
STL on Limited Local Memory (LLM) Multi-core Processors

by

Di Lu

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved February 2012 by the
Graduate Supervisory Committee:

Aviral Shrivastava, Chair
Partha Dasgupta
Karamvir Chatha

ARIZONA STATE UNIVERSITY

May 2012

ABSTRACT

Limited Local Memory (LLM) multicore architectures are promising power-

efficient architectures will scalable memory hierarchy. In LLM multicores, each core

can access only a small local memory. Accesses to a large shared global memory can

only be made explicitly through Direct Memory Access (DMA) operations. Standard

Template Library (STL) is a powerful programming tool and is widely used for soft-

ware development. STLs provide dynamic data structures, algorithms, and iterators for

vector, deque (double-ended queue), list, map (red-black tree), etc. Since the size of

the local memory is limited in the cores of the LLM architecture, and data transfer is

not automatically supported by hardware cache or OS, the usage of current STL im-

plementation on LLM multicores is limited. Specifically, there is a hard limitation on

the amount of data they can handle. In this article, we propose and implement a frame-

work which manages the STL container classes on the local memory of LLM multicore

architecture. Our proposal removes the data size limitation of the STL, and therefore

improves the programmability on LLM multicore architectures with little change to the

original program. Our implementation results in only about 12−17% increase in static

library code size and reasonable runtime overheads.

i

To my family

ii

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Prof. Avi-

ral Shrivastava for the continuous support of my master study and research, for his

patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in

all the time of research and writing of this thesis. I could not have imagined having a

better advisor and mentor for my master study.

Besides my advisor, I would like to thank the rest of my thesis committee:

Prof. Karamvir Chatha and Prof. Partha Dasgupta, for their encouragement, insightful

comments, and hard questions.

I thank my fellow labmates in CML Group: Ke Bai, Chuan Huang, Jian Cai,

Fei Hong, Reiley Jeyapaul, Bryce Holton, Jing Lu, Mahdi Hamzeh, Yooseong Kim,

Jared Pager, Tushar Rawat, Abhishek Rhisheekesan, Shashank Reddy Kaareddy, and

Russel Dill, for the stimulating discussions and for all the fun we have had in the last

two years. Also I thank my friends in ASU: Weijia Che, Fengze Xie, and Yunji Zhong.

Last but not the least, I would like to thank my parents, for giving birth to me at

the first place and supporting me spiritually throughout my life.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER . 1

1 INTRODUCTION . 1

2 BACKGROUND . 4

2.1 Limited Local Memory architecture 4

2.2 Standard Template Library (STL) . 4

3 Limitations of STL on LLM multicore architecture 6

4 Challenges in Implementing STL on LLM Core 9

5 RELATED WORKS . 13

5.1 Previous works on parallel generic programming library 13

5.2 Previous works on Software Cache . 16

5.3 Data Management for Scratchpad Memory 19

6 OUR APPROACH . 21

6.1 STL framework implementation . 21

Allocator . 23

Container . 24

Iterator and Algorithm . 27

6.2 Software Cache . 28

6.3 Dynamic Global Memory Allocation 31

6.4 External pointers . 33

7 Experimental Evaluation . 36

7.1 Enabling use of STLs . 36

7.2 Static Code Size Overhead . 38

7.3 Data Management Overhead . 38

iv

7.4 Scalability on Multicore . 41

8 Conclusions . 43

BIOGRAPHICAL SKETCH . 44

v

LIST OF TABLES

Table Page

3.1 The footprint of current container classes and the maximum sizes of data

they can support. These data are collected from IBM Cell B.E. processor,

SPE core, which is a typical LLM architecture. The size of the SPE local

memory is 256 KB, which consists of heap region, stack region, global and

static data region, and code region. 6

6.1 Software cache interfaces . 30

6.2 Member functions and operators that return a reference to elements of con-

tainers . 34

7.1 Benchmarks for Experimental Evaluation 37

7.2 Extra Static Code Overhead . 38

vi

LIST OF FIGURES

Figure Page

2.1 LLM is a distributed memory architecture, including a main core and exe-

cution PEs. The main core has a large global memory and OS running on it.

It distributes data and tasks to the PEs. On each PE, there is a limited local

memory, accessible by itself. DMA is specifically needed by it to access

to global memory or other local memories. Among PEs, there is a on-chip

network for data communication among different PEs. 5

3.1 Outline of a threaded program on the LLM multicore architecture: (a) Main

core creates threads on each PE, and STL vector class is used in the PE

program. (b) In this example, the PE program works fine if N is small. But,

if N is large enough, the PE program will consume up the local memory

and therefore crash. 7

4.1 (1) No matter what scheme is implemented, older data need to be evicted

to the main memory to make space for new data when the local memory is

full. (2) The pointer becomes invalid when the data pointed by it have been

evicted. 12

5.1 In the shared memory architecture, all threads on the execution PE can di-

rectly access the global memory. In this example, thread 1, 2 and 3 on

different execution PEs can access the same container data on the global

shared memory. Here is a race condition between thread 2 and thread 3,

since they access the same container element. The inter-thread synchro-

nization can be done on hardware or software. 14

vii

5.2 In distributed memory architecture, the container class is capable of manag-

ing data on different memory space. When a thread on a different execution

PE, the library function will first transfer the data from a remote memory,

and then use it from the local memory. All these steps are transparent to

the user. 15

5.3 In LLM architecture, execution PE can use the global memory for data

storage so that the local memory can only keep a small part of data and

avoid the hazard when using large amount of data. 16

5.4 Software cache can map a global memory address arr+5 into a local mem-

ory address temp int. 17

5.5 The function cache access() is a software cache interface. It takes a pointer

with global address as parameter, and returns a pointer to a local address

with the corresponding data from global memory. In the example, reference

d1 is on the same memory address in the local buffer of software cache

as left pointer of tree node ptr, so the operation performed on d1 will be

performed on the left of tree node ptr. Problem arises as the ptr is evicted

from local buffer of software cache, d1 is still on the same address as the

left pointer of ptr was. When there is a later modification to d1, it will be

written to a wrong place, but not ptr left pointer. 18

5.6 This program shows how the reference pointer d1 will cause a problem

for referencing a value in software cache local buffer. When the original

content of d1 is replaced by d2 in the local memory, the later update to d1

will cause incorrect results. 18

6.1 The map pointer contains the pointers point to the elements. The iterator

of deque has four fields, cur which points to the current accessed element,

first and last pointers point to the first element and last element inside the

element array, node points to the corresponding pointer in the first level. . . 26

viii

6.2 To enable algorithm code to handle the pointer type iterator, we need to

separate the implementation with pointer type iterator from the original

implementation. In this case, the software cache is used in the fill aux 1()

function. 29

6.3 (1) The whole process for memory reallocation is shown and the number

means the order of steps. (2) Important information for reallocation is con-

tained in a data structure named msgStruct, which is located in the global

memory. It is 16 bytes large, but elements can be different depending on

the type of operation. 32

6.4 (a) The potential pointers will first be identified. (b) The program will be

transformed to use the software cache interface and ppu addr() which is

used to extract the global address of a container element. 34

7.1 The effectiveness of our solution are shown in the above four figures. 36

7.2 Comparison of cache misses between our software cache for STL and hard-

ware direct-map cache. 39

7.3 The instruction overhead of the new STL library. We separate the bench-

marks into two sets: intensive use benchmarks and normal uses benchmarks. 41

7.4 The scalability of the benchmarks is mainly depends on the types of con-

tainer used. 41

ix

Chapter 1

INTRODUCTION

Single core architectures can no longer meet the demands of simultaneous high per-

formance and low power consumption. Multicore architectures provide a way to im-

prove the total throughput of the system without much increase in the power consump-

tion [19]. In addition to the challenge of power-efficiency, multicore architectures also

help in tackling several other challenges, e.g., of reliability, and temperature at a much

higher level of granularity [20].

As we transition from single to many cores, maintaining the illusion of a sin-

gle unified memory in multicore architecture becomes a major challenge. This is not

only because the power and performance overhead of maintaining data coherency in-

creases as we scale the number of cores [18], but also because the overhead of automatic

memory management, i.e., using caches is becoming prohibitive in terms of power con-

sumption. Even in a single-core processor, caches consume more than half of the total

chip power [9], but in multicore systems, owing to the coherency traffic, caches are

expected to consume a much larger fraction of the total processor power.

To avoid the fixed design-time and minimize the run-time overheads of a shared

memory system, multicore architectures are including scratch-pad memories in the

cores. New DSP multicore architecture TMS320C6472 [48] and ADSP-BF561 [1]

feature a local memory inside each processing core. More boldly, IBM Cell BE [37]

uses only a local memory without any hardware cache on each processing core. Such

multicore architectures are called Limited Local Memory (LLM) multicore architec-

ture. In LLM multicores, the processing core can only access the code and data in

the local memory. Access to global memory, and the memory of other cores has to be

explicitly done through the use of Direct Memory Access (DMA) commands. If all

the code and data required by a core fits into the local memory, then extremely power-

1

efficient execution is achieved – and this is the promise of LLM multicores. In fact, the

peak power-efficiency of the IBM Cell processor is 5.1 Giga operations per second per

watt. Contrast this with the power-efficiency of traditional shared memory multicores,

e.g., the Intel core 2 quad is only 0.35 Giga operations per second per watt [32].

