
Application-aware Performance Optimization for

Software Managed Manycore Architectures

by

Jing Lu

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved March 2019 by the
Graduate Supervisory Committee:

Aviral Shrivastava, Chair
Hessam Sarjoughian

Carole-Jean Wu
Adam Doup

ARIZONA STATE UNIVERSITY

May 2019

ABSTRACT

One of the main goals of computer architecture design is to improve performance

without much increase in the power consumption. It cannot be achieved by adding

increasingly complex intelligent schemes in the hardware, since they will become

increasingly less power-efficient. Therefore, parallelism comes up as the solution. In

fact, the irrevocable trend of computer design in near future is still to keep increasing

the number of cores while reducing the operating frequency. However, it is not easy

to scale number of cores. One important challenge is that existing cores consume too

much power. Another challenge is that cache-based memory hierarchy poses a serious

limitation due to the rapidly increasing demand of area and power for coherence

maintenance.

In this dissertation, we explored opportunities to resolve the aforementioned issues

in two aspects.

Firstly, we explored the possibility of removing hardware cache all together, and

replacing it with scratchpad memory with software management. Scratchpad mem-

ory consumes much less power than caches. However, as data management logic is

completely shifted to Software, how to reduce software overhead is challenging. This

thesis presents techniques to manage scratchpad memory judiciously by exploiting

application semantics and knowledge of data access patterns, thereby enabling opti-

mization of data movement across the memory hierarchy. Experimental results show

that our optimization was able to reduce stack data management overhead by 13X,

produce better code mapping in more than 80% of the case, and improve performance

by 83% in heap management.

Secondly, we explored the possibility of using software branch hinting to replace

hardware branch prediction to completely eliminate power consumption on corre-

sponding hardware components. As branch predictor is removed from hardware,

i

software logic is responsible for reducing branch penalty. We proposed techniques to

minimize the branch penalty by optimizing branch hint placement, which can reduce

branch penalty by 35.4% over the state-of-the-art.

ii

ACKNOWLEDGMENTS

I would like to express my special appreciation to my advisor Dr. Aviral Shrivastava

for your constant support, continued advice and inspiration. I’m grateful that you

brought me into this area and offered me the great opportunity to study in Compiler

Microarchitecture Lab. You’ve been a mentor to me both academically and personally.

Academically, I appreciate your time, idea, discussion, and encouragement to make

my Ph.D. experience productive and stimulating. Personally, you inspired me by your

hardworking and passionate attitude.

I would like to thank my committee members, Dr. Hessam Sarjoughian, Dr.

Carole-Jean Wu, Dr. Adam Doupe for serving at my committee. Thank you for your

brilliant comments and suggestions. Without your valuable inspireation and advice I

won’t be able to finish this thesis.

I am also grateful to my team members and collaborators, Reiley Jayapaul,

Yooseong Kim, Chuan Huang, Jian Cai, Bryce Holton, Di Lu, Fei Hong, Jinn-Pean

Lin and the many others, for your support and encouragement. I enjoyed technical

discussions, team lunches, weekend hikings, and happy hours with you. I’m proud to

be surrounded by so many brilliant and enthusiastic researchers of you.

I would like to show my deepest gratitude to my husband, my best friend, and

also my collaborator Ke Bai for your constant love, support and encouragement. I

would not be able to finish my Ph.D. study without your faithful support.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 Manycore Architecture Design . 1

2 SMM: A Promising Approach . 5

3 Challenges in Shifting the Intelligence from Hardware to Software 10

3.1 Challenge of Data Management on SMM . 10

3.2 Challenge of Software Branch Hinting on SMM 13

4 Contributions of This Dissertation . 14

4.1 Publications and My Contributions in the Publications 15

5 Software Branch Hinting for SMM . 17

5.1 Overview. 17

5.2 Branch Hinting Mechanism . 19

5.3 Branch Penalty Model . 21

5.4 Problem Formulation . 24

5.5 Branch Hint Management . 26

5.5.1 NOP Padding . 27

5.5.2 Hint Pipelining . 29

5.5.3 Nested Loop restructuring . 31

5.5.4 Branch Penalty Reduction Heuristic . 35

5.6 Related Work . 36

5.7 Experimental Results . 38

5.7.1 Experimental Setup . 38

5.7.2 Branch Penalty Reduction . 40

iv

CHAPTER Page

5.7.3 Effectiveness of NOP Padding . 42

5.7.4 Performance Improvement . 44

5.8 Summary . 45

6 Data Management for SMM . 46

6.1 Stack Data Management . 46

6.1.1 Motivation . 46

6.1.2 Challenges. 48

6.1.3 Smart Stack Data Management . 49

6.1.4 Related Work . 61

6.1.5 Experimental Results . 66

6.1.6 Summary. 73

6.2 Effective Code Management . 74

6.2.1 Motivation . 74

6.2.2 Code Overlay Mechanism . 75

6.2.3 Objective of Code Overlay . 77

6.2.4 Cost Calculation of Code Overlay . 77

6.2.5 CMSM Heuristic . 83

6.2.6 Related Work . 85

6.2.7 Experimental Results . 88

6.2.8 Summary. 92

6.3 Heap Data Management . 93

6.3.1 Motivation and State of the Art . 93

6.3.2 Efficient Heap Data Management . 96

6.3.3 Experimental Results . 107

v

CHAPTER Page

6.4 Compiler and Runtime Infrastructure . 112

7 Summary . 115

REFERENCES . 1

vi

LIST OF TABLES

Table Page

5.1 Branch penalty can be crippling in the Cell SPU in absence of any

branch hints. 18

6.1 Benchmarks, the number of nodes and edges in their WCG, their stack

sizes, and the scratchpad space we manage them on. 66

6.2 Library code size of stack manager (in bytes) . 70

6.3 Comparison of number of DMAs . 72

6.4 Number of sstore and sload calls . 73

6.5 Dynamic instructions per function. 74

6.6 Benchmarks, their minimum sizes of code space, and maximum sizes

of code space. 89

6.7 Maximum heap usage of benchmarks . 107

6.8 Number of g2l calls with and without heap access detection technique . 109

6.9 Instructions executed per g2l with and with out different optimization

techniques . 110

6.10 Runtime library for data and code management . 113

vii

LIST OF FIGURES

Figure Page

2.1 A Software Managed Manycore (SMM) architecture has multiple cores:

1) each core with a ScratchPad Memory (SPM) but no hardware cache.

The data transfers between the SPMs and the main memory of the sys-

tem take place via Direct Memory Access (DMA) instructions which

must be explicitly specified in the application. 2) each core is made

simpler, namely, hardware branch predictor is removed completely.

Branch prediction should be accomplished by software branch hinting. . 6

2.2 Hardware view of difference between Cache and SPM: SPM is just

a raw memory without the hardware mechanism to manage it (as is

present in caches). 7

3.1 The data movement from and to caches is performed automatically

in hardware, in SPM-based manycore systems, it has to be present

explicitly in the software in the form of data movement instructions,

e.g., DMA instruction. 11

3.2 The virtual anatomy of the compiled program in local scratchpad memory 12

5.1 Software branch hinting is characterized by hint instructions setting

the BTB entries. It has 3 key parameters, 1) d, the number of pipeline

stages where BTB is set, 2) f , the time to fetch target instructions,

and 3) s, the number of entries in BTB. 20

5.2 Branch penalty is plotted as we increase the separation when hint is

correct. We need at least 8 instructions for a hint to become effective,

and the penalty decreases as separation increases. 23

viii

Figure Page

5.3 Misprediction penalty is plotted as we increase the separation. On top

of branch penalty, the time to flush pipeline is added resulting larger

branch penalty than when hint is correct. 25

5.4 (a) Before NOP padding, the branch cannot be hinted. (b) NOP

padding enables hinting the branch. 27

5.5 (a) Before hint pipelining, branch b1 cannot be hinted due to the

hoisted hint for b2 (b) After hint pipelining, Both b1 and b2 are hinted. . 30

5.6 (a) Before nested loop restructuring, the separation for b4 is limited

to l4. (b) After nested loop restructuring, the outer loop branch is

changed to unconditional branch b2, and the separation is increased to

l2 + l4. 32

5.7 (a) Hint for b3 can be hoisted into L2. Branch b4 cannot be hinted

even after loop restructuring. (b) After restructuring, the hint for b3

cancels the hint for b4. (c) Pipelining is applied and both branches can

be hinted. 34

5.8 The percentage of branch penalty in the total execution cycles after

GCC inserts hints into the program. Benchmarks are grouped into two

groups ‘high’ and ‘low’ according to the percentage. 39

5.9 Reduction of branch penalty is 35.4% at maximum and 19.2% on average. 40

5.10 (a) GCC can only hint the innermost loop branch. (b) The proposed

technique can hint all of the four loop branches. 41

ix

Figure Page

5.11 Execution time comparison between our NOP padding technique and

GCC’s ”-mhint-max-nops” option. In all benchmarks, our technique

outperforms GCC. GCC even results in performance degradation for

several benchmarks. 43

5.12 Performance improvement obtained with the proposed heuristic is 18%

at maximum. 44

6.1 Suppose we want to execute the program shown in (a) on the execu-

tion core with local scratchpad memory. (b) shows that we can easily

manage the stack data of this program in 100 bytes, however, trying

to manage it in only 70 bytes local memory requires data management. 47

6.2 An overview of SSDM infrastructure . 50

6.3 WCG with cuts of benchmark SHA: The edge with dashed yellow color

represents an artificial edge for root node and leaf node. 52

6.4 Illustration of SSDM heuristic: the values on edges are the numbers of

function calls. 58

6.5 An example shows static edge weight assignment. 60

6.6 In the ARM processor, SPM is in addition to the regular memory

hierarchy, while in SMM system, the local memory is an essential part

of the memory hierarchy on the execution core. 63

x

Figure Page

6.7 Circular stack management: The function frames can be managed in a

constant amount of space in local memory using a circular management

scheme. If we have only 70 bytes of space on the local memory to

manage stack data, frame F1 must be evicted to the main memory

to make space for F3. Before the execution returns to F1, it must be

brought back to the local memory. 64

6.8 Pointer Management - Function F2 accesses the pointer p, which

points to a local variable ‘a’ of function F1. Since ‘a’ is a local variable

on the stack of F1, it has a local address. When F2 is called, if F1

is evicted from the local memory, then the pointer p will point to a

wrong value. This is fixed by assigning a global address to the pointer

when it is created (through l2g), and then when needed, it is accessed

through g2l. Finally it is written back using wb. 65

6.9 Performance improves when stack region size increases. 68

6.10 SSDM is scalable, since performance regression is negligible when the

number of cores increases. 69

6.11 Performance comparison between SSDM and CSM. 70

6.12 Overhead comparison between SSDM and CSM. 71

6.13 Code overlay on scratchpad memory: when task assigned to the execu-

tion core requires larger memory than the available space, code needs

to be mapped between external shared main memory and the local

scratchpad memory of the core. 76

6.14 The GCCFG for the example code . 79

xi

Figure Page

6.15 Cost between functions depends on where other functions are mapped,

and updating the costs as we map the functions can lead to a better

mapping. 85

6.16 Performance comparison against FMUM and FMUP 90

6.17 Scalability of CMSM on multicore processors . 92

6.18 Performance overhead with the state-of-the-art heap management. 94

6.19 The previous approach inserts g2l before every memory access, while

ours tries to identify heap accesses statically and skip unnecessary g2ls. 98

6.20 When it cannot be determined at compile-time whether there is a heap

access, we check it at run-time. 101

6.21 Comparison of heap management workflow. 103

6.22 De-dupe management calls and move common operations to the be-

ginning of the caller function. 104

6.23 The execution time of our approach normalized to the previous work

with optimizations incrementally added. 108

6.24 A direct-mapped cache other than a 4-way set-associative cache re-

duces more execution time thanks to simplified management functions,

compared to the extra time introduced due to increased cache misses. . . 111

6.25 General compilation flow for data management on SMM architectures . 112

xii

Chapter 1

MANYCORE ARCHITECTURE DESIGN

Higher performance is undeniably expected over all computing platforms, from

sensor, handheld devices (such as watches, cell-phones, and tablets), to laptops, desk-

tops, servers, data centers. However, it can no longer be simply obtained by increasing

the operating frequency. This is because power consumption increases cubically with

frequency of operation, while most computing systems are limited by power, energy

and thermal constraints. High performance computing centers and data centers are

designed with the constraint of total power draw, embedded platforms are often de-

signed around battery capacity, and the rest systems in the middle are designed with

thermal constraints.

One of the main goals of computing architecture design in this decade is to improve

performance without much increase in the power consumption. It cannot be achieved

by adding increasingly intelligent schemes for caches and branch prediction in the

hardware, since, by the law of diminishing returns, they will become increasingly

less power-efficient. Therefore, parallelism comes up as the solution. As a result,

the irrevocable trend of computer design in near future is still to keep increasing the

number of cores while reducing the operating frequency. The new interpretation of

Moore’s law states that the number of cores will double every two years. Soon, we

will have architectures that have hundreds of cores. Industry experts project over a

thousand cores per chip in about a decade Borkar (2009).

Hardware intelligence logics, such as caches and branch predictors, have been a

part of processor design since the earliest of processors including IBM 360 in early

70s, and the capabilities of these intelligence logics have increased over time. Caches

1

store frequently accessed data in a memory close to the processor, and make the

memory accesses faster and consume lower power. Branch predictors improve the

flow of instructions in the instruction pipeline and therefore play a critical role in

achieving high effective performance. However, as we scale to manycore systems,

it becomes increasingly challenging to scale the corresponding cache-based memory

hierarchies and branch predictor.

One important reason is that existing cores consume too much power. For ex-

ample, the Intel Core i7-7700 (Kaby Lake-S, 14nm) with 4-core consumes 91W at

4.2GHz Intel (2017). If we use these cores to design a 100-core processor, then the

total power consumption of the processor will be 91∗ 100/4 = 2275W. As the current

thermal cap of packaging technologies is about 250W, this is definitely unsustain-

able. We have to trade off performance of a single core in order to put hundreds and

thousands of cores on a chip. The design metric cannot be performance, it has to be

power efficiency, namely performance/power.

Another important reason is that the current coherent-cache architecture designs

are not scalable for hundreds and thousands of cores Bournoutian and Orailoglu

(2011); Choi et al. (2011); Garcia-Guirado et al. (2011); Xu et al. (2011). Coher-

ence is mainly implemented with two mechanisms in hardware, directory based and

snooping. Snooping scheme Goodman (1998) is a process where the individual caches

monitor address lines for accesses to memory locations that they have cached. It is

called a write invalidate protocol when a write operation is observed to a location

that a cache has a copy of and the cache controller invalidates its own copy of the

snooped memory location. However, when we try to scale the design to hundreds of

cores, this monitoring and invalidation become the bottleneck. Directory based pro-

tocols Lenoski et al. (1990); Chaiken et al. (1991); Heinrich et al. (1999); Simoni and

Horowitz (1991) scale better with the number of cores. In a directory-based system,

2

the data being shared is placed in a common directory that maintains the coherence

between caches. The directory keeps an entry for every cache block to identify the

cache that contains the most up to date copy of the block. For a 1024-core processor,

each entry of the directory will be 128 bytes (1024 bits divides 8 bits per byte) in full

map implementation. As it is also the typical cache block size, the 100% area cost

is overwhelming. Worse than that, this extra transistor requirement adds significant

power and performance overheads. Although there are some schemes that attempt to

mitigate the space overhead, they do so by making the directory structure distributed

and hierarchical. This not only increases latency, but also makes the coherence pro-

tocol distributed which are notoriously challenging to design and verify Stenström

(1990); Abts et al. (2003).

Consequently, designing manycore processors is not a simple extension of the pro-

cessor design today. In order to make hardware more scalable to hundreds and thou-

sands of cores, each core has to be made simpler, and therefore more power-efficient.

We need to think anew in higher layers of system design. Due to this requirement,

a lot of scaling solutions have been employed in modern manycore architectures in

recent years.

Some manycore architectures maintain cache coherece in hardware when power

efficiency is not a critical requirement, but still have software-managed scratchpad as

an open option when reducing coherence management overhead becomes necessary.

The 9-, 16-, 32- or 64-core TilePro processors manufactured by Tilera use the Dynamic

Distributed Cache (DDC) to provide a hardware-managed, cache-coherent approach

to shared memory Tilera (2013). This technique allows the shared memory pages to

be hosted on a specific core, and cached remotely in other cores. The coherence was

realized by message passing among different cores. Needless to say, the communication

overhead of maintaining such a hardware-managed, cache-coherent memroy system

3

is very high. As a result, the Quanta S2Q Server, which contains 8 TILEPro64 chips

(512 cores) runs at more than 400w, which is approaching the thermal cap. For power

efficient optimization, TilePro has a software-programmable hardware direct memroy

access engine (DMA) implemented and allows users to use part of the chache as a

scratchpad memory to improve the power efficiency.

Some other architectures scale well on memory hierarchy, but with the price of

cache size and core size. The Intel Many Integrated Core (MIC) processors fall into

this category. In 2015, Intel unveiled a 72-core x86 Knights Landing processor So-

dani et al. (2016), which features high bandwidth, integrated memory. The Knights

Landing processor has two types of memory: multichannel DRAM (MCDRAM) and

double data rate (DDR) memory. MCDRAM is the 16 GB high bandwidth mem-

ory, which could be configured as a hardware-managed coherent, memory-side cache.

Though power efficient, it’s large cache size and core size makes it only suitable for

exascale supercomputing applications.

GPUs (Graphics Processing Units) could be considered as another form of many-

core architectures, which could have cores numbered in 100s or 1000s. The computa-

tional power of modern GPUs can easily reach teraFLOP scale. Though originally de-

signed for graphics processing, modern GPUs are extensively used for general-purpose

programming. However, GPUs are more like vector processors, whose instruction op-

erate on vectors. Generally, GPUs are only suitable for applications that are highly

parallel.

4

Chapter 2

SMM: A PROMISING APPROACH

Many efforts from both research space and industrial spheres have been spent in

search of designs that could scale to manycore processors. Software Managed Many-

core (SMM) architecture is a design philosophy that has emerged as a solution to this

problem. In SMM architectures, each of cores are simplified as much as possible, and

intelligence are shifted from hardware to software. For example, Intel SCC Howard

et al. (2011) and Kalray MPPA-256 Dinechin et al. (2013) removed the cache coher-

ence logic from hardware, and implement the coherence in software. Since coherence

is not supported, applications written in the multithreading paradigm will not work

directly. Message passing paradigm, and scatter gather (where no data dependency

exists among tasks) are a natural fit for such an architecture. Since multithreading is

a very popular way of writing parallel programs, correct execution of multithreaded

programs must be enabled; and to do that, communication management must be

handled by software layers Hung et al. (2011); Rotta et al. (2012). However, merely

moving cache coherence logic to software does not resolve the power cap challenge

that is faced in scaling to manycore architectures. For example, the Intel SCC Howard

et al. (2011) consumes 125W at 1.14V, out of which 87.7W is spent on cores Totoni

et al. (2012). If we scale the number of cores to 1000, the total power consumption of

the processor will be 87.7/48 ∗ 1000 = 1827W, which is clearly prohibitive. To enable

scaling to thousands of cores, we have to reduce the power consumption of the cores

by 10X.

Another more aggressive option is to remove the hardware caches all together, and

to employ software cacheing mechanisms for smart data management, using the raw

5

Figure 2.1: A Software Managed Manycore (SMM) architecture has multiple cores:

1) each core with a ScratchPad Memory (SPM) but no hardware cache. The data

transfers between the SPMs and the main memory of the system take place via

Direct Memory Access (DMA) instructions which must be explicitly specified in the

application. 2) each core is made simpler, namely, hardware branch predictor is

removed completely. Branch prediction should be accomplished by software branch

hinting.

memories in the processor. Here the data movement between the close-to-processor

memory and the main memory has to be done explicitly in software, typically done

through the use of Direct Memory Access (DMA) instructions. Figure 2.1 shows an

example of a typical SMM architecture. SMM architecture replaces hardware cache

with only ScratchPad Memory (SPM) Banakar et al. (2002) in the cores and all cores

on the processor share a larger main memory. SPM is attached to the processor in

much the same way as the L1 cache. However, SPM is raw memory, in the sense

6

Figure 2.2: Hardware view of difference between Cache and SPM: SPM is just a raw

memory without the hardware mechanism to manage it (as is present in caches).

that it only contains decoding and column access logic, without the complex circuitry

required to achieve hardware control of replacement policies, and managing coherence

(tag directory, tag look-up circuitry, etc.). As Figure 2.2 shows, while a cache stores

both the data and its address, an SPM only stores data, avoiding the extra lookup

circuitry. Therefore, SPMs are about 30% smaller in area, slightly faster, yet consume

about 30% less power than direct mapped caches (for the same data capacity) Banakar

et al. (2002).

Execution on SMM systems can be more efficient than on cache based processors.

