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ABSTRACT

Soft errors are considered as a key reliability challenge for sub-nano scale transistors.

An ideal solution for such a challenge should ultimately eliminate the effect of soft

errors from the microprocessor. While forward recovery techniques achieve fast re-

covery from errors by simply voting out the wrong values, they incur the overhead of

three copies execution. Backward recovery techniques only need two copies of execu-

tion, but suffer from check-pointing overhead.

In this work I explored the efficiency of integrating check-pointing into the application

and the effectiveness of recovery that can be performed upon it. After evaluating the

available fine-grained approaches to perform recovery, I am introducing InCheck,

an in-application recovery scheme that can be integrated into instruction-duplication

based techniques, thus providing a fast error recovery. The proposed technique makes

light-weight checkpoints at the basic-block granularity, and uses them for recovery

purposes.

To evaluate the effectiveness of the proposed technique, 10,000 fault injection experi-

ments were performed on different hardware components of a modern ARM in-order

simulated processor. InCheck was able to recover from all detected errors by replay-

ing about 20 instructions, however, the state of the art recovery scheme failed more

than 200 times.
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Chapter 1

INTRODUCTION

Due to massive technology scaling, we have reached a point where we are able to

make high performing processors that are affordable and power-efficient. Computing

systems started becoming so crucial that their failure might be jeopardizing human

safety. In applications ranging from smart cars to space shuttles, system dependabil-

ity plays a critical role in processor design decisions. Soft-Error resilience is one of

the key challenges to be addressed in making such processors reliable.

The term Linear Energy Transfer (LET) is generally used to describe the action of

the radiation upon a processor. It can be quantified as the energy transferred by an

ionizing particle while it traverses a unit distance through the processor. Soft-Errors

(SE) are said to happen due to LET from particles with enough energy to alter the

data stored in processor memory elements like registers, flip-flop, latches. The term

”soft” originates from the fact that these errors do not result in a permanent change

to processor circuitry. Sources of SEs’ include but are not just limited to Cosmic

rays, mechanical vibrations in moving parts, heat dissipation, radio-active elemental

traces etc. The rate at which they happen highly depends on altitude of location

under consideration.

Soft-Errors are a rare phenomenon. High energy cosmic flux hits the upper lay-

ers of earth’s atmosphere at a rate of 1000 particles/m2-s. As they progress to-

wards the earth’s surface, atmospheric collisions cause a cascade and raise the flux

to 1000000/m2-s at altitudes of around 40,000 ft. However due to the higher density

of lower atmosphere, most of this flux gets absorbed making it only 10 times higher

than the initially incident flux. (˜1/cm2-s) Ziegler et al. (1996). Not every particle
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strike from this flux will cause a soft-error induced system failure. Experiments done

on DRAM cells by Li et al. (2010), report a 0.061 FIT per Mbit. (Failure In Time:

Number of expected failures in 109 hours of operation).

Hardware soft error detection strategies, ranging from low-level circuit design tech-

niques to high-level redundancy-based techniques, have been employed in many ded-

icated mission-critical systems. However, in a new class of emerging application,

the so called mixed-critical systems, critical and noncritical programs share a com-

mon underlying microprocessor. In such systems, application-level FT techniques are

more effective because of their flexibility. Several independent radiation-based test-

ing and low-level soft error emulation studies have already shown the effectiveness of

application-level FT approaches.

Most of software-level fault tolerance techniques Didehban and Shrivastava (2016);

Feng et al. (2010); Khudia et al. (2012); Wang et al. (2007); Oh et al. (2002a); Zhang

et al. (2012a,b); Mitropoulou et al. (2014); Reis et al. (2005); Oh et al. (2002b) fo-

cus on error detection while assuming some kind of backward recovery is available.

Restarting a program from the beginning is the simplest method of backward recovery

Rennels and Hwang (2001). However, it suffers from a very high error recovery latency

and is not applicable in some cases, i.e, a long running-application which is execut-

ing in an environment with the soft error frequency more than the the applications

execution time . The most common method of recovery is checkpointing/rollback

strategy. In such techniques, the program execution is paused periodically and a

snapshot of the program state, called checkpoint, will get preserved in a safe storage.

