
71

Efficient Code Assignment Techniques for Local Memory
on Software Managed Multicores

JING LU, KE BAI, and AVIRAL SHRIVASTAVA, Arizona State University

Scaling the memory hierarchy is a major challenge when we scale the number of cores in a multicore
processor. Software Managed Multicore (SMM) architectures come up as one of the promising solutions. In
an SMM architecture, there are no caches, and each core has only a local scratchpad memory [Banakar et al.
2002]. As the local memory usually is small, large applications cannot be directly executed on it. Code and
data of the task mapped to each core need to be managed between global memory and local memory. This
article solves the problem of efficiently managing code on an SMM architecture. The primary requirement
of generating efficient code assignments is a correct management cost model. In this article, we address
this problem by proposing a cost calculation graph. In addition, we develop two heuristics CMSM (Code
Mapping for Software Managed multicores) and CMSM_advanced that result in efficient code management
execution on the local scratchpad memory. Experimental results collected after executing applications from
the MiBench suite [Guthaus et al. 2001] demonstrate that merely by adopting the correct management
cost calculation, even using previous code assignment schemes, we can improve performance by an average
of 12%. Combining the correct management cost model and a more optimized code mapping algorithm
together, our heuristics can reduce runtime in more than 80% of the cases, and by up to 20% on our set of
benchmarks, compared to the state-of-the-art code assignment approach [Jung et al. 2010]. When compared
with Instruction-level Parallelism (ILP) results, CMSM_advanced performs an average of 5% worse. We also
simulate the benchmarks on a cache-based system, and find that the code management overhead on SMM
core with our code management is much less than memory latency of a cache-based system.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Code generation, Com-
pilers, Optimization

General Terms: Algorithm, Design, Experimentation, Performance

Additional Key Words and Phrases: Code, instruction, local memory, scratchpad memory, embedded systems,
multicore processor

ACM Reference Format:
Jing Lu, Ke Bai, and Aviral Shrivastava. 2015. Efficient code assignment techniques for local memory on
software managed multicores. ACM Trans. Embed. Comput. Syst. 14, 4, Article 71 (December 2015), 24
pages.
DOI: http://dx.doi.org/10.1145/2738039

1. INTRODUCTION

Modern processors need to be optimized for low power, high performance, and compact
area [Vaidyanathan et al. 2015]. Multicore architectures dominate the processor mar-
ket since they provide a way to improve peak performance without much increase in the
power and area consumption. In addition, several other parameters (e.g., power, tem-
perature, and reliability) can be more easily managed at coarser granularity of thread
and core level [Michaud et al. 2007]. As we transition from few-core to many-core

This research was funded by grant CCF-0916652 from National Science Foundation.
Authors’ addresses: J. Lu, K. Bai, and A. Shrivastava are with the Compiler Microarchitecture Lab,
Arizona State University, 203 Centerpoint, 660 South Mill Avenue, Tempe, AZ 85281, USA; emails: {Jing_Lu,
Ke.Bai}@asu.edu; corresponding author’s email: Aviral.Shrivastava@asu.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2015 ACM 1539-9087/2015/12-ART71 $15.00
DOI: http://dx.doi.org/10.1145/2738039

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

http://dx.doi.org/10.1145/2738039
http://dx.doi.org/10.1145/2738039

71:2 J. Lu et al.

processors, scaling the memory hierarchy becomes one of the most important chal-
lenges.

Automatic memory management in the hardware that is transparent to applications
is increasingly becoming infeasible. Most experts believe that fully cache-coherent ar-
chitectures will not scale when there are hundreds and thousands of cores [Bournoutian
and Orailoglu 2011; Choi et al. 2011; Garcia-Guirado et al. 2011; Xu et al. 2011], and
therefore architects are looking for alternative scalable architecture designs. In 2009,
a 48-core noncoherent cache architecture named Single-chip Cloud Computer (SCC)
was manufactured by Intel [2012]. The latest six-core DSP from Texas Instruments,
TI 6472 [Truong 2009], features noncoherency cache architecture. More recently, the
MPPA-256 processor that adapts distributed memory architecture was manufactured
by KALRAY [de Dinechin et al. 2013]. But caches still consume a large portion of power
and die area [Banakar et al. 2002].

Distributed memory systems where each core has access to only a limited local
memory (Scratchpad Memory, SPM) seems to be one of promising memory scaling
options. Scratchpad memories are raw memories that do not have any tags and lookup
logic. As a result, they consume approximately 30% less area and power than a direct
mapped cache of the same effective capacity [Banakar et al. 2002]. Therefore, such
scratchpad-based multicore architectures have the potential to be more power efficient
and scalable than traditional cache-based architectures. A very good example of such
architectures is the Cell processor that is incorporated in the Sony Playstation 3. The
Synergistic Processing Elements (SPEs) in the Cell processor have only scratchpad
memories. Its power efficiency is around 5GFlops per watt [Flachs et al. 2006], while
the power efficiency of an Intel i7 four-core Bloomfield 965 XE is only 0.5GFlops per
watt [Intel 2010; Tom’s Hardware 2010].

The scratchpad-based multicore is a truly “distributed memory architecture on-a-
chip.” Applications for it are written in the form of interacting tasks. The tasks are
assigned to the cores of the scratchpad-based multicore architecture. Each task exe-
cutes on one execution core with only one thread. Each execution core can only access
its local scratchpad memory, and to access other local memories or the global mem-
ory, explicit Direct Memory Access (DMA) instructions are required in the program.
The local memory is shared among code, stack data, global data, and heap data of the
task executing on the core. As there is no cache implemented in the hardware in these
scratchpad-based multicore architectures, explicit data management is needed, includ-
ing evicting the “not-so-urgently” needed data out to global memory, and bringing in
the required data into the limited local scratchpad memory. A hardware solution of
code management for scratchpad memory has been proposed in 2011 [Metzlaff et al.
2011]. Another similar technique has been presented by Schoeberl [2009]. However,
hardware managed scratchpad memories require extra hardware components, which
incurs larger power consumption than static scratchpad memories, even for the cases
when data management is not needed. As a result, we decided to focus on managing
data and code with software techniques. Due to the explicit need of data management
in software, we term the scratchpad-based multicore architectures that are purely
software managed as Software Managed Multicore (SMM) architectures.

How to manage the task data on scratchpad memory of the cores is an important
problem that has drawn significant attention in recent years [Bai et al. 2013; Baker
et al. 2010; Holton et al. 2014; Jang et al. 2012; Jung et al. 2010; Pabalkar et al. 2008].
While management is needed for all code and data of the task when they cannot fit in
the local memory, in this article we focus on the problem of code management, since
efficient code management can significantly impact the performance of the system.
Even for applications that are data intensive, code management is still very important.
The memory space is shared between code and data, and the more space is given to

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

Efficient Code Assignment Techniques for Local Memory on Software Managed Multicores 71:3

the data, the better performance will be achieved [Bai et al. 2011a, 2011b; Bai and
Shrivastava 2010, 2013a, 2013b, Lu et al. 2013]. A good code management scheme can
reduce the space that is required to hold the code, and save more space for the data.

The code assignment problem requires us to determine what to place into SPM, and
where and when to place it there. In this article, we consider the situation that a portion
of code is located in a space of the local memory, and other code is placed to the global
memory. The code in the global memory must be dynamically fetched into the local
memory when needed. In order to do this more efficiently, we divide this space into
regions, and also assigning functions into regions. Functions assigned to one region
are compiled and linked starting with the same physical address (that of the region).
At runtime, only one function out of the ones that are assigned to the region can be
present in the region. At each function call, it is checked whether the function being
called is present in the region or not. If not, it is fetched from the global memory using
a Direct Memory Access (DMA) command [IBM 2006]. The size of the region is equal to
the size of the largest function assigned to the region, and the total code space required
is the sum of the sizes of the regions. Given some space on the local memory, the goal
of the code assignment problem on SMM architectures is then to (i) divide the code
space into regions, and (ii) find an assignment of functions to regions, such that the
management overhead is minimized. We estimate the memory management overhead
to be proportional to the size of code that needs to be transferred between the local
memory and the global memory.