Caches are a one-size-fits-all approach, which have only one general style of data

management, regardless of how the data is actually accessed. Either data is accessed

randomly or it is accessed in a first-in-first-out manner on a cache-based system, it

will always be accessed in the manner implemented in hardware. In contrast, SPM-

based systems allow more efficient management of data by exploiting application

semantics and knowledge of data access patterns, thereby enabling customization of

7

data movement across the memory hierarchy. For example, SPMs can manage stack

data at stack-frame granularity, which is much more natural than managing them by

cache blocks. By deploying a coarser granularity of data management, we may be able

to reduce the number of times thus the overhead for checking if the requested data

is in the fast memory. More importantly, by analyzing access patterns of application

data, we can achieve further efficiency. If we know several stack frames will always be

in the SPM at the same time by analyzing the call graph of the program, we can bring

these stack frames from the main memory into the SPM at once, instead of fetching

each of them separately. As a result, we can reduce number of data transfers and

alleviate the overall DMA startup cost. Furthermore, this eliminates status checking

of stack frames whenever either one calls the other.

As power-efficiency becomes paramount concern in processor design, another promis-

ing option is to get rid of hardware branch prediction, and relies solely on software

branch hinting.

Branch predictor has long been an important study area because of its powerful

ability in performance leverage. Firstly, it reduce branch penalty, especially consider-

ing the fact that piplelines are becoming longer. On the other hand, branch predictor

can serve to improve instruction level parallalism in out of order exection.Without

branchprediction, reorder can only be done inside basic block. With branch predictor,

more instructions can be prefeched, which increase the opportunity of reordering. As

a result, branch predictor is becoming more and more complex. However, with the

total power budget capped, more cores could only be added by reducing the power

and the complexity of each core Gschwind et al. (2006); Hofstee (2005). Consequently,

reducing branch predictor energy consumption becomes import, as branch predictors

already account for a large fraction of on-chip power dissipation, which is as much as

10% Parikh et al. (2002). Software branch hinted processors target on getting rid of

8

the complex hardware branch predictor.

In software branch hinted processors, applications may contain branch hint in-

structions which indicate that the branch instructions at specified PC addresses will

jump to specified target addresses. After executing a hint instruction, the hardware

will start to speculatively execute target instructions when the specified branch in-

struction is executed.

Since both data management and branch prediction are passed to software, SMM

architecture proves to be extremely power-efficient, if software intelligence is high

enough. For example, the IBM Cell processor belonging to such architecture can

compute at a power-efficiency of roughly 5 GFlops per watt Flachs et al. (2006). In

contrast, Intel i7 4-core Bloomfield 965 XE can only achieve a power-efficiency of 0.5

GFlops per watt Intel (2010); Hardware (2010).

9

Chapter 3

CHALLENGES IN SHIFTING THE INTELLIGENCE FROM HARDWARE TO

SOFTWARE

SMM architecture has scalable memory design and much less complicated branch

predictor, and therefore is potentially more power-efficient.

3.1 Challenge of Data Management on SMM

The memory hierarchy, ScratchPad Memories (SPMs), on SMM architectures are

functionally similar to caches, from the aspect that they allow for fast access to

frequently used data but with lower power and latency. However, the main challenge

in using SPM-based memories is that the data of the program must be explicitly

managed in the software, as shown in Figure 3.1. Using caches is seamlessly integrated

into the whole follow of program execution. If required data is not present in the cache,

hardware mechanisms are built to bring in the requested data to the cache, potentially

preventing the necessity of repeated operations if the data is reused. However, SPM

contains no such automatic hardware mechanism to bring the desired data to the

SPM. It must be brought in explicitly through memory transfer instructions that

trigger Direct Memory Access (DMA) transfers. Furthermore, once data is brought

in, it must be accessed using its new local SPM address, and not the original main

memory address. Figure 3.1 shows that the left pseudo code can execute on any

cache based architectures, even if the variable global is not in the cache before its

execution. This automatic data movement is not provided in SMM architectures.

For such architectures, the software must be modified as shown in the right hand

side.

10

Figure 3.1: The data movement from and to caches is performed automatically in

hardware, in SPM-based manycore systems, it has to be present explicitly in the

software in the form of data movement instructions, e.g., DMA instruction.

DMA instruction insertion for applications on SPM-based architectures can be

done extremely efficiently by programmers Eichenberger et al. (2006); O’Brien (2007),

it’s not trivial though. With the increasing software complexity, as well as the di-

versity of the underlying architectures, the burden on developers becomes heavier.

Now they must explicitly manage data in the program, on top of worrying about

the functional correctness of the program - which is already quite complicated. De-

velopers could have a very good understanding of when a data is needed, yet the

local scratchpad memory is limited and the required space of the program can be

input dependent. Shown in Figure 3.2, the compiled assembly code and all data of

the application share the whole local scratchpad memory, in which the area below

end is the code and global data sections of the program, and the top is dynamic

storage. The dynamic storage is occupied by stack data and heap data created with

11

malloc. Stack data grows downward (from high addressed memory to low addressed

memory), and heap data grows upward towards stack. Their sizes increase and de-

crease in the whole execution time. Because the local memory is limited and lacks

hardware-enabled protection, it is possible that stack data and heap data could over-

flow the space and therefore corrupt the program’s code or data or both. This often

leads to hard-to-debug problems as the effects of the overflow are not likely to be

observed immediately. Now, developers must not only be aware of the local memory

available in the architecture, but also be cognizant of the memory requirement of

the task at every point in the execution of the program. Estimating the memory

requirement is not trivial for C/C++ programs, since stack size and heap size may

be variable and input data dependent. The difficulty of programming these SMM

architectures requires automated techniques to understand the application and insert

data management instructions automatically.

Figure 3.2: The virtual anatomy of the compiled program in local scratchpad memory

12

3.2 Challenge of Software Branch Hinting on SMM

In software branch hinting processors, the application makes use of branch hint

instructions to indicate that the branch instructions at specified PC addresses will

jump to specified target addresses. After executing a hint instruction, the hardware

starts to speculatively execute target instructions when the specified branch instruc-

tion is executed. It will harm the running time if the branch hinting instructions are

not efficiently inserted. For software branch hinting to work best, there are two fun-

damental considerations. One is to estimate the taken probabilities of branches, and

the other one is to find the locations in the code for branch hint instructions to min-

imize branch penalty. The first problem is significantly important because branch

hint instructions should be inserted for only heavily taken branches. Though this

problem has been extensively studied Ball and Larus (1993); Wu and Larus (1994);

Wagner et al. (1994), the second problem, to insert branch hint instructions to min-

imize branch penalty, is rather unexplored. Even if we know the taken probabilities

of all the branches, minimizing branch penalty by means of branch hint instructions

is not trivial. The reasons origin from two constraints of the software branch hinting

architectures. Firstly, for a branch hint to be effective, there must be some separa-

tion between a branch and its hint. The hint instruction must be executed several

instructions earlier than the branch. Secondly, only a limited number (one for the

IBM Cell processor) of branch hints can be active at any given time. For example,

if two branches are too closely located in the control flow, the second branch cannot

have enough separation. To hint the second branch, its hint needs to be placed above

the first branch, and this will overwrite the hint for the first branch. Thus, hints

may conflict with each other, and reduce the achievable benefits. When developing

applications for SMM architectures, we must take these into considerations.

13

Chapter 4

CONTRIBUTIONS OF THIS DISSERTATION

The contribution of this dissertation is in developing some processor management

policies in software in order to enable SMM architectures. In specific, this dissertation:

• Develops a technique to create and insert the branch hinting instructions to

reduce the branch penalty (Chapter 5). It i) constructs a branch penalty model

for compiler, ii) formulates the problem of minimizing branch penalty using

branch hinting and iii) proposes a heuristic to solve this problem. The heuristic

is based on three basic techniques: NOP padding, hint pipelining, and nested

loop restructuring. Experimental results on several benchmarks show that our

solution can reduce the branch penalty as much as 35.4% over the previous

approach.

• Manages stack data of the application efficiently and seamlessly (Chapter 6.1).

It first formulates the problem of stack data management optimization on an

SMM core, and then develops both an ILP and a heuristic - SSDM (Smart Stack

Data Management) to find out where to insert stack data management calls in

the program. Experimental results demonstrate SSDM can reduce the overhead

by 13X over the state-of-the-art stack data management technique Bai et al.

(2011).

• Formulates formal code management problem for SMM architectures for the first

time (Chapter 6.2). Then, two polynomial time heuristics for Code Mapping on

Software Managed multicore systems (named as CMSM and CMSM advanced)

are proposed Lu et al. (2015). Experimental results demonstrate that the heuris-

14

tics can reduce runtime in more than 80% of the cases, and by up to 20% on our

set of benchmarks, compared to the state-of-the-art code assignment approach

Jung et al. (2010).

• Implements a framework to manage heap data for SMM architectures (Chapter

6.3). It consists of a modified compiler and a runtime library Lin et al. (2019).

The runtime library consists of three generic optimizations (compile-time heap

access detection, simplified management framework, and combined management

calls). The experimental results show that the execution time is reduced by 80%

on average.

4.1 Publications and My Contributions in the Publications

• (CODES+ISSS 2011) Branch Penalty Reduction on IBM Cell SPUs via Soft-

ware Branch Hinting. I defined the problem, designed the algorithm, did all the

experiments and wrote most part of the paper.

• (DAC 2013) SSDM: Smart Stack Data Management for Software Managed

Multicores (SMMs). I defined the problem, designed and implemented the

algorithm, conducted some of the experiments, and participated in the paper

writting.

• (CODES+ISSS 2013) CMSM: An Efficient and Effective Code Management for

Software Managed Multicores. I defined the problem, designed the algorithm,

participated in the experiments and paper writing.

• (TECS 2015) Efficient Code Assignment Techniques for Local Memory on Soft-

ware Managed Multicores. I defined the problem, designed the algorithm, par-

ticipated in the experiments and paper writing.

15

• (VLSID 2019) Efficient Heap Data Management on Software Managed Many-

core Architectures. I Contributed the idea, participated the discussions and

wrote the paper.

16

Chapter 5

SOFTWARE BRANCH HINTING FOR SMM

5.1 Overview

One of the critical limitations of pipelined modern computer architectures is the

branch penalty, which grows larger as the pipeline depths increase. To minimize the

effect of branch penalties, target of the branch is predicted and instructions from there

are speculatively fetched. This prediction is typically history based and hardware

implemented. Because performance of pipelined processors is critically dependent

on the accuracy of branch predictions, many processors use large Branch Target

Buffers (BTBs) to store the results of previous branches, and use complex and often

proprietary algorithms to predict the branch target Stephen et al. (2002); Jiménez

and Lin (2001).

While branch prediction became the de-facto standard in processor architectures,

power-efficiency became an increasingly important consideration in processor design.

With the total power budget capped, more cores could only be added by reducing

the power and the complexity of each core Gschwind et al. (2006); Hofstee (2005).

Therefore, architects started looking at processor components that could be removed

to simplify the cores, yet not lose too much on performance Agarwal and Levy (2007).

For instance, in the power-efficient IBM Cell Synergistic Processing Units (SPUs)

Kahle et al. (2005) (which is one of SMM architectures), architects decided to remove

hardware branch predictor and used software branch hinting in the hope to recover

lost performance Sinharoy and White (2005). This is significantly different from

earlier architectures that supported software branch hinting, e.g., the Sun Niagara

17

Table 5.1: Branch penalty can be crippling in the Cell SPU in absence of any branch

hints.

Benchmark Branch penalty

cnt 58.5%

insert sort 31.4%

janne complex 62.7%

ns 50.9%

select 36.2%

Kongetira et al. (2005) and Intel Itanium Itanium (2007), in the sense that the Cell

SPUs do not have any hardware branch predictor but solely rely on software branch

hints. Table 5.1 shows the branch penalty (in terms of percentage of execution time

spent in branch penalty) on some of our benchmark applications, which shows that

branch penalty in the absence of any branch hints can be very significant.

In software branch hinted systems, the application may contain branch hint in-

structions which indicate that the branch instructions at specified PC addresses will

jump to specified target addresses. After executing a hint instruction, the hardware

starts to speculatively execute target instructions when the specified branch instruc-

tion is executed. There are usually two constraints of the given architecture. First,

the system requires some separation between a branch and its hint to make a branch

hint to be effective, and the hint instruction must be executed several instructions

earlier than the branch. Second, only a limited number (one for the IBM SPU) of

branch hints can be active at any given time. For example, if two branches are too

closely located in the control flow, the second branch cannot have enough separation.

To hint the second branch, its hint needs to be placed above the first branch, and

18

this will overwrite the hint for the first branch. Thus, hints may conflict with each

other, and reduce the achievable benefits.

This dissertation present work on minimizing branch penalty in processors with

software branch hinting. It firstly constructs a branch penalty model for the compiler

(Section 5.3), in which branch penalty is expressed as a function of number of in-

structions between hint and branch instruction, branch probability, and the number

of times a branch is executed. Secondly, three fundamental approaches is proposed to

hint branch instructions (Section 5.5): 1) NOP padding scheme finds out the number

of NOP instructions needed between a branch and its hint to maximize profit. 2) the

hint pipelining technique enables hinting branches that are very close to each other,

and 3) the nested loop restructuring technique allows us to change the loop structure

to increase the effectiveness of branch hinting. Eventually, a heuristic that applies

the above three methods to the code prudently to minimize overall branch penalty is

present (Section 5.5.4).

5.2 Branch Hinting Mechanism

Figure 5.1 elaborates the software branch hinting mechanism. The description

in this section can perfectly explain the behavior of branch hint instructions. Just

like hardware branch predictors, software branch hinting mechanism also requires a

Branch Target Buffer (BTB). When a hint instruction is executed, the BTB entry is

first updated, and then target instructions are loaded to the Hint Target Buffer from

the specified target address. The hardware usually fetches instructions from Inline

Prefetch Buffer which is constantly loaded with the sequential instructions according

to PC address. When a branch instruction is fetched, the PC address is compared

with the branch address in the BTB entry. If it matches, the instructions are fetched

from Hint Target Buffer instead of Inline Prefetch Buffer. As compared to BTBs in

19

Figure 5.1: Software branch hinting is characterized by hint instructions setting the

BTB entries. It has 3 key parameters, 1) d, the number of pipeline stages where BTB

is set, 2) f , the time to fetch target instructions, and 3) s, the number of entries in

BTB.

hardware branch prediction, the BTBs to support software branch hinting should be

typically much smaller and simpler, without having to store the history of branches.

While the actual design for SMM architectures may vary, there are three funda-

mental parameters of any software branch hint implementation. The first parameter

is d, which is the number of pipeline stages, where the branch hint is executed and

BTB entry is set. This implies that, if the separation between the branch hint and

branch instruction is less than d cycles, then the fetch stage will not even recognize

that there is a hint to this branch, and the default prediction (typically, “not taken”)

will happen. For instance, d of SPUs is 8. The second parameter is f , which is cycles

to fetch target instructions. After a BTB entry is set, a request is made to the arbiter

20

to fetch the target instructions from memory into the Hint Target Buffer. Note that

f may not be statically known, since the delay to get target instructions from the

memory depends on the availability of the memory bus. Consequently, in order to

completely avoid branch penalty, the separation between a branch hint and branch

should be at least d+f . This is termed as separation constraint, and it is 11 in SPUs.

If the branch and branch hint are separated by more than separation constraint, then

there is no penalty for a correctly hinted branch. However, if the separation between

the branch and branch hint is less than d + f , but greater than d, say d′, then a

correctly hinted branch will incur a branch penalty of d + f − d′. During the hint

stall, the branch instruction is stalled before going into execution pipeline. There-

fore, even if the hint is incorrect, the comparison between hinted target address and

the actually calculated target address, namely branch resolution, can only take place

after actually executing the branch instruction. Thus, on top of the branch penalty,

the time to wait for the target instructions to be loaded is added to misprediction

penalty. This should be the same as d+ f − d′ from the above. The third parameter

is s, which is the number of entries in the BTB. A N -entry BTB would imply that

N branches can be hinted at the same time. Note that along with the size of BTB,

s also impacts the size of Hint Target Buffer, which must be large enough to hold

target instructions for all the BTB entries. s is expected to be a small number in

order to keep the software branch hinting mechanism power-efficient. For example,

SPUs on the IBM processor have one-entry BTB, making s = 1.

5.3 Branch Penalty Model

In order to implement any software branch hinting algorithm, the penalty of a

branch has to be modeled as a function of separation in terms of the number of

instructions, the branch probability, and the number of times the branch is executed,

21

which are all the information a compiler can have.

As the IBM Cell processor is the only SMM architecture that has fully software

branching hint feature, branch penalty model is proposed upon it. However, similar

branch penalty model may apply to other SMM architectures with software branch

hint. To do this, several experiments are conducted in which we run a synthetic

benchmark composed of a branch, and branch hint, separated by a varying number

of lnop instructions. In each case, some more lnop instructions above the hint are

inserted to keep the total number of lnop instructions as 18. We plot the execution

time (in cycles) of the benchmark as we change the “separation” between the branch

and the hint. The execution time is measured using spu decrementer IBM (2007).

Since the granularity of timing measured by spu decrementer is hundreds of cycles,

the branch and hint are put in a loop and the loop is executed hundreds times to

enlarge the granularity of time measurement.

lnop is inserted so that the execution time is not affected by the dual-issue nature

of the SPU. SPU is a dual-issue core, and has two unbalanced execution pipelines,

named even and odd, and each of them can execute a disjoint set of instructions. Even

pipeline can only execute floating point or fixed point arithmetic operations while odd

pipeline can only execute memory, logic, flow-control instructions, including branch

and branch hint instruction. Instructions are dual-issued only when i) two instructions

are issuable and aligned at an even word address, ii) the first instruction can be

executed on even pipeline, and iii) the second instructions can be executed on odd

pipeline. There are two NOP instructions, nop and lnop, in SPUs. nop is executed

in even pipeline, and lnop in odd pipeline. By having only control flow instructions

(branch and branch hint) and lnop, the SPU is effectively made single-issue.

Figure 5.2 shows branch penalty plot when the hint is correct (namely, the branch

is taken). When separation is less than 8 instructions, the hint is not recognized

22

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Separation between branch and hint

Branch penalty

Figure 5.2: Branch penalty is plotted as we increase the separation when hint is

correct. We need at least 8 instructions for a hint to become effective, and the

penalty decreases as separation increases.

and we have branch penalty of 18 cycles. After that, the branch waits for the target

instructions to be loaded. The penalty decreases with the increase of separation,

because executing NOP instructions is now hiding the latency of fetching target in-

structions. When the separation becomes larger than 19 instructions, the branch

penalty can be fully eliminated. The following is the empirical branch penalty model

when hint is correct.

Penaltycorrect(l) ≈

18, if l < 8

18− l, if 8 ≤ l < 19

0, if l ≥ 19

(5.1)

23

where l is the separation in the number of instructions.

Figure 5.3 shows the same experiment result except that hint was incorrect (namely,

misprediction penalty when the branch is not taken). As expected, when the sepa-

ration is less than 8, there is no penalty because the architecture assumes branches

to be not taken by default. When the separation is greater than 18 instructions,

misprediction leads to 18 cycles of branch penalty. Interestingly, when the separation

is between 8 to 18 instructions, the misprediction penalty is greater than 18 cycles

and decreases as the separation increases. This means that the branch still waits

for target instructions to be fetched, even though the branch is not taken. Thus,

branch resolution occurs after target instruction arrives, and this makes incorrect

hints more detrimental to performance. Our empirical branch penalty model when

hint is incorrect is as follows.

Penaltyincorrect(l) ≈

0, if l < 8

36− l, if 8 ≤ l < 19

18, if l ≥ 19

(5.2)

where l denotes the separation in the number of instructions.

Overall, the penalty of a hinted branch is the sum of Equation 5.1 and 5.2. Consid-

ering branch probability and the number of times the branch is executed, the branch

penalty can be calculated as follows.

Penalty(l, n, p) =Penaltycorrect(l)× np+ Penaltyincorrect(l)× n(1− p) (5.3)

where n and p are the number of times the branch is executed, and the branch

probability respectively.

5.4 Problem Formulation

Two fundamental problems of minimizing overall branch penalty using software

branch hinting are to find i) a set of branches to be hinted, and ii) a set of assembly

24

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Separation between branch and hint

Misprediction penalty

Figure 5.3: Misprediction penalty is plotted as we increase the separation. On top

of branch penalty, the time to flush pipeline is added resulting larger branch penalty

than when hint is correct.

program locations where the hints for those branches should be placed. First of

all, branch probabilities and frequencies should be obtained. This is because, as

discovered in Section 5.3, when a branch is not taken, hinting the branch will not

only increase the instruction count, but also lead to a larger branch penalty causing

a significant performance degradation. The problem of finding branch probabilities

has been well-studied for decades, and improving the state of the art is not the intent

of this dissertation. This dissertation adopt the static estimation technique Ball and

Larus (1993); Wu and Larus (1994) embedded in GCC compiler, but any branch

probability estimation technique can be used.