However, if the code or data required by the task executing on the core does

not fit into the local memory, then the memory management must be done explicitly

in the application. This explicit data management is one of the biggest hurdle in the

success of LLM architectures. One important manifestation of this limitation is in

using Standard Template Library for programming. Standard Template Library (STL)

is a part of the C++ standard library, that is a powerful programming tool and is widely

used for software development [46]. STLs provide dynamic data structures, i.e., their

size can be changed at runtime, allows data type binding at the compile-time, i.e.,

programmers can use any data type when using the STL, and therefore greatly improves

programming through code reuse [46, 39].

Unfortunately, STL implementations assume the presence of unlimited memory

on each core, which is not true for Limited Local Memory (LLM) cores. As a result,

if the size of the dynamic data structure is larger than the size of the local memory, the

program using STL will not work. In this article, we propose a scheme to automatically

perform data management for STL for LLM multicores. When more data is instanti-

ated, our STL implementation automatically moves some part of the data to the global

memory through the use of DMAs inside our STL implementation, transparent to the

programmer. We preserve the syntax and semantics of the STL functions. Our “com-

pletely in software” technique can enable seamless use of STL on LLM architectures,

improving their programmability. A major challenge that arises in any data manage-

ment scheme is that when a data is moved to the global memory, pointers pointing to

the data become wrong. We also propose a scheme to resolve these pointers correctly.

2

The rest part of thesis is organized as follows. In Chapter 2, we will introduce

the background of Limited Local Memory (LLM) architecture and Standard Template

Library (STL). In Chapter 3, we explain why we want to extend STL on the LLM archi-

tecture. In Chapter 4, we list the challenges in extending the STL on the local memory

of LLM cores. In Chapter 5, we list the related works which implement or extend

the template library on different memory architecture. We have an in-depth discus-

sion about why the software cache cannot solve our problem, and also why the current

scratchpad memory data management works do not work in our case. In Chapter 6,

we will go into the detail our implementation and methodology to modify the STL. In

Chapter 7, we show that our extended STL significantly increased the capacity of the

STL on the local memory of LLM core.

3

Chapter 2

BACKGROUND

2.1 Limited Local Memory architecture

The Limited Local Memory (LLM) multicore architecture is an emerging memory hier-

archy for high power efficiency. Figure 2.1 shows an example of an LLM architecture.

LLM multicore architectures are programmed in MPI-like task-based programming

style. Each PE runs a single task with some inputs distributed by main core. In the

LLM architecture, there is a local memory inside each Processing Element (PE) and

a large global memory on main core. Since there are no hardware caches the data

transfers among different memories need to be specified in the software. These data

transfers are done through Direct Memory Access (DMA) commands inserted inside

the application code. To use DMA, programmers need to provide the destination ad-

dress, the source address, the number of bytes to be transferred, and the DMA channel,

etc. Normally, there are some restrictions when using DMA operation, which are that

the destination address and source address must be aligned to a multiple of some num-

bers, e.g. 16 or 128. In addition, the number of bytes to be transferred should also be a

multiple of some specific numbers. These restrictions increase the complexity of pro-

gramming on multicore architecture. In addition, Message Passing/Signal Notification

can also be used for inter-process communication and synchronization. Each PE can

send messages (usually a few bytes) to another PE or main core.

2.2 Standard Template Library (STL)

Standard Template Library is a generic programming tool and is a component of the

C++ standard library. It uses template and abstract data structures which improve the

reusability of the code. Template allows user to specify data type in program and per-

forms the binding at the compile-time. It is very useful when it is used in memory

constrained system, because the compiler can optimize the identical specialization of

4

Figure 2.1: LLM is a distributed memory architecture, including a main core and execu-
tion PEs. The main core has a large global memory and OS running on it. It distributes
data and tasks to the PEs. On each PE, there is a limited local memory, accessible by
itself. DMA is specifically needed by it to access to global memory or other local mem-
ories. Among PEs, there is a on-chip network for data communication among different
PEs.

different data types [?]. The abstract data structure in STL is called container which

can store a collection of data objects, such as vector, list, and stack. Container auto-

matically manages the memory for the data and users do not have to worry about the

memory management. When there is an insertion or deletion, the container class will

compare the allocated memory size and used memory size to determine if an alloca-

tion or de-allocation operation is necessary. Container uses another STL component

allocator to allocate and de-allocate the memory. The STL allocator calls the system

function malloc to allocate memory. The problem arises as the allocator assumes that

there is only one memory and it is sufficiently large for the program execution. When

the STL is moved to the LLM architecture, the assumption is no longer practical since

the available memory size is very small.

5

Chapter 3

Limitations of STL on LLM multicore architecture

The current STL container classes still have limitations when it is used on LLM mul-

ticore architecture, since such architecture only has a small size of local memory and

therefore the container class cannot contain large amount of data as it is for large mem-

ory. Normally, the application will conceptually be divided into 4 segments — code,

global data, heap data and stack data. The size of code and global data is fixed after

compilation. However, stack and heap are dynamic and they grow towards each other.

The data in the container and storage data structure reside in the heap region. If the

program on the PE keeps inserting data into container, there may be a hazard that heap

would grow into stack segment and overwrite stack data. This may leads to a program

crash in the best case, incorrect results in the worst case.

Figure 3.1 shows an example program running on LLM multicore architecture.

The PE thread in Figure 3.1 (b) is initiated from thread on the main core in Figure

3.1 (a). For a small N, the program will execute fine, but large values of N will cause

failures, i.e. program will end with error “terminate called after throwing an instance

of ‘std::bad alloc’ ”.

Container Class Approx. Code Size (in Bytes) Approx. Data Size (in Bytes)
Vector 138388 32768
Deque 139364 102908

Set 141284 11464
List 134924 21976

Table 3.1: The footprint of current container classes and the maximum sizes of data
they can support. These data are collected from IBM Cell B.E. processor, SPE core,
which is a typical LLM architecture. The size of the SPE local memory is 256 KB,
which consists of heap region, stack region, global and static data region, and code
region.

6

Figure 3.1: Outline of a threaded program on the LLM multicore architecture: (a) Main
core creates threads on each PE, and STL vector class is used in the PE program. (b)
In this example, the PE program works fine if N is small. But, if N is large enough, the
PE program will consume up the local memory and therefore crash.

Table 3.1 shows the library memory footprint of current STL and the maximum

size of data that each container can contain as used in a program which is similar to

Figure 3.1. The maximum size is got by keeping adding data to the container till the

program crashes. Firstly, the footprint of STL library code is large. All containers

have more than 130KB code size, which means the size of the program that uses STL

container will be at least larger than 130KB. Secondly, as it shows, other than the

container deque which can contain more than 100KB of data, other containers only can

have less than 32KB data. Even, the container set can only contain about 11KB data.

The main reason they can contain so less data is that 1) The reallocation process of the

vector class needs more than 3 times of memory size of actual data — one for the actual

data, and reallocation process will allocate a double-size space each time. 2) The data

structure of storage for list, and set is large. For list, if the template data type is int,

each node needs to use three times of space of data size. And for set, the underlying

support data structure is red-black tree, besides the data, each node needs to store the

information of node color, address of parent node, and addresses of left child node and

right child node. Therefore, for the template data type int, it needs 5 times of data

size to store an integer. Finally, the current STL library do not have the functionally

7

that the data in the container can be transferred between the small local memory and

larger global memory. In this paper, we remove this restriction by moving most of the

container data into global memory and therefore enable unlimited use of container data.

8

Chapter 4

Challenges in Implementing STL on LLM Core

Our target is to extend the programmability of STL framework on LLM and preserve

the syntax and semantics of the original STL framework. As an example of LLM

programming, the Cell B.E programming model is to develop program on a distributed

memory architecture. The difference in our works is that we have the restriction that

each SPE only has a small local memory and we have a large global memory to use. Our

solution is to use the global memory as the main storage for the container data, and use

a software cache on the SPE local memory to access the container data. Our framework

manages the inter-processor communication to support the extended programmability.

There are some issues that we need to solve:

• Preserve syntax and semantics: Our objective is to relieve the programmers’

burden in programming for the architectural difference. Developing a new pro-

gramming interface for programmers to use is to shift the programmers’ burden

from one form to another. Our extended STL preserves all the original syntax

and semantics.