Finding the number of regions and assigning the functions to regions that will min-
imize instruction transfer, have both been proven to be intractable [Pabalkar et al.
2008; Verma and Marwedel 2006]. Therefore, several greedy algorithms have been
proposed [Baker et al. 2010; Jang et al. 2012; Jung et al. 2010; Pabalkar et al. 2008]. A
key component of code management schemes is a cost model to estimate the overhead
of code management for a given assignment of functions to regions. Specifically, the cost
herein is the amount of instructions that will be transferred between local scratchpad
memory and global memory. This cost model “drives” the technique to assign functions
into regions, and in a sense, the function assignment technique can only be as good as
the accuracy of this cost estimation function. Unfortunately, all previous schemes have
estimated this overhead of code management inaccurately.

We identify three limitations in the state-of-the-art mechanisms to accurately esti-
mate the code management overhead. The limitations are as follows: (i) The assumption
that the code management overhead when two functions are assigned to the same re-
gion is independent of where the other functions are assigned. This is incorrect, because
as we show in this article, the overhead depends on which other functions are assigned
to the same region as the two functions. (ii) Several cases of inaccurate estimation; for
example, when a function is called at several places in the program. (iii) Ignoring the
effect of branches.

Most previous schemes broadly assumed that both the branch paths are executed.
As a result, the estimation of the number of times a function is called inside a branch
increases instead of decreasing. This leads to inaccurate code management overhead
estimation—especially when branch probability is quite skewed (e.g., 90% or 10%).
Although the inaccuracies in the estimation of code management overhead caused by
these limitations do not result in wrong results, they do affect generating efficient
assignment decisions, which therefore degrade the performance of applications being
managed.

We address the aforementioned problems and make the following contributions:

—We formulate the code assignment problem on SMM architectures. As far as we
know, this is the first time of formal problem formulation for SMM architectures.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

71:4 J. Lu et al.

—We devise a novel cost calculation graph, which properly considers all circumstances
leading to instruction transfer that cannot be handled in previous works. This is very
important, as the cost calculation graph is the base for all assignment algorithms,
not only for ours.

—Branches in the program are considered when calculating the management overhead.
We found the consideration of branch is of utmost importance and the neglect of
branches in cost calculation in previous works is one of the reasons that leads to
inefficient code assignment.

—Two fast polynomial time heuristics for Code Mapping on Software Managed multi-
core processors (named as CMSM and CMSM_advanced) are proposed. CMSM takes
in the graphical code representation of the program, and then transforms the rep-
resentation to a cost calculation graph, from which management cost is calculated
and a code assignment is ultimately executed. CMSM_advanced further optimizes
the CMSM algorithm by expanding functions to possible remaining space.

We establish the effectiveness of the proposed cost calculation and assignment tech-
niques by executing benchmarks from the MiBench suite [Guthaus et al. 2001], and
comparing with the closest approach [Jung et al. 2010]. We find that when we use cor-
rect estimation of code management overhead, even in the previous code management
technique, it leads to an assignment that performs 12% better. On top of that, our
heuristics can reduce runtime in more than 80% of the cases, and by up to 20% on our
set of benchmarks. When compared with Instruction Level Parallelism (ILP) results,
CMSM_advanced performs an average of 5% worse. We also simulate the benchmarks
on a cache-based system, and find that the code management overhead on the SMM
core with our code management is much less than memory latency of a cache-based
system. It should be noted that, our method is based on a reasonable assumption that
there is only one thread on each execution core of SMM architectures. This is because
the local scratchpad memory is usually small and it is not affordable to support multiple
threads on each core (because thread management itself consumes local memory). In
addition, our method is orthogonal to genuine multithreaded parallelism techniques.
This means proper parallelism is handled by other algorithms, programming models,
or programmers themselves. Once the process on each core is defined, our scheme can
manage its memory.

2. BACKGROUND OF CODE ASSIGNMENT

To run an application with a larger code footprint than what is available on the local
scratchpad memory, typically the code overlay scheme is leveraged [IBM 2006]. Usu-
ally, the overlay organization is generated manually by programmers or automatically
by a specialized linker. A good code overlay requires deep understanding of the pro-
gram structure, with the consideration of maximum memory savings and minimum
performance degradation. As shown in Figure 1, a code overlay organization needs
to determine both the number of regions and the assignment of functions to regions.
Functions assigned to the same region are located in the same physical address, and
must replace each other during runtime (by instruction fetching function _ _ovly_load()
before each function call1) [IBM 2006]. The size of a region is the size of the largest
function assigned to the region. The total code space required is equal to the sum of
the sizes of regions. From the performance perspective, it is best to place each function
into a separate region, so that it will not interfere with any other objects, but that may
increase the code space too much. On the contrary, assigning all functions into one

1As code never get dirty, we do not need to update it to the global memory. This is the reason why only
_ _ovly_load() is sufficient.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

Efficient Code Assignment Techniques for Local Memory on Software Managed Multicores 71:5

Fig. 1. Code assignment problem on scratchpad memory—when the task that is assigned to the execution
core has a larger footprint than the available space, code needs to be assigned between external global
memory and the local scratchpad memory of the core.

Fig. 2. Cost between functions depends on where other functions are assigned, and updating the costs as
we assign the functions can lead to a better assignment.

region uses the minimum amount of code space, while incurring too many instruction
transfers and therefore runtime overhead. The task of optimizing code assignment is,
to organize the application functions into regions that will obtain a balance between the
code space used and the data transfers required.

3. MOTIVATION

The works by Pabalkar et al. [2008], Baker et al. [2010], Jung et al. [2010], and Jang
et al. [2012] provide heuristics for code assignment on SMM architectures. However,
they are all not efficient enough, which prevents scratchpad memory from becoming
a competitive alternate of cache on multicore processors in terms of performance. The
inefficiency is mainly because of inaccurate or incorrect cost calculation.

3.1. Importance of Updating Cost

Previous works [Baker et al. 2010; Jang et al. 2012; Pabalkar et al. 2008] statically
calculate the assignment cost and generate an assignment. They did not dynamically
update the cost during the course of the assignment algorithm. It is incorrect and can
lead to inferior assignment. Figure 2(a) shows an example where function main calls
F1, F1 calls F2, and F2 calls F3, and then they all return. The function nodes also
indicate the sizes of functions. Let us consider a case that requires us to assign all
functions into a scratchpad memory of 5KB. It is slightly tricky to calculate the cost
between multistep calls. For example, when computing the cost between main and

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

71:6 J. Lu et al.

F2, if main and F2 are assigned to the same region, the interference2 between them
depends on where F1 is assigned. If F1 is assigned to another different region, then
the interference between main and F2 is just sum of their sizes, namely, 3KB + 1KB =
4KB. The calculation is as follows. When F2 is called, 1KB of function F2 will need to
be brought into the memory. When the calling state returns to main, 3KB of the code
of main needs to be brought into the scratchpad. However, if all main, F1, and F2 are
assigned to the same region, then the interference cost between main and F2 is 0. This
is because, when F2 is called, main is already replaced with F1, and when the program
returns to main, F2 is already replaced. In a sense, there is interference between main
and F1, and between F1 and F2, but there is no interference between main and F2.

Previous approaches [Baker et al. 2010; Jang et al. 2012; Pabalkar et al. 2008]
computed the worst case interference cost, that is, 4KB for main-F2, and never updated
it, and therefore obtained inferior assignment. To explain this, Figure 2(b) shows a state
in assignment when main, F1, and F2 have already been assigned. main is alone in
region 0, and F1 and F2 are together in the region 1. Now is the time to assign function
F3. The size of F3 is 0.5KB, therefore it can be assigned to either region, without
violating the size constraint. The interference cost between region 0 and F3, that is,
between main and F3, is 3.5KB. The interference cost between region 1 and F3 is
traditionally computed as the sum of interferences between the functions in region 1
and F3, that is, 2.5KB between F1 and F3, and 1.5 between F2 and F3, totaling to 4KB.
Consequently, traditional techniques will assign F3 to region 0 with main (shown in
Figure 2(c)). Clearly, there is a discrepancy in computing the interference cost between
region 1 and function F3. If F2 is also assigned to the same region, the interference
cost between F1 and F3 should be estimated as 0. Otherwise, the interference cost
between region 1 and function F3 are incorrectly (over)estimated. With this fixed, the
interference between region 1 and F3 is just the interference between F2 and F3,
which is just 1.5KB. As per this correct interference calculation, F3 should be assigned
to region 1 (shown in Figure 2(d)). The required total data transfer between the global
memory and the local memory, in this case 9.5 = 3+(2+1+0.5+1+2)KB, as compared
to 11.5 = (3 + 0.5 + 3) + (2 + 1 + 2)KB with the previous assignment, resulting in an
18% savings in data transfers.

