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ABSTRACT
Software Managed Multicore (SMM) architectures have been
proposed as a solution for scaling the memory architecture.
In an SMM architecture, there are no caches, and each core
has only a local scratchpad memory. If all the code and data
of the task to be executed on an SMM core cannot fit on the
local memory, then data must be managed explicitly in the
program through DMA instructions. While all code and
data need to be managed, an efficient technique to manage
stack data is of utmost importance since an average of 64%
of all accesses may be to stack variables [16]. In this paper,
we formulate the problem of stack data management opti-
mization on an SMM core. We then develop both an ILP
and a heuristic - SSDM (Smart Stack Data Management)
to find out where to insert stack data management calls in
the program. Experimental results demonstrate SSDM can
reduce the overhead by 13X over the state-of-the-art stack
data management technique [10].

Categories and Subject Descriptors
D.3.4 [Software]: Processors—Code generation, Compilers,
Optimization

General Terms
Algorithm, Design, Experimentation, Performance

Keywords
Stack data, local memory, scratchpad memory, SPM, em-
bedded systems, multi-core processor

1. INTRODUCTION
As we scale the number of cores in a processor, scal-

ing the memory hierarchy is a major challenge. Several
computer architects believe that completely cache coher-
ent architectures will not scale when there are hundreds
and thousands of cores. Recently, Intel manufactured a
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48-core non-cache-coherent architecture, called Single-chip
Cloud Computer or SCC [3]. However, caches still con-
sume large amounts of power and die area. A promising
option for a more power-efficient and scalable memory hi-
erarchy is to have only scratchpad memory (SPM) in the
cores. Since scratchpads consume 30% less area and power
than a direct mapped cache of the same effective capac-
ity [11], Software Managed Multicore (SMM) architectures
can be extremely power-efficient. A very good example of
SMM memory architecture is the Cell processor that is used
in the Sony Playstation 3. Its power efficiency is around 5
GFlops per watt [14], while the power efficiency of Intel i7
4-core Bloomfield 965 XE is only 0.5 GFlops per watt [1,2].

Software Managed Multicore (SMM) architecture is a truly
“distributed memory architecture on-a-chip.” Therefore, ap-
plications on it require programmers to write several inter-
acting tasks. The tasks are then mapped to the cores of
the SMM architecture. Conventionally, main task executes
on main core and creates execution tasks, which are then
distributed and executed on execution cores. Main core has
a large global or main memory, but execution cores have
only a small local memory (the scratchpad memory). The
execution cores can directly access only their local memory.
To access other memories, including the global memory, ex-
plicit DMA instructions are needed in the application. In
such architectures, the local memory is shared among code,
and all data (stack, global and heap) of the task executing
on the core. If the task can fit into the local memory, then
extremely power-efficient execution can be achieved – and
this is indeed the promise of SMM architectures.

However, for the general case, when all the code and data
of the task do not fit in the local memory, explicit data
management must be done to enable its execution. The
programmer can do this, by bringing in the data/code be-
fore they need it, and evicting it back to the global memory
after it is no longer needed. This is very difficult, since the
programmer must now not only be aware of the local mem-
ory available in the architecture, but also be cognizant of the
memory requirement of the task at every point in the exe-
cution of the program. Estimating the memory requirement
is difficult for C/C++ programs, since stack and heap sizes
may be variable and input data dependent. This difficulty of
programming these SMM architectures has been the biggest
roadblock in the success of extremely power-efficient SMM
architectures.

To enable execution on the core of an SMM architecture,
all code and data must be managed on the local scratchpad.
We have started to develop techniques to manage code [18],



Figure 1: Function-level Stack Management - (a) an
example code, (b) the same code with function stubs fci
and fco inserted before and after each function call. (c)
when the program executes, fci() may evict existing func-
tion frames to the global memory to make space for the in-
coming function frame, and fco() may bring back the call-
ing function.

stack data [10, 29] and heap data ( [6, 8, 9] for its form in
C, [7] for its form in C++) on the cores with only scratch-
pad memories. Of these techniques, developing efficient ap-
proaches to manage stack data is especially important, since
an average of 64% of all accesses in embedded applications
may be to stack variables [16].