For the member function of container class, it is easy to hide the implementation

modification inside the interface. However, it is difficult to change the pointers

to adapt to the change of the memory architecture. Because the container data

are placed on the global memory, the pointers which point to the start and end of

the data storage now have a global address instead of local address. For iterator

which is a pointer, the de-referencing may cause the segmentation fault since the

memory controller cannot access a global address in local memory.

Template in the STL implementation can be specialized for any data type. The

data type can be specified during the user program with STL. Our modification

9

also have to consider the cases in which the template may be a generic data type.

The modified container class may not function correctly if our modification is

not general for all data types. For example, if the template of a container is

another container, we need ensure the container which is the member data of

another container can work correctly. The information of the container should be

preserved.

• Cache data and utilize DMA: As the main storage for container data is on global

memory, each time the container retrieves the container data, it needs to transfer

it from global memory. Each DMA transfer involves instruction overhead and

high transfer latency. To maximize the performance, we can cache data in local

memory to reduce the number of DMA operation, and overlap the DMA transfer

with the computation to minimize the transfer latency.

To decide which data should be cached in the local memory, we need a caching

scheme for the container elements. There has been many caching schemes pro-

posed for reducing the number of data transfer, no one can be the best in all cases.

Another problem is that when caching data in the local memory, all different

components of the STL will share the local memory. We should ensure the data

of one container will not overwrite the buffer of another container. Moreover,

the program should ensure the data consistency, different parts of the program

should only see unique copy of data during the execution. A third problem is

that, we may have one container as the element of another container, and how to

cache the data in this scheme is still a question.

Besides, DMA operations can be overlapped with computation to improve the

performance. In this situation, how to schedule the data transfer becomes a prob-

lem, e.g. when to evict them to global memory, when to issue the DMA opera-

tion, when to synchronize the data transfer.

10

• Dynamic global memory allocation: To leverage the global memory for data

storage, we need a dynamic memory allocation/de-allocation scheme for STL

allocator on global memory. As the thread on execution PE cannot directly

allocate/de-allocate on the global memory, extra implementation needs to be

added.

There is a static way to do global memory allocation, but it does not apply in

extending the allocator. The program on main core can allocate a large chunk

of memory, and then pass the first address of the allocated memory to the thread

on execution PE. When the execution PE thread is initiated, it can pass the first

address of the allocated memory to STL allocator, and the allocator can allocate

memory from this pool to the containers. However, this method has drawbacks

in terms of inflexibility. First, if the program uses too few data, then the memory

space is under-utilized, if the execution PE thread uses large data set, it may sim-

ply overwrite other area which causes the execution PE thread fails. Second, it

poses a big challenge to the allocator design if the STL container needs to allocate

and de-allocate the memory space frequently. In such circumstances, the alloca-

tor needs to collect the fragmented area in the memory and reuse them well. One

case is that the vector may keep re-allocating for larger memory space. Another

case is that the map or set may insert and delete data frequently. Therefore, we

need a dynamic allocation scheme for allocator.

• Resolve hazard of the external pointers: In LLM architecture, only part of the

container data can be buffered in the local memory. If the new requested data

coming in the local buffer, the old data will be evicted to the global memory to

make room for new incoming data. Moreover, there are cases that pointers can

point to the container data. As shown in Figure 4.1, no matter how we implement

the caching logic, the container data that are pointed by an external pointer1

1We call the pointer which is outside the STL framework but is pointing to an container element as

11

Figure 4.1: (1) No matter what scheme is implemented, older data need to be evicted
to the main memory to make space for new data when the local memory is full. (2) The
pointer becomes invalid when the data pointed by it have been evicted.

will be evicted to the global memory due to the constrained memory size. The

pointers in the local memory will become invalid since the pointer content has

been moved. This case exists since there is more than one memory space in the

system. To enable the use of STL container in the LLM multicore architecture,

we need some mechanism to ensure the validity of these pointers.

external pointer.
12

Chapter 5

RELATED WORKS

There are three categories of previous works related to our works. The first is the par-

allel generic programming library. These works propose solution to develop generic

library on shared memory architecture and distributed memory architecture. The sec-

ond is the software cache (SC). Software cache can manage data between local memory

and global memory, which includes automatic transfer requested data into local mem-

ory. The third is the data management on scratchpad memory. These works propose

techniques in managing different regions of the local memory. Their solutions also

leverage the global memory for extra data storage.

5.1 Previous works on parallel generic programming library

The STL is designed for traditional Von Neumann memory architecture. All container

elements are stored in one memory space. There should be only one thread accessing

a container if the thread intends to modify the container. In parallel programming,

container classes may be accessed by multiple threads and the container elements may

be distributed over several memory spaces. If the STL containers are used for parallel

programming, concurrent access to a container by different threads simultaneously will

cause the incorrect execution.

There are previous works that ensures the concurrent access to the container

classes will be executing correctly. The location of the container data and the memory

architectural differences are all hidden inside the programming interface.

The previous work are done on two types of architectures: 1) shared memory

architectures and 2) distributed memory architectures. On shared memory architecture,

the previous work implemented the template library in a way that it could be concur-

rently accessed by multiple threads. The underlying thread synchronization has been

13

Figure 5.1: In the shared memory architecture, all threads on the execution PE can
directly access the global memory. In this example, thread 1, 2 and 3 on different
execution PEs can access the same container data on the global shared memory. Here
is a race condition between thread 2 and thread 3, since they access the same container
element. The inter-thread synchronization can be done on hardware or software.

implemented to ensure the correct execution. For example, in Figure 5.1, all threads in

different execution PE access the same container in global memory, and the race con-

dition will be resolved by the library. And once thread 2, 3 simultaneously the same

container element, their exclusive accesses to the element are scheduled by the library

and can be executed one after another. Intel TBB [24] developed both algorithms and

containers on the shared memory architecture, with which the containers can be con-

currently accessed by multiple threads. MPTL [6] and MCSTL [43] extended the STL

algorithms for parallel processing.

14

In the distributed environment, the library needs to manage the data distribu-

tion which includes storing and searching a container element, and handling the data

transfer. The implementation of data distribution and communication is transparent to

the user. For example, in Figure 5.2, when the thread 2 wants to access an element on

the remote memory, it will first transfer it from the local memory of execution PE 1 to

its local memory, and then accesses the data. POOMA [27], AVTL[41], STAPL[47],

PSTL[28], and Parallel Boost Graph Library (BGL) [22] implemented container classes

which can distribute container data over different memory spaces on distributed mem-

ory architecture. The classes can be accessed by different threads concurrently.

In shared memory architecture, each execution PE can access the global mem-

ory rather than its own small local memory on LLM multicore architecture. Similarly,

in distributed memory architecture, their works did not consider the case that single

Processing Element (PE) may only have a small size of local memory and simply

assume the size of local memory is large enough. If an execution PE is assigned a

computation task, its local memory is sufficient for the execution of program. In LLM

architecture, if the container class uses too much data in the local memory, it may cause

the program crashes.

Figure 5.2: In distributed memory architecture, the container class is capable of man-
aging data on different memory space. When a thread on a different execution PE, the
library function will first transfer the data from a remote memory, and then use it from
the local memory. All these steps are transparent to the user.

15

Figure 5.3: In LLM architecture, execution PE can use the global memory for data
storage so that the local memory can only keep a small part of data and avoid the
hazard when using large amount of data.

In LLM architecture, if a program uses STL on execution PE which requires

more space than the size of available local memory, the execution will crash without

data management. In order to utilize the PEs, programmers need to take care of the sizes

of data in container classes and may have to repartition the program and the data for

execution PEs. This severely slows down the program development progress. To solve

this problem, we keep the the original program and do the dynamic data management

in runtime as Figure 5.3 shows. The data distribution and communication complexities

are encapsulated inside the function interface.

5.2 Previous works on Software Cache

In traditional memory architecture, the data management between cache and global

memory is done through hardware support. In LLM architecture, there are cases that

we use the data from global memory in the local memory. However, there is no hard-

ware support between local memory and global memory. Operations like pointer de-

referencing cannot be done as the local memory controller cannot access an address

which is not local. Software cache is an easy-to-use programming interface which can

map the data from the global memory address to a local memory address. It com-

16

prises the functionality of cache lookup and the cache miss handling which automat-

ically use the DMA operation to transfer requested data into local memory. Figure

5.4 is an example of how to use a global pointer in the local memory with software

cache. arr is a pointer which has a global memory address. When we use this global

pointer, it is passed into the software cache interface, and the software cache interface

cache access() will return a local memory address where the data resides in. And the

PE thread can use temp int for program execution.

IIC [23], ESC [40], MDSC [3] worked on improving the performance of soft-

ware cache through different caching data structures and caching logic. Works [17, 25,

11] investigated the scheme of using compiler techniques to overlap the communica-

tion and computation in order to reduce the overhead of software cache. Works [12, 21]

tried to remove the unnecessary use of software cache by using a direct buffer. Work

[42] built a software cache on the shared memory of GPU which has no hardware co-

herence support. Work [5] optimized the software cache implementation for computing

the H.264 motion compensation. Work [10] used prefetching technique on its software

cache to further improve the performance.