3.2. Correct Cost Calculation

The assignment schemes in Pabalkar et al. [2008], Baker et al. [2010], Jung et al.
[2010], and Jang et al. [2012] are all aimed to reduce the management cost. But none
of them has proposed a correct cost calculation scheme. There are two problems with
their methods. On one hand, none of their methods is general enough to be applied
to situations in which a function is called in multiple locations. When their methods
are used to calculate the assignment cost between two functions, information such as
whether or not the two functions have a caller-callee relationship, as well as what is
the Least Common Ancestor (LCA) of the two functions need to be known. However,
if a function is called in multiple locations in the application, it is impossible to define
its relationship with other functions. Let us consider an example as shown in Figure 3,
the relationship between F1 and F2 is hard to define, as there are several instances
of F1 in the program. Such situation is quite common in most of the applications, in
the sense that functions such as malloc() and printf() are frequently called in different
locations. Failing to handle those situations makes their methods inappropriate for
most applications. On the other hand, even for functions that have a simple interference
relationship, previous cost calculation methods may still lead to wrong results. We can

2The interference here means the two functions assigned to the same region will replace each other during
execution time. We use the amount of data transfer to estimate this interference cost.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

Efficient Code Assignment Techniques for Local Memory on Software Managed Multicores 71:7

Fig. 3. A call graph for which previous cost calculation methods do not work—The weight on each function
node represents how many times the function is called.

see the same program shown in Figure 3 again, where F3 is called by F2 in a loop, F5
is called by F4 in another loop, and the whole subtree rooted by F2 is called in the third
loop. We further assume F3 and F5 were assigned to the same region and they were
the only functions assigned to the region. Therefore, their interference pattern could
be illustrated in the trace:

F3 . . . F3F5 . . . F5F3 . . . F3F5 . . . F5F3 . . . F3F5 . . . F5.

In this circumstance, the cost between them should be 3 × (sizeF3 + sizeF5), in which
sizeF denotes the code size of function F. However, using the methods by Pabalkar
et al. [2008], Jung et al. [2010], and [Jang et al. 2012], the cost between F3 and
F5 is 15 × (sizeF3 + sizeF5) instead, as they calculate the interference cost between
function Fa and function Fb as min(countFa, countFb) × (sizeFa + sizeFb), in which countF
denotes the execution count of function F. Alternatively, according to Baker et al.
[2010], in which the interference cost between function Fa and function Fb is calculated
as countLC A × (sizeFa + sizeFb), the cost between F3 and F5 is 10 × (sizeF3 + sizeF5). All
those methods have overestimated the code management cost.

3.3. Consideration of Branch

The assignment schemes in Pabalkar et al. [2008], Baker et al. [2010], Jung et al.
[2010], and Jang et al. [2012] did not consider the existence of branch in the program,
which leads functions in different branches to have the same degree when considered
for assignment. Let us consider a program that has three functions, F0, F1, and F2,
with F1 and F2 called by F0 in if and else, respectively. In addition, they all have
function size S and will be assigned to a code space of 2S. If F1 will be called by F0
in a probability of 90%, then it is better to assign F0 and F2 into one region and F1
is left in another separate region. However, without the consideration of branch, the
algorithm might generate an assignment that F0 and F1 are in a region, and F2 is in
another region. Even worse, if F1 is called within a loop in F0, the ignore of branch in
the program could generate a very unsatisfactory assignment.

In this article, we address three aforementioned limitations, and propose correct
management overhead estimation for code assignment, as well as two efficient and ef-
fective heuristics to assign code for SMM architectures. After this evolution, scratchpad
memory can become a better option than cache for instructions on multicore proces-
sors, not only because of its power efficiency [Banakar et al. 2002], but also owing to
its better performance.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

71:8 J. Lu et al.

4. RELATED WORK

Scratchpad memory has been well known for a decade in the embedded area. Since
it sheds hardware required for cache management to enable performance and silicon
area advantages over the system cache, all code and data management must rely on
a compiler or programmer’s hand-inserted code [Banakar et al. 2002]. There are a
number of approaches for selecting what to place into the scratchpad memory and
when to place them there. Steinke et al. [2002] view the instruction assignment
problem in terms of minimizing memory accesses, and evaluate the structure of the
program in the granularity of basic blocks and functions to formulate an ILP problem.
Udayakumaran et al. [2006] present an algorithm that looks at time stamps in code
sections to determine temporal locality. The work by Janapsatya et al. [2006] and
Angiolini et al. [2004] present algorithms that require trace data. Egger et al. [2006,
2010] implement a paged SPM management and prefetching scheme. These schemes
require profiling information that is impractical as program execution varies widely
on different input data when there are branches. Li et al. [2009] and Li et al. [2005]
introduce a general-purpose compiler approach, called memory coloring, to assign
static data aggregates in a program to an SPM.

However, these techniques cannot be directly applied to SMM architectures. This is
because of the difference in the way scratchpad memory has been traditionally used,
and the way it is used in SMM architectures. In embedded systems (e.g., ARM proces-
sors), the scratchpad memory is present in addition to the regular cache hierarchy of
the processor. Programs can be executed correctly without using scratchpad memory,
but scratchpad memory can be used to optimize performance and power efficiency. In
contrast, the scratchpad memory is the only memory hierarchy in SMM architectures
and is therefore essential, rather than optional. All code and data must go through it.
As a result, while the problem of using scratchpad memory in embedded systems is
that of optimization, the problem of using scratchpad memory in SMM architectures
is to enable the execution of applications.

In this article, we only solve the problem of code assignment for SMM architectures,
assuming data can be properly handled by the works of Bai and Shrivastava [2010],
Bai et al. [2011a, 2011b], Bai and Shrivastava [2013b], and Lu et al. [2013]. To the
best of our knowledge, the works by Baker et al. [2010], Jang et al. [2012], Jung et al.
[2010], and Pabalkar et al. [2008] are similar to our effort and Jung et al. [2010] is the
most similar one as only this one updates management cost during the decision of code
assignment. Two assignment algorithms were proposed in Jung et al. [2010]. One is
Function Mapping by updating and Merging (FMUM) and the other one is Function
Mapping by Updating and Partitioning (FMUP). FMUM begins with an assignment in
which each function is placed in a separate region. It repeatedly selects and merges
a pair of regions with the minimal merge cost among all pairs of regions until all
functions can fit in the given scratchpad memory space. In contrast, FMUP starts with
an assignment where all functions are placed in only one memory region. It repeatedly
selects the function that maximally decreases the cost and places it to another region
until the size of the total amount of instruction space is less than the given memory size.

In this article, we address the problems discussed in Section 3. In the next section,
we formally define the code assignment problem. In Section 6, we present a correct
cost calculation for code management on SMM architectures, and then our efficient
heuristic CMSM is presented in Section 7. In Section 8, we further improve the code
assignment algorithm by proposing CMSM_advanced.

5. PROBLEM DEFINITION

The symbols used in the problem definition are shown as follows:

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

Efficient Code Assignment Techniques for Local Memory on Software Managed Multicores 71:9

—Sp: the total size of local scratchpad memory;
—F: a set of functions that are in the program;
—FID: a set of function IDs;
—N: the total number of function IDs in FID;
—M(f id, f): an associate set contains all associations between f id and f , where fid ∈

FID, f ∈ F. Since the assignment relation between a function to function IDs is
“one-to-many,” we use this set to store all function IDs for a given function f .

—Sf id: a set contains function sizes of function ID fid, where fid ∈ FID;
—R: a set of function regions in the local scratchpad memory;
—Sf : a set contains code sizes of functions in the function set F.

Decision variables:

—x(f, r): {0,1}, indicates whether function f is assigned to region r, where f ∈ F and
r ∈ R.

—Sr: integer, indicates the size of region r, where r ∈ R.

Derived variables:

—y(f id, r): {0,1}, indicates whether function I fid is assigned to region r, where fid ∈
FID and r ∈ R.