While the state-of-the-art stack data management scheme
[10] enables managing stack data of any task on any SPM
size (as long as the SPM size is larger than the size of the
largest stack frame), there is a lot of room for improving the
efficiency of stack data management. The opportunities lie
in i) increasing the granularity of management, ii) not per-
forming management when not absolutely needed, iii) per-
forming minimal work each time management is performed,
i.e., low instruction overhead of management library. To
perform these optimizations, this paper makes two contri-
butions:
• Problem Formulation: We formulate the optimiza-

tion problem of where to insert the management func-
tions so as to minimize the management overhead.
We show that the function placement problem can be
described as that of finding an optimal cutting of a
weighted call graph (WCG). We believe problem defi-
nition is very important, and think that lack of formal
problem definition is the reason behind high overheads
of previous approaches to stack data management.
• Efficient Heuristic: Insights from the problem for-

mulation enable us to design an effective heuristic,
which we name SSDM. SSDM takes the WCG of the
program, and then generates an efficient function place-
ment of data management functions that satisfies the
memory constraint on the local memory, while mini-
mizing the management overhead.

Experimental results on several benchmarks from MiBench
demonstrate SSDM can reduce the overhead by 13X over the
current state-of-the-art stack management technique [10].

2. BACKGROUND AND STATE-OF-THE-ART
Scratchpad memories have been used in embedded sys-

tems for a long time, since they may be faster, and lower-
power than caches [11]. However, unlike caches (in which
the data management is in hardware and software is com-
pletely oblivious of it), the data management must be done
explicitly in the software in order to use them. As a result,
techniques have been developed to manage code [5,13,17,30],

Figure 2: Pointer Management - Function F2 accesses
the pointer p, which points to a local variable ‘a’ of func-
tion F1. Since ‘a’ is a local variable on the stack of F1,
it has a local address. When F2 is called, if F1 is evicted
from the local memory, then the pointer p will point to a
wrong value. This is fixed by assigning a global address to
the pointer when it is created (through l2g), and then when
needed, it is accessed through g2l. Finally it is written back
using wb.

global variables [19, 20, 26, 30], stack data [15, 22, 23, 25, 27,
28, 30] and heap data [12, 24, 28] on scratchpad memories.
However, these solutions are not applicable for SMM cores
because of the difference in memory hierarchy of SMM cores
and the traditional embedded cores. In typical embedded
cores, the scratchpad memory is in addition to the regular
cache hierarchy. This implies that applications can execute
on embedded cores without using the scratchpad. However,
frequently needed data can be mapped to the scratchpad
memory to improve performance and power. On the other
hand, the scratchpad is the only memory in the core of
SMM architecture. Therefore everything must be accessed
through the scratchpad, the only question is how to perform
the management correctly and efficiently.

This paper focuses on stack data management, since an
average of 64% of all accesses in embedded applications may
be to stack variables [16]. Previous stack data management
techniques (both [10, 29]) propose to manage stack data at
function level granularity. This is done through code trans-
formations shown in Figure 1. Figure 1 (a) shows an ex-
ample original code, and (b) shows the transformed code.
The fci() and fco() calls are inserted before and after each
function call. The function stub fci() makes space for the
about-to-be-called function (by removing previous function
frames). The function stub fco() brings back the frame of
the calling function, in case it was evicted. The execution
of the transformed program is depicted in (c), which shows
that if the space for stack was 40 bytes, and each function
frame was 20 bytes, then when function F2 is called, there
is no more space for it. The fci() will evict the frame of F0
out of the local memory to make space for the stack frame
of F2. The fco() at return from function F1, will bring the
function frame of F0 back in the local memory.