If the error detection unit declares the manifestation of any error, the program exe-

cution gets terminated, and resumes (rollbacks) from the last checkpoint. However,

the usage of checkpoint-based recovery techniques is limited to High Performance

Computing applications. This is due to the significant (about 50% Elnozahy and
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Plank (2004); Schroeder and Gibson (2007)) performance and storage overhead of

frequent and multiple checkpoints which are required for successful recovery from

SDCs Aupy et al. (2013). Note that on top of the checkpointing cost, the error

detection overhead, which is in order of 2x for redundancy-based techniques has to

be considered for calculating the overall cost of backward recovery. I believe that

if the error handling phases, mainly detection and recovery, collaborate with each

other, more effective and efficient fault tolerance is achievable. In this work, I present

an in-application low-level recovery mechanism called InCheck (INtegrated CHECK-

pointing and Recovery). It combines with a fine-grain instruction duplication-based

detection strategy, to provide fast and effective error recovery. The key idea of Incheck

is to preserve the state of error-free register file in the beginning of each basic block,

and to back up every memory location before each update. If the error detector de-

clares the manifestation of any error, the program is redirected to the recovery block.

In recovery block, the state of memory and register file revert to the initial state that

they had in the beginning of BB and the program execution resumes from there. In

order to evaluate the effectiveness of Incheck, I performed about 10,000 system-wide

microarchitectural fault injection experiments on Mibench programs compiled with

-O3 optimization flag. The results prove that Incheck is extremely effective.
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Chapter 2

MOTIVATION AND RELATED WORKS

Transient faults or soft errors are considered as one of the main reliability threats in

future systems. The effects of soft error will get masked by various masking effects

in most of the cases. However, in some situations soft errors will survive masking ef-

fects and lead to a failures such as SDC (Silent Data Corruption), segmentation fault,

system hang. In contrast to other failure modes, SDCs are considered to be the most

dangerous as there will be no user recognizable sign that the results are incorrect.

One way to provide complete fault tolerance is to adopt forward-recovery which is

made possible by nMR (n-Module Redundancy) execution and voting strategy. There

are no active error detection and recovery phases in forward-recovery strategy. They

eliminate the effect of error by performing majority-voting between redundantly com-

puted results. Software implementation of nMR can take place at multiple granular-

ities ranging from coarse-grained program or module triplication Shye et al. (2009,

2007); Quinn et al. (2015); Döbel and Härtig (2014) to fine-grain, low-level, assembly

instruction triplication Reis et al. (2007); Chang et al. (2006); Restrepo-Calle et al.

(2013). In coarse-grain software implemented TMR, three independent versions of a

program Quinn et al. (2015) or process Shye et al. (2009, 2007) with separate data and

memory get executed.The majority-voting takes place at the end of program either be-

tween the redundantly computed-results Quinn et al. (2015) or between arguments at

system calls’ boundaries Shye et al. (2009, 2007); Döbel and Härtig (2014). Fine-grain

forward-recovery techniques provide a more efficient way of dealing with soft errors by

eliminating the need for memory triplication and placing checking/voting operations

at strategic points of execution. For instance, SWIFT-R Reis et al. (2007); Chang
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et al. (2006) an assembly-level forward-recovery technique, assumes ECC-protected

memory and therefore excludes the memory subsystem from its sphere-of-protection.

SWIFT-R transformation divides programmer-visible registers into three sets, and

triplicates program’s computational instructions. To make sure that the error-free

values will transfer to/from the memory, SWIFT-R performs 2-of-3 majority-voting

between three types of redundantly-computed values:

1. Memory(read/write) instruction’s base address register

2. Memory write instruction’s value register

3. Compare instruction’s register operands

R
ed
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m
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u
tatio
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s

store  x1 [x2]
load   x1 [x2*]
if (x1 != x1*) ERROR

M
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n

s

Figure 2.1: nZDC Data-Flow Protection Scheme

Software Implemented Fault Tolerance (SWIFT) Reis et al. (2005) is a double modu-

lar redundancy based technique that can provide soft-error detection. However it does

not duplicate memory and control flow instructions. Research done in nZDCDidehban

and Shrivastava (2016), shows that in SWIFT memory and control flow instructions

(about 30% of a SWIFT-protected program) are susceptible to soft errors as they

turn into single points of failure. SWIFT-R was an attempt to integrate the feature

of forward recovery into SWIFT. SWIFT-R adds one redundancy on top of SWIFT’s

double modular redundancy and accomplishes recovery by means of majority vot-

ing between these three redundancies. However, similar to SWIFT, it suffers from
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Figure 2.2: Total Number of SDCs in SWIFT vs SWIFT-R in Fault Injection Ex-
periments Performed on Register File

many single-point-of-failures. In fact, in case of SWIFT-R these should be bigger

because it imposes more register pressure than SWIFT, resulting in more spilling

code (memory operations). Apart from this SWIFT-R replaces compare operations

used by SWIFT’s error detection routines with majority voting before every memory

operation, thereby adding vulnerability to the already vulnerable parts of SWIFT pro-

grams. In-order to quantify the vulnerability added by SWIFT-R on top of SWIFT I

performed 90,000 fault injection experiments on Register File while running 10 bench-

marks from MIbench on a gem5 simulator based ARM processor(10,000 faults on each

benchmark). As in shown in Figure 2.2, it was observed that adding SWIFT-R upon

a given SWIFT program considerably increased number of SDCs in all the 10 bench-

marks.

Recovery can also be implemented by means of checkpointing and rollback. Since

the program replays certain number of instructions after resuming from most recent

checkpoint, this mode of recovery is often referred to as Backward Recovery. Check-
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pointing can be done either at application level (coarse-grained) (or) at instruction

level (fine-grained).

Coarse-grained/offline check-pointing approaches Hargrove and Duell (2006); Sankaran

et al. (2005) pause the execution of a program, save the memory and program states

and then resume execution. So they need more storage for saving the state.

In this work InCheck, a fine-grained recovery approach that integrates check-pointing

into the program at instruction level to accomplish fast and efficient error recovery

is presented. InCheck implements recovery on top of a given fine-grained detection

scheme without compromising the detection’s fault coverage.

Recent works like Xu et al. (2013); Kadav et al. (2013) demonstrated the use of

fine-grained checkpointing for error recovery. FASER Xu et al. (2013), is a fine-

grain backward recovery approach implemented on top of SWIFT. The process of

checkpointing in FASER is flawed. Check-pointing is performed only on store-free

basic blocks. Therefore, if a store operation makes an erroneous change to mem-

ory, it cannot be undone as it does not make memory checkpoints. As a result, the

recovery operation performed by restoring the values of registers from the previous

checkpoint, can use the erroneous memory location after recovery and could lead to

an SDC. SWIFT detection mechanism cannot detect such errors because it does not

duplicate memory instructions. There are similar flaws in many other existing fine-

grained backward recovery approaches. However, through InCheck I could perform a

flawless recovery from almost every error caught by the detection mechanism.

The fault coverage offered by a fine-grained backward recovery approach highly de-

pends on the detection mechanism they are built upon. These techniques cannot

recover from errors undetected by their underlying detection scheme. Even if the re-

covery methodology is flawless, the coverage numbers could still be the same or even

worse if the recovery is integrated into an improper detection scheme. Therefore,
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prime importance was given to two factors while designing InCheck.

1. Choosing a detection technique that has very good coverage.

2. Implementing the recovery scheme without losing the coverage offered by de-

tection technique.

Amongst all the recent literature on Fine-grained soft-error detection techniques we

considered to implement InCheck, nZDC Didehban and Shrivastava (2016), could

provide a near-zero SDC with an acceptable performance overhead. So it has been

chosen as a candidate for implementing InCheck on top of it.

2.1 nZDC: A Detection Technique for near Zero SDC

nZDC is a fine-grain error detection technique which duplicates all computa-

tional,logical, memory read and compare instructions in a program and checks the

results of memory write and conditional branch instructions after their execution.