—num(ida, idb, r): integer, indicates the number of ids between ida and idb that are
assigned to region r, where ida, idb ∈ FID and r ∈ R.

—switch(ida, idb): {0,1}, indicates whether idb causes function loading/eviction during
the execution of program, where ida, idb ∈ FID and ida < idb.

As mentioned before, a region must accommodate all functions assigned to it. There-
fore, its size must be larger than any function assigned to it.

∀r ∈ R, f ∈ F : Sr ≥ x(f, r) ∗ sf . (1)

Since we manage the code at the granularity of function object, a function cannot be
split into several different regions, namely, a function f (f ∈ F) can only be assigned
to one region.

∀ f ∈ F :
∑
r∈R

x(f, r) = 1. (2)

The size of the total space required for all regions is equal to the sum of sizes of all
regions. This size must not exceed the scratchpad memory size predefined.∑

r∈R

Sr ≤ Sp. (3)

Because the assignment relation between function and function ID is “one-to-many,”
we must update all function IDs associated with a function when the status of a function
is changed. In other words, when function f is assigned to a region r, all function IDfid
corresponds to f must be also assigned to region r.

∀(fid, f) ∈ M(fid, f), fid ∈ FID, f ∈ F, r ∈ R :
y(fid, r) = x(f, r). (4)

The number of functions between two IDs needs to be updated dynamically.

num (ida, idb) =
∑
r∈R

∑
ida<id<idb

x(id, r) ∗ y(ida, r) ∗ y(idb, r). (5)

As discussed in Section 3, function loading/eviction should not be counted on two
functions F1 and F2, if there are other functions between them. Therefore, there are

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

71:10 J. Lu et al.

two cases to be considered when we update switch variable. (i) Condition (6): If there are
many functions between to-be-determined-two functions, there is no loading/eviction
between these two functions. (ii) Condition (7): On the other hand, when there are no
other functions between to-be-determined-two functions, loading/eviction must happen
between them.

(1 − switch (ida, idb)) ∗ N ≥ num (ida, idb), (6)

switch (ida, idb) ≥ 1 − num (ida, idb). (7)

We choose the number of instruction transfers from the global memory to the local
scratchpad memory as the cost metric. When there is a loading/eviction from function
ida to function idb, we need to get all instructions of function idb through DMAs. As a
result, our objective must be to minimize the total amount of instruction transfer of all
regions in the local scratchpad memory, where sidb is the code size of the function idb.
In summary, we could formulate our objective function as follows:

minimize
∑

ida,idb∈FID

switch (ida, idb) ∗ sidb.

6. COST CALCULATION

6.1. Graphical Code Representation

In order to correctly calculate the management cost and efficiently assign code, we
need to deeply understand the structure of the input program and represent the flow
information and control information in a proper form. We build this information into
an enhanced Control Flow Graph (CFG) known as Global Call Control Flow Graph
(GCCFG) presented by Pabalkar et al. [2008].

6.1.1. Definition of GCCFG.

Definition 1 (Global Call Control Flow Graph). A global call control flow graph (V ,
E) is an ordered acyclic directed graph, where V = VF ∪ VL ∪ VC . Each node v f ∈ VF
with a weight w f on it represents a function or F node, vl ∈ VL denotes a loop or L node,
and vc ∈ VC represents a conditional or C node. w f is the number of times function f
is invoked in the program. An edge eij (eij ∈ E) shows a directed edge between F nodes,
L nodes, and C nodes.

Property. If vi and v j are functions, then the edge represents a function call. If v j is
an L node or a C node, then it represents control flow. If vi is a C node, then the edge
represents one possible path of execution. If vi is a loop, then the edge represents what
is being executed in the body of the loop. If v j is a loop and its ancestor is a loop, then
the edge represents a nested loop execution. The edges are ordered; edges to the left
execute before edges to the right, except in the case of condition nodes. Edges leaving
condition nodes can execute their true or false children, where all true children are
ordered and all false children are ordered.

As an example, Figure 4 shows the GCCFG of the program in Figure 1(a). We ignore
direct recursive function calls F5 in the graph. Since we are concerned with cost between
different functions, the effect of a direct recursive call is that the code necessary to run
the called function is already in memory, resulting in no instruction transfers. To
be noted here, for mutual recursive functions in the program, we treat them as one
function node in the GCCFG. Namely, when code needs to be fetched/evicted, their
instructions will be transferred together.

6.1.2. Construction of GCCFG. In this section, we present our complete algorithm to
construct the GCCFG of an application. The input of our algorithm is all CFGs in the
program. Then all the CFGs are integrated into a GCCFG in two steps:

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

Efficient Code Assignment Techniques for Local Memory on Software Managed Multicores 71:11

Fig. 4. The GCCFG for the code in Figure 1.

Step 1 (Extracting Useful Information): Basic blocks are scanned for the presence of
loops (back edges in a dominator tree), conditional statements (fork and join points), and
function calls (branch and link instructions). The basic blocks containing a loop header
are labeled as loop nodes, those containing a fork point are labeled as conditional nodes,
and the ones containing a function call are labeled as function nodes. If a function is
called inside a loop, the corresponding function node is joined to the loop header loop
node with an edge. If any loop nodes representing nested loops exist, they are also
joined. Function nodes not inside any loop are joined to the first node of the CFG.
The first node, function nodes, loop nodes, and corresponding edges are retained, while
all other nodes and edges are removed. Essentially, this step trims the CFG, while
retaining the control flow and call flow information.

Step 2 (Merging Subgraphs): At the second step, all CFGs are merged by combining
each function node with the first node of the corresponding CFG. The merge ensures
that strict ordering is maintained between the CFGs, that is, if two functions are called
one after another, the first function is a left child and the other function is a right child
of the caller function. One thing that needs to be mentioned herein is that we conser-
vatively expand indirect function calls invoked through function pointers in much the
same way as they were called with equal probability outside of any conditional node.

At the first step, all basic blocks are scanned. Therefore, the complexity is O(|b|),
where |b| is the total number of basic blocks in the application. At the second step
where most basic blocks are trimmed off, the valid number of nodes is much less than
|b|. We can denote this total number of nodes in the final GCCFG as |n|. When we
merge all subgraphs found at the first step, the worst case is that we need to scan all
subgraphs for each node. As a result, the time complexity of the GCCFG construction
algorithm is O(|n|2).

Weight Assignment. The weight assignments for function nodes usually have two
ways: profiling or static estimation. The profiling method is straightforward, as the
exact number of times the loop to be executed can be determined by executing the
program with its input. For example, we could get the number of iterations of a while
loop with an input dependent condition. However, profiling is time consuming, as it
needs to be done every time the input for the application is changed.

To generalize our work, we expect a static compile-time weight assignment scheme.
Here, we present our methodology for estimating the number of function calls on each
function node. We assign the weights on the functions by traversing the GCCFG in a
top-down fashion. Initially, they are assigned to 1. When a loop node is encountered,
the weight on all its descendant function nodes equals the weight of loop node’s nearest
ascendant function node in the path multiplying a fixed constant, loop factor Q. This
ensures that a function that is called inside a deeply nested loop will receive a greater

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

71:12 J. Lu et al.

Fig. 5. An example shows calculating the cost of assignment region {main, F1} and region {F2} into one
region, when using the cost calculation method in Algorithm 1.

weight than other functions. When a conditional node is encountered, the weight on
each descendant function node equals the weight of conditional node’s nearest parent
function node multiplying the branch probability of each edge diverging from the con-
ditional node. We adopted a traditional scheme presented by Smith [1981] to predict
the branch probability. We found the impact of Q is negligible as long as it is larger than
10. Therefore, in the previous Figure 4, Q is chosen to be 10 in the resulted GCCFG of
the example code with our static weight assignment scheme.

6.2. Cost Calculation Graph

6.2.1. Definition of Cost Calculation Graph.

Definition 2 (Cost Calculation Graph). A cost calculation graph (V , E) is a directed
cyclic graph, where E = EB ∪ EN. EB and EN are the sets of “backward edges” and
“normal edges,” respectively. Each node v f ∈ V with a taken probability pf on it
represents a function node. A backward edge eij (eij ∈ EB) shows a loop in the program;
a normal edge eij (eij ∈ EN) shows the order the function is executed.