If a function accesses stack variables of another (ances-
tor) function through pointers (that may be passed to it as
function parameters, or in other data structures), then there
may be a problem. The problem, as shown in Figure 2 is
that the pointer to a stack variable will be to a local ad-
dress, since the stack is created in the scratchpad. However,
when the pointer to a stack variable of an ancestor func-



Figure 3: Circular Stack Management

tion is accessed, that function stack frame may have been
evicted by the stack data management. Then the pointer
will point to a wrong value. Bai et al. [10] extend the stack
management approach to handle pointers correctly. To re-
solve pointers, they convert the local addresses of the point-
ers to their global addresses at the time of their definition
(through the use of l2g function stub), and at the time of
pointer access, the data pointed to is brought into the local
memory (through the use of g2l function stub), and after
the program is done accessing, it is finally written back to
the global memory (through the use of wb function stub).
In this paper, we adopted the stack pointer management
scheme in [10].

3. MOTIVATION
The state-of-the-art stack data management scheme [10]

enables managing stack data of any task on any amount
of space on the scratchpad and manages all stack pointers
correctly. However, the management overhead is high, and
the management is not optimized. The objective of this
paper is to optimize stack data management, and reduce its
overhead. Optimization opportunities lie in:

Opt1 - Increasing the granularity of management:
Not only in SMM architectures, but in all multicore architec-
tures, as the number of cores increases, the memory latency
of a task will be very strongly dependent on the number
of memory requests. This is because memory pipelines are
becoming longer, and a large part of latency is the waiting
time to get the chance to access memory. Therefore, it will
be better to make small number of large requests, than large
number of small memory requests. So the question is: how
to increase the granularity of stack data management, even
beyond function stack frames.

Opt2 - Not performing management when not ab-
solutely needed: In existing approaches, the function fci()
and fco() are inserted before and after each function call.
Many times, these functions will not result in any data move-
ment. For example, if there is space for the stack frame of
the to-be-called function, then no DMA is required, only
some book keeping happens. Much of the overhead is due
to calling these functions, even though they are not needed.
So, the question is: how do we not insert fci() and fco()
functions when not needed.

Opt3 - Performing minimal work each time man-
agement is performed: In the existing approach, circular
stack management, the older function frames are evicted
from the top, and new frames can be instantiated as soon
as enough space is available. Figure 3 shows that although
this results in a judicious usage of local memory space for

Table 1: Library on stack data and stack pointers

Library Functionality

sstore()
uses DMA to evict all stack frame(s)
from local memory to global memory

sload()
uses DMA to get all stack frame(s) in
previous stack state back to local memory

g2l(ga,size)
converts global address to a local address;
gets the value from global mem. if misses

l2g(la) converts local address to a global address
wb(ga,la,size) updates data to ancestor frame

stack management, it makes the book-keeping of the space
extremely complicated. As different functions may have dif-
ferent stack frame sizes, the stack space will get fragmented
after some time. To be able to track the status of stack
space, a data structure is required. It needs to reserve stack
size of each function, where the frame is stored in the global
memory, what the starting address and the end address of
the free slots in the scratchpad memory are, etc. In the
library, we need to check these variables and update them
accordingly, which therefore slows down the application.

4. OVERVIEW OF OUR APPROACH
To optimize the stack data management, we propose to

perform stack data management (i.e., transfer stack data
between scratchpad and global memory) at the whole stack
space granularity. In other words, we keep on instantiat-
ing stack frames in the local memory until the management
point. At the time of management, the whole stack space
is written out to the global memory. When returning from
the last frame in the local memory, the whole stack state
is copied from the memory to the scratchpad. Since this
is no longer at function level, we rename the management
functions to sstore, and sload. This approach of perform-
ing management at stack space level granularity has several
advantages: First is that the granularity of stack data man-
agement is much coarser (than function level), and there-
fore there will be fewer DMA calls (Opt1). Second is that
the management library ( sstore and sload) becomes sim-
pler, since now the scratchpad is managed as a linear queue,
rather than circular queue (Opt3). Table 1 shows our run-
time stack management functions and their functionalities.

A problem that can happen in this scheme is that of
thrashing. This happens when the stack space is full just
before entering a loop with high execution count in which
another function is called. Then every time the function is
called, the stack state will be written back to the global
memory, and reloaded on return. However, this can be
avoided by carefully placing the scratchpad functions sstore,
and sload in the program. In the next section we formulate
the problem of optimal placement of these stack data man-
agement functions. We show that the management function
placement problem can be described as that of finding an
optimal cutting of a weighted call graph (WCG). We for-
mulate an Integer Linear Program solution to the problem
(explained in the Appendix, section A), and then propose a
heuristic (SSDM) to solve this problem efficiently.