25

Even if the probabilities are known, and branches that benefit by hinting are

identified, it is rarely possible to hint all of them. It is primarily because of the

separation constraint that is architecture dependent. In an architecture with s size

BTB, only s branch hints can be active at any point of time. In SPUs, only one

hint can be effective at any point of execution, which means when two branches are

located too close to each other, only one branch can be hinted. To overcome this

problem, three methods are present to enable hinting more branches later in this

dissertation. Since our technique involves restructuring of basic blocks, the control

flow of the program may change after applying the proposed technique. However, the

program semantic will stay the same. Now, the problem can be formulated as follows.

• Input: A program which can be represented in Control Flow Graph, and branch

probabilities and frequencies of the branches.

• Output: A new program with branch hint instructions. The program may

have a different control flow, but the semantic should remain the same.

• Objective: Minimize branch penalty.

• Constraint: For every pair of a hint and branch, separation must be at least

d cycles. Also, only s hints can be effective at any point of time, so the lifetime

of more than s hints should not overlap. d and s are architecture dependent.

5.5 Branch Hint Management

In this section, three basic techniques are present to enable hinting more branches:

NOP padding, branch pipelining, and basic block restructuring. In addition, we

analyze the conditions when the application of each method can be beneficial to

performance. Lastly, we will present a heuristic that combines three schemes and

applies each method prudently.

26

Figure 5.4: (a) Before NOP padding, the branch cannot be hinted. (b) NOP padding

enables hinting the branch.

5.5.1 NOP Padding

When there is not enough separation to be accommodated, NOP instructions are

inserted to artificially increase separation as shown in Figure 5.4. In the figure, NOP

padding increases the separation to 8 instructions making the hint to be effective. Let

us assume this branch is taken always. Using the branch penalty model aforemen-

tioned, the penalty drops from 18 to 10 cycles. With the help of dual-issue, inserted

2 nop-lnop pairs can be executed in 2 cycles, and therefore the total performance

improvement is 6 cycles.

GCC compiler included in IBM Cell SDK also inserts nop instructions only when

user explicitly specifies the maximum number of nop instructions to be inserted gcc

(2005). We insert both nop and lnop to minimize the overhead of executing additional

27

instructions. GCC can also inserts nop instructions when a user-specified option is

given. It inserts whenever the branch cannot have enough separation, but in reality,

NOP padding may not be always profitable. This will be shown in our experimental

results.

On the other hand, in this dissertation, the performance gain of NOP padding is

analyzed using the proposed branch penalty model. NOP padding is used not only

to enable a branch to be hinted but also to increase the performance gain, so called

profit of hinting the branch.

Let l, n, and p denote the original separation before padding, number of times

the branch is executed, and the branch probability respectively. The branch penalty

before applying padding can be calculated as follows.

Penaltyno pad = Penalty(l, n, p)

Since l is less than the constraint, hint does not work and the penalty is 18np.

The branch penalty after applying padding is modeled as follows with the sepa-

ration increased by the number of NOP instructions.

Penaltypad = Penalty(l + nNOP , n, p)

where nNOP represents the number of inserted NOP instructions.

Because the branch is taken n times, the hint instruction and the inserted NOP

instructions are also taken n times. A pair of nop and lnop instructions can be

executed in one cycle with a help of dual issue. Then, the overhead of NOP padding

can be modeled as the following.

Overheadpad = n(nNOP + 1)/2

Combining all of the above, the performance improvement by NOP padding can

28

be modeled as follows. NOP padding is applied only when it is profitable.

Profitpad = Penaltyno pad − Penaltypad − Overheadpad (5.4)

5.5.2 Hint Pipelining

As shown in Figure 5.5 (a), a compiler may try to hoist the hint for branch b2

above branch b1 to increase separation. This will lose any opportunity to hint branch

b2, and this is another common performance limiting factor in GCC. In this case, GCC

will simply give up hinting b1 since b2 has more priority (Otherwise, GCC would not

have tried to host the hint in the first place.)

To overcome this problem, let us consider the fact that a hint instruction is not

recognized when the separation is less than 8 instructions. This gives us an intuition

that we can insert multiple hints for multiple branches in a pipelined fashion. Figure

5.5 (b) shows how hint pipelining works. If the hint for branch b2 is placed less than

7 instructions ahead of branch b1, the hint will have not yet recognized when branch

b1 is executed. As a result, both b1 and b2 can be hinted since the later execution of

the hint for b2 will not affect the previous executed hint for b1.

The above example is also used to show how to analyze the profit of hint pipelining.

In this case, the profit can be modeled as the decrease of branch penalty of newly

hinted branch b1 minus the possible increase of branch penalty of b2. Let lx represent

the number of instructions in basic block Lx. The path from L1 to L2 is only taken

when the branch b1 is not taken. Thus, when the branch b1 is taken, the branch b2

is not hinted. The branch penalty before applying hint pipelining can be modeled as

sum of the penalty of two branches as follows, and the penalty of not hinted branch

29

Figure 5.5: (a) Before hint pipelining, branch b1 cannot be hinted due to the hoisted

hint for b2 (b) After hint pipelining, Both b1 and b2 are hinted.

is modeled as the case when separation is zero.

Penaltyno pipeline =Penalty(0, n1, p1) + (1− p1) · Penalty(l1 + l2, n2, p2) +

p1 · Penalty(0, n2, p2)

where px and nx denote the branch probability of branch bx and the number of times

bx is executed.

After hint pipelining, both b1 and b2 can be hinted. The maximum possible

separation for the hint for b2 is decreased from l1 + l2 to l2, which possibly increases

branch penalty of b2, but another branch b1 can be hinted instead. Since our heuristic

starts inserting hint instructions from bottom basic blocks, when this analysis is being

done, the hint for branch b1 is not yet inserted. We always assume that b1 will be

hinted at the top of L1, even though it can be hinted farther above, possibly reducing

30

more branch penalty. The penalty after applying hint pipelining is modeled as follows.

Penaltypipeline =Penalty(l1, n1, p1) + (1− p1) · Penalty(7 + l2, n2, p2)+

p1 · Penalty(0, n2, p2)

Note that is only applied when l1 ≤ 8. The above calculation is an example when a

hint is hoisted to the immediate predecessor. A similar analysis can be done to any

other cases.

The overhead of hint pipelining is the number of times the hint instruction is

executed. When the hint is in basic block Lx, it is executed nx times. Then, the

overall overhead is the difference of execution counts as shown below.

Overheadpipeline = n2 − n1

Hint pipelining is applied only when the overall profit of it is greater than zero,

which can be modeled as the following.

Profitpipeline =Penaltyno pipeline − Penaltypipeline −Overheadpipeline (5.5)

5.5.3 Nested Loop restructuring

The branch penalty from loops is of paramount importance, since even a small

penalty can be accumulated for the whole iteration and significantly impact perfor-

mance. In this section, a method specially developed for nested loops is present.

This scheme is motivated by our observation that usually in nested loops, only inner-

most loop branch can be hinted, and the outer loop branch cannot be hinted due to

separation constraint.

As summarized in Figure 5.6, the structure of nested loop can be changed so that

the space to insert a hint for the outer loop branch is enlarged. Throughout the

dissertation, loop branches are assumed always be at the bottom of the loop body.

31

Figure 5.6: (a) Before nested loop restructuring, the separation for b4 is limited to l4.

(b) After nested loop restructuring, the outer loop branch is changed to unconditional

branch b2, and the separation is increased to l2 + l4.

In Figure 5.6 (a), let us suppose the size of basic block L4 is too small to hint the

branch b4. Figure 5.6 (b) presents our solution in which basic block L2 is moved after

L4, and two unconditional branch b1 and b2 are introduced. In addition, the target

address of branch b4 is changed to L5, and the branch condition is flipped. This

technique is applied before any hints are inserted into the code, and here the hint for

b3 is assumed to be placed in L3.

The same example is used to illustrate the calculation of the profit of nested loop

restructuring. Before applying restructuring, the overall branch penalty is the sum

of branch penalties of b3 and b4. In this example, l4 is smaller than 8 instructions, so

32

the branch b4 will not be hinted.

Penaltyno reorder = Penalty(l3, n3, p3) + Penalty(l4, n4, p4)

After applying restructuring, the outer loop branch is changed to unconditional

branch b2 and it has separation of l2 + l4. We may get more profit from this, but this

introduces branch b1 which will be taken only once when entering the loop. Also, the

branch condition of b4 is changed, so it is taken only once when exiting the loop. We

assume that b1 and b4 are not hinted incurring 18 cycles of penalty for each. The

penalty becomes the sum of branch penalties of b1, b2, b3, and b4. Note that the path

probability for L4 to L2 is one since the branch will always fall through except when

the loop terminates.

Penaltyreorder =18 + Penalty(l2 + l4, n2, p2) + Penalty(l3, n3, p3) + 18

The overhead of this technique is the difference of the numbers of times hint

instructions are executed. In this particular example, the hint for b4 could not be

inserted at first due to separation constraint, but now it is inserted into L4. However,

in general, the nested loop restructuring can be used to improve the profit of b4 even

if l4 is greater than eight instructions. In this case, the overhead is considered as zero

because the hint instructions are not moved to other basic blocks.

Overheadreorder =

 n4, if l4 < 8

0, otherwise

Nested loop restructuring is only applied when the overall profit of it is greater

than zero, which can be modeled as the following.

Profitreorder =Penaltyno reorder − Penaltyreorder −Overheadreorder (5.6)

Note that in the above example, without loss of generality L3 can denote a loop

body containing multiple basic blocks. This is because the intention of nested loop

33

Figure 5.7: (a) Hint for b3 can be hoisted into L2. Branch b4 cannot be hinted even

after loop restructuring. (b) After restructuring, the hint for b3 cancels the hint for

b4. (c) Pipelining is applied and both branches can be hinted.

restructuring is to give more separation to outer loop branch, and the inner loop is

not affected. For the loop body which does not have any likely-taken branches (for

example, function call or if-then-else), we hoist the hint for the loop branch to the

loop-initialization block, which is executed only once. This is to reduce the overhead

of repetitive execution of the hint instruction. Figure 5.7 (a) shows an example where

the hint for inner loop can be hoisted to outer loop body. After applying restructuring,

the hint for b3 is hoisted to L2 and cancels previously inserted the hint for b2, as shown

in Figure 5.7 (b). Instead of canceling the hint for b2, we can apply pipelining to hint

both branches. Figure 5.7 (c) shows the final solution. We check the structure of

the inner loop body, and if the hint can be hoisted, we assume it pipelining will be

applied later. To determine its profitability, a similar analysis to the above can be

34

done assuming the hint for b3 will be placed seven instructions above b2.

This abstraction of loop body enables us to apply this technique to all kinds of

loop nests. For loop nests whose depth is more than two, this technique is recur-

sively applied from the innermost loop to the outermost loop. For example, let us

suppose we have three loops L1, L2, and L3. L1 is the innermost loop, and L3 is

the outermost loop. L1 and L2 are first considered as restructuring candidates, and

we check the profit of restructuring two loops. If those two loops are reordered, they

can be considered as one loop body. Then, either the reordered loop body or L2 can

be considered as restructuring candidate with the next outer loop L3. Also, if there

is more than one loop a loop, all of the inner loops can be considered as one loop

body. This restructuring may result in severe instruction cache misses in conventional

machines, but it is not the case in software branch hinting because instructions are

explicitly prefetched by branch hint instructions.

5.5.4 Branch Penalty Reduction Heuristic

Given all schemes and their applicable conditions we discussed above, this section

presents a heuristic that combines all of them. It requires the information of all

nested loops, the branch probabilities, and the number of times each branch is taken

as input.

Algorithm 1 shows the complete heuristic. The algorithm starts with applying

nested loop restructuring to all loop nests to increase the possible separation for loop

branches. Then, it starts inserting hint instructions from the bottom basic block. For

a branch, the procedure tries to hoist its hint to the predecessor basic blocks, scanning

predecessor basic blocks recursively. If there is a branch in the predecessor and it is

likely-taken, it stops going into predecessors and returns the current basic block.

Then, the procedure insertHint() (shown in Algorithm 2) inserts a hint instruction in

35

Algorithm 1 Branch penalty reduction heuristic

1: Apply nested loop restructuring for all loop nests;
2: b = last basic block in the program;
3: while basic block b is not the first basic block do
4: h = b;
5: while Basic block h is not the first basic block do
6: if Branch in h->predecessor is likey-taken then
7: break;
8: end if
9: h = h->predecessor;
10: end while
11: insertHint(b, h);
12: if b != h then
13: b = h;
14: else
15: b = b->predecessor;
16: end if
17: end while

the current basic block. It checks the separation and applies NOP padding and hint

pipelining when applicable.

5.6 Related Work

Software branch hinting has been present in processors for decades, it has not

been an active area of research, however. This is mainly because it has always been

in addition to the hardware branch prediction, and in this situation, branch hinting

can only improve upon the performance of hardware branch prediction, and the scope

of improvement was minimal. The Cell processor, which does not have any hardware

branch prediction and relies solely on software branch hinting to avoid branch penalty,

changes all that. Severe performance degradation is observed if the system is without

any branch hints. In such SMM like architectures, software branch hinting is no

longer optional, but has become mandatory!

In processors with only software branch hinting, branch penalty can be reduced

36

Algorithm 2 insertHint(b, h)

1: // Insert a hint instruction for the branch in basic block b into basic block h.
2: if h contains a branch then
3: if Pipelining is profitable then
4: Insert a hint instruction for the branch in b in a pipelined mode;
5: else
6: if NOP padding is profitable then
7: Insert as many NOP instructions as it is profitable;
8: end if
9: Insert a hint instruction for the branch in b;
10: end if
11: else
12: if NOP padding is profitable then
13: Insert as many NOP instructions as it is profitable;
14: end if
15: Insert a hint instruction for the branch in b;
16: end if

by predication Kalamatianos and Kaeli (1999) (if supported), i.e., executing both

possible execution paths. Loop unrolling IBM (2007) can also reduce branch penalty

by reducing the number of times branches are executed. Our focus is orthogonal,

in the sense that we intend to reduce branch penalty by hinting the likely-taken

branches, by prudent placement of branch hints.

Recently, Briejer et al. studied the energy efficient branch prediction on Cell

SPUs by modifying hardware Briejer et al. (2010). In their work, the performance

and power trade-off of different hardware setups is studied where hardware branch

predictor is present in conjunction with software branch hinting. Our techniques, on

the other hand are completely in software, and do not require any hardware changes.

Two main problems exist in branch hinting to minimize branch penalty. One is

to accurately estimate the taken probability of branches, and the other is to find

prudent placement of branch hints to minimize the penalty. Researchers has been

done on estimating taken probabilities of branches. A set of program-based heuristics,

37

especially focused on non-loop branches, was proposed in Ball and Larus (1993).

Another approach Wu and Larus (1994) estimates not only branch probabilities but

also the execution frequencies of blocks and edges, including function calls, in Control

Flow Graphs (CFGs). These techniques are already embedded in GCC compiler. The

focus of this dissertation is the second problem.

GCC compiler in IBM Cell BE SDK gcc (2005); IBM (2009) has a heuristic to

insert branch hint instructions to the code. We consider this as the closest related

work. It works with a set of principles such as moving hint instructions outside the

loops to reduce the overhead of executing hints repeatedly Eichenberger et al. (2005),

and giving priority to hinting innermost loop branches, however, it suffers from several

problems in effectively hinting branches. For instance, if two branches are close to

each other, then only one of them is hinted, and in nested loops, typically only the

innermost loop branch is hinted.

Our proposed technique alleviates some of the problems of GCC by carefully ana-

lyzing conflicting branches. It can hint them better through accurate cost functions,

and increase the opportunity of hinting low priority branches while keeping all the

high priority branches hinted.

5.7 Experimental Results

5.7.1 Experimental Setup

The effectiveness of the proposed heuristic is validated using various benchmarks

from Multimedia loops Kolson et al. (1996) and WCET benchmarks Gustafsson et al.

(2010). The Software Managed Manycore (SMM) architecture we choose for demon-

stration is the IBM Cell processor Flachs et al. (2006). Our baseline is GCC com-

piler gcc (2005), which is included in IBM Cell SDK IBM (2009). It has a heuristic

38

Figure 5.8: The percentage of branch penalty in the total execution cycles after GCC

inserts hints into the program. Benchmarks are grouped into two groups ‘high’ and

‘low’ according to the percentage.

that inserts branch hint instructions to the code, which is designed and implemented

by the manufacturer. All benchmarks are compiled with O3 optimization level. To

measure the performance and the branch penalty of the program, the cycle accurate

IBM SystemSim Simulator for Cell BE sys (2006) is deployed. As library functions

(e.g., printf()) are not changed, all the measurements are done only on user codes.

Branch probabilities and the cyclic frequencies of branches are obtained by a static

analysis Ball and Larus (1993); Wu and Larus (1994), which is also implemented in

GCC.

Figure 5.8 shows the percentage of branch penalties in the total program execution

cycles after GCC inserts hints. The benchmarks are divided into two groups ‘high’

and ‘low’ according to the percentage of branch penalty in the total execution time.

The benchmarks which have more than 20% of branch penalty are grouped as ‘high’,

while the others fall under the group ‘low’.

39

Figure 5.9: Reduction of branch penalty is 35.4% at maximum and 19.2% on average.

5.7.2 Branch Penalty Reduction

The effectiveness of our heuristic can be shown as the reduction of branch penalty

after applying our heuristic. Figure 5.9 shows the reduction in branch penalty cy-

cles after applying our heuristic, compared to the GCC-inserted hints. Overall, we

can reduce average 19.2% of the branch penalty more than GCC. Since we insert

NOP instructions through our NOP padding technique, we consider the increased

NOP cycles as part of branch penalty. SystemSim simulator can output NOP cycles

separately as well as branch penalty cycles, and branch penalty in our results is the

summation of branch penalty cycles and increased NOP cycles.

The proposed heuristic works more effectively for the benchmarks with deeply

nested loops, such as janne complex, cnt, insertsort and ns. As shown in Figure

5.8, GCC cannot reduce the branch penalty effectively in those benchmarks, and all

of them fall under ‘low’ group. Figure 5.10 compares the code change in a deeply

nested loop in benchmark ns after GCC and our heuristic. Loop branches are shown

40

Figure 5.10: (a) GCC can only hint the innermost loop branch. (b) The proposed

technique can hint all of the four loop branches.

in RED arrows, while others are shown in GREEN arrows. GCC can only hint the

loop closing branch for the innermost loop, and because of limited basic block sizes,

all other loop branches cannot be hinted. In contrast, our technique can hint all of

the loop branches.

Even with our scheme, the highest reduction of stall due to branch penalty is

around 35%. There are three reasons why the branch penalty cannot be completely

eliminated. First, not all branches can be hinted because only one hint can be active

at a time for IBM Cell BE. When two branches are located too close to each other,

only one of them can be hinted. Even though our techniques can enlarge the possible

41

separation to enable more branches to be hinted, they cannot be applied to all cases.

This is because each technique is applied only when it is profitable. Unless two

or more branch hints are allowed to be active at a time, this problem cannot be

ultimately solved. The second reason is that branch hinting works as a static branch

predictor, while most of the branches are dynamically decided to be taken or not.

Even though the penalty can be effectively avoided when branch is taken, there is

still misprediction penalty when the branch is not taken. As a result, unless a branch

is heavily taken, to hint the branch may not be always profitable. A typical example

is “if-then-else” branches in a loop. The worst case scenario is when the branch is

taken for the half of the time. Penalty always exists whether or not we hint the

branch, as long as the hint is static. If the compiler assigns the more-likely-taken

execution path as a fall-through path, the penalty of “if-then-else” branch can be

effectively avoided IBM (2007), but not completely. As it is inside a loop, the penalty

gets accumulated and eventually limits the performance. Moreover, the accuracy of

branch probability information can be another limiting factor. Branch probabilities

affect the decision of which branches should be hinted can be affected, and we solely

rely on static analysis to obtain branch probabilities, which may not be very accurate.

Use of profile information may be helpful to improve the result.

5.7.3 Effectiveness of NOP Padding

GCC also has a mechanism where nops are inserted between a branch and its hint

in order to increase the separation and improve profit of hinting. However, it has no

automatic way of determining how many NOPs to insert, and when compiled with

“-mhint-max-nop=n” GCC gcc (2005) will insert at most n nops to ensure the sepa-

ration is at least eight instructions. On the contrary, our scheme automatically finds

out the number of NOPs to be inserted, to maximize profit. Figure 5.11 compares

42

Figure 5.11: Execution time comparison between our NOP padding technique and

GCC’s ”-mhint-max-nops” option. In all benchmarks, our technique outperforms

GCC. GCC even results in performance degradation for several benchmarks.

the performance of our NOP Padding approach with that of GCC with n = 0, 4, and

8. Note that among the GCC schemes, sometimes n = 0 is better, while at other

times n = 8 is better. This is because GCC does not have any profitability analysis

to find out the number of NOPs to be inserted. Another advantage of our technique

is that while GCC only inserts nops, we insert nop and lnop pairs. By doing this,

we benefit from the dual-issue nature of SPU Flachs et al. (2006). Even when two

approaches insert the same number of NOP instructions, the performance penalty of

our approach is as half as that of GCC. Therefore, the performance improvement of

our technique always outperforms the one of GCC.