A cost calculation graph is an estimation of execution trace of a program. The leftmost
graph in Figure 5 shows the cost calculation graph of the GCCFG in Figure 4.

6.2.2. Construction of Cost Calculation Graph. As GCCFG is ordered, the cost calculation
graph could be constructed by modifying the Depth First Search (DFS) algorithm,
where function nodes are put in the same order as the function nodes in GCCFG are
touched in DFS. When a loop node is found, a backward edge will be added after the
traversal of the whole subtree. When a conditional node is met, we would attach all
nodes connected to the conditional node to its parent node, and function nodes in each
diverging path will keep the same order as they are in the order of DFS traversal.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

Efficient Code Assignment Techniques for Local Memory on Software Managed Multicores 71:13

ALGORITHM 1: Algorithm cost (Ra, Rb, G) � G is the cost calculation graph of the managed
application; Ra and Rb stand for two separate regions.
1: for each vertex v in G do � Step 1: remove all other functions from the graph and just keep

the functions in the two regions Ra and Rb
2: if v /∈ Ra and v /∈ Rb then
3: remove v in G and connect from its source function node to its destination function

node in a path;
4: end if
5: end for

6: find all loops in G and put all nodes of each loop into a vector of vector LV.

7: for each loop l ∈ LV do � Step 2
8: if the first function v f and the last function vl in the loop l are identical then
9: move vl out of the loop and put it right close to the function after the loop;
10: end if
11: end for

12: for each function node v ∈ G do � Step 3
13: eliminate identical adjoining functions (vn after v, where there are the same function) in

the graph;
14: if v is the only function in a loop then
15: remove the back edge on v and its corresponding loop count;
16: end if
17: if v is the source node of the back edge and its destination node vn which is beyond the

loop then
18: keep v and remove vn;
19: end if
20: if more than two outgoing edges on v (i.e., branch) then
21: save all first nodes v1i on all paths pi (pi ∈ P, where P are all outgoing edges connecting

to v) to a set F;
22: end if
23: set boolean variable f lag to 1;
24: for each node v f ∈ F do
25: if v f is not the same as v then
26: f lag ← 0;
27: break;
28: end if
29: end for
30: if f lag == 1 then
31: remove all nodes in F;
32: end if
33: end for

34: totalCost← 0 � Step 4: Calculate the cost totalCost. Rule: cost (F) = 1 × branch
probability (F), where F is a function in the program. (The function that is not in the branch
has probability 1).

35: For all functions in a loop, we apply the Rule to compute the total cost in the loop. However,
the total cost must be multiplied by its loop count, and then be added to totalCost.

36: return totalCost;

6.3. Cost Calculation Algorithm

Algorithm 1 outlines the cost calculation algorithm. Line 3 removes all nodes that are
not in code regions Ra and Rb, since we only calculate the cost by merging functions
in two regions together. At step 3, we first eliminate identical adjoining functions in
the graph (line 13). If a function is the only function in a loop, then the loop and its

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

71:14 J. Lu et al.

ALGORITHM 2: Algorithm CMSM (GCCFG, S)
1: SPMregions {set of N regions in the scratchpad memory} � N is the number of functions in

the program
2: Rdest ← 0, Rsrc ← 0;
3: while SPMSize() > S do
4: FindMinBalancedMerge(Rdest, Rsrc, GCCFG);
5: MergeRegions(Rdest, Rsrc);
6: SPMregions.erase(Rsrc);
7: end while

ALGORITHM 3: FindMinBalancedMerge (&Rdest, &Rsrc, GCCFG)
1: minMergeCost ← ∞, tmpCost ← 0;
2: for all combination of regions R1, R2 ∈ SPMregions do
3: size1 ← RegionSize(R1), size2 ← RegionSize(R2);
4: max ← max(size1, size2), min ← min(size1, size2);
5: tmpCost = cost(R1, R2, GCCFG) * max−min

(max+min)2
;

6: if tmpCost < minMergeCost then
7: minMergeCost = tmpCost;
8: Rdest = R1;
9: Rsrc = R2;
10: end if
11: end for

corresponding loop count are removed (lines 14–16). If two identical function nodes are
separated by a loop, then we only keep the one that is inside the loop (lines 17–19). From
line 20 to line 22, we collect all first nodes on all paths connecting to the function node
v. If they denote the same function as v, then we remove all first nodes in all diverging
paths (lines 23–32). At the final step (step 4), we can get the code management cost
when merging two regions Ra and Rb (lines 34–36), as we traverse the cost graph from
step 1 to step 3. Therefore, the timing complexity of the cost calculation algorithm is
O(|V f |), where |V f | is the total number of nodes in the cost calculation graph.

Figure 5 shows an illustration of our algorithm. In this example, we are trying to
evaluate the cost of assigning region {main, F1} and region {F2} in one region. We first
remove all irrelevant functions in the program at step 1. Step 2 moves the last function
in the loop out of the loop if it is the same as the first function in the loop. At step 3,
we remove all redundant functions. When there is only one function in a loop, we can
remove the loop information to further eliminate the redundancy. Finally, we calculate
the assignment cost at step 4, where we consider the impact of branch probability and
the existence of loops.

Proof of Correctness. As we only calculate the cost of assigning functions from two
regions into one region, the removal of other unrelated functions at step 1 will not
change the correctness of our final cost calculation. Step 2 will not affect the correctness
of the calculation, since there is no function loading/eviction in the loop if the first and
the last function in the loop are the same. However, one copy of node must be put
in the graph, since there might exist a function loading/eviction right after the loop.
When two adjoining functions in the graph are identical, we assert there is no function
loading/eviction in the target region. Therefore, we can remove redundant copies at
step 3. Even more, if the function is the only function in a loop, the loop information
must be removed as well, as the function itself will not result in any instruction transfer.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

Efficient Code Assignment Techniques for Local Memory on Software Managed Multicores 71:15

7. CODE ASSIGNMENT HEURISTIC: CMSM

Algorithm 2 outlines our CMSM heuristic. It starts with an assignment, in which each
function is assigned to a separate region (line 1). Now all combinations of two regions
are tried to be merged until the total space meets memory constraints (while loop,
lines 3–7). To do this, we first find two “balanced” regions with minimal merge cost
through function FindMinBalancedMerge() at line 4. We then merge two regions and
update the region information in the set SPMregions (lines 5 and 6).

Function FindMinBalancedMerge() is described in Algorithm 3. To do this, we choose
a region pair (R1, R2) (Algorithm 3, lines 2–11), and calculate its merge cost at line 5.
Here, we utilize the cost function from Algorithm 1. In addition, there is a balance
factor max−min

(max+min)2 . It is inclined to place the functions having close object sizes into the
same region. It is important, since we can compress the total code space in the local
scratchpad memory and use less memory. This remaining space could result in more
regions as long as there are functions that could be accommodated to them. Even if
no more regions would be generated, it is still beneficial to use less space to achieve
competitive performance. As stated before, the local scratchpad memory is shared
among global data, stack data, heap data, and instructions of the managed program;
less space consumed by instructions indicates more space for other data that could
eventually result in better performance.

Complexity. The while loop at line 3 in Algorithm 2 merges two regions at a time.
Since in the worst case, all regions might have to be merged into one, this loop can
execute |V f | times, where |V f | is the total number of function nodes in the GCCFG.
Inside this, the for loop (lines 2–11 in Algorithm 3) runs for each pair of regions. This
adds O(|V f |2) complexity to the time. Inside the loop, there is a cost calculation that
has complexity O(|V f |). Thus, the worst case timing complexity of CMSM is O(|V f |4).

8. CMSM OPTIMIZATION: CMSM_ADVANCED

After running CMSM, we may have unused bytes remaining in the available local
scratchpad memory. In the event CMSM returns a solution with unused memory space
at least as large as the smallest function, we can further improve the management per-
formance by creating new regions and splitting functions into them. We name this op-
timization to the CMSM algorithm given in Algorithm 4, CMSM_advanced. At lines 8–
20, the algorithm removes functions to new regions beginning with the function having
the greatest split benefit as long as they fit into remaining memory and the source
region contains more than one function. We continue the algorithm until the remain-
ing memory is too small to hold the smallest function. As this expansion process does
not increase the computational complexity more than O(|V f |4), the worst case timing
complexity of CMSM_advanced is still O(|V f |4). Expanding a function to a new region
is guaranteed to reduce the management cost since removing a function from a re-
gion with multiple functions must reduce the region’s interference cost, and adding a
function to an empty region results in no additional cost.