5. PROBLEM FORMULATION
A weighted call graph (V,E,W, T ) contains a function node

set V and a directed edge set E. Each node represents a



Figure 4: WCG with cuts of benchmark SHA. The edge
with dashed red arrow represents an artificial edge for root
node or leaf node.

function, and each directed edge pointing from the caller
to the callee represents the calling relationship between two
functions. Weight set W = {wf1 , wf2 , ...} represents stack
sizes of function nodes. Value on each edge eij (eij ∈ E)
from the value set T = {t1, t2, ...} corresponds to the num-
ber of times function node vi calls vj . Figure 4 shows the
Weighted Call Graph (WCG) of the benchmark SHA.

A root node is the node with no in-coming edges. There
is only one root node in the weighted call graph, which is
usually the “main” function in a program. A leaf node is
the node that has no out-going edges. Those are functions
that do not call any other functions. However, for the con-
venience of our problem formulation, we add an artificial
in-coming edge to the root node with value 0, and an artifi-
cial out-going edge to the leaf node with value 0. A root-leaf
path is a sequence of nodes and edges from the root to any
leaf node. For example, main-stream-init is a root-leaf path
in Figure 4.

A cutting of the graph is defined as a set of cuts on graph
edges. A cut on an edge eij (eij ∈ E) corresponds to a pair of
function sstore and sload inserted respectively before and
after function vi calls function vj . As shown in Figure 4, a
set of cuts have been added on artificial edges in advance.

We use a list to represent the collection of nodes on a
root-leaf path between two cuts. We call such a list of nodes
as a segment. In Figure 4, the segment between cut 1 and
cut 2 is <main, print>. A node can belong to multiple
segments, e.g., node stream can be in both segment <main,
stream, init> and <main, stream, update, transform>. As
the total function frame sizes in the local scratchpad memory
cannot exceed the size limit of stack space, a positive weight
(the size of stack space) constraint W is imposed on each
segment so that the total weight (stack sizes) of functions in
a segment will not exceed W. Therefore, given a segment s =
{f1, f2, ...} with function weights {wf1 , wf2 , ...}, the total
weight must satisfy the weight constraint∑

fi∈s

wfi ≤W (1)

The cost of stack data management for each segment s
comprises of two components: i) the running time spent on
extra instructions caused by sstore and sload function calls,
and ii) the time spent on data movement between the global
memory and the local scratchpad memory. Let us assume
a segment s = {f1, f2, ...} is formed with two cuts on edges
estart and eend, the functions in this segment have weights
{wf1 , wf2 , ...}, and the two edges have values tstart and tend

(the number of function calls), the first part of the cost can

be represented as

cost1 = tend × τ0 (2)

where τ0 is a constant which represents the average execu-
tion time for extra instructions in run-time library (in both
sstore and sload function). The time spent on data move-

ment is linearly correlated to the size of DMA, which equals
to the total function stack sizes in a segment. As a result,
the second cost can be represented as

cost2 = tend × 2(τbase + τslope ×
∑
fi∈s

wfi) (3)

where τbase is the base latency for any DMA transfer, τslope
is the additional latency increasing rate with data size, and
2 shows the consideration for DMA data transfer in and out.

Therefore, the total cost for each segment s is

costs = cost1 + cost2 (4)

For a set of cuts on a Weighted Call Graph (WCG) that
forms a set of segments S = {s1, s2, ...}, the total cost can
be represented as

costWCG =
∑
si∈S

costsi (5)

It should be noted that we treat each recursive function as
a single segment and always assign a cut to it to ensure a pair
of sstore and sload is placed right before and after recursive
function calls. The detailed handling could be found in both
ILP (Appendix, section A) and SSDM heuristic (Appendix,
section B).

Definition 1. (Optimal Cutting of a Weighted Call
Graph) An optimal cutting of a weighted call graph G con-
tains a set of cuts that forms a set of segments, where each
segment satisfies the weight constraint and the total cost of
the segments is minimal.