This prudent insertion of NOP instructions is also important in terms of static

code size increase. IBM Cell processor is a limited local memory architecture, and

each SPU can only access its local memory with the size of 256 KB. Code, global

data, and all dynamic data such as stack data and heap data need to reside in local

memory. Consequently, it is important not to increase the code size too much. Note

that this is static code size which affects the executable file size, and the dynamic

code size increase overhead was already considered and included in the branch penalty

43

Figure 5.12: Performance improvement obtained with the proposed heuristic is 18%

at maximum.

reduction results. The average code size increase is merely 3.4%, while GCC incurs

11.7% code size increase with the “-mhint-max-nop=8” option.

5.7.4 Performance Improvement

The reduction in branch penalty cycles improves program performance, and the

amount of performance improvement depends on the percentage of branch penalty in

the total execution time.

Figure 5.12 shows the performance improvement for each benchmark, and as ex-

pected, benchmarks in ‘high’ group show more performance improvement than those

in ‘low’ group, with the peak speedup of 18%. This is natural in the sense that

higher proportion of branch penalty makes them more susceptible to performance

improvement via branch penalty reduction. However, benchmark select has the sec-

ond highest branch penalty percentage but shows the lowest speedup in the ‘high’

group. This is because it has multiple “if-then-else” branches in loops, whose penalty

44

cannot be effectively avoided by software branch hinting as mentioned in the previous

section. Though the benchmarks in ‘low’ group show relatively low speedup, it does

not mean that our technique is not effective for those benchmarks. Our technique

can reduce over 25% of the branch penalty for the benchmark GSR, however it is

not fully reflected as reduction in execution time because its percentage of stall due

to branch penalty is too low.

An important aspect of our technique is that our heuristic never results in a per-

formance decrease. This is because every step of our technique involves profitability

analysis. This guarantee, combined with the fact that the code size increase by our

technique is minimal, we argue argue that it is always beneficial to apply our branch

hinting heuristic.

5.8 Summary

Multi-core systems and power efficiency have been continuously driving modern

processor design. Consequently, many complex architectural components are being

removed from hardware and required to be implemented in software instead. IBM

Cell SPUs removed branch predictor and introduced software branch hinting. Due

to a huge branch penalty, branch hint instructions are crucial for performance opti-

mization.

This dissertation present a heuristic algorithm to reduce branch penalty using

software branch hinting. The algorithm is based on our proposed branch penalty

model and three basic techniques, NOP padding, hint pipelining, and nested loop

restructuring. The branch penalty model helps us to estimate the branch penalty,

and those techniques not only enable more branches to be hinted, but also reduce

more branch penalty.

45

Chapter 6

DATA MANAGEMENT FOR SMM

This chapter introduces optimization techniques of scratchpad memory manage-

ment. The local scratchpad memory on an SMM architecture is shared among stack

data, heap data, and code. Efficient management of each of the data types is crucial

to application performance. In this chapter, stack data management is presented in

Section 6.1, code management is presented in Section 6.2, and heap management is

presented in Section 6.3. In each of the sections, the motivation and challenges are

firstly discussed. Then optimization techniques of data management are proposed

and demonstrated in details.

6.1 Stack Data Management

This section presents stack data management on SMM systems. An efficient stack

data management scheme is critical for the performance of software, as about 64%

of memory accesses in multimedia applications are to stack variables Guthaus et al.

(2001).

6.1.1 Motivation

As shown in Figure 2.1, execution core can only access its local scratchpad memory,

which is shared by text code, stack data, global data and heap data of the program

executing on the execution core. All instructions and data must be present in the

local memory when it’s needed. Consequently, only a portion of the local memory can

be used for managing stack data. Stack data management is challenging as its total

size can not be determined at compilation time. It is simply because that stack data

46

Figure 6.1: Suppose we want to execute the program shown in (a) on the execution

core with local scratchpad memory. (b) shows that we can easily manage the stack

data of this program in 100 bytes, however, trying to manage it in only 70 bytes local

memory requires data management.

is dynamic in nature. Namely, function stack frames get allocated and de-allocated

during the execution, when functions are called and returned respectively. Even more

challenging, the total stack size requirement of the program may not even be known

statically but input data dependent. For example, the size of stack data can be large

when recursive functions exist in the program.

Though the size of stack data is non-deterministic, the amount of space in the

local scratchpad memory is deterministic and ususally limited in a fixed size. In

case of the situation that the total stack size is larger than the real memory, explicit

management for stack data is required. We can look at the illustration in Figure

6.1. The example in Figure 6.1 (a) has three functions, whose stack frame sizes are

shown in parentheses in Figure 6.1 (b). Figure 6.1 (b) shows the status of stack

47

space just before function F2 calls F3. If we have 100 bytes space for stack data, the

application will work correctly and use up the entire space. However, if we only have

70 bytes to manage stack data, a space of 30 bytes must be found in the local memory

for allocating the stack frame of F3. Without any management, stack data can grow

downward and overwrite heap data or code, and eventually result in application crash

in the best case, or simply an incorrect output in the worst.

A scheme is needed to make space for stack data and maintain the correctness of

the application. Inspired by the approach which operates stack data management at

the granularity of function frames Kannan et al. (2009); Bai et al. (2011), we evict

some stack data in the stack space to main memory to make space for the coming

stack frame. When the evicted frames is needed rightafter, we can bring them back

to stack space in the local scratchpad memory. The eviction and fetch of function

frames are impemented in API functions sstore and sload (briefly mentions in Table

6.10), that need to be integrated in the managed program.

6.1.2 Challenges

The idea aforementioned is intuitive, but there are two interwined problems to

be considered. One is the the granularity of management. As in Bai et al. (2011),

when there is no space for the incoming function in the local memory, the oldest

stack frames from the top are evicted to make space which is barely enough for the

incoming function. While it leads to a judicious usage of local memory space for stack

management, this could results in stack memory fragmentation after some time. As

a result, in order to track the status of stack space, the fine granularity management

approach requires book-keeping of complicated information, such as the stack size of

each function, the start and end address of the free slots, etc. All those information

need to be checked and updated each time the APIs are called, which thus could harm

48

the performance of applications. Besides, as the scheme is for manycore architectures,

it has to consider bandwidth for data communication among differenct cores. Not

only in SMM architectures, but also in all manycore architectures, as the number

of cores increases, the memory latency of a task will be very strongly dependent on

the number of memory requests. This is because memory pipelines are becoming

longer, and a large part of latency is the waiting time to get the chance to access

memory. Consequently, it is better to make small number of large requests than large

number of small memory requests. The other one is the locations in the program

the two APIs to be inserted. If stack data is managed with stack frame granularity,

sstore() and sload() should be inserted right before and after each function call.

These functions will not cause any data movement most of the time, but update

management information. Specifically, if there is space for the stack frame of the to-

be-called function, then no DMA is required, only some book-keeping happens. Much

of the overhead is due to calling these functions, even though they are not needed.

In conclusion, a coarser management granularity is highly expected, which there-

fore results in better performance. In addition, an algorithm to analyze the applica-

tion for judiciously placing sstore() and sload() functions in the managed program

is needed.

6.1.3 Smart Stack Data Management

This section presents an approach called Smart Stack Data Management (SSDM)

Lu et al. (2013). In this new scheme, stack data is managed at the granularity

of the whole stack space and the insertion of management functions is optimized.

Figure 6.2 shows the flow of SSDM infrastructure. Firstly, the optimized compiler

takes in the application and generates its weighted call graph (WCG). Then SSDM

greedy algorithm takes the WCG and the given size of local stack space S as inputs

49

and determines the locations to insert sstore and sload in the managed program.

Finally, the compiler deploys this location information to embed the runtime library

to original complied program.

Instead of evicting each individual function out of local scratchpad memory one

by one, the management library evicts all the contents in the scratchpad memory

to the main memory at once. Similarly, when returning from the last frame in the

local memory, the whole previous stack state is copied from the main memory to

the local scratchpad memory. Performing stack data management with whole stack

granularity has two advantages: 1) the management complexity is largely reduced.

Specifically, sstore and sload become simpler, since now the scratchpad is managed

as a linear queue, rather than a circular queue. 2) the coarser granularity of stack

data management can reduce the number of DMA calls.

Even with efficient management library for stack data, high overhead may still

exist in this scheme, if the management functions are not judiciously placed. For

example, thrashing of stack space can make this stack management not fascinating.

Figure 6.2: An overview of SSDM infrastructure

50

This may happen when stack space is full just before entering a loop with high

execution count in which another function is called. In this case, every time when

the function is called, the stack state will be written to main memory, and then be

reloaded back to local memory on a return. This could be avoided by carefully placing

the functions sstore and sload in the program. This problem of optimal placement

of these stack data management functions is formulated in Section 6.1.3, where it

is described as that of finding an optimal cutting of a weighted call graph (WCG).

As this problem is tractable, a heuristic called SSDM is then present to solve this

problem efficiently.

Problem Formulation

Stack data management function placement problem is formulated by using an input

called weighted call graph (WCG), which integrates flow information, control infor-

mation, function stack frame sizes, and the number of times a function gets called in

the program. The formal definition of WCG can be found in Definition 1.

Definition 1 (Weighted Call Graph). A weighted call graph (V,E,W, T) contains

a function node set V , a directed edge set E, a weight set W and a value set T .

Each node represents a function, and each directed edge pointing from the caller to

the callee represents the calling relationship between two functions. Weight set W =

{wf1 , wf2 , ...} represents stack sizes of function nodes. Value on each edge eij (eij ∈ E)

from the value set T = {t1, t2, ...} corresponds to the number of times function node

vi calls vj.

Figure 6.3 illustrates weighted call graph with a benchmark called SHA. Without

loss of generality, an artificial in-coming edge to the root node with value 0 and an

artificial out-going edge from each leaf node with value 0 are added. Several related

51

Figure 6.3: WCG with cuts of benchmark SHA: The edge with dashed yellow color

represents an artificial edge for root node and leaf node.

definitions are described as follows:

Definition 2 (Root Node). A root node in WCG is the node with no in-coming

edges. There is only one root node in the weighted call graph, which is usually the

“main” function in a C program.

Definition 3 (Leaf Node). A leaf node is the node that has no out-going edges.

Those are functions that do not call any other functions. For example, transform

function node is a leaf node.

Definition 4 (Root-leaf Path). A root-leaf path is a sequence of nodes and edges

from the root to any leaf node. For example, main-stream-init is a root-leaf path in

Figure 6.3.

Definition 5 (Cutting of WCG). A cutting of the graph is defined as a set of cuts on

graph edges. A cut on an edge eij (eij ∈ E) corresponds to a pair of function sstore

52

and sload inserted right before and after function vi calls function vj, respectively.

As shown in Figure 6.3, a set of cuts have been added on artificial edges in advance.

Definition 6 (Segment). A segment is a list of nodes which represents the collection

of nodes on a root-leaf path between two cuts. In Figure 6.3, the segment between cut

1 and cut 2 is <main, print>. A node can belong to multiple segments, e.g., node

stream can be in both segment <main, stream, init> and <main, stream, update,

transform>.

As the total function frame sizes cannot exceed the size constraint of stack space

in the local scratchpad memory, a positive weight constraint W (the size of stack

space) is imposed on each segment so that the total weight (stack sizes) of functions

in a segment will not exceed W. Therefore, given a segment s = {f1, f2, ...} with

function weights {wf1 , wf2 , ...}, the total weight must satisfy the weight constraint:

∑
fi∈s

wfi ≤W (6.1)

The cost of smart stack data management (SSDM) for each segment s has two

components: 1) the running time spent on additional instructions caused by sstore

and sload function calls, 2) the time spent on data movement between main memory

and the local scratchpad memory. Let us assume two cuts on edges estart and eend form

a segment s = {f1, f2, ...} with weights {wf1 , wf2 , ...}, and the two edges have values

tstart and tend (the number of function gets called). Then the first cost component

can be represented as

cost1 = tend × τ0 (6.2)

where τ0 is a constant which represents the average execution time for extra instruc-

tions in the runtime library (in both sstore and sload function). The time spent on

data movement can be estimated as linearly correlated to the size of DMA, which

53

equals to the total function stack sizes in a segment. Therefore, the second cost can

be represented as

cost2 = 2× tend × (τbase + τslope ×
∑
fi∈s

wfi) (6.3)

where τbase is the base latency for any DMA transfer, τslope is the additional latency

increasing rate with data size, and 2 means the stack frames being moved in and out

of the local memory.

As a result, the total cost for each segment s can be calculated as

costs = cost1 + cost2 (6.4)

For a set of cuts on a Weighted Call Graph (WCG) that forms a set of segments

S = {s1, s2, ...}, the total cost can be represented as

costWCG =
∑
si∈S

costsi (6.5)

It should be noted that we treat each recursive function as a single segment and

always assign a cut to it to ensure a pair of sstore and sload is placed right before

and after recursive function calls.

Definition 7 (Optimal Cutting of a Weighted Call Graph). An optimal cut-

ting of a weighted call graph G contains a set of cuts that forms a set of segments,

where each segment satisfies the weight constraint and the total cost of the segments

is minimal.

SSDM Heuristic

In this section, SSDM heuristic is present to solve the cutting problem. The basic idea

behind the algorithm is quite straightforward. At the beginning, every edge is placed

with a cut. Then the algorithm gradually removes as many edges as possible one

54

by another, until no more edge can be removed without increasing the management

overhead or violating the space constraint.

In particular, when considering a cut removing, SSDM checks if removing this cut

will violate the memory constraint of stack space. To do this, it searches upward to get

its nearest neighboring upstream cuts, and downward to get its nearest neighboring

downstream cuts, through each root-leaf path. The functions between this cut and

any of its neighboring cut forms a segment. If this cut is removed, the functions

between any pair of upstream cut and downstream cut forms a new segment. If any

of the new segment violates the memory constraint of stack space, the cut should not

be removed, otherwise, it moves to next step to calculate how much benefit can be

gained by removing this cut.

It first calculates the total management cost of all the segments associate with the

cut with Equation 6.2-6.5. Then it assumes this cut is removed, and constructs new

segments by combining upward segment and downward segment in the same root-leaf

path, and calculates their total management cost in the same way. By subtracting

the newer one from the older one, the benefit of removing this cut can be calculated.

It computes the removing benefit of all other cuts through the same fashion. When

all calculations are done, SSDM picks the largest one and indeed removes the cut

associated with it. It keeps removing the cuts on WCG until no more cuts can be

eliminated.

Algorithm 3 describes the complete algorithm for placing sstore and sload library

functions. In Line 1, all recursive edges are placed with a cut. Since sstore and

sload are statically placed at compile time and recursive function calls itself, this

pre-processing eliminates the nondeterminacy of recursive functions. In line 8-11, the

segments that associate with each cut xij on edge eij (eij ∈ E) are listed. To do this,

SSDM has to find out all root-leaf path Pi, where eij ∈ Pi. Then it searches upward

55

Algorithm 3 SSDM(WCG(V ,E))

1: Place cuts on recursive edges, if there are recursive functions.

2: Define vector C, in which xij indicates if a cut should be placed on edge eij (eij ∈ E \ Erecursive). set all

xij = 1.

3: while true do

4: Define vector B to store removing benefit of each cut.

5: for xij == 1 do

6: violate ← false // mark removing this cut will not violates the weight constraint.

7: Define total cost costbefore ← 0.

8: for segment s oldi that are associated with xij do

9: Calculate cost cost oldi with Equation 6.2-6.5.

10: costbefore+ = cost oldi

11: end for

12: Assume the cut of xij is removed, and get a new set of associated segments.

13: Define total cost costafter ← 0.

14: for new associated segment s newi do

15: Check weight constraint with Equation 6.1.

16: if weight constraint is violated then

17: violate ← true; break

18: end if

19: Calculate cost cost newi with Equation 6.2-6.5.

20: costafter+ = cost newi

21: end for

22: if violate then

23: continue

24: end if

25: Calculate the benefit of removing the cut as Bij ← costbefore − costafter.

26: if Bij > 0 then

27: Store Bij into vector B.

28: end if

29: end for

30: if B contains no element then

31: break

32: end if

33: Find out the largest benefit Bmax from B, and set the corresponding cut xmax = 0.

34: end while

56

through each Pi, until meets another cut xup. Similarly, it searches downward through

each root-leaf path Pi, until meets a cut xdown. The segment between xij and xup or

xdown is defined as associated with xij. For example, in Figure 6.3, the segments that

are associated with cut 5 is the segment <main, stream> and the segment <final,

transform>. Then it computes the cost of each segment with Equation 6.2-6.5, and

the total cost by summing up the cost of all the associated segments. In Line 12-

21, it assumes the cut is removed, and therefore generates a new set of associated

segments. Those segments are formed by merging the segment between xij and xup

with the segment between xij and xdown on each root-leaf path Pi. As an edge might

belong to several root-leaf paths, there might be many xup and xdown accordingly. In

Figure 6.3, after removing the cut 5, the two associated segments are merged into

one segment, which is <main, stream, final, transform>. Similarly, it calculates the

cost of each new segment with Equation 6.2-6.5, and the total cost of all associated

segments after removing the cut. Line 15-18 check if weight constraint is satisfied by

removing this cut. If the constraint is violated, this cut will not be considered to be

removed (line 22-24). Line 33 removes the cut with largest positive benefit among all

the cuts whose removal will not violate the weight constraint. Line 30-32 is the exit

condition of the WHILE loop. The procedure stops until no more cut can be removed

from the graph. At this point of time, the rest cuts either have negative removing

benefit, or cannot be removed due to weight constraint (Equation 6.1).

Figure 6.4 illustrates SSDM algorithm. In this example, the stack frames of the

example WCG (A) is managed in a 192 bytes stack space. When calculating the

stack management cost with Equation 6.2 and Equation 6.3, τ0 is set to 50 ns, τbase

is set to 91 ns, and τslope is set to 0.075. As stated before, artificial edges are added

for this WCG and an artificial cut is attached for each artificial edge as well. At the

initialization stage of SSDM heuristic (line 2 in Algorithm 3), cuts are added on all

57

Figure 6.4: Illustration of SSDM heuristic: the values on edges are the numbers of

function calls.

58

edges (cut 1-cut 4). Next we check the removing benefit of all existing cuts, except

artificial cuts (line 5-27). Let us take cut 1 as an example to show how to calculate

the removing benefit. Before removing cut 1, its associated segments are <F0>, <F1>

(between cut 1 and cut 2) and <F1> (between cut 1 and cut 4). The cost for <F0>

is 2368 = 10× 50 + 10× 2× (91 + 0.075× 32) (Equation 6.2-6.4), the cost for <F1>

(between cut 1 and cut 2) is 12560 = 50×50+50×2×(91+0.075×128), and the cost for

<F1> (between cut 1 and cut 4) is 1256 = 5×50+5×2×(91+0.075×128). Therefore,

the costbefore is 16184 = 2368+12560+1256 (line 8-11). If cut 1 is assumed removed,

its associated segments become <F0,F1> (between cut 0 and cut 2) and <F0,F1>

(between cut 0 and cut 4). costafter (line 12-21) can also be computed as 14080.

Thereafter, the removing benefit of cut 1 equals to 2104 = 16184− 14080. Similarly,

all removing benefit of all cuts are computed, and form the benefit table below WCG

(A). As highlighted with underline, the largest benefit comes from removing cut 2.

Then SSDM removes it and gets WCG (B). We can remove cuts one by one through

WCG (B) to WCG (D), where cut 1 can no longer be removed. It’s because the

removal of cut 1 violates the weight constraint (line 15-18), i.e., the total stack size of

segment <F0,F1,F2,F3> is larger than predefined 192 bytes of stack space. Till now,

SSDM stops, and therefore WCG (D) is the final result. It indicates that the stack

management function sstore must be placed before F1 gets called, and sload must

be placed right after F1 returns.

The top level SSDM algorithm is described in the previous section. In this sec-

tion, the sub-problem of assigning the value to weighted call graph (WCG) will be

discussed. Basically, there are two ways to achieve this, static or profiling. Profiling

means the numbers are obtained by running applications with inputs. Those num-

bers are accurate, yet this simulation based method is time consuming. Besides, the

application has to be profiled each time a new input is given. As the goal in this

59

Figure 6.5: An example shows static edge weight assignment.

dissertation is to design fully automatic compilation techniques, in this section, static

WCG construction method is present.