9. EMPIRICAL EVIDENCE

9.1. Experimental Setup

We use the IBM Cell processor [Flachs et al. 2006] as our hardware platform. It is a
multicore processor, and gives us access to six of the eight SPEs. However, we utilize
the main core and only one SPE available in the IBM Cell processor in most of our
experiments, except the one designed for demonstrating the scalability of our heuristics
in Section 9.7. This architecture has a global memory on the main core, and only a local
scratchpad memory on each execution core, or SPE. Scratchpad memory is small, and

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

71:16 J. Lu et al.

Table I. Benchmarks, their Minimum Sizes of Code Space, and
Maximum Sizes of Code Space

Benchmark Number of functions min code (B) max code (B)
Adpcm_decoding 13 1,552 6,864
Adpcm_encoding 13 1,568 6,880
BasicMath 20 4,272 12,128
Dijkstra 26 2,496 9,216
FFT 27 2,496 12,776
FFT_inverse 27 2,496 12,776
String_Search 17 632 4,708
Susan_Edges 24 19,356 37,428
Susan_Smoothing 24 19,356 37,428

ALGORITHM 4: Algorithm CMSM advanced (GCCFG, S)
1: SPMregions {set of N regions in the scratchpad memory} � N is the number of functions in

the program
2: Rdest ← 0, Rsrc ← 0;
3: while SPMSize() > S do
4: FindMinBalancedMerge(Rdest, Rsrc, GCCFG);
5: MergeRegions(Rdest, Rsrc);
6: SPMregions.erase(Rsrc);
7: end while
8: while SPMSize() < S do � expand the assigned regions
9: remainning space = S - SPMSize();
10: max split = 0, max f;
11: for all function f ∈ F, where F = {all functions which are less than remainning space}

do
12: split = cost(R, ∅, GCCFG) - cost(R − { f }, ∅, GCCFG), R is the region f is originally

assigned.
13: if split > max split then
14: max split = split;
15: max f = f;
16: end if
17: end for
18: remove max f from its current region
19: create a new region and add max f
20: end while

therefore the program needs to be managed in software when its footprint is larger
than the memory available.

The benchmarks used for experimentation are from the Mibench suite [Guthaus
et al. 2001] and are presented in Table I. All the information is profiled by compiling
programs for SPE. Number of functions is the total number of functions in the program,
including library functions tailored for SPE. min code is the smallest possible assign-
ment size of code space, defined by the size of the largest function in the application.
max code is the total size of the program.

9.2. Overall Performance Comparison

While the results are scalable for all benchmarks, Figure 6 shows the execution time
of the binary compiled using each heuristic for four representative applications. The
x axis shows a wide range from min code to max code of each program, with the
step size 256 bytes. As observed from the figure, when the code space is very tight,

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

Efficient Code Assignment Techniques for Local Memory on Software Managed Multicores 71:17

Fig. 6. Performance comparison against FMUM and FMUP.

all heuristics achieve the same assignment, that is, assigning all the functions in
one region. However, as we start relaxing the code size constraint, CMSM typically
performs better than FMUM and FMUP. There are two main reasons. First, our CMSM
is inclined to place two functions with small merge cost and similar code size in one
region at each step of merging. It is achieved by using a “balance” factor described in
our algorithm. The benefit of doing so is to increase the number of regions in the code
space. We expect assignment solutions with more regions to give lower overhead costs,
as only functions assigned to the same region will swap each other during runtime.
Second, our CMSM considers the effect of branches in the applications and utilizes a
correct management cost calculation scheme.

Their impact is further evaluated in Section 9.4. The reverse effect is also visible.
When the code size constraint is extremely relaxed, for example, larger than 70%
of max code present in Table I, all three algorithms again achieve very similar code
assignment. This is because there are quite a few functions assigned to one region
when the code space is sufficient enough. The small differences in code assignment
generate negligible effect on performance. Note that code assignments created by the
CMSM do not always outperform the other two heuristics. For example, when memory
available for instructions of benchmark “dijkstra” is 3, 520 bytes in Figure 6(b), CMSM
is worse than FMUP. This is because FMUP has to do very few steps, while CMSM
needs to do a lot of merges. The more steps a heuristic has to take, the errors in each
step accumulate, and eventually a worse assignment might be generated. Although
our heuristic does not consistently gives good results, it gives better results most of
the time. We tested the three heuristics for all code size constraints from minimum to
maximum. On average over all benchmarks, CMSM gives a better result than other
two algorithms 89% of the time.

Another important observation from Figure 6 is that, applications tend to have less
execution time when their code space becomes larger. A large code space usually leads
to a greater number of regions in it, and therefore less functions overlap each other in
regions. This explains the trade-off between the performance and the memory available
for instructions.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

71:18 J. Lu et al.

Fig. 7. Memory utilization ratio comparison between CMSM and CMSM_advanced.

Fig. 8. Impact of accurate cost calculation on FMUM and FMUP.

9.3. Comparison Among CMSM, CMSM_Advanced, and ILP

When we compare the performance of applications that managed with CMSM and that
with CMSM_advanced, we notice that optimized algorithm CMSM_advanced produces
better code assignment than CMSM. The performance can be improved by an average
of 5%, and up to 11%. The improvement is particularly large when memory is severely
restricted. The limited performance of the CMSM algorithm is due to the fact that
it can produce solutions that do not fully utilize available memory as optimized by
the CMSM_advanced algorithm, and the optimized algorithm tends to produce solu-
tions with more regions. As shown in Figure 7, CMSM_advanced can utilize the local
scratchpad memory 10% better than CMSM. When compared with ILP results, our
greedy algorithm CMSM_advanced performs an average of 5% worse.

9.4. Importance of Accurate Cost Calculation

In this experiment, we conducted another set of experiments that evaluates the im-
pact of accurate cost estimation on code assignment heuristics. We change the memory
size from 20% of the maximum size to 70% of the maximum size for each benchmark
and plot the average results in Figure 8. The y axis is the normalized execution time,
where the runtime of application with FMUM_accurate is normalized to its perfor-
mance with FMUM and the runtime of application with FMUP_accurate is normalized
to its performance with FMUP, respectively. FMUM_accurate and FMUP_accurate use
previous heuristics [Jung et al. 2010], but with our correct management overhead cal-
culation instead of theirs. The x axis presents two categories for all our tested programs.
Applications in category I have simple structure and very few branches, and applica-
tions in category II are the programs that contain complicated call patterns and many

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

Efficient Code Assignment Techniques for Local Memory on Software Managed Multicores 71:19

Fig. 9. Scalability of CMSM_advanced on multicore processors.

branches. As shown in Figure 8, programs from the category II benefit from accurate
cost calculation. Their performance is improved by 12% when managed with accurate
management cost estimation method. This benefit comes by considering branch proba-
bilities as weights during the course of management overhead calculation. We believe
our improvement is very important, as most large programs do have intricate call
patterns and lack of considering branches in the program will lead to inferior function
assignment for code management.

9.5. Compile Time Comparison

Including branch probabilities and correctly calculating the management overhead
complicate the compilation. In this section, we evaluate the compilation time of gen-
erating linker script by FMUM, FMUP, CMSM, and CMSM_advanced heuristics, re-
spectively. We found that, even with an increase for our algorithms (less than 5% on
average), the compilation time for the set of benchmarks is always less than a minute.
This is definitely tolerable for several embedded applications that are compiled once,
distributed as binaries, and executed many times. This profile closely fits the kinds of
applications that are intended for embedded processors, for example, multimedia and
office applications.

9.6. Accuracy of Weight Assignment

We examined the goodness of our static weight assignment on function nodes of GC-
CFGs of nine applications. We compared the execution time of each benchmark using
static assignment with its execution time using profile-based assignment. On aver-
age, we found both schemes achieve similar performance for the set of benchmarks.
This implies that we can eliminate the compile time overhead to obtain profiling in-
formation through the loop-based function weight assignment. It also makes the code
management technique more comprehensive, since profiling large applications is time
consuming and intimidating.