Figure 2.1 illustrates key ideas of nZDC data-flow error-detection. As it shows, the

nZDC technique, loads-back the stored value (x1) from the memory and compares

that against the redundantly-computed value(x1*). Therefore, nZDC is not only able

to detect the effect of soft error on the operands of memory write instructions, but

also errors which impact the execution of memory write instructions themselves.

nZDC introduced a new control-flow scheme which is able to detect wrong-direction

and wrong-address control flow errors. Wrong-direction control flow errors are those

errors which can directly or indirectly cause a branch direction to alter from taken

to not-taken or vise-versa. For instance, if error happens during the computation of

operand(s) of a compare instruction, it can change the result of compare instruction

and, indirectly alter the direction of conditional branch instruction. In another in-

stance, the error can directly affect the op-code of a conditional branch instruction,
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// body of BB

// body of BB

// body of BB

cmp x1, x2
b.cond .BB1

// body of BB

// body of BB

// body of BB

cmp CDR  x1, x2
if (cond) CDR= !CDR
if ( CCR != 0) Error
cmp CCR  x1*, x2*
b.cond .BB1
If (!cond) CDR= !CDR

XNOR   CCR, CCR, CDR

XNOR   CCR, CCR, CDR

XNOR   CCR, CCR, CDR

if ( CCR != 0) Error

if ( CCR != 0) Error

(a) (b)

Figure 2.3: nZDC Wrong-Direction CF Error Detection

and result in a wrong-direction control flow error. Figure 2.3 demonstrates wrong-

direction control flow detection part of nZDC control-flow checking technique. nZDC

CF scheme also employees static signatures to detect wrong address control flow er-

rors in which an unexpected jump will change the control flow of a program. The

reasons of wrong address branches can be a fault on PC (Program Counter), errors

which change the op-code of a non-branch instruction to a branch instruction, or

the errors during the computation of target address of a taken-branch instruction.

However, as study Shrivastava et al. (2014) shows that wrong direction control flow

errors are dominant control flow errors and wrong target control flow errors are rare.
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Chapter 3

InCheck: THE INTEGRATED RECOVERY METHODOLOGY

The goal of my thesis work is to provide an Integrated recovery scheme for nZDC-

protected codes, without losing the coverage offered by nZDC. However, the main

challenge in recovery from nZDC detected errors is its late error detection. nZDC

detects errors by checking the results of store (after performing store instruction) or

detects the control flow errors once the program is in the wrong basic block. Therefore,

in each case, the recovery scheme should be able to return the state of the program

(registers, memory, PC) to an error-free state by eliminating the possible side effects

of error.

3.1 Recovery from Data Flow Errors

InCheck’s strategy for recovery from errors that nZDC detects after a memory

write instruction is presented in this section.

3.1.1 Safe Two-Phase Register-File Checkpointing

The main idea behind the InCheck is to make frequent built-in checkpoints at BB

(Basic Block) granularity by preserving the live error-free registers in a specific part

of memory (check-pointing storage) and restore them in the case of error detection.

However, it is very crucial that the saved registers should be error-free. Therefore, the

register preservation process requires some extra checking instructions (on the top of

nZDC error checks) to make sure that the error-free registers are saved to the check-

pointing storage. For that purpose, inCheck strategy reserves some spaces in memory

which is as big as nZDC master registers (if the nZDC master instructions are using 15

10



BB:
load R1 <- [R2]
load R1* <- [R2*]
R1++
R1*++
store R1 -> [R2]
load R1 <- [R2*]
cmp R1, R1*
b.ne recovery

register recovery:
restore(R2)
branch to BB

BB:
load R1 <- [R2]
load R1* <- [R2*]
R1++
R1*++

preserve([R2])->M_REG
store R1 -> [R2]
load R1 <- [R2*]
cmp R1, R1*
b.ne recovery memory recovery:

M_REG -> restore([R2])
register recovery:
restore(R2)
branch to BB

Original program First-cut recovery scheme (with register restoration only) InCheck recovery (with memory and register restoration)

preserve(R2) preserve(R2)

10 10 11 10 10 16[R2]

j k l

16 16

n

17

In recovery block, R2 is loaded 

with correct initial address but 

[R2] remains un-restored

j k l

load R1 <- [R2]