The proposed construction methodology works as follows. Firstly, the basic blocks

of the managed application are scanned for the presence of loops (back edges in

a dominator tree), conditional statements (fork and join points) and function calls

(branch and link instructions). If a function is called within a nested loop, the number

of loops (nl) nested for that function is saved. After capturing these information, we

assign the weights on the edges by traversing WCG in a top-down fashion. Initially,

they are assigned to unity. When a function node is encountered, the weight on the

edges between the node and its descendants are multiplied by a fixed constant, loop

factor Qnl. This ensures that a function which is called inside a deeply nested loop will

receive a greater weight than other functions without loops. If the edge is either a true

path or a false path of a condition, the weight will be multiplied by another quantum,

taken probability P . In this dissertation we assume that both paths for a condition

will be executed (P = 0.5), which is very similar to branch predication Smith (1981).

60

In addition, Q is set to 10. Figure 6.5 shows the resulted WCG of an example code

with the static assignment scheme. In this example, the edge between function F2

and function F4 is assigned to 103, since F4 is in a 3-level folded loop.

In summary, this section present a technique for stack data management on Soft-

ware Managed Manycore (SMM) architectures, with function libraries sstore and

sload. Smart Stack Data Management (SSDM) manages stack frames at the whole

stack space granularity. In addition to having reduced the complexity of runtime

library, the problem of efficiently placing library functions at the function call sites is

formulated. Finally, a heuristic algorithm to generate the efficient function placement

is proposed.

6.1.4 Related Work

Local memories in Software Managed Manycore (SSM) processors are raw memo-

ries that are completely under software control. They are very similar to the Scratch-

pad Memories (SPMs) in embedded systems. Banakar et al. Banakar et al. (2002)

demonstrated that this compiler controlled scratchpad memory may result in perfor-

mance improvement of 18% with a 34% reduction in die area. Consequently, SPMs

are extensively used in embedded processors, for example, the ARM architecture

ARM (2001). In SPM-based embedded processors, code and data can be managed

to use SPM, so that the application can be optimized in terms of both performance

and power efficiency. Techniques have been developed to manage code Balakrishnan

et al. (2002); Angiolini et al. (2004); Nguyen et al. (2005); Egger et al. (2006a,b);

Janapsatya et al. (2006); Udayakumaran et al. (2006); Pabalkar et al. (2008), global

variables Avissar et al. (2002); Kandemir and Choudhary (2002); Nguyen et al.

(2005); Udayakumaran et al. (2006); Pabalkar et al. (2008); Li et al. (2009), stack

data Dominguez et al. (2005); Udayakumaran et al. (2006) and heap data Poletti

61

et al. (2004) on SPMs.

While all these works are related, they cannot be directly applied for local memo-

ries in SMM architectures. This is because of the differences of the memory architec-

ture of SPMs in embedded systems and that in SMM architectures, which are shown

in Figure 6.6. Embedded processors, e.g., ARM processors, have SPMs in addition to

the regular cache hierarchy, which implies that applications can execute on embedded

processors without using the SPM. However, frequently needed data can be mapped

to the SPM to improve performance and power, since it is faster and consumes less

power Banakar et al. (2002). In contrast, local memory is the only memory hierarchy

of the core on SMM systems. As a result, using SPM is not optional but mandatory.

The execution core can only access the local memory, and the data it needs must be

brought into the local memory before it is accessed, otherwise the application will not

work correctly. While the problem of using scratchpad memory in embedded systems

is that of optimization, the problem of using scratchpad memory in SMM processors

is to enable the execution of applications.

Only the Circular Stack Management (CSM) scheme in Kannan et al. (2009);

Bai et al. (2011) maps all stack data to the SPM, and will therefore work for SMM

architectures. CSM exports function frames to the main memory if there is no more

space on the local scratchpad memory and fetches them back when needed, at the

granularity of function frames. Figure 6.7 illustrates the CSM mechanism. Consider

the same application and function frame sizes as in Figure 6.1, and the problem is to

manage its stack data in 70 bytes of space on local memory. Figure 6.7 (b) shows that

the local memory is full after F1 calls F2, and thus there is no more space for stack

frame of F3. To make space for F3, CSM evicts the stack frame of F1 to the main

memory (shown in Figure 6.7 (c)). After there is enough space for function frame

of F3, it can execute. When F3 returns, the function frame of its ancestor F2 is in

62

Figure 6.6: In the ARM processor, SPM is in addition to the regular memory hier-

archy, while in SMM system, the local memory is an essential part of the memory

hierarchy on the execution core.

the local memory, and therefore it can execute correctly. However, after F2 returns,

execution returns to F1, whose function frame is not in the local memory currently

and must be brought back. This is shown in Figure 6.7 (d).

The eviction and fetch of function frames are achieved by using stack management

Application Programming Interface (API) functions sstore and sload, that need to be

inserted just before and after every function call. Figure 6.7 (a) shows these functions

inserted in the original program in Figure 6.1 (a). The stack data management API

function sstore(fss) guarantees enough space to accommodate the stack frame with

the size fss. If not, it evicts as many oldest functions as required to make enough

space. Similarly, the API function sload() makes sure the stack frame of the caller

is in the local memory. If not, it is brought back from the main memory.

63

Figure 6.7: Circular stack management: The function frames can be managed in a

constant amount of space in local memory using a circular management scheme. If

we have only 70 bytes of space on the local memory to manage stack data, frame

F1 must be evicted to the main memory to make space for F3. Before the execution

returns to F1, it must be brought back to the local memory.

If a function accesses stack variables of another (ancestor) function through point-

ers (that may be passed to it as function parameters, or in other data structures),

then there may be a problem. The problem, as shown in Figure 6.8 is that the

pointer to a stack variable will be to a local address, since the stack is created in the

scratchpad. However, when the pointer to a stack variable of an ancestor function is

accessed, that function stack frame may have been evicted by the stack data manage-

ment. Then the pointer will point to a wrong value. Bai et al. (2011) extended the

stack management approach to handle pointers correctly. To resolve pointers, they

converted the local addresses of the pointers to their global addresses at the time of

their definition (through the use of l2g function stub), and at the time of pointer

64

Figure 6.8: Pointer Management - Function F2 accesses the pointer p, which points

to a local variable ‘a’ of function F1. Since ‘a’ is a local variable on the stack of F1, it

has a local address. When F2 is called, if F1 is evicted from the local memory, then

the pointer p will point to a wrong value. This is fixed by assigning a global address

to the pointer when it is created (through l2g), and then when needed, it is accessed

through g2l. Finally it is written back using wb.

access, the data pointed to is brought into the local memory (through the use of g2l

function stub), and after the program is done accessing, it is finally written back to

the global memory (through the use of wb function stub).

In Section 6.1, we identified, fixed several limitations of the CSM technique, and

improved its applicability and generality. In addition, a more efficient stack data

management technique was proposed. The comparison results will be present in

65

Table 6.1: Benchmarks, the number of nodes and edges in their WCG, their stack

sizes, and the scratchpad space we manage them on.

Benchmark Nodes Edges Stack Size (B) SPM Size (B)

BasicMath 7 6 400 512

Dijkstra 11 12 1712 1024

FFT 22 21 656 512

FFT inverse 22 21 656 512

SHA 13 12 2512 2048

String Search 11 10 992 768

Susan Edges 8 7 832 768

Susan Smoothing 7 6 448 256

Section 6.1.5.

6.1.5 Experimental Results

Experimental Setup

Stack data management techniques are demonstrated on the Sony PlayStation 3 with

Linux Fedora 9. It gives access to 6 of the 8 Synergistic Processing Elements (SPEs),

whose local scratchpad memory size is 256KB Flachs et al. (2006). Our approach is

implemented as a library with the GCC 4.1.1. We compile and run benchmarks from

the MiBench suite Guthaus et al. (2001), whose details are listed in Table 6.1. These

benchmarks are not multi-threaded, but we made them multi-threaded by keeping all

the input and output functionality of the benchmark in the main thread on Power

Processing Element (PPE). The core functionality of the benchmark is executed on

66

the SPE. Therefore, each benchmark has two threads, one runs on the PPE and the

other runs on SPE. In our last experiment on scaling, we run multiple threads of the

same functionality on the SPEs. The runtime on PPE is measured by mftb() and

the runtime on SPE is counted by spu decrementer(), both of which are provided as

the library with IBM Cell SDK 3.1.

Impact of Stack Space

This section present the performance of SSDM technique under tight size constraints,

where the benchmark Dijkstra is chosen. It has many recursive function calls within

loop structures, making it a good candidate for showing the impact of different stack

region sizes. We increase the region size from 160 bytes to 416 bytes with the step size

of 32 bytes, and show all results in Figure 6.9. In the figure, the execution time with

different stack region sizes are normalized to the smallest one. The execution time

decreases when we increase stack region size. When the size reaches 384 bytes, the

performance rarely improves. The primary reason is that we conservatively manage

the recursive function by always placing a pair of library function around all its call

sites. As a result, although the region size is large enough, no more benefit can be

obtained as only the insertion for recursive function print path is left.

Scalability of SSDM

Figure 6.10 shows the scalability of SSDM heuristic. In the experiment, we executed

the same application on different number of cores, and normalized the execution time

of each benchmark to its execution time with only one SPE. This is very aggressive,

since DMA transfers occur almost at the same time when stack frames need to be

moved between the global memory and the local memory. This results in the com-

petition of DMA requests. As shown in Figure 6.10, the execution time increases

67

Figure 6.9: Performance improves when stack region size increases.

gradually as we scale the number of cores, but no more than 1%. Benchmark SHA

increases most steeply, because there are many pointers accessing stack data in this

program. Managing pointers to stack data incurs more data transfers than general

data management, because objects pointed by those stack pointers need to be trans-

ferred between the main memory and the local memory.

Thorough Comparison between CSM and SSDM

Overall Comparison

The experiment for each application in this section is conducted under the scratchpad

size specified in Table 6.1. The efficiency of SSDM technique is evaluated by com-

paring it against CSM presented in Section 6.1.4 Bai et al. (2011). We first utilize

PPE and 1 SPE available in the IBM Cell processor and compare our SSDM perfor-

mance against the CSM result Bai et al. (2011). The y-axis in Figure 6.11 stands

for the execution time of each benchmark normalized to its SSDM P result, where

68

Figure 6.10: SSDM is scalable, since performance regression is negligible when the

number of cores increases.

the number of function calls used in Weighted Call Graph (WCG) is estimated from

profiling information. In SSDM S, we used a compile-time scheme to assign weights

on edges. As observed from Figure 6.11, both the non-profiling-based scheme and

the profiling-based scheme achieve almost the same performance. Compared with the

CSM technique, SSDM demonstrates up to 19% and an average 11% performance

improvement.

The overhead of stack data management comprises of 1) time for data movement

between global memory and local memory, 2) execution time of the additional in-

structions in the stack management libraries. Figure 6.12 compares the execution

time overhead of CSM and that of SSDM. Results show that an average 11.3% of the

execution time was spent on stack data management with CSM, while the overhead

of approach SSDM is reduced to a mere 0.8% – a reduction of 13X. The performance

gain comes from several aspects. In the following subsections, we break down the

overhead and explain the effect of our techniques on its different components.

69

Figure 6.11: Performance comparison between SSDM and CSM.

Table 6.2: Library code size of stack manager (in bytes)

sstore sload l2g g2l wb

CSM 2404 1900 96 1024 1112

SSDM 184 176 24 120 80

Management Library Size

SSDM library is less complicated than that of CSM, since CSM needs to handle

memory fragmentation while SSDM doesn’t have this circumstance. Consequently,

the library functions of SSDM contain fewer instructions than that of CSM. Table

6.2 compares the function footprint between SSDM and CSM, from which we can

find SSDM library has much smaller code size than CSM does. Small library size

is significantly important for improving the management performance in two ways.

First, because the management algorithm is simpler, the execution time spent on a

single management function will be less, and thus the total management overhead

70

Figure 6.12: Overhead comparison between SSDM and CSM.

is reduced. Second, stack frames will obtain more space in the local memory if the

library occupies less space. More space for stack data will therefore improve the

management performance, which can be seen from the result in Section 6.1.5.

Management Granularity

SSDM technique manages stack data at the stack space level granularity, which is

different from the management scheme of CSM which manages data at the function

level granularity. Therefore, the number of DMA calls in SSDM is reduced. Table

6.3 shows the number of DMAs in both stack data management approaches. Note

that because the whole stack of Basicmath fits into the local stack space, no DMA

is required for this benchmark. SSDM performs well for all benchmarks, except for

Disjkstra. This is because it contains a recursive function print path. CSM will

perform a DMA only when the stack space is full of recursive function instantiations,

while SSDM has to evict recursive functions every time with unused stack space.

This also implies that SSDM does not perform very well on recursive applications.

71

Table 6.3: Comparison of number of DMAs

Benchmark CSM SSDM

BasicMath 0 0

Dijkstra 108 364

FFT 26 14

FFT inverse 26 14

SHA 10 4

String Search 380 342

Susan Edges 8 2

Susan Smoothing 12 4

However, since many embedded programs are non-recursive, we leave the problem of

optimizing for recursive functions as a future work.

Redundant Management Elimination

Thanks to our compile-time analysis, SSDM scheme can greatly reduce the number

of library function calls. In Table 6.4, we compare the number of sstore and sload

function calls in SSDM and CSM. We can observe that SSDM has much less number

of library function calls. The main reason is that SSDM considers the thrashing effect

discussed in Section 6.1.3. Therefore, it tries to avoid (if possible) placing sstore and

sload around a function call that executes many times (e.g., within a loop) while

CSM always inserts management functions at all function call sites.

The management overhead can be measured by extra instructions cause by stack

management functions. Table 6.5 compares the average additional instructions in-

curred by each library call across all benchmarks. As demonstrated in Table 6.5,

72

Table 6.4: Number of sstore and sload calls

Benchmark
sstore sload

CSM SSDM CSM SSDM

BasicMath 40012 0 40012 0

Dijkstra 60365 202 60365 202

FFT 7190 8 7190 8

FFT inverse 7190 8 7190 8

SHA 57 2 57 2

String Search 503 143 503 143

Susan Edges 776 1 776 1

Susan Smoothing 112 2 112 2

SSDM outperforms CSM. hit for g2l and wb means the accessing stack data is re-

siding in the local memory when the function is called, while miss denotes the case

when stack data is not in the local memory. In CSM approach, more instructions

are needed for the hit case than the miss case in the function wb. It is because the

library directly writes back the data to the main memory when miss, but looking

up the management table is required to translate the address. More importantly, as

the table itself occupies space and therefore needs to be managed, CSM may need

additional instructions to transfer table entries.

6.1.6 Summary

In this section, a technique called Smart Stack Data Management (SSDM) that

built upon Circular Stack Management (CSM) is proposed for stack data management

on Software Managed Manycore (SMM) architectures. It manages stack frames at

73

Table 6.5: Dynamic instructions per function

sstore sload
l2g

g2l wb

F NF F NF hit miss hit miss

CSM 180 100 148 95 24 45 76 60 34

SSDM 46 0 44 0 6 11 30 4 20

* F: stack region is full when function is called; NF: stack region is enough for the

incoming function frame.

the whole stack space granularity. In addition to having reduced the complexity of

runtime library, we formulate the problem of efficiently placing library functions at

the function call sites. Eventually, a heuristic algorithm to generate the efficient

function placement is proposed.

6.2 Effective Code Management

6.2.1 Motivation

On desktops or clusters with general purpose processing units, the system loads

the complete compiled assembly instruction running on it into the main memory and

then execute it. Even if a huge program could not be fully loaded, most of instruc-

tions can be put into the memory, and instruction cache could automatically fetch

the required ones when needed. The process is transparent to software developers.

However, Software Managed Manycore (SMM) architecture has a limited memory on

each processing unit. For example, each Synergistic Processing Element (SPE) on

the IBM Cell processor has its own local memory of size 256KB. In this case, loading

the complete program onto the local scratchpad memory before its execution usually

74

does not work due to its memory constraints, unless the program is a small computa-

tion task which requires relatively low memory for both code and data. Even worse,

SMM architectures lack of virtual memory facilities (i.e., instruction cache). To en-

able the execution of large applications on SMM architecture, it is necessary to use

code overlay IBM (2008). In addition, code overlay could also be used for achieving

performance improvement. As the local memory is shared by code and data of the

mapped program, the size of data areas can be increased by constraining code into

overlay area. Although there is performance loss by performing code overlay, data

management could be improved because of larger memory resource.

6.2.2 Code Overlay Mechanism

Usually, the overlay organization is generated manually by developpers or auto-

matically by a specialized linker. A good code overlay requires deep understanding

of the program structure, with the consideration of maximum memory savings and

minimum performance degradation. The overlaid program objects are not loaded

onto local scratchpad memory before the main program begins its execution. They

actually reside in main memory until that object is required to be executed. Figure

6.13 shows one example of code overlay for SMM architectures. Functions mapped

to the same region will be located in the same physical address, and must replace

each other during run time IBM (2008). The size of a region is the size of the largest

function mapped to the region. The total code space required is equal to the sum of

the sizes of regions.

Code overlay comprises of an overlay manager and a linker or one’s own overlay

scheme. The linker plays an important role of generating call stubs for all the regions

and the associated management table, which has all the tags stored for the reference

of the overlay manager. These stubs (one ovly load() for each function call) and

75

Figure 6.13: Code overlay on scratchpad memory: when task assigned to the execu-

tion core requires larger memory than the available space, code needs to be mapped

between external shared main memory and the local scratchpad memory of the core.

tables (more details about the management table are present in the next paragraph),

are always reside in the local scratchpad memory. Instructions to call functions in the

overlay regions are replaced by branches to these call stubs, which load the function

code to be invoked, if necessary, and then branch to the function. When a partic-

ular function f is called by the currently executing function, overlay manager goes

through the management table to check whether the instructions of f are already

in the local memory. If they are already present, the program sequence jumps to

the starting address of the target function and begins execution from there. Other-

wise, the instructions of f are loaded into the mapped memory region, to its specific

memory address during run-time, by performing special DMA operations. The DMA

command is issued, controlled and executed by the overlay manager. In addition, the

granularity of transfer unit is determined by specific code management schemes. They

vary from one function object, one instruction word, to several function objects. The

76

code management scheme in this dissertation works at the granularity of one function

object. The new instructions to a region overwrite the existing instructions present

in that region. Before jumping to the target address once the code segment has been

loaded, the overlay manager also ensures successful completion of the DMA process

to avoid any unwanted behavior in the program execution.

6.2.3 Objective of Code Overlay

For code overlay to work best, there are two intractable problems to be considered:

1) determining the number of regions, and 2) mapping all functions to regions. In

terms of application performance, it is best to place each function into a separate

region, so that it will not interfere with any other objects, but that may requires the

largest code space in the local memory. On the contrary, mapping all functions into

one region uses the minimum amount of code space, while incurs the most instruction

transfers and therefore biggest runtime overhead.

Definition 8 (Optimal Code Overlay). The task of optimizing code overlay is,

to organize the application functions into regions that will leads to the least data

transfers, given a predefined size of code space.

6.2.4 Cost Calculation of Code Overlay

As mentioned in Section 6.2.1 and Section 6.2.2, when two functions are mapped

into a same region, they would swap each other during the execution time, which

therefore lead to performance regression. Therefore, there is a need to estimate this

swap cost in order to develop any code overlay mapping. Cost is an estimation for

mapping algorithm to determine the funtions-to-regions relationship. In this disser-

tation, the number of bytes that will be transferred between main memory and the

local scratchpad memory is used as a metric to measure the cost. Proposing a correct

77

and comprehensive cost calculation is of utmost importance, as it is the foundation

upon which any mapping algorithm can be proposed. Next two sections address the

cost estimation problem by deploying a graphical code representation and presenting

a cost calculation algorithm.

Graphical Code Representation

Correctly calculating the management overhead and efficiently mapping code requires

1) the deep understanding the structure of the managed application, and 2) represent-

ing the flow information and control information in an effective form. This informa-

tion can be built into an enhanced Control Flow Graph (CFG) known as Global Call

Control Flow Graph (GCCFG) proposed by Pabalkar et al. Pabalkar et al. (2008).

Definition 9 (Global Call Control Flow Graph). A global call control flow graph (V ,

E) is an ordered acyclic directed graph, where V = VF
⋃
VL

⋃
VC. Each node vf ∈ VF

with a weight wf on it represents a function or F-node, vl ∈ VL denotes a loop or L-

node, vc ∈ VC represents a conditional or C-node. wf is the number of times function

f is invoked in the program. An edge eij (eij ∈ E) shows a directed edge between

F-nodes, L-nodes and C-nodes.

If vi and vj are functions, then the edge represents a function call. If vj is an

L-node or a C-node then it represents control flow. If vi is a C-node, then the edge

represents one possible path of execution. If vi is a loop, then the edge represents

what is being executed in the body of the loop. If vj is a loop and its ancestor is

a loop then the edge represents a nested loop execution. The edges are ordered,

edges to the left execute before edges to the right, except in the case of condition

nodes. Edges leaving condition nodes can execute their true or false children, where

all true children are ordered and all false children are ordered. Figure 6.14 illustrates

78

Figure 6.14: The GCCFG for the example code

the GCCFG of an example code, where direct recursive function calls F5 is ignored.