Software cache can automatically manage the data between local memory of

execution cores (PE) and the global memory on the main core. However, the existing

Figure 5.4: Software cache can map a global memory address arr+5 into a local mem-
ory address temp int.

17

Figure 5.5: The function cache access() is a software cache interface. It takes a pointer
with global address as parameter, and returns a pointer to a local address with the
corresponding data from global memory. In the example, reference d1 is on the same
memory address in the local buffer of software cache as left pointer of tree node ptr, so
the operation performed on d1 will be performed on the left of tree node ptr. Problem
arises as the ptr is evicted from local buffer of software cache, d1 is still on the same
address as the left pointer of ptr was. When there is a later modification to d1, it will
be written to a wrong place, but not ptr left pointer.

software cannot be directly used to transform the STL code and remove the program-

ming restriction of STL container on execution PE. There are two reasons: first, the

software cache does not manage the memory space on global memory, and is only used

to map the container data from global memory to local memory. However, software

cache does not prevent the growth of the heap region when the allocator keeps allocat-

ing in the local memory for container data. If the heap region keeps growing, it will

still have the maximum data limit, and the hazard of overwriting the stack region still

Figure 5.6: This program shows how the reference pointer d1 will cause a problem for
referencing a value in software cache local buffer. When the original content of d1 is
replaced by d2 in the local memory, the later update to d1 will cause incorrect results.

18

exists. If we have an allocator which can allocate the memory on the global memory,

but not local memory, then we can move heap growing from local memory to global

memory. Since the available memory size of global memory can be assumed to be

infinite, we can increase the data limit of the container class significantly. Second, the

proposed software cache does not deal with the error which may be introduced by C++

reference. This could happen when the program makes a reference to a location in the

software cache buffer. We use an example code in Figure 5.5 to explain this scheme.

In this example, d1 is a reference pointer, the original pointer is the left pointer

of the tree node ptr. d1 is initialized to the left pointer in the software cache buffer.

In the original STL, the modification to d1 is intended for left. Figure 5.6 shows what

happens in the software cache buffer. A later software cache access evicts the ptr, and

replace its memory in local buffer with the content of another pointer d2. Since the

d1 now accesses the same memory address d2, any write to d1 is updated to d2 which

should be updated to left pointer of ptr, these writes will introduce incorrect results.

5.3 Data Management for Scratchpad Memory

The execution PE of LLM architecture leverages scratchpad memory as the small lo-

cal memory. In each execution PE, the heap region, stack region, static and global

data region, and code region shares the whole local memory. Since there is no hard-

ware support or OS support for the data management between the local memory and

global memory, if there is too much data in the local memory, program will crash. The

overwrite to heap and stack region is the most common case of incorrect execution or

program crash during the runtime. The heap region may overwrite the stack region if

there is too much memory allocated to the program. The stack region may overwrite

the heap region if the recursive function call is too many. The static and global region,

and the code region may take too much memory space, but it can be detected during

the compile-time, and can be statically analyzed for optimization. In order to enable

19

the program run correctly, the programmer needs to program the memory management

logic for data which are in different memory space.

Much works has been done in utilizing scratchpad memory efficiently. [44, 2,

51, 35, 52, 45, 15, 16, 49, 26, 50, 36] propose the techniques that are used to manage

code region. The techniques of managing static and global data region, stack region,

and heap region are proposed in [44, 4, 52, 31, 30, 33, 49, 50] , [4, 35, 38, 33, 49], and

[38, 34, 14] respectively.

There are also some works that work on LLM architecture. [7] manages the

heap data in the local memory of execution core. It implements the memory allocation

function and the address translation functions which can map from global address to lo-

cal address, and vice versa. And the address translation function can also automatically

transfer data between local memory and global memory. However, this work is only

for C program, it cannot deal with some C++ features such as private member of class.

[8] and [29] manages the stack data and code overlay for local memory respectively.

However, these tools cannot handle the data management for STL containers without

changing the internal program of STL.

20

Chapter 6

OUR APPROACH

The small size of local memory of execution PE is the main reason that restricts the

programmability of STL on LLM architecture. Even if there is no overhead of code

region, stack region, global and static region, and no storage data structure overhead,

the STL container data can only contain a few hundreds of bytes data. Our work lever-

ages the global memory as main storage for container data. Then the available size of

memory becomes the size of the global memory which is normally a virtual memory

space and can be very large.

In order to use global memory, we need to modify the container, iterator, allo-

cator, and algorithms. Our modified allocator is capable of allocating and de-allocating

memory space on global memory dynamically. Besides, we modify the container, it-

erator, and algorithms to utilize the allocated space on global memory. To support the

extended functionality of STL components, we develop a memory allocation tool and

a software cache tool for performing operation on container data on global memory.

The memory allocation tool is used in the modified allocator. It can allocate mem-

ory on global memory, and return the start global address. The software cache will

take a global address as input, bring the data on that global address into local memory,

and finally return its address on local memory. As container, iterator, and algorithm

uses pointers and reference to access the container data, the software cache is used for

pointers which point to the global memory.

6.1 STL framework implementation

There are six major components in STL: containers, algorithms, iterators, function ob-

jects, adaptors, and allocators [13]. Containers are classes of data structures which

can contain collection of any data types. There are 4 data structures for container

21

classes: dynamic array (vector), double-ended queue (deque), linked list, and red black

tree. All the container data and the storage are dynamically created in the heap region.

Algorithms include searching and sorting algorithms. There are also some auxiliary

algorithm functions which can perform data copy, data assignment, and arithmetic op-

erations. Iterator is a class which can be used like a smart pointer. It is the connection

between Algorithm and Container in the ways that Algorithm manipulates the data in

the Container through Iterator. Allocators are classes which take care of memory man-

agement functionality for Container classes. Function Objects are functions which are

normally used as arguments to be passed into Algorithms for performing arithmetic op-

erations and Containers as comparison functions for ordering the elements. Adaptor is

a component which can take another components, and transforms their interfaces into

new interfaces. There are three kinds of adaptor: container adaptor, function adaptor,

and iterator adaptor [13]. For example, stack and queue both are container adaptor

for deque (Double-Ended Queue). Queue transforms the deque to a FIFO sequence

container, with the contrary that stack transforms it to a LIFO sequence container.

Our solution is to put most of the data in STL container class to the global

memory and use local memory as a buffer to the managed data (like a software cache).

To extends the programmability of the STL, we need to modify containers, algorithms,

iterators, and allocators. We will discuss the details in Section 6.

We modify the underlying functionality support for STL framework and pre-

serve the original interface and semantics. We modify the allocator with the heap allo-

cation tool, so that the container can have member data placed on global memory. Also,

we use software tool to support container, iterator, and algorithm to access the container

data on global memory. The purpose of using software cache is to translate the global

address into a local address for pointer, and also transfer the data into local memory.

As STL is written in an object-oriented programming model, we can encapsulate all

the code transformation inside the original interfaces.

22

Allocator

Allocator manages the memory allocation and deallocation for container class. The

original allocator of STL on LLM is using the new allocator. Because the new allocator

allocates the local memory, it will cause the heap region keep growing in the local

memory, and the container class will have a max data limit to use in the local memory.

Therefore, we need to transfer the increase of heap region to the global memory from

local memory. In order to do so, we use the memory allocation tool to allocate memory

space on global memory. Different container will specialize the allocator for allocating

different types of data structures. For example, vector will specialize the allocator

allocating for template data type, and red-black tree will specialize the allocator for

allocating the tree node with the template data type. Each time the allocator is called, it

returns a global address, and the container will use the global address for memorizing

the location of its member data.

The allocator is used for allocating and de-allocating container instances and

container data on heap region. Normally, container instances is on stack region, and

its data are on global memory. Accessing the container data can be done by simply

passing the data address in global memory to the software cache and uses the returned

local address. However, there are cases that container instances are the member data of

another container.1 In such cases, the memory space of these container instances will

be allocated on heap region which is in the global memory. For container instances on

heap region, we need to apply software cache to the this pointer of the container class,

and we can use this global address of this pointer for accessing the container instances.
1In rest parts of the paper, we call this case as ”container-to-container” cases.

23

Container

Different from the STL container, our new container classes store the container data on

global memory and access the data through software cache. The container data uses

the modified allocator as the same way as the original allocator. Since the modified

allocator allocates memory space on global memory, the container data is on the global

memory. The extended container uses the global addresses instead of the local address

to keep track of the container data. Accordingly, functions and operators of container

classes which access and perform operations on container data will be changed to use

the software cache interface in order to access the container data on global memory.