R1++

store R1 -> [R2]

10 10 16[R2]

j k

10 10

m n

11

In recovery block, [R2] is re-loaded 

with its initial value before store 

operation

[R2]

recovery: recovery:

j

k

l

m

n

Soft-error 
happens 

on R1 
Soft-error 
happens 

on R1 

j k j m

Q P

Labels

checkpointing: checkpointing:

Part (a) Part (b) Part (c)

Figure 3.1: InCheck Recovery Strategy from Data-Flow Errors

64-bit wide programmer available registers, then checkpointing-storage size in memory

should be 2 x 15 x 8 = 240 Bytes). InCheck partitions checkpointing-storage into two

halves, and, periodically uses one segment to save the live registers of every alternate

basic-block. The reason is that if the manifestation of error in a register pair gets

detected, after the process of making a new checkpoint, the program can use the last

safe checkpoint (which is preserved in the other segment of checkpointing-storage) to

restore the register value and repeat the computation.

3.1.2 Need for Memory Checkpointing

Unfortunately, because of the late error detection strategy of nZDC, register file

checkpointing alone cannot guarantee a successful recovery. For instance, consider the

code snippet shown in figure 3.1. Part(a) of figure shows the original code, in which a

variable reads some data from the memory, increments its value and saves it back to

the same location of the memory. Part-(b) shows the first-cut solution for recovery. As

it shows, the value of R2 register was saved to check-pointing storage in the beginning
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of BB and the body of BB is protected by nZDC error detection scheme. Now

consider an error that alters the value of R1 register. The store instruction then saves

the faulty-value of R1 into the correct memory location. However, nZDC checks after

memory write instruction discover a mismatch between the stored value (faulty-R1)

and the redundantly-computed value( R1*) and declare the manifestation of this error.

The first-cut recovery technique loads the safely saved value of R2 from check-pointing

storage and transfers control flow of the program to first instruction in BB. However,

the program loads the faulty value (faulty-R1) from the memory and increments it

twice. Finally, program saves the [R1-faulty++] to the memory and since this value

now matches with the redundant-computed ones, the program execution proceeds

with wrong data.

3.1.3 InCheck Memory Preservation and Restoration

To solve the problem of memory checkpointing in an effective way, I first transform

the nZDC-protected BB to safe-recovery basic blocks in which at most one memory

instruction is allowed. Then, InCheck preserves a backup of memory location that is

about to get overwritten by the store instruction by inserting a load instruction right

before the program store instructions. It then saves the loaded value in a specially

reserved register, called MemReg. Now, assume that the value of x1 has changed to

faulty-x1 because of an error. The backup-load preserves the state of memory before

store instruction, and InCheck Recovery routine first restores the memory state to

last fault-free state by writing the memory-backed-up data, preserved in MemReg, to

memory. Then, it restores the registers from check-pointing storage and transfers the

control-flow of program to first non-checkpointing instruction of the basic block. Now

the program can resume its execution without any erroneous data.
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3.2 Recovery from Control-Flow Errors

Soft errors can change the control flow of a program in two ways,

• Wrong target

• Wrong direction

A wrong target control flow arises when, for instance, an error alters the target address

of a taken branch instruction (if the branch is not-taken the error would get masked)

or the error changes opcode of a non-branch instruction to a branch instruction, or

even errors directly altering the value of program counter register. A wrong target

control flow error gets detected with signature-part of nZDC control flow checking

mechanism. A wrong direction control flow, on the other hand, occurs when a branch

direction changes from taken to not-taken or vice-versa, which can be caused by

errors affecting (directly or in-directly) cmp instructions (operands as well as opcode)

or branch instruction’s opcode or even program status flag register. Since the wrong

direction control flow errors are considerably more frequent than wrong target errors

Shrivastava et al. (2014), in this work, we provide the recovery from such errors, and,

leave wrong target control flow errors as detected/unRecoverable.