6. OUR HEURISTIC: SSDM
SSDM initially cuts all edges, and then checks all edges to

see whether there is a cut on the edge. When a cut is found,
our algorithm searches upward and downward through each
root-leaf path to get its nearest neighboring cuts. Next we
form all segments related to this cut by extracting all func-
tion nodes between the cut and its neighboring cuts. There-
after, the total cost of those segments is calculated with
Equation 2-5. Now we can assume this cut is removed, and
construct new segments by combing upward segment and
downward segment in the same root-leaf path. If none of
these new segments violates the memory constraint of stack
space, we can again calculate the new total cost. Otherwise,
this cut could not be removed. By subtracting the newer
one from the older one, we can get the removing benefit of
this cut. We can calculate the removing benefit of other cuts
through the same method. When all calculations are done,
SSDM picks the largest one and indeed removes the cut as-
sociated with it. It keeps removing the cuts on WCG until
no more cuts can be eliminated. The complete algorithm is
presented in the Appendix, section B.

7. EXPERIMENTAL RESULTS
In this section we evaluate the efficiency of our SSDM

technique by comparing it against the ILP (details are pre-
sented in Appendix, section A) and previous CSM heuris-
tic approaches [10]. We have implemented our heuristic in



(a) SSDM against ILP and CSM. (b) Overhead comparison between SSDM and CSM.

Figure 5: SSDM reduces the data management overhead and improves performance.

the GCC 4.1.1 cross compiler for the Cell SPE (Synergistic
Processing Element). We consider eight applications from
MiBench suite [16]. The other applications in MiBench suite
cannot be executed on SPEs because, to some extent, they
lack standard library support, or they have large application
code size. The eight applications are modified to be multi-
threaded by keeping all I/O functionality of the benchmark
in the main thread on Power Processor Element (PPE) and
the core functionality is executed on the Synergistic Process-
ing Elements (SPEs) [14]. τbase and τslope used in Equation
3 are 2.1µs and 0.075µs/KB respectively [21]. Table 2 shows
detailed information of all benchmarks.

We first utilized PPE and 1 SPE available in the IBM
Cell BE and compared our SSDM performance against the
results from ILP and CSM [10]. The number of function calls
used in Weighted Call Graph (WCG) is estimated from pro-
file information. As observed from Figure 5(a), our SSDM
shows very similar performance to ILP approach. This means
our heuristic approaches the optimal solution when the bench-
mark has a small call graph. Compared the CSM scheme,
our SSDM demonstrates up to 19% and average 11% per-
formance improvement. The overhead of the management
comprises of i) time for data transfer, ii) execution of the in-
structions in the management library functions. Figure 5(b)
compares the execution time overhead of CSM and the pro-
posed SSDM. Results show that when using CSM, an av-
erage 11.3% of the execution time was spent on stack data
management. With our new approach SSDM, the overhead
is reduced to a mere 0.8% – a reduction of 13X. Next we
break down the overhead and explain the effect of our tech-
niques on its different components:

Opt1 - Increase in the granularity of management:
Due to our stack space level granularity of management, the
number of DMA calls have been reduced. Table 3 shows the
number of stack data management DMAs executed when
we use CSM, vs. the new technique SSDM. Note that there
are no DMAs required for Basicmath. This is because the
whole stack fits into the stack space allowed for this bench-
mark. Our technique performs well for all benchmarks, ex-
cept for Disjkstra. This is because of the recursive function

Table 2: Benchmarks, the number of nodes and
edges in their WCG, their stack sizes, and the
scratchpad space we manage them on.

Benchmark Nodes Edges
Stack Scratchpad

Size (B) Size (B)

BasicMath 7 6 400 512
Dijkstra 11 12 1712 1024
FFT 22 21 656 512
FFT inverse 22 21 656 512
SHA 13 12 2512 2048
String Search 11 10 992 768
Susan Edges 8 7 832 768
Susan Smoothing 7 6 448 256

print path in Dijkstra. CSM will perform a DMA only when
the stack space is full of recursive function instantiations,
while we have to evict recursive functions every time with
unused stack space. As a result, our technique does not
perform very well on recursive programs. However, since
many embedded programs are non-recursive, we have left
the problem of optimizing for recursive functions as a future
work.