For container vector, the start and end address of the allocated memory space

for data are maintained by pointers M start and M end of storage. M finish specifies

the position after the last element. During allocation and re-allocation, the allocator will

return an allocated global address for M start and M end of storage. Since it does not

retrieve the data, there is no need to use the software cache. For the operations that the

vector needs to access the data through M start or M finish, the software cache needs

to be applied for fetching the vector elements. The global address of the element Gre

can be calculated easily by:

Gre = M start + Indexre× (element size−1)

where Gre is the global address of the requested element and Indexre is the offset of the

requested element relative to the first element. For example, assume we have an vector

of integers, if the M start is 0x10000 and we want to fetch the 133th element, then the

global address of 133th element is 0x10210. The software cache can then retrieve the

element by using the global address 0x10210.

Container deque is similar to vector. It uses a two dimensional pointer which

is called map pointer to store the elements. The first level pointer stores the location
24

of the blocks, and the second level of pointers point to the actual elements. The data

structure of deque is shown in Figure 6.1. The deque class uses two iterators first

and last to remember the first element, and the position after the last element. The

map pointer maintains the global address of the first-level table which is also stored in

global memory. In the member function of deque, it uses map pointer for accessing the

second-level blocks for memory allocation and de-allocation.

25

Figure 6.1: The map pointer contains the pointers point to the elements. The iterator
of deque has four fields, cur which points to the current accessed element, first and last
pointers point to the first element and last element inside the element array, node points
to the corresponding pointer in the first level.

We apply the software cache on the map pointer, we can do the following trans-

form:

Tp∗∗ c u r ;

∗ ((Tp ∗∗) c a c h e a c c e s s (c u r)) = t h i s −> M a l l o c a t e n o d e () ;

where cur is a map pointer and cache access() is the software cache interface.

The allocated global address for a block is stored in the first-level table on the global

memory. deque uses its iterator class to access the container elements, and the imple-

mentation modification is encapsulated in the iterator operators.

For container class list (linked list) and red black tree, the modification are more

complicated than vector. It is because list and red black tree (RB tree) are node-based

data structure. The container class list contains a node as the class member which is

the end of the linked list. Similar to list, class red black tree also contains a tree node

as class member which is the end node for red black tree iterator. Normally, if the list,

RB tree class is used as a variable in program to contain basic data types, they can work

well. Because the instances of list and RB tree is placed either on global and static

variable region, or on the stack region, in both ways, the addresses of the instances

are not changed. However, if they were used in a ”container-to-container” situation,

the instances of list and red black tree are likely to be initiated on heap region. As we
26

mentioned before, the container data are placed on the heap region on global memory,

and are brought into local memory through software cache interface. A global address

may be mapped to different local addresses after its content is swapped out from, and

then brought into the software cache. The address change of the list node in class list

and tree node in RB tree class may introduce incorrect results. In many cases, the

program simply would not stop since the algorithm cannot find these end nodes. To

resolve this problem, we change the list node in class list and the tree node in RB tree

class, so that all the nodes are accessed by using global addresses.

Iterator and Algorithm

Iterator is a class which can be used as a pointer. For each type of container data struc-

ture, it will implement the pointer operation based on the data structure. For container

vector, the functionality of the iterator is the same as a pointer, only the iterator contains

the global address to the container element. Our modification to the vector iterator is

to overload the * operator with software cache tool, so that it can fetch the container

elements. Since the address of vector elements can be easily calculated, there is no

need to change other iterator operators.

The iterator of deque maintains a map pointer which points to the current ac-

cessed second-level node, and three pointers M cur, M first and M last which are

used in the accessing block. The structure of iterator is shown in Figure 6.1. M cur

is used to point to the current accessed element, and M first and M last are pointing

to the first and last element in the current accessed node. We need to change the *

operator for fetching deque element, and the function which switch the map pointer to

a second-level block.

The iterator of red black tree and list keeps the information of the current ac-

cessed node. The operators of iterator use the functions for tree traversal and list traver-

sal. The software cache is applied for not only the element retrieving, but also the ele-

27

ments traversal. The complexity of modification is from the pointer which points to the

next node. There may be several left and right pointer used in red black tree, and mul-

tiple next and previous pointer in list. In these cases, we need to separate the original

statement into multiple statements. For an example code

t r e e n o d e ∗ p a r e n t ;
t r e e n o d e ∗ tmp node = p a r e n t−>r i g h t−> l e f t ;

we will need to transform it to

t r e e n o d e ∗ t m p p t r = ((t r e e n o d e ∗) c a c h e a c c e s s (p a r e n t))−> r i g h t ;
t r e e n o d e ∗ tmp node = ((t r e e n o d e ∗) c a c h e a c c e s s (t m p p t r))−> l e f t ;

Here, the software cache are applied to a single pointer access in a statement.

For algorithms, we needs to apply the software cache interface to the iterators

for which are pointers. The problem is that we cannot simply apply the software cache

tool to the original code. Because if the iterator is not pointer, then the compiler will

emit error and stop compiling. These happens when the iterator is a pointer. In Fig-

ure 6.2, we show what we need to change in the base algorithm fill(). We use the

is pointer() function separate the implementation for pointer type iterators, then we

can apply software cache to the iterators. For the transformed code, there will not have

compiler error.

6.2 Software Cache

The software cache (SC) tool is used to perform data management on execution PE

local memory. Software cache can retrieve the data on global memory which is pointed

to by a pointer which has a global address. The interface of our software cache are

shown in Table 6.1. The init cache() is used to initialize the caching data structure, and

allocates memory for cache blocks. The cache access() is used to access the data on
28

template<bool>
struct fill {

template<typename ForwardIterator, typename Tp>
static void fill(ForwardIterator first, ForwardIterator last,

const Tp& value) {
for (; first != last; ++ first)

* first = value;
} };

(a) Original STL code
template<bool>
struct fill {

template<typename ForwardIterator, typename Tp>
static void fill(ForwardIterator first, ForwardIterator last,

const Tp& value) {
typedef typename std:: is pointer< ForwardIterator>:: type

Integral;
fill aux 1(first, last, value, Integral());

} };
template<typename ForwardIterator, typename Tp>
void fill aux 1 (ForwardIterator first, ForwardIterator last,

Tp& value, true type){
for (; first != last; ++ first)

*((ForwardIterator)cache access((uint32 t) first) = value;
} };

(b) Transformed code for applying software cache interface

Figure 6.2: To enable algorithm code to handle the pointer type iterator, we need to sep-
arate the implementation with pointer type iterator from the original implementation.
In this case, the software cache is used in the fill aux 1() function.

global memory. It will automatically transfer the data on the requesting global address

into local memory, and return the pointer to access the data.

The software cache is a direct-map cache. The data structure of the local mem-

ory storage is a hash table with an FIFO linked list. The FIFO linked list serves as a

victim cache. The hash table and FIFO linked list use the same cache block data struc-

ture. For each cache block, it contains the global address of the first byte in the cache

block, a valid flag, and a pointer to the actual cache block data.

For the cache lookup, SC will first check the hash table to see if the requested

29

data is in the local memory. If there is a miss, then it will go to the linked list to see if

there is cache hit. If there is a cache miss, it will take this block to replace a block in

the hash table, and put the replaced block to the head of the linked list. If there is still

a miss, we need to transfer a block of data which contains the requested data into SC

buffer. For a cache miss, we first inserted the new requested block into the hash table.

Then, the original corresponding entry in the hash table will be inserted into the head

of the linked list. Finally, the last block in the FIFO linked list will be transferred to

global memory by using a non-blocking DMA.

Our software cache views the data in global memory in blocks. The addresses

within the range of a block can be all hashed to the address of the first byte of the block.

To check if the requested address is in a cache block, the SC will compare the hashed

value of the requested address with the address of the first byte of the block. If two

addresses are the same, then it is a hit, otherwise, it is a miss. As discussed in [40],

choosing the block size in the power of 2 can simplify the calculation of hashing an

address. We use a block size that is in the power of 2. The following equation is used

Function Interface Functionality
void init cache() Initialize the table for direct-map

cache and the FIFO linked list
void* cache access(uint32 t ref ppu addr) This interface will accept a global

address re f ppu addr as the input,
it will bring in the data at the re-
quested global address, and return
the pointer to its corresponding lo-
cal address in cache.

void* ppu addr(void* ptr) If the address of ptr is in software
cache buffer, this functino will con-
vert this address into a correspond-
ing global address. This function is
used in resolve the external pointer
problem.

Table 6.1: Software cache interfaces

30

to to calculate the first address of a block

block address = input address&(∼ (block size−1))

The block address is the address of the first byte of the cache block, input address is

the requested data address, and block size is the size of a data block. After the AND

operation, we can get an address which is the power of 2. For example, if the cache

block size is 16, input address is 0x01008, then the block address is 0x01000.

6.3 Dynamic Global Memory Allocation

Since the containers store container data on global memory, our allocator allocates

the memory space on global memory instead of allocating the memory space on local

memory. In order to minimize the change to the original code, the allocation inter-

face is implemented separately. The allocation interface set includes three functions

pmalloc(), p f ree(), and prealloc(), which is used for allocating, de-allocating, and

reallocating memory on global memory. The new allocator uses pmalloc() to substi-

tute for operator new, and uses p f ree() to substitute for operator delete. Since the STL

containers use construct() function from standard library to initialize the objects on the

allocated memory, this change will not introduce incompatibility problem.