The main challenge in recovery from control flow errors is that by the time

nZDC detects the presence of a control-flow error, the register state saved in storage-

checkpoint for the recovery purpose may not be the correct one due to several reg-

ister preservation operations. For instance, consider an nZDC-protected basic block

(nZDC-BB) which is a fan-in basic block (has more than one predecessors) and con-

tains at least one memory write instruction and control-flow error-check is positioned

close to the end of the basic block by nZDC technique. Since there is a store in the

middle of basic block, InCheck transformation converts the nZDC-BB in two consec-

utive basic-blocks (InCheckBB1 and IncheckBB2), which are separated immediately

13



after memory write instructions. Assume that at run time the control flow of the pro-

gram reaches to InCheckBB1 from the predecessor1 in which InCheck preserves the

live registers of predecessor1 into the first segment of checkpointing-storage. Once the

control-flow of program reaches to InCheckBB1, the register-file preservation takes

place first and the live registers get saved into the second segment of checkpointing-

storage and no error is detected because the nZDC control-flow error detector is

placed at the end of InCheckBB2 basic block. Once the program control reaches to

the InCheckBB2, InCheck checkpointing mechanism saves the live registers into first

segment of checkpointing-storage (the register backup for the predecessor1 is gone).

Finally, in the end of InCheckBB2, nZDC error detector discovers a control-flow error.

However, the recovery is not possible because the back-up data for the predecessor1

block is already overwritten. To solve this problem, InCheck also adds an extra

control-flow detection check after the register-file preservation at the beginning of all

fan-in basic blocks. The idea of InCheck error recovery has been shown in Figure 3.2.

Check pointing:

main thread
shadow thread

recovery:

BB 2:

Check pointing:

main thread shadow thread

BB 1:

cond. branch     BB 2

Redundant computation

Redundant computation

Check pointing:

main thread shadow thread

BB 3:

cond. branch     BB 2

Redundant computation

step-1:Restore Registers & 

memory

step-2: Jump back to label 

address stored in label_reg

nZDC Control Flow Error 

Detection:

CF error detected? -> exit( )

1. Register File Preservation

2. Checkpoint Error Detection

3. Control Flow Error Detection

if error detected?

1. Register File Preservation

2. Checkpoint Error Detection

3. Save label addr. of current 

BB

1. Register File Preservation

2. Checkpoint Error Detection

3. Save label addr. of current 

BB

main thread shadow thread

BB 3:

cond. branch     BB 2

Redundant computation

main thread shadow thread

BB 1:

cond. branch     BB 2

Redundant computation

main thread

shadow thread

BB 2:

Redundant computation

nZDC Control Flow Error 

Detection:

CF error detected? -> exit( )

nZDC nZDC + InCheck

Figure 3.2: InCheck Recovery Strategy from Control-Flow Errors

14



3.2.1 Unrecoverable Errors

InCheck’s recovery mechanism has been developed to always perform correct re-

covery. The diagnosis mechanism built into the recovery modules is responsible to

decide whether a fault is recoverable or unrecoverable. If the diagnosis routine de-

clares a fault as unrecoverable, InCheck stops the process of recovery and by deeming

the fault as detected. This strategy of InCheck avoids the possibility if SDCs that

can happen due to improper recovery.

The necessity to declare a fault as detected/unrecoverable comes when the store in-

struction corrupts a data element in memory that was not backed up by the load

that performed memory preservation. Figure 3.3 depicts a code snippet from an

nZDC+InCheck basic block. When a fault happens on register x2 after the first load

instruction and before the execution of store, there are chances that store instruction

is going to corrupt a memory location that we did not backup into M_REG. In order

to prevent that from happening, we tried to be conservative in designing InCheck’s

recovery process. Any error that changed the memory that we haven’t backed up is

deemed as Detected/Un-Recoverable error.

load M_REG  [x2]
store  x1 [x2]
load   x1 [x2*]
compare (x1 , x1*) 
if(x1≠x1*)  recovery 

Figure 3.3: Unrecoverable Faults
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Chapter 4