Opt2 - Not performing management when not ab-
solutely needed: Our SSDM scheme reduces the number
of library function calls because of our compile-time analy-
sis. In Table 4, we compare the number of sstore and sload
function calls when using SSDM, vs. fci and fco calls when
using CSM. We can observe that our scheme has much less
number of library function calls. The main reason is that
our SSDM considers the thrashing effect discussed in Section
4. Our approach tries to avoid (if possible) placing sstore
and sload around a function call that executes many times,
for example, within a loop. However, CSM always inserts
management functions at all function call sites.

Opt3 - Performing minimal work each time man-
agement is performed: Our management library is sim-
pler, since we only need to maintain a linear queue, as com-
pared to a circular queue in CSM. Table 5 shows the amount
of local memory required by SSDM and CSM, where we can
find our runtime library has much less footprint than CSM
does. It is very important for improving the performance,
since stack frames will obtain less space in the local memory
if the library occupies more space. The reason for larger
footprint of CSM is that it needs to handle memory frag-
mentation, while our SSDM doesn’t have this circumstance.

Table 6 shows the cost of extra instructions per library
function call. We ran all benchmarks with both schemes and
approximately calculated the average additional instructions
incurred by each library call. As demonstrated in Table 6,
our SSDM performs much better than CSM. There is no
cost in SSDM when the stack region is sufficient to hold
the incoming frames. However, CSM still needs extra in-
structions, since it checks the status of the stack region at
runtime. hit for g2l and wb means the accessing stack data
is residing in the local memory when the function is called,
while miss denotes stack data is not in the local memory.

Table 3: Comparison of number of DMAs
Benchmark CSM SSDM

BasicMath 0 0
Dijkstra 108 364
FFT 26 14
FFT inverse 26 14
SHA 10 4
String Search 380 342
Susan Edges 8 2
Susan Smoothing 12 4



Table 4: Number of sstore/ fci and sload/ fco calls

Benchmark
sstore/ fci sload/ fco

CSM SSDM CSM SSDM

BasicMath 40012 0 40012 0
Dijkstra 60365 202 60365 202
FFT 7190 8 7190 8
FFT inverse 7190 8 7190 8
SHA 57 2 57 2
String Search 503 143 503 143
Susan Edges 776 1 776 1
Susan Smoothing 112 2 112 2

Table 5: Code size of stack manager (in bytes)
sstore/ fci sload/ fco l2g g2l wb

CSM 2404 1900 96 1024 1112
SSDM 184 176 24 120 80

In CSM approach, more instructions are needed for the hit
case than the miss case in the function wb. It is because the
library directly writes back the data to the global memory
when miss, but looking up the management table is required
to translate the address. More importantly, as the table it-
self occupies space and therefore needs to be managed, CSM
may need additional instructions to transfer table entries.

Besides comparing results between SSDM and CSM, we
also examined the impact of stack space size and the scalabil-
ity of our heuristic. We found that i) performance improves
as we increase the space for stack data (Appendix, section
C), ii) our SSDM scales well with different number of cores
(Appendix, section D).

8. SUMMARY AND FUTURE WORK
This paper focuses on managing stack data, since the ma-

jority of the accesses in embedded applications may be to
stack variables. We formulated the problem of efficiently
placing library functions at the call sites. In addition, we
proposed a heuristic algorithm called SSDM to generate the
efficient function placement. Our experimental results show
that SSDM generates function placement which leads to sig-
nificant performance improvement compared to CSM.

Our optimization works under the assumption that Weighted
Call Graph (WCG) could be constructed. However, future
work could be devising a scheme to handle function point-
ers in the construction of WCG. In addition, the number of
function calls are profile-based. A static estimation method
should be proposed to get those values. Finally, previous
scheme for pointers to stack data is directly adopted, but
a proper scheme might be developed to further reduce the
stack pointer management cost.
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APPENDIX
A. INTEGER LINEAR PROGRAMMING FOR-

MULATION
In this section, we present our Integer Linear Program-

ming (ILP) formulation for placing sstore and sload func-
tions. For a given segment, the cost and total weight can
be calculated with Equation 1-5. Given a graph G, all the
possible segments can be found out in advance by randomly
picking two edges from the graph and putting two cuts on
them respectively. Therefore, the optimal sstore and sload
placement problem can be transformed as to pick out a set of
segments from all the possible segments whose total cost is
minimal, and they also satisfy the following two conditions:
i) the set of segments can make up the complete weighted
call graph G, and ii) each segment satisfies the weight con-
straint.

