)
is not valid, and there is a conjunction in term D, (L(φi, φj, 0) = ε) also is not true.

136

B.2.2 Chronological

Theorem B.2.2. The CL rule is valid. If the occurrence of two event is more than
ε, they are chronological.

` C(φ1, φ2, ...φn, ε)→` ε < L(φi, φi+1, 0), 1 ≤ i < n− 1

.

Proof. Consider A : C(φ1, φ2, ...φn, ε) and B : ε < L(φi, φi+1, 0)
In B part, we consider 0 ε < L(φi, φi+1, 0). Hence, we have:
(L(φi, φi+1, 0) < ε) ∨ (L(φi, φi+1, 0) = ε)
Assume C : L(φi, φi+1, 0) < ε and D : L(φi, φi+1, 0) = ε

For C: (σ, t) |=
(

(0 < τ(φi+1)− τ(φi)) ∧ (τ(φi+1)− τ(φi) < ε)
)

iff (σ, t) |= 0 < τ(ψi+1)− τ(φi) and (σ, t) |= τ(φi+1)− τ(φi) < ε
iff 0 < τ(φi+1)− τ(φi) and τ(φi+1)− τ(φi) < ε

Assume E : τ(φi+1)− τ(φi) < ε
form A, we know: ∀ti ∈ N, i ∈ {1, 2, ..., n}, (σ, ti) |= φi and (σ, ti+1) |= φi+1 s.t.

ti + ε < ti+1.
Therefore, ε < τ(φi+1)− τ(φi) and it contradicts with E.
For D, we know D = L(φi, φj, 0) = ε)→ (ε < L(φi, φj, 0)) ∧ (L(φi, φj, 0) < ε)
form the last part we know C is not satisfied, thus, it is not true too.

B.2.3 Frequency

Before having the proofs for the Frequency and Phase axiom/rules, we need to
have the definition for the sequence of events, the definition for φk and φk−1.

Definition B.2.1. φk−1 and φk are two consecutive events on the same signal σ.

∃t, t′ ∈ N, s.t. (σ, t) |= φ and (σ, t′) |= φ @t′′ ∈ N s.t. t < t′′ < t′, (σ, t′′) |= φ

Theorem B.2.3. The FL rule is valid. If the frequency of an event on the signal σ
is less than a certain frequency, the latency between each two consecutive events on σ
are greater than a certain value.

F(φ, ε) < f → 1

f + ε
< L(φk−1, φk, 0)

Proof. Consider A : F(φ, ε) < f and B : 1
f+ε

< L(φk−1, φk, 0) where ε < f

In B statement, we assume 0 1
f+ε

< L(φk−1, φk, 0), hence, we have:
1

f+ε
< L(φk−1, φk, 0) ∨ L(φk−1, φk, 0) = 1

f+ε
.

considering C : L(φk−1, φk, 0) < 1
f+ε

and D : L(φk−1, φk, 0) = 1
f+ε

for C statement,

we have:
τ(φk)− τ(φk−1) < 1

f+c
and 0 < τ(φk)− τ(φk−1).

Considering t′ = τ(φk−1), t′′ = τ(φk)

137

Therefore, by (σ, t′) |= φ and t′′ > t′ s.t. (σ, t′′) |= φ we have E : t′′ − t′ < 1
f+c

.

From A we know that ∃t′ ∈ N s.t. (σ, t′) |= φ, ∃t′′ > t′ s.t. (σ, t′′) |= φ,

@t′′′, t′ < t′′′ < t′′ s.t. (σ, t′′′) |= φ, and 1
f+ε

< t′′ − t′ which contradicts with E 1

.

Theorem B.2.4. The FE rule is valid. The Exact Frequency equals the conjunction
of Maximum and Minimum Frequency constraints.

` F(φ, εf) = f `
(
f < F(φ, εf) ∧ F(φ, εf) < f

)
Proof. Consider A : F(φ, εf) = f , B : f < F(φ, εf), and C : F(φ, εf) < f .

For term A, if 0 F(φ, εf) = f , regardless of B and C, the entire formula is >.
Hence, we suppose A is > so we need to prove B ∧ C = >.

For B, 0 < τ(φk) − τ(φk−1) and τ(φk) − τ(φk−1) <
l−εf
δ
− 1. For C, 0 < τ(φk) −

τ(φk−1) and f+ε
δ

+ 1 < τ(φk) − τ(φk−1). Assume, t′ = τ(φk−1) and t′′ = τ(φk),
f+ε
δ

+ 1 < t′′ − t′ < f−ε
δ
− 1 which is the same as the semantic definition for exact

latency in Table 3.1, line 11.