9.7. Scalability

Figure 9 shows the results when we examined the scalability of our CMSM_advanced
heuristic on SMM architectures. We normalized the execution time of each benchmark
with the number of SPEs to its execution time with only one SPE, and show them on the
y axis. In this experiment, we executed the identical application on different numbers
of cores. According to the graph, the runtime difference with the increased number of
SPEs is negligible even in such aggressive configuration. In this configuration, DMA
transfer occurs almost at the same time when instructions need to be moved between

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

71:20 J. Lu et al.

the global memory and the local memory. This will make the Elemental Interconnect
Bus (EIB) saturated. Benchmark BasicMath increases most steeply, as there are many
instruction transfers in the program, which makes each SPE have more execution
time. It should be noted that, in this experiment, though different cores are running
the same benchmark, a separate binary executable file is generated for each core. In
other words, each core has a separate image of the benchmarks that are located in
different addresses in the virtual memory space. As a result, this experiment will not
profit from the second level cache of CELL.

10. COMPARISON AGAINST HARDWARE CACHE

When there is a code miss in local scratchpad memory (SPM), DMA is required for in-
struction transfer between global memory and local memory. Likewise, when there is an
instruction miss in hardware instruction cache, there is also a penalty for applications.
In this section, we show the comparison of code management overhead between SPM-
based architecture and cache-based architecture. The management overhead models
for them are as follows:

O(cache) = Nmisses ∗ penalty(miss),

O(SPM) = Ninsns ∗ cycle(insn)/freq +
∑

DMA cost(f),

where Nmisses is the total number of cache misses, penalty(miss) is cache penalty per
miss, Ninsns is the total extra instructions incurred by code management library function
_ _ovly_load(), cycle(insn) is cycles per instruction, f req is the system frequency, and f
means a function.

∑
DMA cost(f) is the total DMA cost by transferring instructions.

The DMA overhead measurements taken on the IBM Cell processor can be modeled to
within an average error of 0.4% using the following equation [Kistler et al. 2006]:

DMA cost (f) =
{

3.9E − 5 ∗ size (f) + 0.17μs if size (f) ≤ 2kB;
7.3E − 5 ∗ size (f) + 0.1μs if size (f) > 2kB.

(8)

We collect instruction cache misses (Nmisses) through SimpleScalar [Austin et al.
2002] by configuring a four-way associative instruction cache with the size equaling
the size of code space in the local scratchpad memory. In addition, we compute the
number of extra instructions (Ninsns) as the average number of instructions per function
_ _ovly_load() call multiplied by the total number of function calls in the managed
application. The number of instructions of _ _ovly_load() is estimated statically by
manually going through its disassembly code.

In this experiment, for each benchmark, we set the scratchpad memory size and cache
size as 2X bytes, varying from the minimum size to the maximum size and doubling the
space at each step. In addition, we use the average number of misses and the average
management overhead of nine applications to demonstrate the design alternative.
When counting the miss penalty for hardware cache, we vary the miss penalty per miss
from 0.01ps to 1000ns. As shown in Figure 10, when the penalty per miss (penalty(miss))
of cache approaches 260 pico seconds, the total miss penalty of cache is similar to
our CMSM_advanced. When penalty(miss) is less than 260ps, cache achieves better
performance. We believe it is impossible, as 260ps are merely 0.83 cycle on the Cell
processor [Flachs et al. 2006]. Under feasible circumstance, our CMSM_advanced has
much less penalty than cache has. The main reason for less overhead of software
scheme is that, the management granularity is coarser with software scheme (namely,
function object granularity), but the cache line sizes in cache-based architectures are
not large enough. We can further deduce less total execution time from less penalty
on SPM-based architectures. Since scratchpad memory is more power efficient than

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

Efficient Code Assignment Techniques for Local Memory on Software Managed Multicores 71:21

Fig. 10. Performance comparison against cache.

Table II. Comparison between Hardware Management Technique and
Software Management Technique

Compare Hardware management Software management
Performance Worse than cache Better than cache
Hardware Overhead Yes No
Software Overhead No Yes
Flexibility Bad Good

a cache [Banakar et al. 2002], the less execution time of applications on SPM-based
architectures implies less energy consumption.

11. COMPARISON AGAINST HARDWARE MANAGED SCRATCHPAD MEMORIES

In this section, we compare our technique with hardware managed scratchpad mem-
ories. A hardware solution of code management for scratchpad memory has been pro-
posed in 2011 [Metzlaff et al. 2011]. Another similar technique has been presented
by Schoeberl [2009]. Hardware techniques use extra hardware components to manage
code. However, it will incur extra power consumption and extra chip area overhead.
Compared to hardware managed scratchpad memories, our technique can manage
application code without any hardware overhead. Moreover, our software code man-
agement technique is very flexible. Instead of managing code for every function call,
it inserts management library functions only when the code management is needed.
This largely reduced the average software overhead caused by the extra management
library instructions. However, hardware managed scratchpad memories incur extra
hardware overhead anyway, even for the cases when data management is not needed.
As for performance, hardware managed scratchpad memories cannot compete with
caches in terms of performance [Metzlaff et al. 2011], while as proved in Section 10,
our management technique can outperform caches. The comparison results are shown
in Table II.

12. SUMMARY

SMM architectures are one of the promising solutions to the problem of scaling the
memory hierarchy. However, since scratchpad memory cannot always accommodate
the whole task assigned to it, certain schemes are required to mange code, global data,
stack data, and heap data of the program to enable its execution. This article focuses on
managing code between the global memory and the local memory, since an efficient and
effective code management scheme is of utmost importance to the overall performance
of the system. In this article, we formally define the problem of assigning code for

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

71:22 J. Lu et al.

SMM architectures at the granularity of function objects. In addition, we propose a
correct cost calculation for code assignment, as well as two heuristic approaches named
CMSM and CMSM_advanced for the same problem. Our experimental results show
that CMSM and CMSM_advanced generate code assignments that lead to significant
performance improvement compared to previous work. When compared to hardware
cache, we also found that scratchpad memory performs much better.

REFERENCES

Federico Angiolini et al. 2004. A post-compiler approach to scratchpad mapping of code. In Proceedings
of the 2004 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems
(CASES’04). 259–267.

Todd Austin, Eric Larson, and Dan Ernst. 2002. SimpleScalar: An infrastructure for computer system
modeling. Computer 35, 2 (Feb. 2002), 59–67.

Ke Bai, Di Lu, and Aviral Shrivastava. 2011a. Vector class on limited local memory (LLM) multi-core
processors. In Proceedings of the 14th International Conference on Compilers, Architectures and Synthesis
for Embedded Systems (CASES’11). 215–224.

Ke Bai, Aviral Shrivastava, and Saleel Kudchadker. 2011b. Stack data management for limited local memory
(LLM) multi-core processors. In Proceedings of the 2011 IEEE International Conference on Application-
Specific Systems, Architectures and Processors (ASAP). 231–234.

Ke Bai, Jing Lu, Aviral Shrivastava, and Bryce Holton. 2013. CMSM: An efficient and effective code
management for software managed multicores. In 2013 IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS). 1–9.

Ke Bai and Aviral Shrivastava. 2010. Heap data management for limited local memory (LLM) multi-core
processors. In Proceedings of the 8th IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS’10). 317–326.

Ke Bai and Aviral Shrivastava. 2013a. A software-only scheme for managing heap data on limited local
memory (LLM) multicore processors. ACM Transactions on Embedded Computing Systems (TECS) 13,
1 (2013), 5.

Ke Bai and Aviral Shrivastava. 2013b. Automatic and efficient heap data management for limited local
memory multicore architectures. In Proceedings of the Conference on Design, Automation and Test in
Europe (DATE’13). 593–598.

Michael A. Baker, Amrit Panda, Nikhil Ghadge, Aniruddha Kadne, and Karam S. Chatha. 2010. A perfor-
mance model and code overlay generator for scratchpad enhanced embedded processors. In Proceedings
of the 2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS’10). 287–296.

Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, Mahesh Balakrishnan, and Peter Marwedel. 2002. Scratch-
pad memory: Design alternative for cache on-chip memory in embedded systems. In Proceedings of the
10th International Symposium on Hardware/Software Codesign. 73–78.