The weight constraint can be checked with Equation 1,
while checking the first constraint is more complicated. For
a graph, we can cut each edge of the graph, and define a
smallest segment as an element, which contains exactly one
node and two edges. In the example shown in Figure 6, the
graph is composed of five elements, namely, <e0-F0-e01>,
<e01-F1-e13>, <e13-F3-e3>, <e0-F0-e02> and<e02-F2-e2>.
Similarly, any segment S in a graph can be represented as a
set of elements S = {el1, el2, ...}. In the previous example,
the segment formed by the cuts on e0 and e13 contains two
elements, which are <e0-F0-e01> and <e01-F1-e13>. For a
segment S and a root-leaf path P , if all nodes in elements
that belong to S are also contained in P , we say S j P ,
and we define the segment S as a subset-segment of P . For
example, in Figure 6, the segment <F0, F1> is a subset-
segment of path F0-F1-F3. Apparently, each segment must
be a subset-segment to at least one root-leaf path. Now
we can check if a set of picked segments can make up the
complete weight call graph G. If each element in the path
Pi is contained in one and only one subset-segment of Pi,
then we can claim that the picked segments can cover path
Pi. If the picked segments can cover all paths in G, then
we can claim that the picked segments S can make up the
complete graph G.

Eventually, the problem can be presented as follows:
Input:
• W: total weight constraint, it is the size of local scratch-

pad memory

Figure 6: WCG has many elements, which is composed of
1 node and 2 edges between cuts.

• E: a set of elements
• S: a set of segments
• P : a set of root-leaf paths
• costs: cost of each segment s, where s ∈ S
• weight(s): total weight of each segment s, where s ∈ S
• In(e, s): binary value. For any segment s and element
e, it is one if e ∈ s, zero if otherwise.
• subset(s, p): binary value. For any segment s and root-

leaf path p (p ∈ P ), it is one if s j p, zero if otherwise.
• E(p)={e1, e2, ...}: a set of elements such that ei ∈ p,
p ∈ P .

Variable:

xs =

{
1 if segment s is picked
0 otherwise

Objective Function:

minimize
∑
s∈S

costs × xs

Constraints:

weight(s)× xs ≤W, for s ∈ S∑
s∈S

subset(s, p)× In(e, s)× xs = 1, ∀ p ∈ P, and ∀ e ∈ E(p)

The first constraint is the weight constraint, and the sec-
ond constraint guarantees that the picked segments can make
up the complete graph. It should be noted that we must
treat each recursive function as a single segment, and add
one more constraint for each as follows:

xs = 1, ∀s that indicates a recursive function

It ensures a pair of sstore and sload is placed right before
and after recursive function calls.

B. SSDM HEURISTIC
In this section, we present the complete SSDM heuristic

for placing sstore and sload library functions. As observed
from Algorithm 1, Line 1 preprocesses all recursive edges by
placing a cut on them. Since sstore and sload are stat-
ically placed at compile time and recursive function calls
itself, we must put a cut on the recursive edge to eliminate
the nondeterminacy of recursive functions. In line 8-10, we
first find out the segments that are associated with each cut
xij on edge eij (eij ∈ E). To do this, we need to find out
all root-leaf path Pi, where eij ∈ Pi. Then we search up-
ward through each Pi, until we meet a cut xup. Similarly,
we search downward through each root-leaf path Pi, until
we meet a cut xdown. The segment between xij and xup
or xdown is defined as associated with xij . For example,
in Figure 6, the segments that are associated with cut on
e02 is the segment <F0> and the segment <F2>. Then we
calculate the cost of each segment with Equation 2-5, and
the total cost by summing up the cost of all the associated
segments. In Line 11-19, we assume the cut is removed, and
we can get a new set of associated segments. Those seg-
ments are formed by merging the segment between xij and
xup with the segment between xij and xdown on each root-
leaf path Pi. As an edge might belong to several root-leaf
paths, there might be many xup and xdown accordingly. In
Figure 6, after removing the cut on e02, the two associated
segments are merged into one segment, which is <F0, F2>.
Similarly, we can calculate the cost of each new segment