The heap allocation tool allocates the memory space on global memory for the

STL container. Since PE program cannot allocate memory on global memory, we use

a thread on the main PE core and allocate the memory for execution PE program. We

used both the DMA and message passing for communication. The major functionality

of message passing is to ensure the execution order of execution PE thread and main

core thread during the allocation process. DMA is used to transfer additional param-

eters when necessary. The main core thread starts before the execution PE thread is

initiated. After it starts, it initiates a data structure msgStrut for transferring infor-

mation with execution PE thread through DMA channel, and then waiting on a read

operation for the new request message.
31

The inter-processor communication process includes five steps:

1. Execution PE thread informs the Main PE thread of requested task by mailbox,

starts waiting for the response mailbox message

2. Main core thread receives message from the mailbox

3. Main core thread does the allocation/de-allocation/re-allocation

4. Main core thread sends back task completed message through mailbox and start

waiting for the next request message on mailbox

5. Execution PE thread receives the message from mailbox and continues executing

Figure 6.3 shows an example of allocation. The msgStruct is a data structure

instance located in global memory. Its global address is the same during the execution

PE executes. As the execution PE program needs to allocate a new piece of memory

on global memory. It transfers the request memory size by DMA to the msgStruct on

global memory. Then, it sends an integer as a message to main core thread which indi-

cates the type of operation it is requesting. After the main core thread is waked up from

Figure 6.3: (1) The whole process for memory reallocation is shown and the number
means the order of steps. (2) Important information for reallocation is contained in a
data structure named msgStruct, which is located in the global memory. It is 16 bytes
large, but elements can be different depending on the type of operation.

32

waiting for request message, it reads the message from the channel and understand it as

an allocation operation. The main core thread reads the allocation size from msgStruct

and perform the allocation process. If the allocation is successful, the start address is

placed in the msgStruct. After that, the main core thread sends back an integer which

indicates the allocation complete to PE thread. Finally, the PE thread reads the transfer

the start address into execution PE and use it.

For most DMA engine, there is a typical requirement for the start and end trans-

ferring address to be aligned. The allocation program handles the alignment problem

both in execution PE side and main core side. In execution PE thread, we ensure that

the allocation size is aligned to an transferable address for DMA engine. To alleviate

this problem, we maintain a memory pool which is an allocated memory space on main

core thread. For memory pieces which have an equal or smaller size than software

cache block size, the main core thread allocates the memory from the memory pool

and aligns the address. Since all the allocated memory pieces from memory pool are

aligned, we do not have fragmentation problem. After one memory pool is exhausted,

the allocation program will allocate a new memory pool. All the allocated memory pool

are stored in a linked list, so there is no memory leak problem. For larger allocation

size, the main core allocation program still uses malloc() to allocate larger memory

space, and aligns the start address to an aligned address.

6.4 External pointers

In the traditional memory architecture, since pointers and the container data are all in a

same memory location, there is no hazard for pointers. However, in LLM architecture,

as the container element needs to place in the global memory, the pointer may become

invalid as the data which it is pointing to no longer exist. Our idea to ensure the validity

of the external pointer is to let the pointer maintain the global address of the container

element. We propose a technique which requires the code transformation to be per-

33

Figure 6.4: (a) The potential pointers will first be identified. (b) The program will be
transformed to use the software cache interface and ppu addr() which is used to extract
the global address of a container element.

formed on the original code. When the pointer content is needed, the de-referencing is

done by the software cache. There are two steps in the solution for the external point-

ers. First, we need to identify all the potential external pointers which may point to

the container data. Then, the code transformation is performed in order to apply the

software cache to the external pointers.

To identify the potential external pointers, we first need to identify the pointers

which are getting the address of a container element. Then we will do some simple

pointer analysis to track the possible pointers which may also point to a container ele-

ment. The member function or operator of a container class does not return a pointer to

the container elements. They may either return an iterator which can finally return a ref-

erence to the container element, or they may directly return the reference of a container

element. Therefore an external pointer may point to a container element by getting the

address of a returned element reference. For example, in the Figure 6.4 (a) line 3, the

Vector & Deque List & Queue Stack Map
operator[] front() top() operator[]

at() back()
front()
back()

Table 6.2: Member functions and operators that return a reference to elements of con-
tainers

34

pointer a can point to a vector element at offset idx exp. In Table 6.2, the member func-

tions and operators of vector and map which return a reference to the container element

are listed. When the source code is analyzed, each use of these functions and operators

are tracked. If the address of their reference is assigned to a pointer, then it is a poten-

tial external pointer. Furthermore, for all pointers which are assigned by the value of

potential pointers are also potential pointers. As shown in Figure 6.4 (a), a becomes

a potential pointer is because it gets the address from a container element reference.

b becomes a potential pointer because it is assigned by a’s address. The same for b

which is assigned by b’s address. After the analysis, we get a set of potential pointers.

The code transformation to the source code consists of two steps: first, the initial

reference to a container object needs to be converted into global address. Second,

software cache needs to be applied for the de-referencing of potential pointers. We

illustrate the code transformation in Figure 6.4 (b). The ppu addr() function is used

in the line 3, because the local address of the element is first assigned to the potential

external pointer a. Function ppu addr() extracts and returns the global address for the

vector element at offset idx exp. Then, the cache access() function is applied to line 4

and 8 to perform the pointer de-referencing. The line 7, 8 can be executed safely since

they do not use the data on global memory.

35

Chapter 7

Experimental Evaluation

Our experiments are done on PS3 which uses IBM Cell B.E. Processor. IBM Cell is

a LLM multicore architecture in which each core has a local memory of 256KB. We

installed Fedora 9 and IBM Cell B.E. SDK 3.1 on PS3. The benchmark that we used

is shown in Table 7.1. We use m f tb() and time() to measure the run time of the SPE

program.

7.1 Enabling use of STLs

We have proposed techniques to manage the STL data on the limited memory of the

cores of an LLM multicore architecture. Note that without our technique, STL can

be used, however, they can only support certain data size, and after that, it crashes.

Our modifications to the STL library, perform DMAs to the global memory and enable

STLs to manage any amount of data. Figure 7.1 shows the experimental proof that

Figure 7.1: The effectiveness of our solution are shown in the above four figures.

36

Benchmark Description Containers Data Size (in Bytes)
Heapsort The heapsort algorithm vector 4,000,000
Dijkstra The Dijkstra shortest

path algorithm
vector, queue 4,008,000

Edmonds-
Karp

The Edmonds-Karp
max flow algorithm

vector, list, queue 8,909,584

Kruskal The Kruskal’s min-
imum spanning tree
algorithm

list, vector 8,023,984

anagram A program which finds
out all the anagram in
the dictionary

map, list, string 833,684

MMints
Compress

An image compression
scheme by estimating
the current cell based
on the neighbors values

vector 4,000,000

MMints
Wavelet

Debaucles 4-
Coefficient Wavelet
filter for image com-
pression

vector 6,000,000

Basicmath Perform simple mathe-
matical calculation

vector 24

Olden
power

Olden power pricing
benchmark

vector 512

List merge Merge two list contain-
ers

list 8000

CRC32 Compute the 32-bit
CRC checksum

vector 100,000

Table 7.1: Benchmarks for Experimental Evaluation

our technique can enable any amount of STL data management in the vector, deque,

list and set containers. In each sub-graph, the Y-axis is the runtime when the number

of elements (on X-axis) are inserted. What we can see is that when using the original

STL, there is a limit on how many elements can be inserted, but our implementation

supports unlimited number of elements. In specific, Figure 7.1 (a) shows that original

vector class could only handle 8192 elements, while our implementation does not have

such a limitation. Therefore, after using our implementation of STL, programmers do

37

Container Original Code Size Approx. Code Size (in Bytes) Perc of Increase
Vector 138388 155036 12%
Deque 139364 156132 12%

Set 141284 166228 17.7%
List 134924 151228 12%

Table 7.2: Extra Static Code Overhead

not have to worry about the number of elements in their dynamic data structures – they

can program without that worry, and our implementation will manage any amount of

data. We clearly improve the programmability of LLM multicores, but this comes at

some codesize and performance overhead. The rest of this section characterizes and

breaks down these overheads.

7.2 Static Code Size Overhead

We evaluated the code size overhead for our new STL framework. The evaluated code

is the same as the code used for evaluating the code size in Table 3.1. Table 7.2 shows

that the code size of our new STL container generally increases by 12%, except that of

the container list increases by 17.7%. The increase of code size is mainly determined by

how much the container class uses the pointer to access data. The storage data structure

of container class set is red black tree, whose original implementation contains a large

number of pointer access. That’s the reason why the increase of code size of set is

larger than other containers.