EXPERIMENTAL RESULTS

4.1 Compilation and Simulation Framework

In order to evaluate the effectiveness of nZDC+inCHECK fault tolerant technique,

I implemented SWIFTR and nZDC+inCHECK techniques as late back-end passes in

LLVM 3.7 infrastructure for an ARMv8-a ISA. This implementation enabled me to

take advantage of all the advanced compiler optimizations. I compiled 6 benchmarks

from Mibench benchmark suite Guthaus et al. (2001) with -O3 compiler optimization

flag. For each benchmark three versions, Original , nZDC+inCheck, SWIFT-R were

generated. It should be noted I did not modify the standard library functions and

therefore am excluding them from all of fault injection and performance overhead

estimation results shown in this work. Extensive fault injection experiments were

performed on different hardware components of a modern, high-performance low-

power, ARM cortex A-53 like microprocessor simulated in gem5Binkert et al. (2011)

a cycle accurate simulator. Table 4.1 shows the details of the processor configuration.

4.2 Fault Model and Injection Set-Up

Fault model and Fault sites:

I used single bit-flip per execution as the fault model in this work. Faults were in-

jected on different bits of various hardware components including general purpose

integer register file, pipeline decoder and instruction queue registers, integer func-

tional units and load-store unit buffers. Processor-wide fault injection enables us to

16



Parameter Value

CPU Model ARM64 bit in-order processor

Pipeline Two way/4-stage

NUmber of FUs 2Int, 1Mul, 1Div, 1Float, 1Mem

L1 D/I-Cache 64KB (2-way) / 32KB (2-way)

TLB size 512 entries

Integer registerfile 32 registers (64-bit width)

Store buffer size 5 entries

Table 4.1: Simulator Parameters.

estimate the microprocessor-level recovery capability of InCheck. In fact as Cho et al.

(2013) pointed out and our experimental results also confirm, injecting single bit-flip

just in register file is not a true representative for the whole system, because it can

not capture all effects of errors.

Number of fault injections experiments and outcome classification: To make

sure that I covered almost all cases in my experimental results we randomly inject

400 faults for each version of a program. Thus, we injected 1600 faults in four hard-

ware components per version of program. Overall, we performed 9600 fault injection

experiments. According to Leveugle et al. (2009), these extensive fault injection ex-

periments provide us a 1% error margin with 95% confidence interval in our results.

It is worth to mention that similar researchers Didehban and Shrivastava (2016);

Mitropoulou et al. (2014); Feng et al. (2010); Reis et al. (2007); Khudia et al. (2012)

usually assume 95% confidence interval with 1% error which is achievable by just in-

jecting about 400 fault injection experiments per component. For each fault injection

experiment, a target component and a (bit, cycle) are randomly selected before the

simulation run starts. Once the simulator reaches the target fault injection cycle,
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simulation is paused, the selected bit is inverted, and then, the simulation run re-

sumes its execution till simulation terminates or the allowable simulation time gets

completed. The result of each simulation run is classified into one of the following

category:

Masked: Program terminates and the output is correct.

Failed: Program terminates normally, but, the output is incorrect.

Detected/Recovered: Since the goal of this work is to prevent a program from

producing any incorrect output and provide the recovery from the detected faults, we

also count the number of Detected/Recovered faults.

Others: Program terminates by generating some symptoms such as segmentation

fault or simulation time is over.
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Chapter 5

EVALUATION AND ANALYSIS

5.1 Fault Injection Results

Figure 5.1 depicts the absolute number of injected faults which lead to SDCs in dif-

ferent hardware components. Fault injection during the execution of nZDC+InCheck-

protected programs never resulted in an SDC. This implies that,

1. Error detection is able to detect all errors

2. Diagnosis routine distinguished all recoverable errors from unrecoverable errors,

3. If it was recoverable error, the recovery routine succeeded every single time.

The nZDC+inCHECK error detection is able to detect all errors because it takes

place after the execution of critical instructions rather than before, and it checks
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Figure 5.2: Total Number of SDCs from Processor-Wide Single Bit-Flip Fault In-
jection Experiments

for silent-store and missing-memory update vulnerable cases. However, SWIFTR

transformation can reduce the percentage of SDCs from 16.4%, 8.8%, 9.1% and 3.8%

to 8.7%, 4.1%, 1.7% and 1.4% for register file, pipeline registers, functional units and

load-store unit, respectively. Surprisingly, for some programs such as qsort SWIFTR

transformation actually doubles the number of failures! For a SWIFT-R protected

program, the SDCs in Register file mainly occur when error happens between the time

elapsed from voter providing its final output to the critical instruction reading it. In

case of qsort, voter single-point-of-failures before frequent library calls are the reason

for growth in SDC count. The main reason of SDCs from fault injection on pipeline

register and functional units in SWIFTR-protected programs is that the injected

fault affects the computation of an unprotected instruction, i,e. memory or compare

operations. Figure 5.2 refers to the total number of SDCs that occurred during the