B.2.4 Phase

Theorem B.2.5. The PL rule is valid. If the Phase events on two different signals
σ1 and σ2 are less than a certain value (p), the latency between the corresponding
event is less than p.

` P(φ1, φ2, εf , εp) < p→`
(
F(φ1, εf) = F(φ2, εf)

)
∧ L(φ1, φ2, εp) < p

Proof. Assume A : F(φ1, εf) = F(φ2, εf) and B : L(φk1, φ
k
2, εp) < p,∀k ∈ N, 1 ≤ k ≤

n.
We consider the left part (P(φ1, φ2, εf , εp) < p) is >. Hence, we should show the

right part is > as well. Therefore, from PXE in table 4.2, we know that the the two
frequencies are identical (A is >). Now, it is enough to show B is >.

Consider B is not >. Thereby, 0 L(φk1, φ
k
2, εp) < p. Since the frequency of the

events on two signals σ1 and σ2 are the same, we take just one iteration of the events.
We take the iteration number k. Then we can generalize the proof for the rest of the
iterations.

Assume t′ = τ(φk1) and t′′ = τ(φk2) in p < L(φk1, φ
k
2, εp) . Therefore, (σ, t′) |= φ1 and

(σ, t′′) |= φ2 and p−εp
δ

< t′′ − t′. However, it contradicts the semantics in table 3.1,

1The proof for the relationship between Minimum Frequency and Maximum Latency is very
similar to this proof.

138

line 13 where the maximum phase semantic is expressed. Therefore, assuming 0
L(φk1, φ

k
2, εp) < p is not right.

Theorem B.2.6. The PE rule is valid. The Exact Phase equals to the conjunction
of Maximum and Minimum Phase constraints.

` P(φ1, φ2, εf , εp) = p `
(
p < P(φ1, φ2, εf , εp) ∧ P(φ1, φ2, εf , εp) < p

)
Proof. ConsiderA : P(φ1, φ2, εf , εp) = p, B : p < P(φ1, φ2, εf , εp), and C : P(φ1, φ2, εf , εp) <
p.

From A, we know that F(φ1, εf) = F(φ2, εf),0 < τ(φk1) − τ(φk−11), and 0 <
τ(φk2) − τ(φk−12). For term A, if 0 P(φ1, φ2, εf , εp) = p, regardless of B and C, the
entire formula is >. Hence, we suppose A is > so we need to prove B ∧ C = >.

For B, 0 < τ(φk1)− τ(φk−11), 0 < τ(φk2)− τ(φk−12), and p−εp
δ

+ 1 < |τ(φk1)− τ(φk2)|.
For C, 0 < τ(φk1)−τ(φk−11), 0 < τ(φk2)−τ(φk−12), and |τ(φk1)−τ(φk2)| < p+εp

δ
−1 <.

Assume, t′ = τ(φk1) and t′′ = τ(φk2), p−εp
δ

+ 1 < |t′′ − t′| < p+εp
δ
− 1 which is the

same as the semantic definition for exact latency in Table 3.1, line 14.

B.2.5 TTL Soundness

Theorem B.2.7. TTL is Sound. The language TTLχ(V) is Sound. Let A be a
formula and F a set of formulas in TTL. If F ` A then F |= A. In particular, if
` A then |= A.

Proof. The proof runs by induction on the assume derivation of A from F.
i) A is an axiom of TTLχ(V). All axioms of TTL are valid and they can be proven

by their semantics (see Theorem 4.3.2.
ii) Since A ∈ F , F |= A is held trivially.
iii) All the rules are valid. The proofs are in Theorems B.2.1, Theorem B.2.2,

Theorem B.2.3, Theorem B.2.5, Theorem B.2.6, Theorem 4.3.1, Theorem 4.3.2, and
Lemma 4.4.1.

139

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	UNCERTAINTY MUST BE CONSIDERED IN CYBER-PHYSICAL SYSTEMS
	A FORMALISM FOR MONITORING TIMING SPECIFICATIONS OF CPS WITH CONSIDERING TOLERANCE
	TTL REASONING SYSTEM
	TIMESTAMP-BASED MONITORING APPROACH TO MONITOR TIMING SPECIFICATIONS OF CPS
	A METHOD TO QUALIFY TESTBEDS TO VERIFY TIMING BEHAVIOR OF CPS
	APPLICATIONS AND EMPIRICAL EVALUATIONS

	REFERENCES
	UNCERTAINTY ANALYSIS
	THE PROOF FOR TMA ALGORITHMS AND TTL RULES