7.3 Data Management Overhead

There are two parts of overhead in the software cache: (i) data transfer overhead:

overhead due to data transfers between the local memory and the global memory, and

(ii) dynamic instructions overhead: overhead due to extra instructions that must be

executed as a part of software cache implementation to find out if the data is present

in the software cache or not, and if not, getting it from the global memory. Note how-
38

Figure 7.2: Comparison of cache misses between our software cache for STL and hard-
ware direct-map cache.

ever, that the overhead of actual data transfer is not calculated in this, as it is already

computed in (i).

To find the data transfer overhead, and compare it to what we would have faced

in a cache based system, we compare the number of DMAs required by our technique

to the number of cache misses on a cache based architecture. To estimate the later,

we used the Cachegrind tool in the Valgrind to measure the hardware cache miss. For

both, our software cache, and the hardware cache in Cachegrind, we use a direct-map

cache of 32KB and line size of 128B. We run the executions on the Cell processor, and

39

simulations on Cachegrind for several data sizes of the applications. Since these are two

different systems (different libraries, and ABI), the actual number of cache misses are

not comparable. As a result, in figure 7.2 we plot the increase in the number of cache

miss on the current data size over the number of cache misses for the next data size. For

example, we run Heapsort with 10000 elements, and then run it for 20,000 elements.

We plot cache-misses-for-20000-elements - cache-misses-for-10000-elements for both

Cell SPU and cache based system. We see from the graphs that the number of DMAs

required is quite similar to that of the number of cache misses.

The dynamic instruction overhead comes from the extra instructions that soft-

ware cache needs to perform the cache lookup and cache miss handling. For this exper-

iment, we runs the same copies of SPE code which uses the STL container and the new

containers separately, and compare the instruction counts for different copies. The in-

put data size is reduced so that we can use STL library. The experiments are conducted

on the PS3 full system simulator. Figure 7.3 shows that the instruction count over-

head for different benchmarks. In this experiment, we have two sets of benchmarks.

In Figure 7.3(a), the STL container are intensively used for computation. Under the

extensively use, the additional overhead from the new STL can be up to 15 times of

the original instruction count. In Figure 7.3(b), the container class are used normally

in the application, and the additional instruction overhead can be only 25% of the total

original execution instruction. Also, the dynamic instruction overhead depends on the

complexity of the container implementation and the amount of usage of container mem-

ber functions. For benchmarks heapsort, wavelet that use vector have a large increase

in instruction count. This is because vector has simple implementation in retrieving el-

ements, so most of the overhead is in software cache operations. On the other hand, for

benchmarks edmonds− karp, kruskal, and list−merge, the extra overhead appears to

be smaller in percentage. This is because the container member functions implemen-

tation are more complex. For benchmark basicmath, olden power, and list merge,

40

Figure 7.3: The instruction overhead of the new STL library. We separate the bench-
marks into two sets: intensive use benchmarks and normal uses benchmarks.

the use of STL member function is not much, and therefore, the additional instruction

overhead is small.

7.4 Scalability on Multicore

In this experiment, we run the benchmarks on different number of cores to see how

our approach scales to multiple cores. For this experiment, we use input data sizes

of 360,000 Bytes, 1,276,800 Bytes, 1,280,000 Bytes, and 75,500 Bytes for Dijkstra,

Krusal, Edmonds-Karp, and Anagram respectively. As shown in Figure 7.4, three

benchmarks which only use the vector can scale well from 1 core to 6 cores. For

benchmarks Anagram, Dijkstra, Edmonds-Karp and Kruskal, the runtime increases

Figure 7.4: The scalability of the benchmarks is mainly depends on the types of con-
tainer used.

41

proportionally to the number of cores execution. This is because these two benchmarks

heavily use the pointer operation. The pointer operation usually access the memory

address inconsecutively, and introduces many DMA operations.

42

Chapter 8

Conclusions

In this article, we enable the usage of C++ STL library on the Limited Local Memory

(LLM) multicore architectures. LLM multicore architectures are power-efficient, and

feature scalable memory design. However, the programmability of STL library on

LLM architecture is limited as the local memory of each core is small. We improve the

programmability of the STL library by placing the container data on the global memory

instead of using only the local memory. Our experiment shows that our techniques

allow using STL for any unlimited data size. The static code size of our changes to

the STL logic increases the size of STL library by 12-17%. The number of DMAs

required are comparable to the number of cache misses that would have occurred, with a

equivalent cache size. Finally, although in the worst case, the extra instruction overhead

can be as high as 15 times that of the original, on typical applications, the overhead is

much more moderate and tolerable.

43

BIOGRAPHICAL SKETCH

[1] Analog Devices, Inc, One Technology Way, Norwood, Mass 02062. ADSP-

BF561 Blackfin Processor Hardware Reference, revision 1.1 ed. edition.

[2] F. Angiolini, F. Menichelli, A. Ferrero, L. Benini, and M. Olivieri. A post-

compiler approach to scratchpad mapping of code. In Compilers, architecture,

and synthesis for embedded systems, pages 259–267, New York, NY, USA, 2004.

ACM Press.

[3] Ben Juurlink Arnaldo Azevedo. A multidimensional software cache for

scratchpad-based systems. International Journal of Embedded and Real-Time

Communication Systems (IJERTCS), 1:1–20 pp, 2010.

[4] Oren Avissar, Rajeev Barua, and Dave Stewart. An optimal memory allocation

scheme for scratch-pad-based embedded systems. ACM Trans. on Embedded

Computing Sys., 1(1):6–26, 2002.

[5] Arnaldo Azevedo and Ben Juurlink. An efficient software cache for h.264 motion

compensation. In Proceedings of the 11th international conference on System-on-

chip, SOC’09, pages 147–150, Piscataway, NJ, USA, 2009. IEEE Press.

[6] D. Baertschiger. Multi-processing template library. Master’s thesis, Universite de

Gen‘eve, 2006. http://spc.unige.ch/mptl.

[7] Ke Bai and Aviral Shrivastava. Heap data management for limited local mem-

ory (llm) multi-core processors. In Proceedings of the eighth IEEE/ACM/IFIP

international conference on Hardware/software codesign and system synthesis,

CODES/ISSS ’10, pages 317–326, New York, NY, USA, 2010. ACM.

[8] Ke Bai, Aviral Shrivastava, and Saleel Kudchadker. Stack data management for

limited local memory (llm) multi-core processors. In Proceedings of the Interna-

44

tional Conference on Application Specific Systems, Architectures and Processors

(ASAP), 2011.

[9] R. Banakar, S. Steinke, Bo-Sik Lee, M. Balakrishnan, and P. Marwedel. Scratch-

pad memory: design alternative for cache on-chip memory in embedded systems.

In CODES’02:Hardware/software codesign, pages 73–78, New York, NY, USA,

2002. ACM Press.

[10] Ping Chao and Youn-Long Lin. An elastic software cache with fast prefetch-

ing for motion compensation in video decoding. In Proceedings of the eighth

IEEE/ACM/IFIP international conference on Hardware/software codesign and

system synthesis, CODES/ISSS ’10, pages 23–32, New York, NY, USA, 2010.

ACM.

[11] Tong Chen, Haibo Lin, and Tao Zhang. Orchestrating data transfer for the cel-

l/b.e. processor. In Proceedings of the 22nd annual international conference on

Supercomputing, ICS ’08, pages 289–298, New York, NY, USA, 2008. ACM.

[12] Tong Chen, Tao Zhang, Zehra Sura, and Mar Gonzales Tallada. Prefetching ir-

regular references for software cache on cell. In Proceedings of the 6th annual

IEEE/ACM international symposium on Code generation and optimization, CGO

’08, pages 155–164, New York, NY, USA, 2008. ACM.

[13] G. Derge D. Musser and A. Saini. STL Tutorial and Reference Guide, 2nd Edition.

Addison-Wesley Professional, 2001.

[14] A. Dominguez, S. Udayakumaran, and R. Barua. Heap data allocation to scratch-

pad memory in embedded systems. Embedded Computing, 1(4):521–540, 2005.

[15] Bernhard Egger, Chihun Kim, Choonki Jang, Yoonsung Nam, Jaejin Lee, and

Sang Lyul Min. A dynamic code placement technique for scratchpad memory us-

ing postpass optimization. In CASES ’06: Proceedings of the 2006 international
45

conference on Compilers, architecture and synthesis for embedded systems, pages

223–233, New York, NY, USA, 2006. ACM.

[16] Bernhard Egger, Jaejin Lee, and Heonshik Shin. Scratchpad memory manage-

ment for portable systems with a memory management unit. In EMSOFT ’06:

Proceedings of the 6th ACM & IEEE International conference on Embedded soft-

ware, pages 321–330, New York, NY, USA, 2006. ACM.

[17] A. E. Eichenberger, J. K. O’Brien, K. M. O’Brien, P. Wu, T. Chen, P. H. Oden,

D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao, M. K.