Processor level Fault Injection campaign that was performed on Original, SWIFT-
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R and nZDC+InCheck protected versions of the programs in MiBench Benchmark.

SWIFT-R could bring down the total number of SDCs in Original program from 982

to 299. However InCheck could bring this number down to zero!
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5.2 Detected and Unrecoverable Errors

As specified in 5.3, InCheck was unable to recover from about 5% of the faults

detected by SDC. However, nZDC+InCheck caught all those unrecoverable faults

and deemed them as detected. Restart/Retry can be employed as recovery in these

scenarios.

Out of all the fault injection experiments performed on 4 major hardware components

of the processor, InCheck showed 5 detected/unrecoverable faults in Register File, 61

in Load Store Queue, 2 in Pipeline Registers and 4 in Functional Unit Registers.

Overall, InCheck had a successful recovery rate of about 96% throughout the Fault

Injection Campaign.
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Figure 5.3: Percentage Recoverable vs Detected/Unrecoverable Faults with InCheck

22



5.3 Performance Overhead

Figure 5.4 shows the execution overheads of InCheck+nZDC and SWIFT-R pro-

tected programs normalized to Original Program. It can be see that on an average,

an nZDC+InCheck version of a program can run 105% faster than its SWIFT-R

equivalent. The performance overhead reported in this work may seem higher than

similar works because of two main reasons.

1. Unlike common practice in related works Feng et al. (2010), numbers reported

in this work are based on the cycles that a program spends in the user function

where the protection scheme was applied. I excluded the cycles for executing

unmodified library calls.

2. Similar works usually select an aggressively OoO processor which in protected

version of the program can best utilize the hardware.
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In Figure 5.5, the breakdown of dynamic instructions committed by InCheck and

nZDC fractions of the executed program is presented. It shows that, on an average

nZDC+InCheck program has about 20% more dynamic instructions compared to its

nZDC counterpart.
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Chapter 6

LIMITATIONS OF InCheck

Though not encountered in our extensive FI experiments, there is a very rare possi-

bility that InCheck’s recovery could cause SDC. If error happens on InCheck’s Store

instruction (register file preservation) and changes the effective address of such in-

structions in a way that it overwrites useful data of a critical memory location being

used by the program, it could cause an SDC. That being said, it can be avoided by

adding load back and compare instructions inside checkpointing routine before every

register preservation. Considering the fact that it hasn’t happened in my experiments,

I saved on execution time by making this trade-off.

In benchmarks with very large number of stores, the checkpointing overhead might

be considerably high. This will result in large execution overheads. However, other

recovery approaches also suffer from similar problems when the program has large

number of store instructions.
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Chapter 7

CONCLUSION AND FUTURE WORK

A backward recovery methodology called InCheck has been proposed in this work.

It has been integrated with nZDC, a fine-grain duplication based SE detection tech-

nique. It could recover from almost all faults detected by nZDC. The fault injection

results proved that the nZDC+InCheck protected programs could accomplish high

recovery rates without compromising the fault coverage given by nZDC.

Since all our experiments were performed on a gem5 based processor simulator, there

are chances that some of the processor’s architectural bits might have not been mod-

eled accurately inside it. So we are planning to perform RTL level fault injection

experiments to test the soft-error resilience of InCheck.

The process of verification is never complete. There will always be certain corner

cases that the random fault injection campaigns may not have covered. That being

said, it is also impractical to go for a comprehensive (exhaustive) fault injection as-

sessment. Therefore to understand any possible flaws in my approach that were not

evident from my fault injection experiments, I am planning to consider doing a formal

analysis of InCheck for a simple processor architectural model.
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