This is because the code necessary to run the called recursive function is already in

memory, resulting in no instruction transfers.

This paragraph presents the complete algorithm to construct the GCCFG of an

application. The input of the algorithm is all control flow graphs (CFG) of the

program. Then all the CFGs are integrated into a GCCFG in two steps. First,

basic blocks are scanned for the presence of loops (back edges in a dominator tree),

conditional statements (fork and join points) and function calls (branch and link

instructions). The basic blocks containing a loop header are labeled as loop nodes,

those containing a fork point are labeled as conditional nodes and the ones containing

a function call are labeled as function nodes. If a function is called inside a loop, the

corresponding function node is joined to the loop header loop node with an edge. If

any loop node representing nested loops exist, they are also joined. Function nodes not

inside any loop are joined to the first node of the CFG. The first node, function nodes,

loop nodes and corresponding edges are retained, while all other nodes and edges are

removed. Essentially this step trims the CFG, while retaining the control flow and

79

call flow information. Second, all CFGs are merged by combining each function node

with the first node of the corresponding CFG. The merge ensures that strict ordering

is maintained between the CFGs, i.e., if two functions are called one after another,

the left child should be the first function that called and the right one should be the

second one. One thing needs to be mentioned herein is that we conservatively expand

indirect function calls invoked through function pointers in much the same way as

they were called with equal probability outside of any conditional node.

Profiling and static estimation both can assign weight for function nodes in GC-

CFG. The former method is straightforward, as the exact number of times the loop

to be executed can be determined by executing the program with its input. For in-

stance, the number of iterations of a while loop with an input dependent condition

could be easily obtained. The static compile-time weight assignment scheme is not

trivial but significantly important, since it removes the expensive and prohibitive task

of profiling. Furthermore, the experimental results show the estimation of weight will

not degrade too much performance. The methodology for estimating the number of

function calls on each function node is described as follows. The basic blocks of the

managed application are first scanned for the presence of loops (back edges in a dom-

inator tree), conditional statements (fork and join points) and function calls (branch

and link instructions). Then the weights on the functions is assigned by traversing

GCCFG in a top-down fashion. Initially, they are assigned to 1. When a loop node is

encountered, the weight on all its descendant function nodes equals the weight of loop

node’s nearest ascendant function node in the path multiplying a fixed constant, loop

factor Q. This ensures that a function which is called inside a deeply nested loop will

receive a greater weight than other functions which are not in any loop. When a con-

ditional node is encountered, the weight on each descendant function node equals to

the weight of conditional node’s nearest parent function node multiplying the branch

80

probability of each edge diverging from the conditional node. A traditional scheme

described by Smith Smith (1981) is adopted to predict the branch probability. The

impact of Q is negligible as long as it is larger than 1 (details is shown in Section

6.2.7). As a result, Q is chosen to be 10 in this dissertation. The previous Figure 6.14

is the resulted GCCFG of the example code with our static weight assignment scheme.

Cost Calculation Heuristic

Making efficient interference cost calculation is of utmost importance, as it is highly

frequently required by CMSM (Code Mapping for Software Managed multicores).

Given a GCCFG, and a mapping M , a naive way to compute interference cost can be

done by traversing the GCCFG (much like simulation) and adding the function sizes,

as we visit function nodes. However, this algorithm has bad complexity. Therefore,

this dissertation presents an algorithm to compute the interference cost using just

two Depth First Search (DFS) traversals of the GCCFG. If two functions are mapped

into the same region, and one function is called after another during the execution,

two functions have to swap each other on the SPM, and it is said that two functions

are interfered by each other Pabalkar et al. (2008); Jung et al. (2010). However, the

interference between such functions depends upon mappings of other functions in-

between during the execution. As a result, it is essential to capture the interferences

changes between such functions and compare the cost of interference to create a better

code placement which reduces interferences between functions in regions.

Algorithm 4 shows the procedure to compute the interference cost between two

functions. As outlined in Algorithm 4, the interference cost between functions is cal-

culated when traversing the GCCFG in Depth-First Search order including function

return. First, it starts from the initial node of GCCFG (line 1) and search for v1 as

the GCCFG is traversed. After finding v1, the first edge weight (line 13) between v1

81

Algorithm 4 Algorithm cost (GCCFG, v1, v2)

1: vcurrent = vinitial
2: while vcurrent 6= vfinal do
3: if v1 is found and v2 is not found then
4: if M(vcurrent)==v1 or M(vcurrent)==v2 then
5: reset all weights
6: else
7: if vcurrent is LCA(v1, v2) then
8: assign weight1
9: end if
10: end if
11: end if
12: if vcurrent == v1 then
13: assign weight1
14: end if
15: if vcurrent.nextNode == loopNode then
16: find next function node, then assign weight
17: end if
18: if v1 found && v2 found then
19: assign weight2
20: totalWeight += min(weight1, weight2)
21: end if
22: vcurrent ← vcurrent.nextNode()
23: end while
24: return totalWeight

and the next node is assigned. If the next node is a loop node, it keeps traversing the

GCCFG until it meets a function node, and then it assigns the first edge weight (lines

15-17). However, if there exists a function which is mapped into the same region as v1

and v2 after v1 is found and before v2 is found, the edge weight becomes 0 since there

is no interference between v1 and v2 (lines 4-5). When there is least common ancestor

(LCA) of v1 and v2 after v1 is found, the first edge weight is re-assigned (lines 7-8).

When v2 is found after v1 is found while it is traversing the GCCFG, it assigns the

second edge weight and adds the minimum of edge weight1 and weight2 to consider

the case where there exists a function mapped in the same region or an LCA between

v1 and v2 in the execution sequence. As the final interference counts between those

82

two functions, it calculates interference count again with switched order of two func-

tions and takes the maximum value of two computing. This is because it is unknown

which function comes first during the execution. For the final interference cost, the

cost calculation function is given by the sum of two functions multiplied by the final

interference count. This algorithm visits each node in the GCCFG only once, thus

the runtime complexity of interference cost calculation is O(Vf).

6.2.5 CMSM Heuristic

Finding the number of regions and mapping the functions to regions that will

minimize the total amount of instruction transfer, both have been proven to be in-

tractable Pabalkar et al. (2008); Verma and Marwedel (2006). Therefore, a greedy

algorithm for code overlay is expected. Algorithm 5 presents the proposed CMSM

heuristic. It starts with a mapping, in which each function is mapped to a separate

region respectively (line 1). Next, all combinations of two regions are tried to be

merged until the total space meets memory constraints (while loop, lines 3-7). In

order to achieve this, two “balanced” regions with minimal merge cost is firstly found

through function FindMinBalancedMerge() in line 4. Then two regions are merged

and the region information is updated in the set SPMregions (line 5-6). Function

FindMinBalancedMerge() is described in Algorithm 5, where a region pair (R1, R2)

is chosen (Algorithm 5, line 12-21), and its merge cost is calculated in line 15. The cost

calculation is done with Algorithm 4. Besides, there is a balance factor max−min
(max+min)2

. It

is designed to place the functions having close object sizes into the same region. This

factor is important, since we can compress the total code space in the local scratchpad

memory and use less memory. This remaining space could result in more number of

regions as long as there are functions that could be accommodated to it. Even if

no more regions would be generated, it is still beneficial to use less space to achieve

83

Algorithm 5 Algorithm CMSM (GCCFG, S)

1: SPMregions {set of N regions in the scratchpad memory} . N is the number of
functions in the program

2: Rdest ← 0, Rsrc ← 0;
3: while SPMSize() > S do
4: FindMinBalancedMerge(Rdest, Rsrc, GCCFG);
5: MergeRegions(Rdest, Rsrc);
6: SPMregions.erase(Rsrc);
7: end while
8:

9: procedure FindMinBalancedMerge (&Rdest, &Rsrc, GCCFG)
10: begin procedure
11: minMergeCost ← DBL MAX, tmpCost ← 0;
12: for all combination of regions R1, R2 ∈ SPMregions do
13: size1 ← RegionSize(R1), size2 ← RegionSize(R2);
14: max ← max (size1, size2), min ← min(size1, size2);
15: tmpCost ← cost(GCCFG, R1, R2) * max−min

(max+min)2
;

16: if tmpCost < minMergeCost then
17: minMergeCost ← tmpCost;
18: Rdest ← R1;
19: Rsrc ← R2;
20: end if
21: end for
22: end procedure

competitive performance. As stated before, the local scratchpad memory is shared

among global data, stack data, heap data and instructions of the managed program,

less space consumed by instructions indicates more space for other data that could

eventually results in better performance.

The while loop in line 3 in Algorithm 5 merges two regions at a time. In the

worst case, all regions might have to be merged into one, this loop can execute |Vf |

times. Inside this, the for loop (lines 12-21 in Algorithm 5) runs for each pair of

regions. This adds O(|Vf |2) complexity to the time. Inside the loop, there is a cost

calculation which has complexity O(|V |). Thus the worst case timing complexity of

CMSM algorithm is O(|Vf |4).

84

Figure 6.15: Cost between functions depends on where other functions are mapped,

and updating the costs as we map the functions can lead to a better mapping.

6.2.6 Related Work

To the best of our knowledge, work Pabalkar et al. (2008); Baker et al. (2010);

Jung et al. (2010); Jang et al. (2012) are similar to our effort for code management on

SMM systems and Jung et al. (2010) is the most related one. Two mapping algorithms

were proposed in Jung et al. (2010). One is function mapping by updating and

merging (FMUM) and the other one is function mapping by updating and partitioning

(FMUP). FMUM begins with a mapping in which each function is placed in a separate

region. It repeatedly selects and merges a pair of regions with the minimal merge cost

among all pairs of regions until all functions can fit in the given scratchpad memory

size. In contrast, FMUP starts with a mapping where all functions are placed in only

one memory region. It repeatedly selects the function which maximally decreases the

cost and places it to another region until the size of the total amount of instruction

space is less than the given memory size.

85

In addition, the work Pabalkar et al. (2008); Baker et al. (2010); Jang et al. (2012)

provide several different heuristics for code overlay mapping on SMM architectures.

However, they are all not efficient enough, which is mainly because of inaccurate

or incorrect cost calculation. They statically calculate the code mapping cost and

generate a mapping. They never dynamically update the cost during the course of

mapping algorithm, which is insufficient and results in inferior mapping. Figure 6.15

(a) shows a simple example where function main calls F1, F1 calls F2, and F2 calls F3,

and then they all return. The function nodes also indicate the sizes of functions. Let

us consider a case which requires us to map all functions into a scratchpad memory

of 5 KB. It is slightly tricky to calculate the cost between indirect function calls. For

example, when computing the cost between main and F2, if main and F2 are mapped

to the same region, the interference1 between them depends on where F1 is mapped.

If F1 is mapped to another different region, then the interference between main and

F2 is just sum of their sizes, namely 3 KB + 1 KB = 4 KB. The calculation is as

follows. When F2 is called, 1 KB of F2 will need to be brought into the memory.

When the calling state returns to main, 3 KB of the code of main needs to be brought

into the scratchpad. However, if all main, F1 and F2 are mapped to the same region,

then the interference cost between main and F2 is 0. This is because, when F2 is

called, main is already replaced with F1, and when the program returns to main,

F2 is already replaced. In a sense, there is interference between main and F1, and

between F1 and F2, but there is no interference between main and F2.

Previous approaches Pabalkar et al. (2008); Baker et al. (2010); Jang et al. (2012)

computed the worst case interference cost, i.e., 4 KB for main - F2, and never updated

it, and therefore obtained inferior mapping. To explain this, Figure 6.15 (b) shows a

1The interference means the two functions mapped to the same region will replace each other

during execution time. We use the amount of data transfer to estimate this interference cost.

86

state in mapping when main, F1 and F2 have already been mapped. main is alone

in region 0, F1 and F2 are together in the region 1. When mapping function F3

(size of F3 is 0.5 KB), we can map it to either region without violating the size

constraint. The interference cost between region 0 and F3, i.e., between main and F3

is 3.5 KB. The interference cost between region 1 and F3 is traditionally computed

as the sum of interferences between the functions in region 1 and F3, i.e., 2.5 KB

between F1 and F3, and 1.5 between F2 and F3, totalling to 4 KB. Consequently

traditional techniques will map F3 to region 0 with main (shown in Figure 6.15 (c)).

Clearly there is a discrepancy in computing the interference cost between region 1 and

function F3. If F2 is also mapped to the same region, the interference cost between

F1 and F3 should be estimated as 0. Otherwise, the interference cost between region

1 and function F3 are incorrectly (over)estimated. With this fixed, the interference

between region 1 and F3 is just the interference between F2 and F3, which is just

1.5 KB. As per this correct interference calculation, F3 should be mapped to region

1 (shown in Figure 6.15 (d)). The required total data transfer between main memory

and the local memory, in this case 9.5 = 3 + (2 + 1 + 0.5 + 1 + 2) KB, as compared to

11.5 = (3 + 0.5 + 3) + (2 + 1 + 2) KB with the previous mapping, resulting in a 18%

savings in data transfers.

In our proposal, the limitation aforementioned is addressed by deploying a graph-

ical code representation (Section 6.2.4), and proposing a cost calculation algorithm

(6.2.4).

87

6.2.7 Experimental Results

Experimental Setup

IBM Cell processor Flachs et al. (2006) is used as our hardware platform for con-

ducting experiments. It is a multicore processor, and gives us accesses to 6 of the 8

Synergistic Processing Elements (SPEs). In addition, this architecture has a shared

main memory on main core, and only a local scratchpad memory on each execution

core or SPE. Scratchpad memory is limited, and therefore the program needs to be

managed in software when its footprint is larger than memory available.

The benchmarks used for experimentation in Table 6.6 are from Mibench suite

Guthaus et al. (2001). All those information is obtained by compiling programs for

SPE. functions is the total number of functions in the program, including library

functions tailored for SPE. min code is the smallest possible mapping size of code

space, defined by the size of the largest function in the application. max code is the

total size of the program. We deploy main core and only 1 SPE available in the

IBM Cell BE in most of our experiments, except the one designed for demonstrating

scalability of our heuristics in Section 6.2.7.

Overall Performance Comparison

While the conclusion scale for all benchmarks, Figure 6.16 shows the execution time

of the binary compiled using each heuristic for only two representative applications.

The X-axis shows a wide range from min code to max code of each program, with the

step size 256 bytes. As observed from the figure, when the code space is very tight,

all heuristics achieve the same mapping, i.e., mapping all the functions in one region.

However, as the code size constraint is relaxed, CMSM typically performs better than

FMUM and FMUP. Our CMSM is inclined to place two functions with small merge

88

Table 6.6: Benchmarks, their minimum sizes of code space, and maximum sizes of

code space.

Benchmark functions min code (B) max code (B)

Adpcm decoding 13 1552 6864

Adpcm encoding 13 1568 6880

BasicMath 20 4272 12128

Dijkstra 26 2496 9216

FFT 27 2496 12776

FFT inverse 27 2496 12776

String Search 17 632 4708

Susan Edges 24 19356 37428

Susan Smoothing 24 19356 37428

cost and similar code size in one region at each step of merging. It is achieved by using

a “balance” factor described in our algorithm. The benefit of doing so is to increase

the number of regions in the code space. We expect mapping solutions with more

regions to give lower overhead costs, as only functions mapped to the same region

will swap each other during run time. The reverse effect is also visible. When the

code size constraint is extremely relaxed, for example, larger than 70% of max code

present in Table 6.6, all three algorithms again achieve very similar code mapping.

This is because there are quite few functions mapped to one region when the code

space is sufficient enough. The small differences in code mapping generate negligible

effect on performance.

Note that code mappings created by the CMSM do not always outperform the

89

Figure 6.16: Performance comparison against FMUM and FMUP

other two heuristics. For instance, when memory available for instructions of bench-

mark “dijkstra” is 3520 bytes in Figure 6.16, CMSM is worse than FMUP. This is

because FMUP has to do very few steps, while CMSM needs to do many iterations of

merges. The more steps a heuristic has to take, the errors in each step accumulate,

and eventually lead to a worse mapping. Although our heuristic does not consis-

tently gives good results, it gives better results most of the times. We tested three

90

approaches for all code size constraints from the minimum to the maximum. On

average over all benchmarks, CMSM gives a better result than other two algorithms

89% of time. Another important observation from Figure 6.16 is that, applications

are tend to have less execution time when their code space become larger. A large

code space usually results in more number of regions in it, and therefore less functions

overlap each other in regions. This explains the trade-off between the performance

and the memory available for instructions.

Accuracy of Weight Assignment

We examined the goodness of our static weight assignment on function nodes of GC-

CFGs of nine applications. We compared the execution time of each benchmark using

static assignment to its execution time using profile-based assignment. Averagely,

both schemes achieve similar performance for the set of benchmarks. This implies

that the compile time overhead to obtain profiling information can be eliminated

through the loop based function weight assignment. It also makes the code manage-

ment scheme more general, since profiling large applications is time-consuming and

therefore intimidating.

Scalability of CMSM

Figure 6.17 shows the examination of the scalability of our CMSM heuristic. We

normalized the execution time of each benchmark with number of SPEs to its exe-

cution time with only one SPE, and show them on y-axis. In this experiment, we

executed the identical application on different number of cores. According to the

figure, the runtime difference with the increased number of SPEs is negligible even in

such aggressive configuration. In this configuration, DMA transfer occur almost at

the same time when instructions need to be moved between the global memory and

91

Figure 6.17: Scalability of CMSM on multicore processors

the local memory. This will make the Elemental Interconnect Bus (EIB) saturated.

Benchmark BasicMath increases most steeply, as there are many instruction transfers

in the program, which makes each SPE have more execution time.

6.2.8 Summary

Software Managed Multicore (SMM) processors are one of promising solutions

to the problem of scaling the memory hierarchy. However, since scratchpad memory

cannot always accommodate the whole task mapped to it, certain schemes are required

to mange code, global data, stack data and heap data of the program to enable its

execution. This section presents a framework to manage code between main memory

and the local memory, at the granularity of function object. We addressed the cost

estimation problem in previous work by devising a correct cost calculation model

and an algorithm for the same. Since code mapping problem has been proved to be

NP-complete, a heuristic called CMSM is proposed for the same problem.

92

6.3 Heap Data Management

This section presents heap data management on SMM systems. An efficient heap

data management scheme is critical for the performance of software, since heap ac-

cesses may account for a significant fraction of all the memory accesses that the

application makes.

6.3.1 Motivation and State of the Art

A lot of researches have been proposed to manage data on SMM systems. Among

them, heap management is extremely difficult because of the dynamic nature of heap

data. However, since heap data access may account for a significant fraction of all the

memory accesses in an application, it is important to manage heap data in an efficient

way. Bai and Shrivastava (2010) was the first software scheme for heap data manage-

ment on SMM. In Bai and Shrivastava (2010), a mapping between the global memory

and the local memory was established and maintained with a heap management table.

Although this scheme manages heap data in a correct way, high performance overhead

was incurred, due to the large number of extra management instructions in the code.

In addition, this method is semi-automatic, in the sense that it requires manual li-

brary function insertion by developers. In 2013, a fully automated heap management

technique was published in Bai and Shrivastava (2013). This technique employs a

modified GCC compiler and a runtime library to fully unburden programmers from

manually inserting API functions. Meanwhile, a more optimized data structure was

leveraged to reduce performance overhead. We consider Bai and Shrivastava (2013) as

the state-of-the-art. However, Bai and Shrivastava (2013) still suffers from high per-

formance overhead caused by large amount of management instructions, complicated

management data structures, and substantial miss rate.

93

Figure 6.18: Performance overhead with the state-of-the-art heap management.

Bai and Shrivastava (2013) emulates a 4-way set-associative cache on an SPM.

The SPM is partitioned into a data region and a heap management table. The data

region stores the actual heap data in fixed-sized blocks, while the management table

stores a set of tags, a modified bit, and a valid bit for each block in the data region,

i.e. there is a one-to-one mapping between each block in the data region and each

entry in the management table. Every 4 entries in the management table forms a set,

with a victim index for round-robin replacement policy.

In the state of the art Bai and Shrivastava (2013), a g2l function was implemented

to translate a global address to a local address on SPM. It takes a main memory

address as the input, and checks if the given address is in heap. If the address is not

in the heap region, the input address is immediately returned. Otherwise, the set

index of the input main memory address is calculated. A sequential search is done

to compare the tag of the input address with the tags saved in the entries of the

corresponding set in the management table. If a match happens and the status of the

94

matching entry is valid, a hit happens. Otherwise, if a miss happens, the enclosing

data block of the input address will be copied from the main memory into the SPM.

If no available entry can be found in the set, the data block pointed by the victim

index will be replaced by the new data block, and the corresponding entry in the

management table is updated with the new tag accordingly. The evicted data block

must be written back to the main memory if it has been modified. The victim index

is increased by 1 and modulo 4 (the number of entries in each set). Eventually, the

SPM address is calculated based on the set index and its offset within the data block,

and used in the memory access.