Gschwind, R. Archambault, Y. Gao, and R. Koo. Using advanced compiler tech-

nology to exploit the performance of the Cell Broadband Engine architecture,

2006.

[18] A.E. Eichenberger et al. Using advanced compiler technology to exploit the per-

formance of the cell broadband enginetm architecture. IBM Syst. J., 45(1):59–84,

2006.

[19] David Geer. Industry trends: Chip makers turn to multicore processors. Com-

puter, 38:11–13, May 2005.

[20] W. Gibbs. A split at the core. Scientific American, Nov 2004.

[21] Marc Gonzàlez, Nikola Vujic, Xavier Martorell, Eduard Ayguadé, Alexandre E.

Eichenberger, Tong Chen, Zehra Sura, Tao Zhang, Kevin O’Brien, and Kathryn

O’Brien. Hybrid access-specific software cache techniques for the cell be archi-

tecture. In Proceedings of the 17th international conference on Parallel archi-

tectures and compilation techniques, PACT ’08, pages 292–302, New York, NY,

USA, 2008. ACM.

46

[22] Douglas Gregor and Andrew Lumsdaine. The parallel bgl: A generic library for

distributed graph computations. In In Parallel Object-Oriented Scientific Com-

puting (POOSC, 2005.

[23] Erik G. Hallnor and Steven K. Reinhardt. A fully associative software-managed

cache design. In Proceedings of the 27th annual international symposium on

Computer architecture, ISCA ’00, pages 107–116, New York, NY, USA, 2000.

ACM.

[24] Intel Corporation. Reference for Intel Threading Building Blocks, 2006.

[25] Andhi Janapsatya, Aleksandar Ignjatović, and Sri Parameswaran. A novel instruc-

tion scratchpad memory optimization method based on concomitance metric. In

ASP-DAC ’06: Proceedings of the 2006 conference on Asia South Pacific design

automation, pages 612–617, Piscataway, NJ, USA, 2006. IEEE Press.

[26] Andhi Janapsatya, Aleksandar Ignjatović, and Sri Parameswaran. A novel instruc-

tion scratchpad memory optimization method based on concomitance metric. In

ASP-DAC ’06: Proceedings of the 2006 conference on Asia South Pacific design

automation, pages 612–617, Piscataway, NJ, USA, 2006. IEEE Press.

[27] et al John Reynders. Pooma: A framework for scientific simulations on parallel

architectures. In Gregory V. Wilson and Paul Lu, editors, Parallel Programming

using C++, pages 553–594. MIT Press, 1996.

[28] E. Johnson. Support for Parallel Generic Programming. PhD thesis, Indiana

University, Indianapolis, IN, 1998.

[29] Seungchul Jung, Aviral Shrivastava, and Ke Bai. Dynamic code mapping for

limited local memory systems. In Proceedings of the International Conference

on Application-specific Systems Architectures and Processors (ASAP), pages 13–

20, July 2010. ISSN 1063-6268.
47

[30] Mahmut T. Kandemir, J. Ramanujam, and Alok N. Choudhary. Exploiting shared

scratch pad memory space in embedded multiprocessor systems. In DAC, pages

219–224, 2002.

[31] Mahmut T. Kandemir, J. Ramanujam, Mary Jane Irwin, Narayanan Vijaykrish-

nan, Ismail Kadayif, and Amisha Parikh. Dynamic management of scratch-pad

memory space. In DAC, pages 690–695, 2001.

[32] Yongjoo Kim, Jongeun Lee, Aviral Shrivastava, and Yunheung Paek. Operation

and data mapping for cgras with multi-bank memory. In Proceedings of the ACM

SIGPLAN/SIGBED 2010 conference on Languages, compilers, and tools for em-

bedded systems, LCTES ’10, pages 17–26, New York, NY, USA, 2010. ACM.

[33] Lian Li, Lin Gao, and Jingling Xue. Memory coloring: a compiler approach for

scratchpad memory management. In PACT, pages 329–338, Sept. 2005.

[34] R. Mcllroy, P. Dickman, and J. Sventek. Efficient dynamic heap allocation of

scratch-pad memory. In ISMM’08:The 7th international symposium on Memory

management, pages 31–40, New York, NY, USA, 2008. ACM Press.

[35] Nghi Nguyen, Angel Dominguez, and Rajeev Barua. Memory allocation for em-

bedded systems with a compile-time-unknown scratch-pad size. In CASES, pages

115–125, 2005.

[36] Amit Pabalkar, Aviral Shrivastava, Arun Kannan, and Jongeun Lee. SDRM: Si-

multaneous determination of regions and function-to-region mapping for scratch-

pad memories. In Int’l Conference on High Performance Computing (HiPC),

December 2008.

[37] D. Pham, S. Asano, M. Bolliger, M.N. Day, H.P. Hofstee, C. Johns, J. Kahle,

A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak,

M. Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and
48

K. Yazawa. The design and implementation of a first-generation cell processor.

In ISSCC ’05: IEEE Solid-state circuits, pages 184–592, 2005.

[38] Francesco Poletti, Paul Marchal, David Atienza, Luca Benini, Francky Catthoor,

and Jose Manuel Mendias. An integrated hardware/software approach for run-

time scratchpad management. In DAC, pages 238–243, 2004.

[39] Barbara G. Ryder, Mary Lou Soffa, and Margaret Burnett. The impact of software

engineering research on modern progamming languages. ACM Trans. Softw. Eng.

Methodol., 14:431–477, October 2005.

[40] Sura Z. Sangmin Seo, Jaejin Lee. Design and implementation of software-

managed caches for multicores with local memory. In IEEE 15th International

Symposium on High Performance Computer Architecture (HPCA’09), 2009.

[41] Thomas J. Sheffler. A portable mpi-based parallel vector template library. Tech-

nical report, 1995.

[42] Mark Silberstein, Assaf Schuster, Dan Geiger, Anjul Patney, and John D. Owens.

Efficient computation of sum-products on gpus through software-managed cache.

In Proceedings of the 22nd annual international conference on Supercomputing,

ICS ’08, pages 309–318, New York, NY, USA, 2008. ACM.

[43] Johannes Singler, Peter Sanders, and Felix Putze. Mcstl: The multi-core standard

template library. In Anne-Marie Kermarrec, Luc Boug, and Thierry Priol, editors,

Euro-Par 2007 Parallel Processing, volume 4641 of Lecture Notes in Computer

Science, pages 682–694. Springer Berlin / Heidelberg, 2007. 10.1007/978-3-540-

74466-5-72.

[44] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel. Assigning program and data

objects to scratchpad for energy reduction. In Design, automation and test, page

409, Washington, DC, USA, 2002. IEEE Computer Society.
49

[45] Stefan Steinke, Nils Grunwald, Lars Wehmeyer, Rajeshwari Banakar, M. Balakr-

ishnan, and Peter Marwedel. Reducing energy consumption by dynamic copying

of instructions onto onchip memory. In ISSS ’02: Proceedings of the 15th inter-

national symposium on System Synthesis, pages 213–218, New York, NY, USA,

2002. ACM.

[46] Bjarne Stroustrup. Evolving a language in and for the real world: C++ 1991-2006.

In Proceedings of the third ACM SIGPLAN conference on History of programming

languages, HOPL III, pages 4–1–4–59, New York, NY, USA, 2007. ACM.

[47] Gabriel Tanase, Antal Buss, Adam Fidel, Harshvardhan Harshvardhan, Ioannis

Papadopoulos, Olga Pearce, Timmie Smith, Nathan Thomas, Xiabing Xu, Nedal

Mourad, Jeremy Vu, Mauro Bianco, Nancy M. Amato, and Lawrence Rauch-

werger. The stapl parallel container framework. In Proceedings of the 16th

ACM symposium on Principles and practice of parallel programming, PPoPP ’11,

pages 235–246, New York, NY, USA, 2011. ACM.

[48] Texas Instruments Incorporated, Texas Instruments, Post Office Box 655303, Dal-

las, Texas 75265. TMS320C6472 Fixed-Point Digital Signal Processor Technical

Brief (Rev. B), July.

[49] Sumesh Udayakumaran, Angel Dominguez, and Rajeev Barua. Dynamic alloca-

tion for scratch-pad memory using compile-time decisions. Trans. on Embedded

Computing Sys., 5(2):472–511, 2006.

[50] M. Verma and P. Marwedel. Overlay techniques for scratchpad memories in low

power embedded processors. Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, 14(8):802–815, Aug. 2006.

[51] M. Verma, L. Wehmeyer, and P. Marwedel. Cache-aware scratchpad allocation

algorithm. In Design, automation and test, page 21264, 2004.

50

[52] Manish Verma, Klaus Petzold, Lars Wehmeyer, Heiko Falk, and Peter Marwedel.

Scratchpad sharing strategies for multiprocess embedded systems: A first ap-

proach. In ESTImedia, pages 115–120, 2005.

51