Algorithm 1: SSDM(WCG(V ,E))

1 Place cuts on recursive edges, if there are recursive
functions.

2 Define vector C, in which xij indicates if a cut should be
placed on edge eij (eij ∈ E \ Erecursive). set all xij=1.

3 while true do
4 Define vector B to store removing benefit of each cut.
5 foreach xij == 1 do
6 Set boolean violate to false, it shows if removing

this cut would violate the weight constraint.
7 Define total cost Costbefore = 0.
8 foreach segment s oldi that are associated with

xij do
9 Calculate cost cost oldi with Equation 2-5.

10 Costbefore+ = cost oldi

11 Assume the cut of xij is removed, and get a new
set of associated segments.

12 Define total cost Costafter = 0.
13 foreach new associated segment s newi do
14 Check weight constraint with Equation 1.
15 if weight constraint is violated then
16 violate = true
17 break

18 Calculate cost cost newi with Equation 2-5.
19 Costafter+ = cost newi

20 if violate then
21 continue

22 Calculate the benefit of removing the cut as
Bij = Costbefore − Costafter.

23 if Bij > 0 then
24 Store Bij into vector B.

25 if B contains no element then
26 break

27 Find out the largest benefit value Bmax from B, and
set the corresponding cut xmax = 0.

28 foreach xij==1 do
29 Place a cut on edge eij , i.e., the compiler places

sstore and sload right before and after the call
instruction respectively.

with Equation 2-5, and the total cost of all associated seg-
ments after removing the cut. Line 14-17 check if weight
constraint is satisfied by removing this cut. If the constraint
is violated, this cut will not be considered to be removed
(line 20-21). Line 27 removes the cut with largest positive
benefit among all the cuts whose removal will not violate
the weight constraint. Line 25-26 is the exit condition of
the WHILE loop. The procedure stops until no more cut
can be removed from the graph. At this point of time, the
rest cuts either have negative removing benefit, or cannot
be removed due to weight constraint. The last two lines in
the algorithm shows the operations that need to be made in
our modified compiler.

C. IMPACT OF STACK SPACE
The experiment for each application in Section 7 was con-

ducted under the scratchpad size specified in Table 2. Next

Figure 7: Performance - different stack region sizes.

we constructed another set of experiments that evaluates our
SSDM technique under tight size constraints. The bench-
mark Dijkstra contains many nested function calls within
loop structures, making it a good candidate for showing the
impact of different stack region sizes. We expanded the re-
gion size from 160 bytes to 416 bytes with the step size of 32
bytes. The resulted performances are demonstrated in Fig-
ure 7, where the execution time with different stack region
sizes were normalized to the smallest one. The execution
time decreases when we increase stack region size. When
the size reaches 384 bytes, the performance hardly improves.
The primary reason is that we conservatively manage the re-
cursive function by always placing a pair of library function
around all its call sites. Therefore, although the region size
is large enough, no more benefit can be obtained as only the
insertion for recursive function print path is left.

D. SCALABILITY OF SSDM

Figure 8: Performance - different number of cores.

Figure 8 shows the results we examined the scalability of
our SSDM heuristic. We normalized the execution time of
each benchmark with number of SPEs to its execution time
with only one SPE, and show them on y-axis. In this experi-
ment, we executed the same application on different number
of cores. This is very aggressive, since DMA transfers occur
almost at the same time when stack frames need to be moved
between the global memory and the local memory. This will
lead to the competition of DMA requests. As shown in Fig-
ure 8, the execution time increases gradually as we scale the
number of cores, but no more than 1%. Benchmark SHA
increases most steeply, as there are many stack pointer ac-
cesses in this program. Because of this, more data transfers
are conducted for objects pointed by those stack pointers.