Though the state-of-the-art Bai and Shrivastava (2013) has correctly managed

heap data, high performance overhead has been incurred. Figure 6.18 shows its

management overhead on some typical embedded applications. It is important to

note that this technique not only incurs high overhead when heap management is

needed, but also inflicts high overhead on the benchmarks even without any heap

accesses, i.e., Adpcm Decode, Adpcm Encode, SHA, and String Search. The high

overhead is caused by two main reasons:

i) Unnecessary invocation of heap management function g2l. g2l is called

before each memory access (even without heap data access), which introduces not

only management overhead, but also branch operations, and potentially more memory

operations at every memory access.

ii) Over-complicated heap management instructions. This is because the state

of the art implements g2l in a set associative manner. The function has to sequentially

search all the entries in the set at every heap access. It also complicates the calculation

of the set index due to the involve of a translation from a main memory address to the

corresponding local SPM address. The set index of the input main memory address

is calculated with Equation (1), where mem addr is the input main memory address,

95

block size is the size of a data block, and set num is the number of sets. The SPM

address is then calculated with Equation (2), where spm base is the start address of

the data region, set assoc is the set associativity (4 in this case), and entry index

is the index of the entry in the set specified by set index. The complexity of the

calculations has contributed to significant instruction overhead.

set index = ((mem addr >> log(block size))∧

(mem addr >> (log(block size) + 1)))&(set num− 1)(1)

spm addr = (set index ∗ set assoc+ entry index) ∗ block size+

spm base+mem addr%block size(2)

6.3.2 Efficient Heap Data Management

In order to reduce the overhead of heap management on SMM architectures, we

proposed the following approaches:

i) Detecting heap access at compile time. This optimization identifies heap ac-

cess statically and invokes heap management function g2l only when there is a heap

data access. It also eliminates the unnecessary runtime checking within the man-

agement function once the memory access is determined to be a heap data access at

compile time.

ii) Simplifying management functions. A direct-mapped cache on SPM is im-

plemented, where it is no longer required to sequentially go through different entries

and search for the requested data block for each heap access. In addition, it simpli-

fies the calculation of set index and the SPM address in the management functions.

Therefore, this optimization can effectively reduce the number of instructions in each

management function.

iii) De-duplicate management calls. The common part of management instruc-

96

tions g2l are executed before all management calls. This optimization is particularly

beneficial when management functions are called within loop nests, as the common

operations are hoisted outside of the loops.

iv) Adjusting block size. All the aforementioned optimizations are generic, and

thus are useful for all applications. However, in embedded systems, where profiling

information can be obtained, heap data management can be further optimized. De-

pending on the type of cache misses that an application suffers from, the block size

can be statically adjusted to avoid these misses. Given the size and set associativ-

ity of a software cache, adjusting block size will change the mapping between main

memory locations and SPM memory locations. If the cache misses that an applica-

tion encounters are mostly conflict misses, the block size can be reduced so that the

number of sets could be increased to lower the chances of conflicts. On other hand,

if an application obverses more cold misses, then the block size should be increased

to refrain from such misses.

Static Heap Access Detection

In order to perform heap management only when there is a heap access, we developed

a static heap access detection technique to identify heap accesses at compile-time.

Figure 6.19 illustrates the effect of this optimization. To be noted that both the

previous approach and our approach are implemented in IR level. Therefore, the

codes in (b) and (c) are the source-code representation of the transformed IR. The

original program defines a structure, which consists of two integer pointers x and y.

It then instantiats a global variable t as an instance of the structure, and assigns

t->x with an heap object created by a malloc function. The program then points

t->y to the fourth integer element starting from the address in t->x. Later t->y is

used to access the heap object. The program also defines a pointer p that refers to

97

Figure 6.19: The previous approach inserts g2l before every memory access, while

ours tries to identify heap accesses statically and skip unnecessary g2ls.

a stack variable. Even though only t->x and t->y are pointing to heap data in this

program, the previous heap management technique proposed in Bai and Shrivastava

(2013) would insert a g2l call at every memory access as shown in Figure 6.19(b),

including memory accesses to stack and global data (via p and t respectively). On

the other hand, with static heap access detection, we only insert g2l for heap data

accesses. Algorithm 6 illustrates the logic of inserting g2l functions.

To find out heap accesses, we developed an algorithm 7 to identify heap pointers.

This algorithm identifies not only pointers that directly point to heap objects created

98

Algorithm 6 g2l function insertion

1: function InsertManagementFunction(Function F)

2: for each instruction I in F do

3: if I is a load or store to any heap pointer or one of its aliases then

4: insert a g2l call at the heap access

5: end if

6: end for

7: end function

by memory allocation (e.g., malloc or calloc), but also their aliases. The analysis starts

at getHeapPtr. In this procedure, the analysis first executes getAlloc procedure,

taking main function as an input (line 2). The getAlloc procedure identifies all the

invocation of memory allocators in the input function F, and records the pointers

that are used to store the created heap objects (line 8 and 9). If F calls any other

functions F’, getAlloc recursively accesses and identifies the memory allocations

in F’ (line 11 and 12). Once all the heap objects that were created by memory

allocation are identified, the analysis continues to identify all the possible alias of

these heap pointers by executing the getAlias procedure on main function (line

4). The getAlias procedure goes through each instruction in the input function F,

recognizing any instruction that performs pointer arithmetic on a heap pointer and

assigns the result to another pointer. The destination pointer of such an instruction

is identified as an alias of the heap pointer. Similar to the getAlloc procedure, in

case F calls any other function F’, the getAlias procedure recursively calls itself on

F’ to identify aliases created in F’. Since each iteration of the getAlias procedure

may recognize new aliases, this procedure is repeated until no new aliases can be

recognized (line 3 to 5).

Once all heap pointers are recognized, we can identify heap accesses and insert g2l

99

Algorithm 7 Identify heap pointers
1: function getHeapPtr

2: getAlloc(main)

3: repeat

4: getAlias(main)

5: until cannot find new aliases

6: end function

7: function getAlloc(Function F)

8: for each instruction inst in F do

9: if inst is a call to any memory allocator then

10: Record destination pointer P as a heap pointer

11: else

12: if inst is a call to any user function F’ then

13: getAlloc(F’)

14: end if

15: end if

16: end for

17: end function

18: function getAlias(Function F)

19: for each instruction inst in F do

20: if inst is an assignment statement with one operand P be a heap pointer then

21: Record destination pointer P’ as an alias of P

22: else

23: if inst is a call to any user function F’ then

24: getAlias(F’)

25: end if

26: end if

27: end for

28: end function

functions. All the memory accesses (i.e. loads ans stores) via any of the heap pointers

that were identified in Algorithm 7 are considered as potential heap accesses. A g2l

function is inserted right before the memory instruction to translate the memory

address to an SPM address. The SPM address is then used to replace the original

memory address in future usages.

There are cases when the compiler cannot determine whether a pointer refers

100

Figure 6.20: When it cannot be determined at compile-time whether there is a heap

access, we check it at run-time.

to heap data. In Figure 6.20(a), the pointer c can either refer to heap data or

stack data, depending on the outcome of function rand. To cope with such cases, a

new management function called g2l rc is introduced to check if the memory access

happens at heap region. When the compiler is very sure that the next instruction

accesses heap data, the g2l function is called, which does not have any runtime

checking. If the compiler cannot tell whether there would be a heap access, g2l rc is

called instead. Otherwise, if the compiler can determine that no access to heap data

would happen, no management function will be inserted. Figure 6.20(b) shows the

above logic. g2l is called before accessing the data referred by pointer y, because it

can be told at the compile time that y points to heap data . g2l rc is invoked before

accessing z, because it might refer to heap data. No heap management function is

101

added when accessing x since it can be decided at compile time that x accesses stack

data.

Management logic simplification

Our heap management technique also reduced management overhead by simplifying

heap management logic. Whenever a memory access happens, a software-cache based

approach has to first calculate the set index of the memory address. The software

cache will then sequentially access the entries in the set and compare the tag of the

target address with the tags in the entries. Once the data block that contains the

target address is located, either already in the SPM in a hit, or first copied from the

main memory in a miss, the final SPM address is generated and used to replace the

original memory address in the memory access.

Since this process happens within each management function call, it is perfor-

mance critical. With a direct-mapped cache on software, this process can be notice-

ably simplified to execute much fewer instructions at runtime, compared to using a

set-associative cache. Figure 6.21(a) and Figure 6.21(b) show two examples using

the previous approach and our approach respectively.The previous approach as il-

lustrated in Figure 6.21(a) calculates set index with Equation (1). It then searches

the corresponding set for the requested data block. Once the data block is found,

the SPM address is computed with Equation (2). To be noted that this equation

requires indexes of both the set and the entry in the set, which in turn rely on

the calculation of the SPM address through the sequential searching shown in Fig-

ure 6.21(a). On the other hand, our approach in Figure 6.21(b) simplifies the cal-

culation of the set index of a memory address into set index = global addr >>

log(block size)%set num. Since each set has only one entry, sequential searching is

not necessary. The software can simply go ahead and calculate the final SPM ad-

102

Figure 6.21: Comparison of heap management workflow.

dress as spm addr = spm base + mem addr%(set num ∗ block size). In addition,

the calculation of SPM does not depend on any previous steps. Elimination of such

dependency allows the compiler to better parallelize the management functions.

De-duplicating and Combining Management Calls

Our technique further reduced management overhead by de-duplicating management

functions (g2l). The state-of-the-art technique divided SPM into two memory regions

as heap management table and data region. Our approach makes similar usage of

SPM space. Every g2l thus contains some common instructions which is to load

103

Figure 6.22: De-dupe management calls and move common operations to the begin-

ning of the caller function.

the start address of the heap management table and data region at the beginning of

its execution, before executing any other call-specific instructions. However, when

heap managements are frequently invoked, those common instructions are executed

repeatedly. To avoid unnecessary execution of those common instructions, we hoist

those instructions outside of the g2l function and execute it only at the very beginning.

Figure 6.22 illustrates the idea. Figure 6.22(a) shows the original code. Fig-

ure 6.22(b) is the transformed code before de-duplication. Each g2l call first executes

104

Algorithm 8 De-dupe heap management

1: function inlineManagementFunction(Function F)

2: for each function F do

3: if F has any call to g2l then

4: insert common operations of g2l at the beginning of F

5: for each g2l call I in F do

6: de-dup the call

7: remove the common operations

8: end for

9: end if

10: end for

11: end function

the common instructions redundantly, and then execute specific instructions for that

call. We represent the common instructions and specific instructions in a g2l with

function g2l common and g2l specific respectively in the example, but they are plain

instructions in the actual implementation. In Figure 6.22(c), we de-dupe the g2l calls,

move and execute the common instructions at the beginning of the caller function.

After the optimization, only call-specific instructions are executed at where a g2l was

called. While this optimization should definitely improve performance, its impor-

tance is maximized when g2l was originally called within loop nests, as this example

shows —instead of repeatedly and excessively executing the common steps in a loop

nest, moving these common instructions to be outside can significantly reduce such

overhead.

The algorithm of this optimization is shown in Algorithm 8. In addition, at

compile time, the modified compiler goes through every function in the program,

de-duplicating g2l calls with call-specific instructions, and moves the common in-

structions to the beginning of the function.

105

Adjusting Block Size for Embedded Applications

All the aforementioned optimizations are generic, and thus are useful for all applica-

tions. However, in embedded systems, where profiling information can be obtained,

heap data management can be further optimized. Depending on the type of cache

misses an application suffers from, the block can be statically adjusted to avoid these

misses.

When the capacity and associativity of a cache are given, the size of block size

decides the number of sets. Different choices of block size may end up causing dras-

tically different performance. We can therefore analyze the access pattern and find a

block size that can achieve good performance. When a program is susceptible to cache

thrashing, we can decrease block size to lower the chance of such undesirable situation.

Cache thrashing refers to excessive conflict cache misses that happens when multiple

main memory locations competing for the same cache blocks. It may happen when

more than two heap objects with aggregate types (e.g., arrays) are accessed within

the same loop. On the other hand, we can increase block size to improve spatial

locality under certain circumstances.

We proposed a heuristic that goes through all innermost loops in a program and

adjusts block size based on profiling. Whenever it identifies more than two heap

objects are accessed within the loop, it reduces the block size to increase the number

of sets to avoid cache thrashing; otherwise, it increases the block size to increase

spatial locality.

106

Table 6.7: Maximum heap usage of benchmarks

Benchmark Heap Size (KB) Benchmark Heap Size (KB)

Adpcm Encode 0 String Search 0

Adpcm Decode 0 SHA 0

Dijkstra 6.43 Susan Corner 92.16

FFT 32 Susan Edge 42.81

iFFT 32 Susan Smoothing 17.35

Patricia 766 Typeset 32

6.3.3 Experimental Results

Experimental Setup

Our techniques are implemented as intermediate representation (IR) passes on LLVM

3.8 Lattner and Adve (2004).Benchmarks were compiled with different heap manage-

ment techniques and were ran on Gem5 Binkert et al. (2011). If not stated explicitly,

the block size in the software cache is set to 64 bytes by default.

We emulated the SMM architecture on Gem5. the SPMs were simulated by mod-

ifying the linker script and reserving part of the memory address space. A DMA

instruction is implemented to copy data between the SPM and the main memory.

DMA cost is modeled as a constant startup time and the time for actual data move-

ment. The startup time is set to 291 cycles, and the rate for transferring data is set

to 0.24 cycles/byte. The CPU frequency is set to 3.2 GHz. All these parameters are

based on the IBM Cell processor Kistler et al. (2006).

The proposed techniques were evaluated across Mibench benchmark suite Guthaus

et al. (2001). Table 6.7 lists the maximum usage of heap data in the benchmarks, i.e.,

the maximum sum of sizes of heap objects at any moment. Benchmarks that have

zero heap usage do not have any heap accesses.

107

Figure 6.23: The execution time of our approach normalized to the previous work

with optimizations incrementally added.

Execution Time Reduction

As shown in figure 6.23, in overall, our approach can reduce execution time by 80%

on average with the first three generic optimizations, i.e., without adjusting block

size. When we apply all four optimizations, the execution time can be reduced by

83% on average.

compile-time heap access detection has been proved to contribute the largest re-

duction of execution time, as shown in Figure 6.23. This technique is especially

effective on benchmarks that do not have any heap accesses, i.e., Adpcm Decode,

Adpcm Encode, SHA, and String Search. Overall, it reduces the execution time by

57% on average, due to reduced management calls and less executed instructions in

each call. Table 6.8 shows the number of calls to the g2l function before and after

statically detecting heap accesses over state-of-the-art. The number of management

calls are significantly reduced across all the benchmarks, and they are completely

108

eliminated in benchmarks that do not have any heap access.

Another reason that compile-time heap access detection can reduce management

overhead significantly is that it can also eliminate runtime checking at g2ls, and thus

reduces the number of instructions. Table 6.9 shows the average number of instruc-

tions each g2l executes under different cases, with different optimization techniques

being incrementally applied one by one. There are 3 possible cases when a g2l func-

tion is called: a cache hit, a cache miss with an unmodified data block to be evicted,

and a cache miss with a dirty data block to be evicted. The memory access may

either be a read access or a write access, which added up to 6 different combinations

in overall. The table clearly shows a constant difference of 6 instructions between the

Previous Work column and the Statically Detecting Heap Accesses column across all

the cases.

Replacing the 4-way set-associative cache with a direct-mapped software caches

has been proved to reduce execution time by 42% on average (on top of compile-

time heap access detection). It can be observed that the average dynamic instruction

Table 6.8: Number of g2l calls with and without heap access detection technique

Benchmark Unoptimized Optimized

Adpcm Encode 10211280 0

Adpcm Decode 116702082 0

Dijkstra 149209166 19077784

FFT 336608 90188

iFFT 336671 90204

Patricia 3114668 893184

SHA 8350153 0

String Search 2198090 0

Susan Corner 1238553 273717

Susan Edge 2628207 579221

Susan Smoothing 37252034 4891730

Typeset 274118 3826

109

Table 6.9: Instructions executed per g2l with and with out different optimization

techniques

Case Previous Statically Detect Simplify de-dupe and

Work Heap Accesses g2l Combine g2l

read hit 52 46 19 8

write hit 59 53 23 10

read miss w/o write-back 145 139 41 36

write miss w/o write-back 145 139 44 37

read miss w/ write-back 172 166 58 45

write miss w/ write-back 172 166 58 45

count of g2l calls has been reduced significantly under all the situations, as shown in

Table 6.9. For example, the average instructions executed in the sixth case is reduced

from 166 to 58 after simplifying management framework. Since a direct-mapped

cache causes more cache misses compared to a 4-way set-associative cache, we consider

increased cache misses as part of management penalty. Figure 6.24 shows the reduced

CPU cycles due to less management instructions normalized to the increased CPU

cycles caused by increased cache misses. Experimental results show that compared

with the performance gained by simplified management instructions, the increased

cycles caused by increased cache misses is negligible. For example, in Patricia, the

reduced cycles are more than 10000000 times than the increased cycles.

De-dupe and combing management calls can further reduce execution time by

21% thanks to the elimination of redundant operations. For example, as Table 6.9

shows, the average instructions executed in the sixth case is reduced from 166 to

58 after simplifying management framework, and is further reduced from 58 to 45

after de-dupe and combing management calls. To be noted that we apply this opti-

mization after statically detecting heap accesses. So if heap management calls are all

eliminated after that step, de-dupe and combining management calls will not improve

110

Figure 6.24: A direct-mapped cache other than a 4-way set-associative cache reduces

more execution time thanks to simplified management functions, compared to the

extra time introduced due to increased cache misses.

performance. For example, the management calls of Adpcm Decode, Adpcm Encode,

SHA, and String Search are reduced to 0 after the compiler statically finds out there

are no heap accesses in these benchmarks. Those benchmark would not benefit from

this optimization.

The block size was set to 64 bytes by default. When analyzing the effectiveness

of optimally adjusting block size, we analyzed benchmark profiles and adjusted the

block size from 16 bytes to 1024 bytes as needed. The decision on block size was

based on profiling information. Adjusting block size could further reduce execution

time by 11% (on top of the previous three optimization techniques).

111

Figure 6.25: General compilation flow for data management on SMM architectures

6.4 Compiler and Runtime Infrastructure

In the era of transitioning the intelligence from hardware to software, a compiler

that automatically performs the insertion of branch hinting instructions and efficient

data management of the application through automatic analysis is highly expected.

This is the objective of our compiler and runtime system, and this dissertation. The

advantages of such a compiler based approach include 1) programmability improve-

ment: developers can write their code as if hardware caching is provided, so that

they can focus on software logistics which eventually expedites the development cy-

cle. 2) portability enhancement: the same application code can be reused on differ-

ent versions or even different SPM-based architectures, with slight modification of

architecture configuration to the compiler. 3) delivery of comparable or even better

application performance than hardware caching. With deliberately designed compiler

analyses, we can greatly reduce the overhead incurred by data movements between

the local memory and main memory in applications.

Despite of its attractivenesses, a satisfactory compiler-based data management for

SMM architectures is not that intuitive to design, since finding the optimal solution

112

Table 6.10: Runtime library for data and code management

Category Library Functionality

stack

sstore
uses DMA instruction to evict some or all stack frames

from local memory to main memory

sload
uses DMA instruction to fetch needed stack frame(s)

in the previous stack state back to local memory

code ovly load
load function instructions from main memory to the local

memory

heap

malloc
allocates space in local memory and main memory, and

eventually returns a global address

free frees space in main memory

g2l
translates a global address to a local address; gets the

value from main memory if object misses

l2g translates a local address to a global address

wb updates data to main memory

to minimize the memory transfers between the local memory and main memory is

an intractable problem. Instead, we develop heuristics that will deliver high-quality

results with reasonable compilation cost. The general flow of our compiler-based

approach is shown in Figure 6.25, which comprise of a optimized compiler and the

corresponding runtime library. Our compiler takes in source files written for the

cache-based architecture, our data management libraries and a configuration file that

indicates the size of local memory, performs necessary compiler analyses which inserts

memory transfer requests (typically DMA instructions), and generates an executable

that can be run on an SMM architecture.

Table 6.10 presents all APIs for data and code management on SMM architectures.

113

sstore and sload functions manage function stack frames. ovly load is in charge

of loading “to-be-execute” instructions from main memory to the local scratchpad

memory. The last five functions process heap data in applications. One thing deserves

to be mentioned is that all these functions will be automatically placed by our compiler

at the proper locations. The function implementation details and their places to be

inserted in the managed applications are explained in Section 6.1, Section 6.2, and

Section 6.3.

114

Chapter 7

SUMMARY

Designing manycore architectures requires us to completely redesign the proces-

sors. Simply increasing the number of cores will not work. This is because power

consumption increases cubically with frequency of operation, while most computing

systems are limited by power, energy and thermal constraints. High performance

computing centers and data centers are designed with the constraint of total power

draw, embedded platforms are often designed around battery capacity, and the rest

systems in the middle are designed with thermal constraints.