Garo Bournoutian and Alex Orailoglu. 2011. Dynamic, multi-core cache coherence architecture for power-
sensitive mobile processors. In Proceedings of CODES+ISSS. 89–98.

Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, Nima Honarmand, Sarita V. Adve, Vikram
S. Adve, Nicholas P. Carter, and Ching-Tsun Chou. 2011. DeNovo: Rethinking the memory hierarchy for
disciplined parallelism. In Proceedings of the 2011 International Conference on Parallel Architectures
and Compilation Techniques (PACT’11). 155–166.

Benoı̂t Dupont de Dinechin, Pierre Guironnet de Massas, Guillaume Lager, Clément Léger, Benjamin Or-
gogozo, Jérôme Reybert, and Thierry Strudel. 2013. A distributed run-time environment for the Kalray
MPPA R©-256 integrated manycore processor. Procedia Computer Science 18 (2013), 1654–1663.

Bernhard Egger, Seungkyun Kim, Choonki Jang, Jaejin Lee, Sang Lyul Min, and Heonshik Shin. 2010.
Scratchpad memory management techniques for code in embedded systems without an MMU. IEEE
Transactions on Computers 59, 8 (2010).

Bernhard Egger, Jaejin Lee, and Heonshik Shin. 2006. Scratchpad memory management for portable systems
with a memory management unit. In Proceedings of the 6th ACM & IEEE International Conference on
Embedded Software (EMSOFT’06). 321–330.

Brian Flachs, Shigehiro Asano, Sang Dhong, Peter Hofstee, Gilles Gervais, Roy Kim, Tien Le, Peichun Liu,
Jens Leenstra, John Liberty, Brad Michael, Hwa-Joon Oh, Silvia Melitta Mueller, Osamu Takahashi,
Akiyuki Hatakeyama, Yukio Watanabe, Naoka Yano, Daniel A. Brokenshire, Mohammad Peyravian,
VanDung To, and Eiji Iwata. 2006. The microarchitecture of the synergistic processor for a cell processor.
IEEE Solid-State Circuits 41, 1 (2006), 63–70.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

Efficient Code Assignment Techniques for Local Memory on Software Managed Multicores 71:23

Antonio Garcı́a-Guirado, Ricardo Fernández-Pascual, Alberto Ros, and José M. Garcı́a. 2011. Energy-efficient
cache coherence protocols in chip-multiprocessors for server consolidation. In Proceedings of the 2011
International Conference on Parallel Processing (ICPP’11). 51–62.

Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor Mudge, and Richard B.
Brown. 2001. MiBench: A free, commercially representative embedded benchmark suite. In Proceedings
of Workload Characterization. 3–14.

Bryce Holton, Ke Bai, Aviral Shrivastava, and Harini Ramaprasad. 2014. Construction of GCCFG for inter-
procedural optimizations in software managed manycore (SMM) architectures. In 2014 International
Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES’14). 1–10.

IBM. 2006. Programmer’s Guide: Software Development Kit for Multicore Acceleration Version 3.1. Technical
Report.

Intel. 2010. Intel core i7 processor extreme edition and intel core i7 processor datasheet, volume 1. In White
paper. Intel.

Intel. 2012. The SCC Programmer’s Guide. https://communities.intel.com/servlet/JiveServlet/previewBody/
5684-102-8-22523/SCCProgrammersGuide.pdf. (2012).

Andhi Janapsatya, Aleksandar Ignjatović, and Sri Parameswaran. 2006. A novel instruction scratchpad
memory optimization method based on concomitance metric. In Proceedings of the Asia and South
Pacific Conference on Design Automation (ASP-DAC). 612–617.

Choonki Jang, Jaejin Lee, Bernhard Egger, and Soojung Ryu. 2012. Automatic code overlay generation and
partially redundant code fetch elimination. ACM Transactions on Architecture and Code Optimization
9, 2 (June 2012), 10:1–10:32.

Seung Chul Jung, Aviral Shrivastava, and Ke Bai. 2010. Dynamic code mapping for limited local mem-
ory systems. In Proceedings of the 21st IEEE Internatonal Conference on Application-Specific Systems
Architectures and Processors (ASAP’10). 13–20.

Michael Kistler, Michael Perrone, and Fabrizio Petrini. 2006. Cell multiprocessor communication network:
Built for speed. IEEE Micro 26, 3 (May 2006), 10–23.

Lian Li, Hui Feng, and Jingling Xue. 2009. Compiler-directed scratchpad memory management via
graph coloring. ACM Transactions on Architecture and Code Optimization 6, 3, Article 9 (Oct. 2009),
17 pages.

Lian Li, Lin Gao, and Jingling Xue. 2005. Memory coloring: A compiler approach for scratchpad memory
management. In Proceedings of 14th International Conference on Parallel Architectures and Compilation
Techniques (PACT’05). 329–338.

Jing Lu, Ke Bai, and Aviral Shrivastava. 2013. SSDM: Smart stack data management for software managed
multicores (SMMs). In Proceedings of the 50th Annual Design Automation Conference (DAC’13). 149–
156.

Stefan Metzlaff, Irakli Guliashvili, Sascha Uhrig, and Theo Ungerer. 2011. A dynamic instruction scratchpad
memory for embedded processors managed by hardware. Architecture of Computing Systems 6566 (2011),
122–134.

Pierre Michaud, André Seznec, Damien Fetis, Yiannakis Sazeides, and Theofanis Constantinou. 2007. A
study of thread migration in temperature-constrained multicores. ACM Transactions on Architecture
and Code Optimization 4, 2, Article 9 (2007).

Amit Pabalkar, Aviral Shrivastava, Arun Kannan, and Jongeun Lee. 2008. SDRM: Simultaneous deter-
mination of regions and function-to-region mapping for scratchpad memories. In Proceedings of 15th
International Conference on High Performance Computing (HPC’08). 569–582.

Martin Schoeberl. 2009. Time-predictable cache organization. In Software Technologies for Future Depend-
able Distributed Systems. 11–16.

James E. Smith. 1981. A study of branch prediction strategies. In Proeedings of 8th Annual Symposium on
Computer Architecture (ISCA’81). 135–148.

Stefan Steinke, Nils Grunwald, Lars Wehmeyer, Rajeshwari Banakar, Mahesh Balakrishnan, and Peter
Marwedel. 2002. Reducing energy consumption by dynamic copying of instructions onto on-chip memory.
In Proceedings of 15th International Symposium on System Synthesis (ISSS’02). 213–218.

Tom’s Hardware. 2010. Raw performance: SiSoftware sandra 2010 pro (GFLOPS).
Loc Truong. 2009. Low Power Consumption and a Competitive Price Tag Make the Six-Core TMS320C6472

Ideal for High-Performance Applications. Technical Report. Texas Instruments.
Sumesh Udayakumaran, Angel Dominguez, and Rajeev Barua. 2006. Dynamic allocation for scratch-pad

memory using compile-time decisions. Transactions on Embedded Computing Systems 5, 2 (2006), 472–
511.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

https://communities.intel.com/servlet/JiveServlet/previewBody/5684-102-8-22523/SCCProgrammersGuide.pdf
https://communities.intel.com/servlet/JiveServlet/previewBody/5684-102-8-22523/SCCProgrammersGuide.pdf

71:24 J. Lu et al.

Kaushik Vaidyanathan, Qiuling Zhu, Lars Liebmann, Kafai Lai, Stephen Wu, Renzhi Liu, Yandong Liu,
Andzrej Strojwas, and Larry Pileggi. 2015. Exploiting sub-20-nm complementary metal-oxide semicon-
ductor technology challenges to design affordable systems-on-chip. Journal of Micro/Nanolithography,
MEMS, and MOEMS 14, 1 (2015), 011007–011007.

Manish Verma and Peter Marwedel. 2006. Overlay techniques for scratchpad memories in low power em-
bedded processors. IEEE VLSI 14, 8 (2006), 802–815.

Yi Xu, Yu Du, Youtao Zhang, and Jun Yang. 2011. A composite and scalable cache coherence protocol for
large scale CMPs. In Proceedings of the International Conference on Supercomputing (ICS’11). 285–294.

Received February 2014; revised October 2014; accepted February 2015

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 71, Publication date: December 2015.