Software Managed Manycore (SMM) architectures, which shift the intelligence

from run-time to compile-time, have emerged as a solution to scaling the manycore

processors. However, it is not trivial to design SMM architectures. Once hardware

components are removed from hardware, the corresponding logic has to be imple-

mented in the software. The software intelligent has to be not only correct, but

also efficient. Reducing software overhead becomes a critical part in the designing of

SMM architectures. This dissertation explored the design of SMM in two aspects,

the branch prediction mechanism, and data management mechanism. On one hand,

an SMM architecture removes hardware branch predictor and merely uses software

branch hinting. On the other hand, caches are removed on each core and are replaced

with local scratchpad memories.

This dissertation presents compiler-based automatic techniques that help to better

analyze the application, understand the control flow, and direct the hardware to

execute in an optimized way Lu et al. (2011, 2013, 2015); Bai et al. (2013). Our

techniques improved the performance and overcame the gap left by the absence of the

115

hardware component from the perspectives of: 1) software branch hinting, 2) smart

stack data management, 3) efficient code mapping, and 4) efficient heap management.

Extensive experiments have been conducted to evaluate the proposed techniques.

Our efficient software branch hinting technique can reduce the branch penalty as much

as 35.4% over the previous approach. The smart stack data management technique

can reduce the overhead by 13X over the state-of-the-art stack data management

technique Bai et al. (2011). The efficient code mapping can reduce runtime in more

than 80% of the cases, and by up to 20% on our set of benchmarks, compared to

the state-of-the-art code assignment approach Jung et al. (2010). The efficient heap

management technique can reduce execution time by 80% on average.

116

REFERENCES

“ARM Architecture version 5 (ARMv5TE)” (http://www.arm.com/, 2001).

“GNU Toolchain 4.1.1 and GDB for the Cell BE’s PPU/SPU”, http://www.bsc.es/
plantillaH.php?cat_id=304 (2005).

“IBM Full-System Simulator for Cell BE”, http://www.alphaworks.ibm.com/tech/
cellsystemsim (2006).

Abts, D., S. Scott and D. J. Lilja, “So Many States, So Little Time: Verifying Memory
Coherence in the Cray X1”, in “Proc. of IPDPS”, pp. 11.2– (2003).

Agarwal, A. and M. Levy, “The Kill Rule for Multicore”, in “Proc. of DAC”, pp.
750–753 (2007).

Angiolini, F., F. Menichelli, A. Ferrero, L. Benini and M. Olivieri, “A Post-compiler
Approach to Scratchpad Mapping of Code”, in “Proc. of CASES”, pp. 259–267
(2004).

Avissar, O., R. Barua and D. Stewart, “An Optimal Memory Allocation Scheme for
Scratch-pad-based Embedded Systems”, Trans. on Embedded Computing Sys. 1,
1, 6–26 (2002).

Bai, K., J. Lu, A. Shrivastava and B. Holton, “CMSM: An Efficient and Effective
Code Management for Software Managed Multicores”, in “Proc. of CODES+ISSS”,
(2013).

Bai, K. and A. Shrivastava, “Heap Data Management for Limited Local Memory
(LLM) Multi-core Processors”, in “Proc. of CODES+ISSS”, pp. 317–326 (2010).

Bai, K. and A. Shrivastava, “A Software-Only Scheme for Managing Heap Data on
Limited Local Memory (LLM) Multicore Processors”, Trans. on Embedded Com-
puting Sys. 13, 5 (2013).

Bai, K., A. Shrivastava and S. Kudchadker, “Stack Data Management for Limited
Local Memory (LLM) Multi-core Processors”, in “Proc. of ASAP”, pp. 231–234
(2011).

Baker, M. A., A. Panda, N. Ghadge, A. Kadne and K. S. Chatha, “A Performance
Model and Code Overlay Generator for Scratchpad Enhanced Embedded Proces-
sors”, in “Proc. of CODES+ISSS”, pp. 287–296 (2010).

Balakrishnan, M., P. Marwedel, L. Wehmeyer, N. Grunwald, R. Banakar and
S. Steinke, “Reducing Energy Consumption by Dynamic Copying of Instructions
onto On-chip Memory”, in “Proc. of ISSS”, pp. 213–218 (2002).

Ball, T. and J. R. Larus, “Branch Prediction for Free”, in “Proc. of PLDI”, pp.
300–313 (ACM, New York, NY, USA, 1993).

1

http://www.bsc.es/plantillaH.php?cat_id=304
http://www.bsc.es/plantillaH.php?cat_id=304
http://www.alphaworks.ibm.com/tech/cellsystemsim
http://www.alphaworks.ibm.com/tech/cellsystemsim

Banakar, R., S. Steinke, B.-S. Lee, M. Balakrishnan and P. Marwedel, “Scratchpad
Memory: Design Alternative for Cache on-chip Memory in Embedded Systems”,
in “Proc. of CODES+ISSS”, pp. 73–78 (2002).

Binkert, N., B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill and D. A. Wood, “The Gem5 Simulator”, SIGARCH Comput. Archit.
News (2011).

Borkar, S., “Major Challenges to Achieve Exascale Performance”, in “Salishan Con-
ference on High-Speed Computing”, (2009).

Bournoutian, G. and A. Orailoglu, “Dynamic, Multi-core Cache Coherence Archi-
tecture for Power-sensitive Mobile Processors”, in “Proc. of CODES+ISSS”, pp.
89–98 (2011).

Briejer, M., C. Meenderinck and B. Juurlink, “Extending the Cell SPE with Energy
Efficient Branch Prediction”, in “Proc. of EuroPar”, pp. 304–315 (2010).

Chaiken, D., J. Kubiatowicz and A. Agarwal, “LimitLESS Directories: A Scalable
Cache Coherence Scheme”, in “Proc. of ASPLOS”, pp. 224–234 (1991).

Choi, B., R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V. Adve, V. S.
Adve, N. P. Carter and C.-T. Chou, “DeNovo: Rethinking the Memory Hierarchy
for Disciplined Parallelism”, in “Proc. of PACT”, pp. 155–166 (2011).

Dinechin, B. D. D., P. G. de Massas, G. Lager, C. Lger, B. Orgogozo, J. Reybert
and T. Strudel, “A Distributed run-time Environment for the Kalray MPPA-256
Integrated Manycore Processor”, Procedia Computer Science (2013).

Dominguez, A., S. Udayakumaran and R. Barua, “Heap Data Allocation to Scratch-
pad memory in Embedded Systems”, J. Embedded Comput. 1, 4, 521–540 (2005).

Egger, B., C. Kim, C. Jang, Y. Nam, J. Lee and S. L. Min, “A Dynamic Code
Placement Technique for Scratchpad Memory Using Postpass Optimization”, in
“Proc. of CASES”, pp. 223–233 (2006a).

Egger, B., J. Lee and H. Shin, “Scratchpad Memory Management for Portable Sys-
tems with A Memory Management Unit”, in “Proc. of EMSOFT”, pp. 321–330
(2006b).

Eichenberger, A. E., J. K. O’Brien, K. M. O’Brien, P. Wu, T. Chen, P. H. Oden,
D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao, M. K.
Gschwind, R. Archambault, Y. Gao and R. Koo, “Using Advanced Compiler Tech-
nology to Exploit the Performance of the Cell Broadband EngineTM Architecture”,
IBM Syst. J. 45, 1, 59–84 (2006).

Eichenberger, A. E., K. O’Brien, K. O’Brien, P. Wu, T. Chen, P. H. Oden, D. A.
Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao and
M. Gschwind, “Optimizing Compiler for the CELL Processor”, in “Proc. of PACT”,
pp. 161–172 (2005).

2

Flachs, B., S. Asano, S. H.Dhong, H. Hofstee, G. Gervais, R. Kim, T. Le,
P. Liu, J. Leenstra, J. Liberty, B. Michael, H.-J. Oh, S. Mueller, O. Takahashi,
A. Hatakeyama, Y. Watanabe, N. Yano, D. Brokenshire, M. Peyravian, V. To and
E. Iwata, “The Microarchitecture of the Synergistic Processor for A Cell Proces-
sor”, IEEE Solid-state circuits 41, 1, 63–70 (2006).

Garcia-Guirado, A., R. Fernandez-Pascual, A. Ros and J. Garcia, “Energy-Efficient
Cache Coherence Protocols in Chip-Multiprocessors for Server Consolidation”, in
“Proc. of ICPP”, pp. 51–62 (2011).

Goodman, J. R., “Using Cache Memory to Reduce Processor-memory Traffic”, in
“Proc. of ISCA”, pp. 255–262 (1998).

Gschwind, M., H. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe and T. Yamazaki,
“Synergistic Processing in Cells Multicore Architecture”, IEEE Micro 26, 2, 10–24
(2006).

Gustafsson, J., A. Betts, A. Ermedahl and B. Lisper, “The Mälardalen WCET Bench-
marks – Past, Present and Future”, pp. 137–147 (2010).

Guthaus, M. R., J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and R. B.
Brown, “Mibench: A Free, Commercially Representative Embedded Benchmark
Suite”, Proc. of the Workload Characterization pp. 3–14 (2001).

Hardware, T., “Raw Performance: SiSoftware Sandra 2010 Pro (GFLOPS)”, (2010).

Heinrich, M., V. Soundararajan, J. Hennessy and A. Gupta, “A Quantitative Analysis
of the Performance and Scalability of Distributed Shared Memory Cache Coherence
Protocols”, IEEE Trans. Comput. 48, 2, 205–217 (1999).

Hofstee, H., “Power efficient processor architecture and the Cell processor”, in “Inter-
national Symposium on High-Performance Computer Architecture”, pp. 258–262
(2005).

Howard, J., S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla,
M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen, S. Steibl, S. Borkar,
V. De and R. Van Der Wijngaart, “A 48-Core IA-32 Processor in 45 nm CMOS
Using On-Die Message-Passing and DVFS for Performance and Power Scaling”,
IEEE Journal of Solid-State Circuits 46, 1, 173–183 (2011).

Hung, S.-H., C.-H. Tu and W.-L. Yang, “A Portable, Efficient Inter-core Communi-
cation Scheme for Embedded Multicore Platforms”, J. Syst. Archit. 57, 2, 193–205
(2011).

IBM, “Cell Broadband Engine Programming Handbook including PowerX-
Cell 8i”, https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/
7A77CCDF14FE70D5852575CA0074E8ED (2007).

IBM, “Programmer’s Guide: Software Development Kit for Multicore Acceleration
Version 3.1”, Tech. rep. (2008).

3

https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/7A77CCDF14FE70D5852575CA0074E8ED
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/7A77CCDF14FE70D5852575CA0074E8ED

IBM, “IBM Cell SDK 3.1”, http://www.ibm.com/developerworks/power/cell
(2009).

Intel, “Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor Datasheet,
Volume 1”, in “White paper”, (2010).

Intel, Intel Core i7-7700K Processor (http://ark.intel.com/products/97129, 2017).

Itanium, “Dual-Core Intel Itanium Processor 9000 and 9100 Series”, http://
download.intel.com/design/itanium/downloads/314054.pdf (2007).

Janapsatya, A., A. Ignjatović and S. Parameswaran, “A Novel Instruction Scratchpad
Memory Optimization Method Based on Concomitance Metric”, in “Proc. of ASP-
DAC”, pp. 612–617 (2006).

Jang, C., J. Lee, B. Egger and S. Ryu, “Automatic Code Overlay Generation and
Partially Redundant Code Fetch Elimination”, ACM Trans. Archit. Code Optim.
9, 2, 10:1–10:32 (2012).

Jiménez, D. A. and C. Lin, “Dynamic Branch Prediction with Perceptrons”, in
“HPCA”, p. 197 (2001).

Jung, S. C., A. Shrivastava and K. Bai, “Dynamic Code Mapping for Limited Local
Memory Systems”, in “Proc. of ASAP”, pp. 13–20 (2010).

Kahle, J. A., M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer and D. Shippy,
“Introduction to the Cell Multiprocessor”, IBM J. Res. Dev. 49, 589–604 (2005).

Kalamatianos, J. and D. R. Kaeli, “Improving the Accuracy of Indirect Branch Pre-
diction via Branch Classification”, SIGARCH Comput. Archit. News 27, 1, 23–26
(1999).

Kandemir, M. and A. Choudhary, “Compiler-directed Scratch Pad Memory Hierarchy
Design and Management”, in “Proc. of DAC”, pp. 628–633 (2002).

Kannan, A., A. Shrivastava, A. Pabalkar and J.-e. Lee, “A Software Solution for
Dynamic Stack Management on Scratch Pad Memory”, in “Proc. of ASP-DAC”,
pp. 612–617 (2009).

Kistler, M., M. Perrone and F. Petrini, “Cell Multiprocessor Communication Network:
Built for Speed”, IEEE Micro (2006).

Kolson, D., A. Nicolau and N. Dutt, “Elimination of Redundant Memory Traffic in
High-Level Synthesis”, IEEE Trans. on Comp-aided Design 15, 1354–1363 (1996).

Kongetira, P., K. Aingaran and K. Olukotun, “Niagara: A 32-Way Multithreaded
Sparc Processor”, IEEE Micro 25, 2, 21–29 (2005).

Lattner, C. and V. Adve, “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation”, in “Proc. of CGO”, (2004).

4

http://www.ibm.com/developerworks/power/cell
http://download.intel.com/design/itanium/downloads/314054.pdf
http://download.intel.com/design/itanium/downloads/314054.pdf

Lenoski, D., J. Laudon, K. Gharachorloo, A. Gupta and J. Hennessy, “The Directory-
based Cache Coherence Protocol for the DASH Multiprocessor”, in “Proc. of
ISCA”, pp. 148–159 (1990).

Li, L., H. Feng and J. Xue, “Compiler-directed Scratchpad Memory Management via
Graph Coloring”, ACM Trans. Archit. Code Optim. 6, 3, 1–17 (2009).

Lin, J.-P., J. Lu, J. Cai and A. Shrivastava, “Efficient heap data management on soft-
ware managed manycore architectures”, in “Proceedings of 2019 32nd International
Conference on VLSI Design and 2019 18th International Conference on Embedded
Systems (VLSID)”, (2019).

Lu, J., K. Bai and A. Shrivastava, “SSDM: Smart Stack Data Management for Soft-
ware Managed Multicores (SMMs)”, in “Proc. of DAC”, pp. 149–156 (2013).

Lu, J., K. Bai and A. Shrivastava, “Efficient Code Assignment Techniques for Local
Memory on Software Managed Multicores”, ACM Trans. Embed. Comput. Syst.
14, 4, 71:1–71:24 (2015).

Lu, J., Y. Kim, A. Shrivastava and C. Huang, “Branch Penalty Reduction on IBM
Cell SPUs via Software Branch Hinting”, in “Proc. of CODES+ISSS”, pp. 355–364
(ACM, 2011).

Nguyen, N., A. Dominguez and R. Barua, “Memory Allocation for Embedded Systems
with A Compile-time-unknown Scratch-pad Size”, in “Proc. of CASES”, pp. 115–
125 (2005).

O’Brien, K., “Issues and Challenges in Compiling for the CBEA”, in “Proc. of
LCTES”, pp. 134–134 (2007).

Pabalkar, A., A. Shrivastava, A. Kannan and J. Lee, “SDRM: Simultaneous Deter-
mination of Regions and Function-to-Region Mapping for Scratchpad Memories”,
in “Proc. of HPC”, pp. 569–582 (2008).

Parikh, D., K. Skadron, Y. Zhang, M. Barcella and M. R. Stan, “Power Issues Related
to Branch Prediction”, in “HPCA”, p. 233 (2002).

Poletti, F., P. Marchal, D. Atienza, L. Benini, F. Catthoor and J. M. Mendias, “An
Integrated Hardware/Software Approach for Run-time Scratchpad Management”,
in “Proc. of DAC”, pp. 238–243 (2004).

Rotta, R., T. Prescher, J. Traue and J. Nolte, “In-Memory Communication Mecha-
nisms for Many-Cores – Experiences with the Intel SCC”, (2012).

Simoni, R. and M. Horowitz, “Dynamic Pointer Allocation for Scalable Cache Co-
herence Directories”, in “Proc. of ISSMM”, pp. 72–81 (1991).

Sinharoy, B. and S. W. White, “Use of Software Hint for Branch Prediction in the
Absence of Hint Bit in the Branch Instruction”, http://www.freepatentsonline.
com/6971000.html (2005).

5

http://www.freepatentsonline.com/6971000.html
http://www.freepatentsonline.com/6971000.html

Smith, J. E., “A Study of Branch Prediction Strategies”, in “Proc. of ISCA”, pp.
135–148 (1981).

Sodani, A., R. Gramunt, H. Kim, K. Vinod, S. Chinthamani, S. Hutsell, R. Agarwal
and Y. Liu, “Knights Landing: Second-Generation Intel Xeon Phi Product”, IEEE
Micro 36, 2, 34–46 (2016).

Stenström, P., “A Survey of Cache Coherence Schemes for Multiprocessors”, Com-
puter 23, 6, 12–24 (1990).

Stephen, A. S., S. Felix, V. Krishnan and Y. Sazeides, “Design Tradeoffs for the Alpha
EV8 Conditional Branch Predictor”, in “ISCA”, pp. 295–306 (2002).

Tilera, “TILE PROCESSOR ARCHITECTURE OVERVIEW FOR THE TILEPRO
SERIES”, http://www.mellanox.com/repository/solutions/tile-scm/docs/
UG120-Architecture-Overview-TILEPro.pdf (2013).

Totoni, E., B. Behzad, S. Ghike and J. Torrellas, “Comparing the Power and Perfor-
mance of Intel’s SCC to state-of-the-art CPUs and GPUs”, in “Proc. of ISPASS”,
pp. 78–87 (2012).

Udayakumaran, S., A. Dominguez and R. Barua, “Dynamic Allocation for Scratch-
pad memory Using Compile-time Decisions”, Trans. on Embedded Computing Sys.
5, 2, 472–511 (2006).

Verma, M. and P. Marwedel, “Overlay Techniques for Scratchpad Memories in Low
Power Embedded Processors”, IEEE VLSI 14, 8, 802–815 (2006).

Wagner, T. A., V. Maverick, S. L. Graham and M. A. Harrison, “Accurate Static
Estimators for Program Optimization”, in “Proc. of PLDI”, pp. 85–96 (ACM, New
York, NY, USA, 1994).

Wu, Y. and J. R. Larus, “Static Branch Frequency and Program Profile Analysis”,
in “Proc. of MICRO”, pp. 1–11 (ACM, New York, NY, USA, 1994).

Xu, Y., Y. Du, Y. Zhang and J. Yang, “A Composite and Scalable Cache Coherence
Protocol for Large Scale CMPs”, in “Proc. of ICS”, pp. 285–294 (2011).

6

http://www.mellanox.com/repository/solutions/tile-scm/docs/UG120-Architecture-Overview-TILEPro.pdf
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG120-Architecture-Overview-TILEPro.pdf

	LIST OF TABLES
	LIST OF FIGURES
	1 Manycore Architecture Design
	2 SMM: A Promising Approach
	3 Challenges in Shifting the Intelligence from Hardware to Software
	3.1 Challenge of Data Management on SMM
	3.2 Challenge of Software Branch Hinting on SMM

	4 Contributions of This Dissertation
	4.1 Publications and My Contributions in the Publications

	5 Software Branch Hinting for SMM
	5.1 Overview
	5.2 Branch Hinting Mechanism
	5.3 Branch Penalty Model
	5.4 Problem Formulation
	5.5 Branch Hint Management
	5.5.1 NOP Padding
	5.5.2 Hint Pipelining
	5.5.3 Nested Loop restructuring
	5.5.4 Branch Penalty Reduction Heuristic

	5.6 Related Work
	5.7 Experimental Results
	5.7.1 Experimental Setup
	5.7.2 Branch Penalty Reduction
	5.7.3 Effectiveness of NOP Padding
	5.7.4 Performance Improvement

	5.8 Summary

	6 Data Management for SMM
	6.1 Stack Data Management
	6.1.1 Motivation
	6.1.2 Challenges
	6.1.3 Smart Stack Data Management
	6.1.4 Related Work
	6.1.5 Experimental Results
	6.1.6 Summary

	6.2 Effective Code Management
	6.2.1 Motivation
	6.2.2 Code Overlay Mechanism
	6.2.3 Objective of Code Overlay
	6.2.4 Cost Calculation of Code Overlay
	6.2.5 CMSM Heuristic
	6.2.6 Related Work
	6.2.7 Experimental Results
	6.2.8 Summary

	6.3 Heap Data Management
	6.3.1 Motivation and State of the Art
	6.3.2 Efficient Heap Data Management
	6.3.3 Experimental Results

	6.4 Compiler and Runtime Infrastructure

	7 Summary

	REFERENCES

